EP3976463B1 - Automatischer verstellpropeller - Google Patents

Automatischer verstellpropeller Download PDF

Info

Publication number
EP3976463B1
EP3976463B1 EP20737261.6A EP20737261A EP3976463B1 EP 3976463 B1 EP3976463 B1 EP 3976463B1 EP 20737261 A EP20737261 A EP 20737261A EP 3976463 B1 EP3976463 B1 EP 3976463B1
Authority
EP
European Patent Office
Prior art keywords
propeller
pitch
movable partition
chamber
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20737261.6A
Other languages
English (en)
French (fr)
Other versions
EP3976463A1 (de
Inventor
Christophe DEPRES
Pascale BALLAND
Laurent Bernard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite Savoie Mont Blanc
Original Assignee
Universite Savoie Mont Blanc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Savoie Mont Blanc filed Critical Universite Savoie Mont Blanc
Publication of EP3976463A1 publication Critical patent/EP3976463A1/de
Application granted granted Critical
Publication of EP3976463B1 publication Critical patent/EP3976463B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/008Propeller-blade pitch changing characterised by self-adjusting pitch, e.g. by means of springs, centrifugal forces, hydrodynamic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/06Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical
    • B63H3/08Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical fluid
    • B63H3/081Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical fluid actuated by control element coaxial with the propeller shaft
    • B63H3/082Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical fluid actuated by control element coaxial with the propeller shaft the control element being axially reciprocatable
    • B63H2003/084Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical fluid actuated by control element coaxial with the propeller shaft the control element being axially reciprocatable with annular cylinder and piston

Definitions

  • variable pitch propellers generally concerns variable pitch propellers and, more particularly, a device for controlling the pitch of a variable pitch propeller. This description applies in particular to variable pitch propeller thrusters.
  • Propeller thrusters are already widely used to set machines in motion, typically to navigate boats, to fly aircraft, etc.
  • motorized propeller thrusters are usually fitted to small boats capable of traveling over a wide range of speeds.
  • these thrusters are often equipped with variable pitch propellers, so that the pitch of the propeller increases as the speed of the boat increases. This makes it possible to maintain a substantially constant engine speed whatever the speed of the boat. This improves the efficiency of the propellant.
  • the thruster then includes a system for controlling the pitch of the propeller in relation, typically, to the speed of the boat and/or in relation to a motor torque applied to a propeller shaft.
  • the document US 5,219,272 describes a variable pitch marine thruster with hydrodynamic variation.
  • the document JP S 59126798 U describes a variable pitch marine thruster with another example of a variation mechanism.
  • One embodiment overcomes all or part of the drawbacks of known pitch control devices for a variable pitch propeller.
  • the invention provides a device comprising a variable pitch propeller and means adapted to modify the pitch of the propeller by Venturi effect.
  • an external flow of a fluid generates, by Venturi effect, a depression in a first compartment of a chamber comprising one or more first orifices not parallel to an axis of rotation of the propeller, a variation of this depression causing a movement of a movable partition inside the chamber activating a mechanism for modifying the pitch of the propeller.
  • a variation of a depression in the first compartment causes a modification of the pitch of the propeller.
  • an increase in depression causes an increase in the pitch of the propeller.
  • a reduction in depression causes a reduction in the pitch of the propeller.
  • At least one additional part forms, relative to an external surface of the chamber, a constriction in the vicinity of this or these first orifices.
  • the movable partition further delimits, inside the chamber, a second compartment communicating with the outside through one or more second orifices parallel to the axis of rotation of the propeller.
  • the movable partition is linked to a return spring towards a position corresponding to an extreme value of the pitch of the propeller.
  • the movable partition is a piston comprising an inclined surface, relative to the axis of rotation of the propeller, on which rests a cam adapted to actuate the mechanism for modifying the pitch of the propeller. helix.
  • the movable partition is associated with a gear, consisting of a rack and a pinion, adapted to actuate the mechanism for modifying the pitch of the propeller.
  • the propeller pitch modification mechanism modifies a blade pitch angle over an angular range less than 90°, preferably of the order of 15°.
  • the propeller comprises at least two blades arranged radially and separated from the axis of rotation by a distance of approximately 35 mm, preferably equal to 35 mm, these blades having a length of approximately 240 mm , preferably equal to 240 mm.
  • One embodiment provides a propulsion device comprising a device as described.
  • One embodiment provides a human-powered boat comprising at least one propulsion device as described.
  • One embodiment provides an energy recovery device, comprising a device as described.
  • the expressions “approximately”, “approximately”, “substantially”, and “of the order of” mean to the nearest 10%, preferably to the nearest 5%.
  • the embodiments described take for example a propeller fitted to a thruster. However, these embodiments apply more generally to any variable pitch propeller system in which similar problems arise, for example wind turbines or tidal turbines.
  • FIG. 1 illustrates schematically and partially, in a side view and in section, an embodiment of a thruster 1 with an automatic variable pitch propeller.
  • the propeller 1 comprises a propeller 11 consisting of two blades 111 and 112.
  • the blades 111 and 112 are arranged in opposition, perpendicular to an axis 113 of rotation of the propeller 11.
  • the axis 113 of rotation of propeller 11 is, in figure 1 , parallel to the cutting plane.
  • the blades 111 and 112 are pivotally mounted relative to a common axis 115, perpendicular to the axis 113 of rotation of the propeller 11.
  • the axis 115 around which the blades 111 and 112 of the propeller pivot 'helix 11, is, in figure 1 , oriented perpendicular to the cutting plane.
  • a pivoting (or rotation) of the blades 111 and 112, around the axis 115, makes it possible to vary the pitch of the propeller 11 of the propeller 1.
  • the pivoting, relative to the axis 115, of the blade 111 of the propeller 11 modifies a pitch angle ⁇ , or angle of attack, of the blade 111.
  • the pivoting, relative to the axis 115, of the blade 112 of the propeller 11 modifies a pitch angle ⁇ , or angle of attack, of the blade 112.
  • the propeller 1 is therefore equipped with a propeller 11 with variable pitch.
  • the thruster 1 is a variable pitch thruster.
  • the angle ⁇ corresponds, in this example, to an angle formed by a chord (straight line joining a leading edge to a trailing edge of a profile) of the blade 111 relative to a normal to the axes 113 and 115.
  • the angle ⁇ corresponds, still in this example, to an angle formed by a chord of the blade 112 relative to a normal to the axes 113 and 115.
  • the angle ⁇ of setting of the blade 112 has a value equal to that of the pitch angle ⁇ of the blade 111. This makes it possible to balance the rotation of the propeller 11 around the axis 113, thus limiting the appearance of vibrations.
  • the speed ⁇ of rotation of the propeller 11 is, for example, imposed by a motor driving a shaft connected to the propeller 11.
  • a motor driving a shaft connected to the propeller 11. the more the angles of attack ⁇ and ⁇ increase, for a speed ⁇ of rotation assumed to be constant, and the more the speed v of the flow increases.
  • the thruster 1 comprises a body 13 in which a cavity (or recess) forming a chamber 15 is arranged.
  • the body 13 of the thruster 1 has one or more orifices 131 not parallel to the axis 113 of rotation of the propeller 11.
  • two orifices 131 are made in a direction perpendicular to the axis 113 of rotation of the propeller 11. The orifices 131 thus form through holes which open into the interior of the chamber 15.
  • the chamber 15 comprises a first compartment 151 separated from a second compartment 153 by a movable partition 17 or piston.
  • the first compartment 151 communicates, via the two orifices 131, with the exterior of the chamber 15.
  • the second compartment 153 of the chamber 15 is, as for it, completely enclosed and therefore does not communicate with the outside of room 15.
  • the propeller 1 is immersed in a fluid, for example water, constituting an external environment where the chamber 15 and the propeller 11 are placed in particular.
  • the first compartment 151 of the chamber 15 is therefore, in figure 1 , filled with water. Water exchanges can thus occur freely, via the orifices 131 (or water intakes), between the interior and exterior of the chamber 15.
  • the second compartment 153 is, still in this example, preferably filled with a gas, for example air.
  • the movable partition 17 ensures, where appropriate, a dynamic seal between the first compartment 151 and the second compartment 153, so that the air contained in the second compartment 153 thus remains trapped there whatever the position of the movable partition 17. .
  • the pressure P3 is chosen or adjusted such that at rest, that is to say for a zero flow speed v, the pressure P3 is lower than the pressure P1.
  • the movable partition 17 thus occupies, for a zero speed v, a fallback position located near the front of propeller 1 (on the left, in figure 1 ).
  • pressures P1 and P3 both tend to move piston 17 in opposite directions.
  • the piston 17 therefore stops, at non-zero speed v, in a position resulting from a dynamic equilibrium established between the pressures P1 and P3.
  • the movable partition 17 includes a rack 171 arranged parallel to the axis 113 of rotation of the propeller 11. On this rack 171 a pinion 173 meshes.
  • the pinion 173 is, in figure 1 , held integral with the blade 111 of the propeller 11.
  • the rack 171 is mounted such that a movement of the movable partition 17 towards the rear of the propeller 1 (towards the right, in figure 1 ) causes an increase in the pitch angle ⁇ of the blade 111.
  • a similar mechanism (not shown), making it possible to modify the angle ⁇ of the blade 112 of the propeller 11, is also implemented.
  • an increase in the speed v leads, by Venturi effect, to a reduction in the pressure P1 in the first compartment 151.
  • This thus causes a movement of the movable partition 17 towards the rear of the propeller 1 (towards the right , in figure 1 ).
  • This movement of the movable partition 17 tends, via the gear consisting of the rack 171 and the pinion 173, to increase the angle ⁇ of attack of the blade 111.
  • a reduction in the speed v leads, by Venturi effect, to an increase in the pressure P1 in the first compartment 151. This thus causes a movement of the movable partition 17 towards the front of the propeller 1 (towards the left, in figure 1 ).
  • This movement of the movable partition 17 tends, via the rack 171 and the pinion 173, to reduce the angle ⁇ of attack of the blade 111. Similar modifications take place, thanks to the movement of the movable partition 17, on the angle ⁇ of attack of the blade 112.
  • the movement of the piston 17 in the chamber 15 between extremal positions thus leads to modifying the angles of attack ⁇ and ⁇ over an angular range less than 90°, from preferably around 15°.
  • the thruster 1 is therefore equipped with a propeller 11 with automatic variable pitch.
  • the thruster 1 is an automatic variable pitch thruster.
  • the medium in which the propellant 1 is placed is air.
  • the first compartment 151 of the chamber 15 is, where appropriate, filled with air.
  • a flow of air along the body 13 of the propeller 1 causes, by Venturi effect, a depression in the first compartment 151. This depression tends, as explained previously, to shift the piston 17 towards the rear of the propeller 1 (towards the right, in figure 1 ), therefore to increase the pitch of the propeller 11.
  • FIG. 2 illustrates schematically and partially, in a side view and in section, another embodiment of a propeller 2 with an automatic variable pitch propeller.
  • the thruster 2 of the figure 2 includes common elements with the propeller 1 of the figure 1 . These common elements will not be detailed again below.
  • the thruster 2 of the figure 2 differs from propeller 1 of the figure 1 mainly in that the propeller 2 comprises at least one additional or additional part 135.
  • This part 135 forms, relative to an external surface of the chamber 15, a constriction 137 tightening in the vicinity of the orifices 131.
  • the constriction 137 is, in figure 2 , accentuated by a particular geometry (or curve, or shape) of the body 13 of the propeller 2 near the orifices 131.
  • the part 135 is, for example, a crown surrounding the body 13 and fixed to the propeller 2 in several places (not shown in the sectional view).
  • the restriction 137 is adapted to locally accelerate the flow of the fluid in the vicinity of the orifices 131.
  • the fluid flows locally, in the vicinity of the orifices 131, at a speed greater than the overall speed v of the flow.
  • This local acceleration of the flow makes it possible to accentuate the Venturi effect and thus increase the depression produced inside the first compartment 151 of the chamber 15.
  • the pressure P1 prevailing in the first compartment 151 of the propellant 2 will therefore, at equal flow speed v, be lower than the pressure P1 reigning in the first compartment 151 of the propellant 1 ( figure 1 ).
  • the second orifices 133 make it possible, when the flow speed v increases, to increase the pressure P3 reigning inside the second compartment 153 of the chamber 15. This results in an increase in the speed v causes not only a reduction, by Venturi effect, of the pressure P1, but also an increase of the pressure P3.
  • the pressures P1 and P3 therefore both tend to move the piston 17 in the same direction, here towards the rear of the propeller 2 (towards the right, in figure 2 ), unlike the example of figure 1 where the pressures P1 and P3 tend to move the piston 17 in opposite directions.
  • the spring 19 thus tends, by a restoring force directed parallel to the axis 113, to push the movable partition 17 towards the front of the propeller 2 (towards the left, in figure 2 ), in other words towards a position corresponding to an extreme value of the pitch of the propeller 11.
  • the extreme value of the pitch of the propeller 11 is equivalent, in figure 2 , at a minimum step value also called “small step”.
  • the pressures P1 and P3 are approximately equal.
  • the position of piston 17 is then located at the front of propeller 1 (on the left, in figure 2 ), that is to say in the position which corresponds to the small pitch of the propeller 11.
  • the piston 17 compresses the spring 19 by moving towards a corresponding position, in figure 2 , at a maximum value of the pitch, also called “large pitch”, of the propeller 11.
  • An advantage of the embodiment presented in relation to the figure 2 lies in the fact that the pitch of the propeller 11 of the propeller 2 is regulated by a force of hydrodynamic origin, linked one-to-one to the speed of the flow.
  • Another advantage of the embodiment of the figure 2 compared to that of the figure 1 is that it overcomes the constraint of maintaining a dynamic seal between the compartments 151 and 153 of the chamber 15.
  • the compartments 151 and 153 can, in fact, exchange small quantities of water, at regard to the volumes of compartments 151 and 153, without this disrupting the operation of the mechanism for modifying the pitch of the propeller 11. This makes it possible in particular to relax possible precision constraints in the manufacture of the chamber 15 and of piston 17.
  • the propellant described in figure 1 or 2 further comprises a mechanism for automatically modifying the pitch of the propeller 11 consisting of a small number of components.
  • This thruster 2 is therefore generally simpler to design, produce and develop than existing automatic variable pitch thrusters.
  • FIG. 3 illustrates schematically and partially, through side and sectional views (A) and (B), yet another embodiment of a propeller 3 with an automatic variable pitch propeller.
  • the thruster 3 of the Figure 3 includes common elements with the propeller 2 of the figure 2 . These common elements will not be detailed again below.
  • the thruster 3 of the Figure 3 differs from propeller 2 of the figure 2 mainly in that it is devoid of the gear consisting of the rack 171 ( figure 2 ) and pinion 173 ( figure 2 ).
  • the piston 17 has an inclined surface 175, or inclined pan, relative to the axis 113 of rotation of the propeller.
  • a cam 177 is adapted to carry (or roll, or slide) against the surface 175 to actuate the mechanism for modifying the pitch of the propeller 11.
  • the cam 177 is mounted at one end of a lever 179.
  • the other end of the lever 179 is held integral with the blade 111 of the propeller 11, or with the pivot axis 115.
  • the gear consisting of the rack 171 ( figure 2 ) and pinion 173 ( figure 2 ) is replaced, in Figure 3 , by the inclined surface 175 of the piston 17, the cam 177 and the lever 179.
  • Views A and B show different pitch positions.
  • a thruster such as the thruster 3 is particularly suitable for equipping low-power boats, for example human-powered boats, where maximum efficiency from the propeller 11 is sought. We can then easily adapt the regulation of the pitch of the propeller 11 according to the physical capabilities of a user of the boat, for example by installing a spring 19 having a different stiffness constant, or by modifying the shape of the cam 177.
  • FIG. 4 represents, through perspective and cutaway views A and B, yet another embodiment of a propeller 4 with an automatic variable pitch propeller.
  • Views A and B show different pitch positions.
  • the thruster 4 of the figure 4 includes common elements with the propeller 3 of the Figure 3 . These common elements will not be detailed again below.
  • the thruster 4 of the figure 4 differs from propeller 3 of the Figure 3 mainly in that piston 17 drives a drawer 47 in translation.
  • This drawer 47 actuates a lever 45 connected to the blade 111.
  • Another lever 45 (not shown) is also connected to the blade 112.
  • the body 13 of the propeller 4 is, in Figure 4 , consisting of a hub 130 fitting into a cone 132. On the cone 132 is fixed the part 135 making it possible to accentuate the depression, caused by the Venturi effect, in the vicinity of the first orifices 131.
  • the propeller 11 is fixed on a propeller shaft 43 passing through a mounting part 41 to the system with which it is associated, for example a boat (not shown).
  • the propeller 4 is, in view A, shown in a position where the spring 19 is relaxed. This position corresponds to the small pitch of propeller 11.
  • the propeller 4 is, in view B, shown in a position where the spring 19 is completely compressed. This position corresponds to the large pitch of propeller 11.
  • FIG. 5 represents an example of a boat equipped with an automatic variable pitch propeller propeller.
  • a boat 7 (for example, a human-powered boat or pedal boat) comprises at least one propeller 4 with an automatic variable pitch propeller, for example a single propeller 4.
  • the propeller 4 is fixed to a hull 71 of the boat 7
  • the boat 7 is provided with a transmission 73 adapted to modify the rotation speed of the propeller 11 of the propeller 4.
  • the boat 7 also has foils 77 or profiled wings adjustable via a control device 75 or feeler 75 making it possible to gauge the depth of the boat 7 relative to the surface of the water.
  • the propeller 4 allows the boat 7 to sail on the water.
  • the propeller 4 is placed in a flow of water whose overall speed v is equal to a speed of movement of the boat 7 on the water.
  • the pitch of the propeller 11 of the propeller 4 is thus adapted or controlled as a function of the speed of movement of the boat 7. This allows, for example, a user of the boat 7, causing the rotation of the propeller 11 with the strength of his legs, to maintain a substantially constant pedaling cadence whatever the speed of movement of the boat 7.
  • FIG. 6 represents, partially, an embodiment of a thruster propeller 11.
  • the blade 111 of the propeller 11 has dimensions adapted according to the application.
  • the blade 112, partially represented in Figure 6 preferably has dimensions identical to those of the blade 111.
  • the blade 111 has a length, denoted LP, of approximately 240 mm, preferably equal to 240 mm.
  • the propeller 11 rotates, at an angular speed ⁇ , around an axis 113 of rotation, as explained previously in relation to the figures 1 to 5 .
  • a lower end 1111 of the blade 111 is arranged, relative to this axis of rotation 113, at a distance, denoted DA, of approximately 35 mm, preferably equal to 35 mm.
  • a lower end 1121 of the blade 112 is arranged, relative to the axis of rotation 113, at a distance DA of approximately 35 mm, of preferably equal to 35 mm.
  • the lower ends 1111 and 1121 of the blades 111 and 112, respectively, are approximately equidistant from the axis of rotation 113, preferably equidistant from the axis of rotation 113.
  • the lower ends 1111 and 1121 are also called “blade roots”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Working-Up Tar And Pitch (AREA)

Claims (15)

  1. Vorrichtung, die einen Propeller (11) mit verstellbarer Steigung, eine Kammer (15), eine bewegbare Trennwand (17) und einen Mechanismus zum Verändern der Steigung des Propellers (11) aufweist, wobei eine externe Strömung (116) eines Fluides durch den Venturi-Effekt einen Unterdruck in einem ersten Zwischenraum (151) der Kammer (15) erzeugt, der ein oder mehrere erste Löcher (131) aufweist, die nicht parallel zu einer Drehachse (113) des Propellers (11) verlaufen, wobei eine Änderung dieses Unterdrucks eine Verschiebung der bewegbaren Trennwand (17) im Inneren der Kammer bewirkt, die den Mechanismus zur Änderung der Steigung des Propellers (11) betätigt.
  2. Vorrichtung nach Anspruch 1, die Folgendes aufweist:
    einen Propeller (11) mit verstellbarer Steigung,
    eine Kammer (15) mit einem oder mehreren ersten Löchern (131), die nicht parallel zu einer Drehachse (113) des Propellers (11) verlaufen;
    eine bewegbare Trennwand (17), die innerhalb der Kammer (15) einen ersten Zwischenraum (151) abgrenzt, der über das eine oder die mehreren ersten Löcher (131) mit der Außenseite in Verbindung steht; und
    einen Mechanismus zum Verändern der Steigung des Propellers (11), der mit der bewegbaren Trennwand (17) verbunden ist.
  3. Vorrichtung nach Anspruch 2, wobei eine Änderung des Unterdrucks in der ersten Kammer (151) eine Änderung der Steigung des Propellers (11) bewirkt.
  4. Vorrichtung nach Anspruch 1 oder 3, wobei eine Erhöhung des Unterdrucks eine Erhöhung der Steigung des Propellers (11) bewirkt.
  5. Eine Vorrichtung nach einem der Ansprüche 1, 3 oder 4, wobei eine Verringerung des Unterdrucks eine Verringerung in der Steigung des Propellers (11) bewirkt.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, wobei mindestens ein zusätzliches Teil (135), und zwar in Bezug auf eine Außenfläche der Kammer (15), eine Einschnürung (137) in der Nähe dieser einen oder mehreren ersten Löcher (131) bildet.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, wobei die bewegbare Trennwand (17) ferner, und zwar innerhalb der Kammer (15), einen zweiten Zwischenraum (153) abgrenzt, der über ein oder mehrere zweite Löcher (133), die parallel zur Drehachse (113) des Propellers (11) verlaufen, mit der Außenseite in Verbindung steht.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7,wobei die bewegbare Trennwand (17) mit einer Feder (19) verbunden ist, um in eine Position zurückzukehren, die einem Extremwert der Steigung des Propellers (11) entspricht.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8, wobei die bewegbare Trennwand (17) ein Kolben ist, der eine in Bezug auf die Drehachse (113) des Propellers (11) geneigte Fläche (175) aufweist, auf der sich ein Nocken (177) abstützt, der geeignet ist, den Mechanismus zur Änderung der Steigung des Propellers (11) zu betätigen.
  10. Eine Vorrichtung nach einem der Ansprüche 1 bis 9,wobei die bewegbare Trennwand (17) mit einem Getriebe verbunden ist, das aus einer Zahnstange (171) und einem Ritzel (173) besteht und dazu dient, den Mechanismus zur Änderung der Steigung des Propellers (11) zu betätigen.
  11. Vorrichtung nach einem der Ansprüche 1 bis 10, wobei der Mechanismus zur Änderung der Steigung des Propellers (11) einen Winkel (θ, α; θ1, α1, θ2, α2) einer Blattsteigung (111, 112) über einen Winkelbereich von weniger als 90°, vorzugsweise in der Größenordnung von 15°, ändert.
  12. Vorrichtung nach einem der Ansprüche 1 bis 11, wobei der Propeller (11) mindestens zwei Blätter (111, 112) aufweist, die radial angeordnet und von der Drehachse (113) durch einen Abstand (DA) von etwa 35 mm, vorzugsweise gleich 35 mm, getrennt sind, wobei diese Blätter eine Länge (LP) von etwa 240 mm, vorzugsweise gleich 240 mm, haben.
  13. Antriebsvorrichtung (1; 2, 3, 4), die eine Vorrichtung nach einem der Ansprüche 1 bis 12 aufweist.
  14. Ein von Menschen angetriebenes Boot (7), das mindestens eine Antriebsvorrichtung nach Anspruch 13 aufweist.
  15. Vorrichtung zur Rückgewinnung von Energie, die eine Vorrichtung nach einem der Ansprüche 1 bis 12 aufweist.
EP20737261.6A 2019-05-29 2020-05-20 Automatischer verstellpropeller Active EP3976463B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1905753A FR3096654B1 (fr) 2019-05-29 2019-05-29 Hélice à pas variable automatique
PCT/FR2020/050845 WO2020240119A1 (fr) 2019-05-29 2020-05-20 Helice a pas variable automatique

Publications (2)

Publication Number Publication Date
EP3976463A1 EP3976463A1 (de) 2022-04-06
EP3976463B1 true EP3976463B1 (de) 2024-02-14

Family

ID=69572014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20737261.6A Active EP3976463B1 (de) 2019-05-29 2020-05-20 Automatischer verstellpropeller

Country Status (3)

Country Link
EP (1) EP3976463B1 (de)
FR (1) FR3096654B1 (de)
WO (1) WO2020240119A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126798U (ja) * 1983-02-17 1984-08-25 三菱重工業株式会社 スクリユ−プロペラ装置
US5219272A (en) * 1991-12-02 1993-06-15 Brunswick Corporation Variable pitch marine propeller with hydrodynamic shifting
US6358007B1 (en) * 1999-01-28 2002-03-19 Henry A. Castle Universal constant speed variable pitch boat propeller system
WO2007016804A1 (de) * 2005-08-05 2007-02-15 Mueller Peter A Wasserfahrzeugantrieb

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126798U (ja) * 1983-02-17 1984-08-25 三菱重工業株式会社 スクリユ−プロペラ装置
US5219272A (en) * 1991-12-02 1993-06-15 Brunswick Corporation Variable pitch marine propeller with hydrodynamic shifting
US6358007B1 (en) * 1999-01-28 2002-03-19 Henry A. Castle Universal constant speed variable pitch boat propeller system
WO2007016804A1 (de) * 2005-08-05 2007-02-15 Mueller Peter A Wasserfahrzeugantrieb

Also Published As

Publication number Publication date
FR3096654B1 (fr) 2021-06-11
EP3976463A1 (de) 2022-04-06
WO2020240119A1 (fr) 2020-12-03
FR3096654A1 (fr) 2020-12-04

Similar Documents

Publication Publication Date Title
EP1755942B1 (de) Schiffsmotoranordnung mit einer unter einem schiffsrumpf befestigbaren gondel
EP1897799B1 (de) Einrichtung für die dynamische Stabilisierung eines U-Bootes
CA2936324C (fr) Pale pour une helice de turbomachine, notamment a soufflante non carenee, helice et turbomachine correspondantes
CA2914331C (fr) Rotor arriere de giravion, giravion equipe d'un tel rotor arriere et procede d'equilibrage statique et/ou dynamique d'un rotor arriere de giravion
EP0107543A1 (de) Anordnung für Heckrotor mit grösserem Schub für Drehflügelflugzeug
FR2643609A1 (fr) Dispositif propulseur pour vehicule sous-marin
FR2962109A1 (fr) Turbomoteur a helices non carenees
FR3081435A1 (fr) Turbomachine d'aeronef a doublet d'helices rotatives et non carenees
FR2977862A1 (fr) Dispositif de commande de l'orientation des pales de soufflante d'un turbopropulseur
FR3102139A1 (fr) Dispositif de propulsion hydraulique formant pompe helice et navire equipe d'un tel dispositif
EP0354103B1 (de) Zweidimensionaler und asymmetrischer Überschall-Lufteinlauf für die Verbrennungsluft eines Flugzeugmotors
WO2016067251A1 (fr) Perfectionnements aux machines tournantes à rotor fluidique à pales orientables
EP3976463B1 (de) Automatischer verstellpropeller
EP1826117B1 (de) Elektrisches Propulsionssystem eines Schiffs mit drei Wellenleitungen
WO1994023989A2 (fr) Hydroptere a voile
FR2869068A1 (fr) Turbomachine a entrainement liquide ou gazeux et a rendement eleve
EP0359623B1 (de) Hochharmonische Blattverstellungsteuervorrichtung eines Drehflügelflugzeuges
EP3393903A1 (de) Verfahren zur steuerung des strahlruders eines wasserfahrzeugs
EP0143061B1 (de) Automatische Verstellvorrichtung für den Propellerblattwinkel
EP4133175A2 (de) Verbesserungen an strömungsrotoren mit verstellbaren schaufeln
EP4025789B1 (de) Polyspherische nabe einer turbomaschine für verstellbare schaufeln
EP0265335A1 (de) Luftschrauben, insbesondere für Flugzeugvortriebsmittel
EP1451066B1 (de) Kippgetriebe mit gleitlager-schwenkverbindung
CH251987A (fr) Moteur hydraulique rotatif du type axial à hélice pour pression et vitesse spécifique élevées.
EP4073366A1 (de) Aeronautisches antriebssystem mit niedriger leckrate und verbesserter antriebseffizienz

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230703

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231018

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020025686

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240424

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D