EP3971406B1 - Combustion chamber section with integrated baffle and method for manufacturing a combustion chamber section - Google Patents

Combustion chamber section with integrated baffle and method for manufacturing a combustion chamber section Download PDF

Info

Publication number
EP3971406B1
EP3971406B1 EP21191880.0A EP21191880A EP3971406B1 EP 3971406 B1 EP3971406 B1 EP 3971406B1 EP 21191880 A EP21191880 A EP 21191880A EP 3971406 B1 EP3971406 B1 EP 3971406B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
coolant
baffle
chamber body
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21191880.0A
Other languages
German (de)
French (fr)
Other versions
EP3971406A1 (en
Inventor
Chris Udo Maeding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArianeGroup GmbH
Original Assignee
ArianeGroup GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArianeGroup GmbH filed Critical ArianeGroup GmbH
Publication of EP3971406A1 publication Critical patent/EP3971406A1/en
Application granted granted Critical
Publication of EP3971406B1 publication Critical patent/EP3971406B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/60Constructional parts; Details not otherwise provided for
    • F02K9/62Combustion or thrust chambers
    • F02K9/64Combustion or thrust chambers having cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/52Injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/97Rocket nozzles
    • F02K9/972Fluid cooling arrangements for nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Definitions

  • the invention relates to a combustion chamber section with an integrated baffle, a combustion chamber and a rocket engine with such a combustion chamber section, and a method for producing such a combustion chamber section, as well as a computer-readable data carrier with instructions for carrying out the manufacturing process.
  • the invention relates to a combustion chamber section, with a combustion chamber body which is formed in one piece with a guide plate projecting into the interior of the combustion chamber.
  • a combustion chamber and a rocket engine with such a combustion chamber section and a layer structure process for producing such a combustion chamber section as well as a computer-readable data carrier with instructions for carrying out the layer structure process are described.
  • Combustion chambers of liquid rocket engines are used to efficiently burn the respective fuel pairing consisting of oxidizer and fuel.
  • the fuel components are supplied to the chamber via a special injection system.
  • evaporation, mixing and chemical conversion and the beginning conversion into kinetic energy then take place in the chamber, the main increase of which lies in the area of a subsonic and supersonic nozzle area.
  • the flow in the area of the combustion chamber is characterized by turbulent mixing. For reliable operation of the rocket engine, high combustion stability is desirable.
  • cooling is necessary, particularly in the area of the hot gas walls (inner walls of the combustion chamber and exhaust nozzle).
  • the high heat development can be dampened via coolant channels in the hot gas walls through which at least one fuel component flows.
  • combustion chambers such as spherical, pear-shaped, conical, cylindrical or in the form of an annular combustion chamber
  • a cylindrical combustion chamber has advantages, particularly in production.
  • combustion chambers with a round cross-section have an increased susceptibility to high-frequency vibrations, especially transverse vibration modes, which correspond to the natural frequencies of these designs.
  • transverse vibrations i.e. vibration propagation in the radial direction of the round combustion chamber, lead to an additional release of energy in the combustion chamber with associated overheating. There is also a strong pressure fluctuation.
  • baffles also known as "baffles”
  • baffles were arranged on the head plate (or injection plate) of the combustion chamber.
  • baffles instead of baffles, to provide a certain number of coaxial injection elements on the head plate with a central sleeve body that protrudes further from the head plate into the interior of the combustion chamber than the other injection elements.
  • the resulting axial staggering of the flame front in the combustion chamber reduces or prevents the formation and/or propagation of vibrations in a similar way to baffles.
  • the present invention is based on the object of creating a structurally simpler option for reducing transverse vibrations in the combustion chamber.
  • a combustion chamber section for a combustion chamber of a rocket engine includes a combustion chamber body that encloses a combustion chamber volume and in which coolant channels are arranged.
  • the combustion chamber body can consist of an outer shell and an inner shell, between which webs or similar separating elements are arranged, which divide a space between the two shells into coolant channels.
  • fuel can flow through the coolant channels, which heats up favorably for later combustion and at the same time cools the combustion chamber body, in particular the inner shell.
  • combustion chamber body It will a cylindrical combustion chamber body is used.
  • the combustion chamber body has a polygonal (triangular, quadrangular, pentagonal or with an even higher number of corners and sides) or elliptical cross section.
  • the combustion chamber section further comprises at least one baffle, which is formed in one piece with the combustion chamber body and projects from the combustion chamber body into the interior of the combustion chamber (the combustion chamber).
  • at least one guide plate By arranging the at least one guide plate on the inside of the combustion chamber body, the structure of the injection head and in particular the injection plate for the combustion chamber is significantly simplified. Since a large number of injection elements are provided in the injection plate, which must be supplied with at least two fuel components, their structure is usually quite complex and time-consuming. The additional attachment of baffles or a number of specially shaped injection elements, as with conventional injection plates, increases the amount of work and thus the associated manufacturing costs.
  • the combustion chamber body described here enables the injection head and combustion chamber to be manufactured more simply overall.
  • the at least one baffle and the combustion chamber body consist of a coherent material.
  • the combustion chamber section i.e. the combustion chamber body with integrated at least one baffle
  • can be manufactured in a layer construction process also referred to as 3D printing or ALM - additive layer manufacturing.
  • only parts of the combustion chamber body and/or baffle can be manufactured using a layer construction process and built on a section of the combustion chamber body and/or baffle that has been manufactured in another way.
  • Different materials can also be used in the layered construction process. For example, a more heat-resistant material can be used on the radially inner sides and ends of the at least one baffle than on an outside of the combustion chamber body.
  • the combustion chamber body and the baffle can also be manufactured separately from one another and then attached to one another. This can be done, for example, by welding, soldering and/or (layer-by-layer) melting.
  • the at least one baffle can comprise at least one coolant channel, which is fluidly connected to at least one of the coolant channels in the combustion chamber body.
  • a coolant channel in the at least one baffle, it can be actively cooled, thereby greatly increasing the longevity of the baffle. Since coolant channels are already provided in most combustion chambers To cool the combustion chamber body, the fluidic connection to the coolant channel of the baffle is easy to establish.
  • at least one coolant channel running in the longitudinal direction of the combustion chamber can be fluidly connected to the at least one coolant channel in the baffle.
  • the baffle can have a coolant inlet and a coolant outlet.
  • a coolant inlet and coolant outlet here means that the corresponding coolant channel forms an opening on a cut side of the baffle. Since the baffle is made in one piece with the combustion chamber body, a cut side of the baffle here means an imaginary interface of the baffle at the border to the combustion chamber body if, for example, the baffle were separated from the combustion chamber body.
  • the at least one coolant channel of the baffle can run between the coolant inlet and the coolant outlet.
  • the coolant inlet and the coolant outlet can be arranged at different positions of the baffle (and/or the combustion chamber section), while the at least one coolant channel of the baffle runs inside the baffle.
  • the coolant inlet of the baffle can be fluidly connected to the at least one of the coolant channels in the combustion chamber body.
  • the coolant channel in the combustion chamber body can merge into the coolant channel of the baffle, so that coolant flows through the interior of the baffle after flowing through the combustion chamber body and actively cools it.
  • each of the coolant channels in the combustion chamber body can have a coolant outlet.
  • this can be an actual opening from which coolant can flow out after flowing through the combustion chamber body.
  • a further coolant outlet of a coolant channel in the combustion chamber body can be arranged in the circumferential direction along a cross section of the combustion chamber body next to one of the coolant outlets.
  • the coolant outlet of the baffle can be arranged next to one of the coolant outlets of a coolant channel in the combustion chamber body.
  • the coolant outlet of the baffle is located in the circumferential direction at a position that would correspond to a coolant outlet of a coolant channel in the combustion chamber body if no baffle with its own coolant channel were provided at this position.
  • the coolant channels in the combustion chamber body and the baffle can be dimensioned in the circumferential direction such that an integral number of coolant channels in the combustion chamber body corresponds to the width of the baffle in the circumferential direction.
  • the combustion chamber section can therefore be designed at its end with the coolant outlets like conventional combustion chambers without integrated baffles. This means that the combustion chamber section can also be used with conventional injection heads and injection plates.
  • a coolant channel in the combustion chamber body can end in the longitudinal direction of the combustion chamber body at the level of the coolant inlet of the baffle and open into the at least one coolant channel of the baffle.
  • a coolant channel in the combustion chamber body at positions where a baffle is integrated can be designed to be shorter in the longitudinal direction of the combustion chamber body than the remaining coolant channels in the combustion chamber body, which do not overlap with a baffle. This allows additional material to be provided on the combustion chamber body for fastening/integrating the baffle. Cooling of the combustion chamber body at the position at which the baffle is arranged is not necessary since the baffle itself is actively cooled.
  • a first coolant channel in the guide plate can be a coolant supply channel which is fluidly connected to the at least one coolant channel in the combustion chamber body.
  • the first coolant channel in the baffle can run on a first side of the baffle.
  • a second coolant channel in the baffle can be a coolant discharge channel that runs on a second side of the baffle.
  • the first and second sides of the baffle may be opposite sides of the baffle. For example, they can be viewed as essentially opposite sides of the baffle in the longitudinal direction of the combustion chamber section. Alternatively, they can also be viewed as essentially opposite sides of the baffle in the circumferential direction of the combustion chamber section.
  • the first coolant channel can open into or merge into the second coolant channel, so that the first and second coolant channels form a continuous volume and the first and second sides of the baffle are cooled.
  • At least one third coolant channel can fluidly connect the coolant supply channel to the coolant discharge channel.
  • the third coolant channel can be arranged on a third side of the baffle, so that the third side is also cooled.
  • the third side can be a side of the baffle lying between the first and second sides of the baffle.
  • the third coolant channel can be arranged at any position within the baffle, for example in the middle of the baffle.
  • a plurality of third coolant channels may extend at any location within the baffle, including a coolant channel along the third side of the baffle.
  • a coolant channel along one side of the baffle what is meant is the arrangement of the coolant channel in the edge region of the baffle.
  • the coolant channel is located relatively just below an outer surface of the baffle, so that this surface is sufficiently cooled.
  • the material of the baffle, which delimits an inside of the coolant channel serves to ensure the stability of the baffle.
  • "Relatively just below an external surface” here means a wall thickness of the baffle between the external surface and the coolant channel that is sufficiently stable and heat-resistant to be arranged inside the combustion chamber.
  • a plurality of baffles can be formed in one piece on the combustion chamber body and protrude into the interior of the combustion chamber. Furthermore, all of the plurality of baffles may be connected at their inner end by an annular baffle (also referred to as an inner baffle).
  • annular baffle does not only mean a round shape. Rather, the shape of the annular baffle can correspond to the cross-sectional shape of the combustion chamber body in the area of the baffles.
  • Such a baffle arranged inside the cross section of the combustion chamber body also serves to reduce or avoid transverse vibrations.
  • the annular baffle can comprise at least one coolant channel which is fluidically coupled to the at least one coolant channel of the plurality of baffles.
  • the coolant channel of the annular baffle can have one or more coolant channels of one or more several of the plurality of baffles can be fluidically coupled. This allows the inner, ring-shaped baffle to be actively cooled.
  • the at least one coolant channel of the annular guide plate can comprise a coolant outlet which is arranged either on a side facing away from the combustion chamber or on a side facing the combustion chamber.
  • a coolant outlet can also be provided on the side facing away from and facing the combustion chamber.
  • the inner baffle can be designed so that it rests on the injection plate of the injection head. This allows the coolant outlet of the inner baffle to be used as a supply line for fuel (which usually represents the coolant) into the combustion chamber head.
  • the coolant outlet can be designed as an injection element or can be set up to arrange an injection element therein.
  • the inner baffle can therefore also be designed as an injection element that projects into the combustion chamber.
  • a combustion chamber for a rocket engine comprises a combustion chamber section according to the first aspect or one of the embodiment variants described therefor.
  • a rocket engine comprises a combustion chamber section according to the first aspect or one of the embodiment variants described therefor or comprises a combustion chamber according to the second aspect.
  • a method for producing a combustion chamber section according to the first aspect or one of its design variants comprises a layer construction method, wherein the combustion chamber section is constructed using a layer construction method.
  • no material can be joined together by the layer construction process at positions where the coolant channels of the combustion chamber body and the at least one coolant channel of the baffle are located.
  • a computer readable medium includes instructions that, when executed on a processor, cause a machine to perform the layer building method according to the fourth aspect.
  • Instructions may be CAD data or similar data that describes or defines the shape of the combustion chamber section according to the first aspect and/or the combustion chamber according to the second aspect, in particular such that a machine shapes the combustion chamber section and/or the combustion chamber in layers can.
  • FIG 1 schematically shows a perspective view of a combustion chamber 100, which can be used, for example, in a rocket engine 10.
  • the nozzle of rocket engine 10 is in Figure 1 only indicated with dashed lines.
  • the combustion chamber 100 as shown in Figure 1 shown in simplified form, includes a combustion chamber section 110 in which much of the mixing and combustion of the fuel components takes place. Downstream (in the direction of flow of the combustion gases), the combustion chamber section 110 is adjoined by a subsonic nozzle section 112, in which the combustion gases are accelerated, followed by a supersonic nozzle segment 114.
  • connection 131 for coolant which opens into a distribution ring 132 (also called a distributor manifold).
  • the distribution ring 132 extends in the circumferential direction and forms a continuous annular volume. Coolant channels 130 open into this volume or viewed in the flow direction of the coolant (in Figure 1 shown by a dashed arrow), a plurality of coolant channels 130 begin in the distribution ring 132.
  • the combustion chamber section 110 consists of a combustion chamber body 120 which encloses a combustion chamber volume and in which the coolant channels 130 are also arranged.
  • the in Figure 1 Combustion chamber section 110 shown cylindrically, can assume any cross-sectional shape that serves to efficiently burn the fuel components.
  • the combustion chamber section 110 further comprises at least one baffle 140 which is formed in one piece with the combustion chamber body 120 and projects from the combustion chamber body 120 into the interior of the combustion chamber.
  • a flange 125 is provided at the end of the combustion chamber section 110 located upstream in the direction of flow of the combustion gases. This flange 125 is used to connect the injection head (not shown). As in the detailed view in the Figure 1 is shown, there are a plurality of coolant outlets 138 in the area of the flange 125, each coolant channel 130 in the combustion chamber body 120 having such a coolant outlet 138. The coolant outlets 138 are arranged next to one another in the circumferential direction along a cross section of the combustion chamber body 120. The coolant outlets 138 can open into a distribution ring or collecting ring, not shown, which is provided at the other end of the combustion chamber 100 corresponding to the distribution ring 132.
  • At least one of the baffles 140 has a coolant channel 133 - 135 in order to cool the baffle 140.
  • the coolant channel 133 - 135 is fluidly connected to at least one of the coolant channels 130 in the combustion chamber body 120.
  • FIG. 2 shows schematically a section of a combustion chamber section 110, in particular the coolant channels 130 in the combustion chamber body 120 and the coolant channels 133 - 135 in the baffle 140 can be seen.
  • the baffle 140 is shown as a trapezoidal shape only as an example, but can take any shape in order to dampen vibrations within the combustion chamber section 110.
  • the baffle 140 divides the combustion chamber volume into different sections, whereby vibrations are suppressed or at least dampened.
  • the vibrations can have different parameters, so that the guide plate 140 must be dimensioned accordingly in the longitudinal direction and/or circumferential direction of the combustion chamber section 110 in order to dampen or suppress the vibrations that would otherwise arise.
  • Baffle 140 shown as an example has a coolant inlet 136 and a coolant outlet 137.
  • the at least one coolant channel 133 - 135 of the guide plate 140 runs between the coolant inlet 136 and the coolant outlet 137.
  • the coolant inlet 136 of the baffle 140 can be fluidly connected to at least one of the coolant channels 130 in the combustion chamber body 120.
  • the baffle has a width in the circumferential direction of the combustion chamber body 120 that is slightly larger than the width of a coolant channel 130 in the combustion chamber body 120.
  • the coolant channels 133 - 135 in the baffle 140 can therefore have a width in the circumferential direction of the combustion chamber body 120.
  • the cross-sectional area of the coolant channel 130 in the combustion chamber body 120 can correspond to the cross-sectional area of the coolant channel 133 or the coolant inlet 136 in the baffle 140.
  • the coolant inlet 136 of the baffle 140 can be fluidly connected to the at least one of the coolant channels 130 in the combustion chamber body 120.
  • the coolant channel 130 in the combustion chamber body 120 ends in the longitudinal direction of the combustion chamber body 120 at the level of the coolant inlet 136 of the baffle 140, so that the coolant channel 130 in the combustion chamber body 120 opens into the coolant channel 133 in the baffle 140.
  • the adjacent coolant channels 130 in the combustion chamber body 120 are longer.
  • each coolant channel 130 in the combustion chamber body 120 lie next to one another in the circumferential direction of the coolant body 120.
  • the coolant outlet 137 of the baffle 140 is arranged adjacent to a coolant outlet 138 in the combustion chamber body 120.
  • Baffle 140 shown has a first coolant channel 133, which is a coolant supply channel.
  • the coolant supply channel 133 is fluidly connected to the (shorter) coolant channel 130 in the combustion chamber body 120.
  • a second coolant channel 134 in the baffle 140 forms a coolant discharge channel and opens into the coolant outlet 137 of the baffle 140.
  • the coolant supply channel 133 and the coolant discharge channel 134 are fluidly connected to each other. For example, they can be connected to one another via at least a third coolant channel 135. The greater the number of at least one third coolant channel 135, the more evenly coolant can flow through the guide plate 140 and the more evenly it is cooled.
  • the free tip of the baffle 140 which is furthest away from the combustion chamber body 120, projects furthest into the combustion chamber, this tip is also exposed to the highest heat load.
  • the distance between two third coolant channels 135 can become smaller as the distance from the combustion chamber body 120 increases.
  • the coolant supply channel 133 can run along a first side of the baffle 140 and the coolant discharge channel 134 can run along a second side of the baffle 140.
  • the arrangement and course of the coolant channels 133 - 135 can be chosen differently from the courses shown so that the coolest possible coolant is guided past the expected hottest points of the baffle 140.
  • FIG 3 shows schematically a section of a combustion chamber section 110 with an annular baffle 150.
  • Both the combustion chamber section 110 and the annular baffle 150 are shown circular.
  • the annular baffle 150 can also take on a different shape, for example a polygonal shape. This annular baffle 150 also divides the combustion chamber volume, thereby dampening or avoiding vibrations.
  • the annular baffle 150 can also include at least one coolant channel 151, wherein in Figure 3 For example, two coolant channels 151 are shown on opposite sides (viewed in the flow direction of the combustion gases) of the annular baffle 150.
  • This at least one coolant channel 151 in the annular baffle 150 can be fluidically coupled to at least one coolant channel 133 - 135 in at least one of the baffles 140, so that coolant can flow from at least one of the baffles 140 into the annular baffle 150 in order to close the annular baffle 150 cool.
  • At least one of the coolant channels 151 of the annular baffle 150 can include a coolant outlet 152, 153.
  • a coolant outlet 152, 153 of the annular baffle 150 can either be on be arranged on a side facing away from the combustion chamber 100 or on a side facing the combustion chamber 100.
  • the coolant outlet 152 facing away from the combustion chamber 100 can be used as a coolant connection to direct coolant into the injection head.
  • a coolant outlet 153 arranged on the side of the guide plate 150 facing the combustion chamber 100 can be used as an injection element.
  • an injection element can be installed or integrated in the coolant outlet 153, whereby coolant (here a fuel component) can be directed into the combustion chamber 100 in an area spaced from the injection plate (not shown).
  • coolant outlets can also be arranged in the baffles 140. These coolant outlets can also be arranged on a side facing away from the combustion chamber 100 or on a side facing the combustion chamber 100 and fulfill the same functions as the coolant outlets 152, 153.
  • the combustion chamber section 110 (or the entire combustion chamber 100) can be manufactured quite quickly and easily in a layered construction process (3D printing or ALM).
  • the material forming the baffle 140 and/or annular baffle 150 can be applied in layers with the combustion chamber body 120 and the entire combustion chamber section 110 can be produced in layers. All coolant channels 130, 133, 134, 135, 151 can be produced by omitting a material application and thus creating a cavity.
  • the layer construction process allows the different and possibly branched cavities that form the coolant channels 130, 133, 134, 135, 151 and coolant outlets 137, 138, 152, 153 to be produced in a simple manner.
  • baffles 140, 150 that are easy to cool can be provided in a simple manufacturing process, and in particular good vibration damping can be achieved, regardless of a complicated course of the coolant channels 130, 133, 134, 135, 151.

Description

Die Erfindung betrifft einen Brennkammerabschnitt mit integriertem Leitblech, eine Brennkammer sowie ein Raketentriebwerk mit solch einem Brennkammerabschnitt, und ein Verfahren zum Herstellen eines solchen Brennkammerabschnitts sowie einen Computer-lesbaren Datenträger mit Instruktionen zur Durchführung des Herstellverfahrens. Insbesondere betrifft die Erfindung einen Brennkammerabschnitt, mit einem Brennkammerkörper, der einstückig mit einem in das Innere der Brennkammer ragenden Leitblech gebildet ist. Ferner werden eine Brennkammer sowie ein Raketentriebwerk mit solch einem Brennkammerabschnitt und ein Schichtaufbauverfahren zum Herstellen eines solchen Brennkammerabschnitts sowie ein Computer-lesbarer Datenträger mit Instruktionen zum Durchführen des Schichtaufbauverfahrens beschrieben.The invention relates to a combustion chamber section with an integrated baffle, a combustion chamber and a rocket engine with such a combustion chamber section, and a method for producing such a combustion chamber section, as well as a computer-readable data carrier with instructions for carrying out the manufacturing process. In particular, the invention relates to a combustion chamber section, with a combustion chamber body which is formed in one piece with a guide plate projecting into the interior of the combustion chamber. Furthermore, a combustion chamber and a rocket engine with such a combustion chamber section and a layer structure process for producing such a combustion chamber section as well as a computer-readable data carrier with instructions for carrying out the layer structure process are described.

Brennkammern von Flüssigraketentriebwerken dienen der effizienten Verbrennung der jeweiligen Treibstoffpaarung bestehend aus Oxidator und Brennstoff. Hierfür werden die Treibstoffkomponenten über ein spezielles Einspritzsystem der Kammer zugeführt. In der Kammer erfolgt dann, in Abhängigkeit von den jeweiligen Betriebszuständen, die Verdampfung, Durchmischung sowie chemische Umsetzung und die beginnende Umwandlung in kinetische Energie, deren Hauptzuwachs im Bereich eines subsonischen und supersonischen Düsenbereichs liegt. Die Strömung im Bereich der Brennkammer ist von turbulenter Durchmischung gekennzeichnet. Für einen zuverlässigen Betrieb des Raketentriebwerks ist eine hohe Verbrennungsstabilität erstrebenswert.Combustion chambers of liquid rocket engines are used to efficiently burn the respective fuel pairing consisting of oxidizer and fuel. For this purpose, the fuel components are supplied to the chamber via a special injection system. Depending on the respective operating conditions, evaporation, mixing and chemical conversion and the beginning conversion into kinetic energy then take place in the chamber, the main increase of which lies in the area of a subsonic and supersonic nozzle area. The flow in the area of the combustion chamber is characterized by turbulent mixing. For reliable operation of the rocket engine, high combustion stability is desirable.

Ferner ist insbesondere im Bereich der Heißgaswände (Innenwände der Brennkammer und Schubdüse) eine Kühlung notwendig. So kann beispielsweise bei einer Regenerativkühlung die hohe Wärmeentwicklung über Kühlmittelkanäle in den Heißgaswänden, durch die mindestens eine Treibstoffkomponente strömt, abgedämpft werden.Furthermore, cooling is necessary, particularly in the area of the hot gas walls (inner walls of the combustion chamber and exhaust nozzle). For example, in the case of regenerative cooling, the high heat development can be dampened via coolant channels in the hot gas walls through which at least one fuel component flows.

Aus den verschiedenen Formen für Brennkammern, wie zum Beispiel kugelförmig, birnenförmig, konisch, zylindrisch oder auch in Form einer Ringbrennkammer, hat sich die zylindrische Brennraumkonfiguration durchgesetzt. Insbesondere in der Fertigung weist eine zylindrische Brennkammer Vorteile auf. Jedoch weisen Brennkammern mit rundem Querschnitt eine erhöhte Anfälligkeit hinsichtlich hochfrequenter Schwingungen, insbesondere transversale Schwingungsmoden auf, welche den Eigenfrequenzen dieser Bauformen entsprechen. Diese transversalen Schwingungen, also Schwingungsausbreitung in Radialrichtung der runden Brennkammer, führt zu einer zusätzlichen Energiefreisetzung in der Brennkammer mit einhergehender Überhitzung. Ferner ist eine starke Druckfluktuation zu verzeichnen.From the various shapes for combustion chambers, such as spherical, pear-shaped, conical, cylindrical or in the form of an annular combustion chamber, the cylindrical combustion chamber configuration has become established. A cylindrical combustion chamber has advantages, particularly in production. However, combustion chambers with a round cross-section have an increased susceptibility to high-frequency vibrations, especially transverse vibration modes, which correspond to the natural frequencies of these designs. These transverse vibrations, i.e. vibration propagation in the radial direction of the round combustion chamber, lead to an additional release of energy in the combustion chamber with associated overheating. There is also a strong pressure fluctuation.

Um diesen Schwingungen entgegenzuwirken oder sie zu vermeiden, wurden an der Kopfplatte (oder Einspritzplatte) der Brennkammer Leitbleche (in der englischen Fachsprache auch als "baffle" bezeichnet) angeordnet. In der DE 10 2016 209 650 A1 wird vorgeschlagen, anstatt Leitblechen eine bestimmte Anzahl von Koaxial-Einspritzelementen an der Kopfplatte mit einem zentralen Hülsenkörper vorzusehen, der weiter von der Kopfplatte ins Innere der Brennkammer hervorsteht als die übrigen Einspritzelemente. Die dadurch erzielte axiale Staffelung der Flammenfront in der Brennkammer reduziert oder verhindert die Bildung und/oder die Ausbreitung von Schwingungen in ähnlicher Weise wie Leitbleche.In order to counteract or avoid these vibrations, baffles (also known as "baffles") were arranged on the head plate (or injection plate) of the combustion chamber. In the DE 10 2016 209 650 A1 It is proposed, instead of baffles, to provide a certain number of coaxial injection elements on the head plate with a central sleeve body that protrudes further from the head plate into the interior of the combustion chamber than the other injection elements. The resulting axial staggering of the flame front in the combustion chamber reduces or prevents the formation and/or propagation of vibrations in a similar way to baffles.

US3200589 , US3242670 und US3413810 zeigen einen Brennkammerabschnitt gemäß dem Stand der Technik. US3200589 , US3242670 and US3413810 show a combustion chamber section according to the prior art.

Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine baulich einfachere Möglichkeit zur Reduzierung von transversalen Schwingungen in der Brennkammer zu schaffen.Against this background, the present invention is based on the object of creating a structurally simpler option for reducing transverse vibrations in the combustion chamber.

Diese Aufgabe wird durch einen Brennkammerabschnitt mit den Merkmalen des Anspruchs 1, eine Brennkammer mit den Merkmalen des Anspruchs 10, ein Raketentriebwerk mit den Merkmalen des Anspruchs 11 sowie ein Verfahren mit den Merkmalen des Anspruchs 12 und einem entsprechenden Datenträger mit Instruktionen gemäß Anspruch 13 gelöst.This object is achieved by a combustion chamber section with the features of claim 1, a combustion chamber with the features of claim 10, a rocket engine with the features of claim 11 and a method with the features of claim 12 and a corresponding data carrier with instructions according to claim 13.

Gemäß einem ersten Aspekt zum besseren Verständnis der vorliegenden Offenbarung umfasst ein Brennkammerabschnitt für eine Brennkammer eines Raketentriebwerks einen Brennkammerkörper, der ein Brennkammervolumen umschließt und in dem Kühlmittelkanäle angeordnet sind. Der Brennkammerkörper kann aus einer äußeren Hülle und einer inneren Hülle bestehen, zwischen der Stege oder ähnliche Trennelemente angeordnet sind, die einen Zwischenraum zwischen den beiden Hüllen in Kühlmittelkanäle unterteilen. Durch die Kühlmittelkanäle kann beispielsweise Treibstoff strömen, der sich dabei für die spätere Verbrennung günstig erwärmt und gleichzeitig den Brennkammerkörper, insbesondere die innere Hülle, kühlt.According to a first aspect for better understanding of the present disclosure, a combustion chamber section for a combustion chamber of a rocket engine includes a combustion chamber body that encloses a combustion chamber volume and in which coolant channels are arranged. The combustion chamber body can consist of an outer shell and an inner shell, between which webs or similar separating elements are arranged, which divide a space between the two shells into coolant channels. For example, fuel can flow through the coolant channels, which heats up favorably for later combustion and at the same time cools the combustion chamber body, in particular the inner shell.

Es wird ein zylindrischer Brennkammerkörper verwendet. Alternativ weist der Brennkammerkörper einen polygonalen (3-eckig, 4-eckig, 5-eckig oder mit noch einer höheren Anzahl von Ecken und Seiten) oder elliptischen Querschnitt auf.It will a cylindrical combustion chamber body is used. Alternatively, the combustion chamber body has a polygonal (triangular, quadrangular, pentagonal or with an even higher number of corners and sides) or elliptical cross section.

Der Brennkammerabschnitt umfasst ferner mindestens ein Leitblech, das einstückig mit dem Brennkammerkörper gebildet ist und von dem Brennkammerkörper in das Innere der Brennkammer (den Brennraum) ragt. Durch die Anordnung des mindestens einen Leitblechs an der Innenseite des Brennkammerkörpers wird der Aufbau des Einspritzkopfes und insbesondere der Einspritzplatte für die Brennkammer deutlich vereinfacht. Da in der Einspritzplatte eine Vielzahl von Einspritzelementen vorgesehen ist, die mit mindestens zwei Treibstoffkomponenten versorgt werden müssen, ist deren Aufbau meist schon recht komplex und zeitintensiv. Die zusätzliche Anbringung von Leitblechen oder einer Teilanzahl besonders geformter Einspritzelemente wie bei herkömmlichen Einspritzplatten erhöht den Arbeitsaufwand und somit die einhergehenden Herstellkosten. Der hier beschriebene Brennkammerkörper hingegen ermöglicht eine insgesamt einfachere Herstellung von Einspritzkopf und Brennkammer.The combustion chamber section further comprises at least one baffle, which is formed in one piece with the combustion chamber body and projects from the combustion chamber body into the interior of the combustion chamber (the combustion chamber). By arranging the at least one guide plate on the inside of the combustion chamber body, the structure of the injection head and in particular the injection plate for the combustion chamber is significantly simplified. Since a large number of injection elements are provided in the injection plate, which must be supplied with at least two fuel components, their structure is usually quite complex and time-consuming. The additional attachment of baffles or a number of specially shaped injection elements, as with conventional injection plates, increases the amount of work and thus the associated manufacturing costs. The combustion chamber body described here, on the other hand, enables the injection head and combustion chamber to be manufactured more simply overall.

Einstückig gebildet bedeutet hier, dass das mindestens eine Leitblech und der Brennkammerkörper aus einem zusammenhängenden Material bestehen. Beispielsweise kann der Brennkammerabschnitt, also der Brennkammerkörper mit integriertem mindestens einen Leitblech, in einem Schichtbauverfahren (auch als 3D-Druck oder ALM - additive layer manufacturing - bezeichnet) hergestellt werden. Auch können nur Teile des Brennkammerkörpers und/oder Leitblechs mit einem Schichtbauverfahren hergestellt werden und auf einem anderweitig hergestellten Abschnitt des Brennkammerkörpers und/oder Leitblechs aufgebaut werden. Beim Schichtbauverfahren können auch verschiedene Werkstoffe verwendet werden. Beispielsweise kann an den radial innen liegenden Seiten und Enden des mindestens einen Leitblechs ein stärker hitzebeständiger Werkstoff verwendet werden, als an einer Außenseite des Brennkammerkörpers.Formed in one piece here means that the at least one baffle and the combustion chamber body consist of a coherent material. For example, the combustion chamber section, i.e. the combustion chamber body with integrated at least one baffle, can be manufactured in a layer construction process (also referred to as 3D printing or ALM - additive layer manufacturing). Also, only parts of the combustion chamber body and/or baffle can be manufactured using a layer construction process and built on a section of the combustion chamber body and/or baffle that has been manufactured in another way. Different materials can also be used in the layered construction process. For example, a more heat-resistant material can be used on the radially inner sides and ends of the at least one baffle than on an outside of the combustion chamber body.

Der Brennkammerkörper und das Leitblech können auch getrennt voneinander hergestellt werden, und anschließend aneinander befestigt werden. Dies kann beispielsweise durch Schweißen, Löten und/oder (schichtweises) Aufschmelzen erfolgen.The combustion chamber body and the baffle can also be manufactured separately from one another and then attached to one another. This can be done, for example, by welding, soldering and/or (layer-by-layer) melting.

Zudem kann das mindestens eine Leitblech mindestens einen Kühlmittelkanal umfassen, der mit mindestens einem der Kühlmittelkanäle in dem Brennkammerkörper fluidisch verbunden ist. Durch die Anordnung eines Kühlmittelkanals in dem mindestens einen Leitblech kann dieses aktiv gekühlt werden, wodurch die Langlebigkeit des Leitblechs stark erhöht wird. Da in den meisten Brennkammern bereits Kühlmittelkanäle vorgesehen sind, um den Brennkammerkörper zu kühlen, ist die fluidische Verbindung mit dem Kühlmittelkanal des Leitblechs einfach herzustellen. Zum Beispiel kann mindestens ein in Längsrichtung der Brennkammer verlaufender Kühlmittelkanal an den mindestens einen Kühlmittelkanal in dem Leitblech fluidisch verbunden werden.In addition, the at least one baffle can comprise at least one coolant channel, which is fluidly connected to at least one of the coolant channels in the combustion chamber body. By arranging a coolant channel in the at least one baffle, it can be actively cooled, thereby greatly increasing the longevity of the baffle. Since coolant channels are already provided in most combustion chambers To cool the combustion chamber body, the fluidic connection to the coolant channel of the baffle is easy to establish. For example, at least one coolant channel running in the longitudinal direction of the combustion chamber can be fluidly connected to the at least one coolant channel in the baffle.

In einer Ausgestaltungsvariante kann das Leitblech einen Kühlmitteleingang und einen Kühlmittelausgang aufweisen. Ein Kühlmitteleingang und Kühlmittelausgang bedeutet hier, dass der entsprechende Kühlmittelkanal an einer Schnittseite des Leitblechs eine Öffnung bildet. Da das Leitblech einstückig mit dem Brennkammerkörper hergestellt ist, ist unter einer Schnittseite des Leitblechs hier eine gedachte Schnittstelle des Leitblechs an der Grenze zu dem Brennkammerkörper gemeint, wenn das Leitblech beispielsweise von dem Brennkammerkörper getrennt würde.In one embodiment variant, the baffle can have a coolant inlet and a coolant outlet. A coolant inlet and coolant outlet here means that the corresponding coolant channel forms an opening on a cut side of the baffle. Since the baffle is made in one piece with the combustion chamber body, a cut side of the baffle here means an imaginary interface of the baffle at the border to the combustion chamber body if, for example, the baffle were separated from the combustion chamber body.

Ferner kann der mindestens eine Kühlmittelkanal des Leitblechs zwischen dem Kühlmitteleingang und dem Kühlmittelausgang verlaufen. Somit können der Kühlmitteleingang und der Kühlmittelausgang an verschiedenen Positionen des Leitblechs (und/oder des Brennkammerabschnitts) angeordnet sein, während der mindestens eine Kühlmittelkanal des Leitblechs im Inneren des Leitblechs verläuft.Furthermore, the at least one coolant channel of the baffle can run between the coolant inlet and the coolant outlet. Thus, the coolant inlet and the coolant outlet can be arranged at different positions of the baffle (and/or the combustion chamber section), while the at least one coolant channel of the baffle runs inside the baffle.

In einer weiteren Ausgestaltungsvariante kann der Kühlmitteleingang des Leitblechs mit dem mindestens einen der Kühlmittelkanäle in dem Brennkammerkörper fluidisch verbunden sein. So ist beispielsweise bei der Herstellung des Brennkammerabschnitts mittels Schichtbauverfahren keine tatsächliche Öffnung in dem Leitblech vorhanden. Vielmehr wird ein in dem Inneren des Leitblechs aufgebautes, den Kühlmittelkanal im Leitblech bildendes Volumen während des Schichtbauverfahrens in ein den Kühlmittelkanal im Brennkammerkörper bildendes Volumen übergehen. Mit anderen Worten kann der Kühlmittelkanal in dem Brennkammerkörper in den Kühlmittelkanal des Leitblechs übergehen, sodass Kühlmittel nach Durchströmen des Brennkammerkörpers durch das Innere des Leitblechs strömt und dieses aktiv kühlt.In a further embodiment variant, the coolant inlet of the baffle can be fluidly connected to the at least one of the coolant channels in the combustion chamber body. For example, when producing the combustion chamber section using a layer construction process, there is no actual opening in the baffle. Rather, a volume built up in the interior of the baffle and forming the coolant channel in the baffle will merge into a volume forming the coolant channel in the combustion chamber body during the layer construction process. In other words, the coolant channel in the combustion chamber body can merge into the coolant channel of the baffle, so that coolant flows through the interior of the baffle after flowing through the combustion chamber body and actively cools it.

In noch einer weiteren Ausgestaltungsvariante kann jeder der Kühlmittelkanäle in dem Brennkammerkörper einen Kühlmittelausgang aufweisen. Hierbei kann es sich bei Betrachtung des Brennkammerabschnitts um eine tatsächliche Öffnung handeln, aus der Kühlmittel nach Durchströmen des Brennkammerkörpers ausströmen kann.In yet another embodiment variant, each of the coolant channels in the combustion chamber body can have a coolant outlet. When looking at the combustion chamber section, this can be an actual opening from which coolant can flow out after flowing through the combustion chamber body.

Beispielsweise kann in Umfangsrichtung entlang eines Querschnitts des Brennkammerkörpers neben einem der Kühlmittelausgänge ein weiterer Kühlmittelausgang eines Kühlmittelkanals in dem Brennkammerkörper angeordnet sein.For example, a further coolant outlet of a coolant channel in the combustion chamber body can be arranged in the circumferential direction along a cross section of the combustion chamber body next to one of the coolant outlets.

An Orten, an denen ein Leitblech vorgesehen ist, kann neben einem der Kühlmittelausgänge eines Kühlmittelkanals im Brennkammerkörper der Kühlmittelausgang des Leitblechs angeordnet sein. Mit anderen Worten liegt der Kühlmittelausgang des Leitblechs in Umfangsrichtung an einer Position, die einem Kühlmittelausgang eines Kühlmittelkanals in dem Brennkammerkörper entspräche, wenn an dieser Position kein Leitblech mit eigenem Kühlmittelkanal vorgesehen wäre. Die Kühlmittelkanäle in dem Brennkammerkörper sowie das Leitblech können dabei in Umfangsrichtung so dimensioniert sein, dass eine ganzzahlige Anzahl von Kühlmittelkanälen in dem Brennkammerkörper der Breite des Leitblechs in Umfangsrichtung entspricht. Der Brennkammerabschnitt kann damit an seinem Ende mit den Kühlmittelausgängen so ausgestaltet sein, wie herkömmliche Brennkammern ohne integrierte Leitbleche. Dadurch lässt sich der Brennkammerabschnitt auch mit herkömmlichen Einspritzköpfen und Einspritzplatten verwenden.At locations where a baffle is provided, the coolant outlet of the baffle can be arranged next to one of the coolant outlets of a coolant channel in the combustion chamber body. In other words, the coolant outlet of the baffle is located in the circumferential direction at a position that would correspond to a coolant outlet of a coolant channel in the combustion chamber body if no baffle with its own coolant channel were provided at this position. The coolant channels in the combustion chamber body and the baffle can be dimensioned in the circumferential direction such that an integral number of coolant channels in the combustion chamber body corresponds to the width of the baffle in the circumferential direction. The combustion chamber section can therefore be designed at its end with the coolant outlets like conventional combustion chambers without integrated baffles. This means that the combustion chamber section can also be used with conventional injection heads and injection plates.

In einer Ausgestaltungsvariante kann ein Kühlmittelkanal in dem Brennkammerkörper in Längsrichtung des Brennkammerkörpers auf Höhe des Kühlmitteleingangs des Leitblechs enden und in den mindestens einen Kühlmittelkanal des Leitblechs münden. Mit anderen Worten kann ein Kühlmittelkanal in dem Brennkammerkörper an Positionen, an denen ein Leitblech integriert ist, in Längsrichtung des Brennkammerkörpers kürzer ausgestaltet sein als die übrigen Kühlmittelkanäle im Brennkammerkörper, die sich nicht mit einem Leitblech überlappen. Dadurch kann am Brennkammerkörper zusätzliches Material zur Befestigung/Integration des Leitblechs bereitgestellt werden. Eine Kühlung des Brennkammerkörpers an der Position, an der das Leitblech angeordnet ist, ist nicht notwendig, da das Leitblech selbst aktiv gekühlt wird.In one embodiment variant, a coolant channel in the combustion chamber body can end in the longitudinal direction of the combustion chamber body at the level of the coolant inlet of the baffle and open into the at least one coolant channel of the baffle. In other words, a coolant channel in the combustion chamber body at positions where a baffle is integrated can be designed to be shorter in the longitudinal direction of the combustion chamber body than the remaining coolant channels in the combustion chamber body, which do not overlap with a baffle. This allows additional material to be provided on the combustion chamber body for fastening/integrating the baffle. Cooling of the combustion chamber body at the position at which the baffle is arranged is not necessary since the baffle itself is actively cooled.

In einer weiteren Ausgestaltungsvariante kann ein erster Kühlmittelkanal in dem Leitblech ein Kühlmittelzuleitungskanal sein, der mit dem mindestens einen Kühlmittelkanal in dem Brennkammerkörper fluidisch verbunden ist. Ferner kann der erste Kühlmittelkanal in dem Leitblech auf einer ersten Seite des Leitblechs verlaufen. Zudem kann ein zweiter Kühlmittelkanal in dem Leitblech ein Kühlmittelableitungskanal sein, der auf einer zweiten Seite des Leitblechs verläuft. Die erste und die zweite Seite des Leitblechs können gegenüberliegende Seiten des Leitblechs sein. Beispielsweise können sie im Wesentlichen gegenüberliegende Seiten des Leitblechs in Längsrichtung des Brennkammerabschnitts betrachtet sein. Alternativ können sie auch im Wesentlichen gegenüberliegende Seiten des Leitblechs in Umfangsrichtung des Brennkammerabschnitts betrachtet sein.In a further embodiment variant, a first coolant channel in the guide plate can be a coolant supply channel which is fluidly connected to the at least one coolant channel in the combustion chamber body. Furthermore, the first coolant channel in the baffle can run on a first side of the baffle. In addition, a second coolant channel in the baffle can be a coolant discharge channel that runs on a second side of the baffle. The first and second sides of the baffle may be opposite sides of the baffle. For example, they can be viewed as essentially opposite sides of the baffle in the longitudinal direction of the combustion chamber section. Alternatively, they can also be viewed as essentially opposite sides of the baffle in the circumferential direction of the combustion chamber section.

Dabei kann der erste Kühlmittelkanal in den zweiten Kühlmittelkanal münden oder übergehen, sodass der erste und zweite Kühlmittelkanal ein durchgehendes Volumen bilden, und die erste und zweite Seite des Leitblechs gekühlt wird.The first coolant channel can open into or merge into the second coolant channel, so that the first and second coolant channels form a continuous volume and the first and second sides of the baffle are cooled.

Alternativ oder zusätzlich kann mindestens ein dritter Kühlmittelkanal den Kühlmittelzuleitungskanal mit dem Kühlmittelableitungskanal fluidisch verbinden. Dabei kann der dritte Kühlmittelkanal an einer dritten Seite des Leitblechs angeordnet sein, sodass auch die dritte Seite gekühlt wird. Bei der dritten Seite kann es sich um eine zwischen der ersten und zweiten Seite des Leitblechs liegenden Seite des Leitblechs handeln. Selbstverständlich kann der dritte Kühlmittelkanal an jeder beliebigen Position innerhalb des Leitblechs, beispielsweise in der Mitte des Leitblechs, angeordnet sein. Bei einer Vielzahl von dritten Kühlmittelkanälen können diese an jeder beliebigen Position innerhalb des Leitblechs verlaufen, einschließlich einem Kühlmittelkanal entlang der dritten Seite des Leitblechs.Alternatively or additionally, at least one third coolant channel can fluidly connect the coolant supply channel to the coolant discharge channel. The third coolant channel can be arranged on a third side of the baffle, so that the third side is also cooled. The third side can be a side of the baffle lying between the first and second sides of the baffle. Of course, the third coolant channel can be arranged at any position within the baffle, for example in the middle of the baffle. A plurality of third coolant channels may extend at any location within the baffle, including a coolant channel along the third side of the baffle.

Bei der hier vorliegenden Beschreibung eines Kühlmittelkanals entlang einer Seite des Leitblechs ist die Anordnung des Kühlmittelkanals im Randbereich des Leitblechs gemeint. Mit anderen Worten liegt der Kühlmittelkanal relativ knapp unter einer äußeren Oberfläche des Leitblechs, sodass diese Oberfläche ausreichend gekühlt wird. Das Material des Leitblechs, das eine Innenseite des Kühlmittelkanals begrenzt, dient der Stabilität des Leitblechs. "Relativ knapp unter einer äußeren Oberfläche" bedeutet hier eine Wandstärke des Leitblechs zwischen äußerer Oberfläche und Kühlmittelkanal, die ausreichend stabil und hitzebeständig ist, um im Inneren der Brennkammer angeordnet zu sein.In the present description of a coolant channel along one side of the baffle, what is meant is the arrangement of the coolant channel in the edge region of the baffle. In other words, the coolant channel is located relatively just below an outer surface of the baffle, so that this surface is sufficiently cooled. The material of the baffle, which delimits an inside of the coolant channel, serves to ensure the stability of the baffle. "Relatively just below an external surface" here means a wall thickness of the baffle between the external surface and the coolant channel that is sufficiently stable and heat-resistant to be arranged inside the combustion chamber.

In noch einer weiteren Ausgestaltungsvariante kann eine Vielzahl von Leitblechen an dem Brennkammerkörper einstückig gebildet sein und in das Innere der Brennkammer ragen. Ferner können alle der Vielzahl von Leitblechen an ihrem inneren Ende durch ein ringförmiges Leitblech (oder auch als inneres Leitblech bezeichnet) verbunden sein. Unter ringförmigem Leitblech ist hier nicht ausschließlich eine runde Form zu verstehen. Vielmehr kann die Form des ringförmigen Leitblechs der Querschnittsform des Brennkammerkörpers im Bereich der Leitbleche entsprechen. Ein solches im Inneren des Querschnitts des Brennkammerkörpers angeordnetes Leitblech dient ebenfalls der Verringerung oder Vermeidung von transversalen Schwingungen.In yet another embodiment variant, a plurality of baffles can be formed in one piece on the combustion chamber body and protrude into the interior of the combustion chamber. Furthermore, all of the plurality of baffles may be connected at their inner end by an annular baffle (also referred to as an inner baffle). Here, annular baffle does not only mean a round shape. Rather, the shape of the annular baffle can correspond to the cross-sectional shape of the combustion chamber body in the area of the baffles. Such a baffle arranged inside the cross section of the combustion chamber body also serves to reduce or avoid transverse vibrations.

In einer Ausgestaltungsvariante kann das ringförmige Leitblech mindestens einen Kühlmittelkanal umfassen, der mit dem mindestens einen Kühlmittelkanal der Vielzahl von Leitblechen fluidisch gekoppelt ist. Alternativ kann der Kühlmittelkanal des ringförmigen Leitblechs mit einem oder mehreren Kühlmittelkanälen eines oder mehrerer der Vielzahl von Leitblechen fluidisch gekoppelt sein. Dadurch lässt sich das innere, ringförmige Leitblech aktiv kühlen.In one embodiment variant, the annular baffle can comprise at least one coolant channel which is fluidically coupled to the at least one coolant channel of the plurality of baffles. Alternatively, the coolant channel of the annular baffle can have one or more coolant channels of one or more several of the plurality of baffles can be fluidically coupled. This allows the inner, ring-shaped baffle to be actively cooled.

In einer weiteren Ausgestaltungsvariante kann der mindestens eine Kühlmittelkanal des ringförmigen Leitblechs einen Kühlmittelausgang umfassen, der entweder auf einer der Brennkammer abgewandten Seite oder auf einer der Brennkammer zugewandten Seite angeordnet ist. Alternativ kann auch jeweils ein Kühlmittelausgang auf der der Brennkammer abgewandten und zugewandten Seite vorgesehen sein. Im Fall eines Kühlmittelausgangs auf der der Brennkammer abgewandten Seite kann das innere Leitblech so ausgestaltet sein, dass es an der Einspritzplatte des Einspritzkopfes anliegt. Dadurch lässt sich der Kühlmittelausgang des inneren Leitblechs als Zuleitung für Treibstoff (der üblicherweise das Kühlmittel darstellt) in den Brennkammerkopf verwenden. Im Fall eines Kühlmittelausgangs auf der der Brennkammer zugewandten Seite kann der Kühlmittelausgang als Einspritzelement ausgestaltet sein oder dazu eingerichtet sein, ein Einspritzelement darin anzuordnen. Somit lässt sich das innere Leitblech auch als in die Brennkammer ragendes Einspritzelement ausbilden.In a further embodiment variant, the at least one coolant channel of the annular guide plate can comprise a coolant outlet which is arranged either on a side facing away from the combustion chamber or on a side facing the combustion chamber. Alternatively, a coolant outlet can also be provided on the side facing away from and facing the combustion chamber. In the case of a coolant outlet on the side facing away from the combustion chamber, the inner baffle can be designed so that it rests on the injection plate of the injection head. This allows the coolant outlet of the inner baffle to be used as a supply line for fuel (which usually represents the coolant) into the combustion chamber head. In the case of a coolant outlet on the side facing the combustion chamber, the coolant outlet can be designed as an injection element or can be set up to arrange an injection element therein. The inner baffle can therefore also be designed as an injection element that projects into the combustion chamber.

Gemäß einem zweiten Aspekt zum besseren Verständnis der vorliegenden Offenbarung umfasst eine Brennkammer für ein Raketentriebwerk einen Brennkammerabschnitt gemäß dem ersten Aspekt oder einer der dazu beschriebenen Ausgestaltungsvarianten.According to a second aspect for better understanding of the present disclosure, a combustion chamber for a rocket engine comprises a combustion chamber section according to the first aspect or one of the embodiment variants described therefor.

Gemäß einem dritten Aspekt zum besseren Verständnis der vorliegenden Offenbarung umfasst ein Raketentriebwerk einen Brennkammerabschnitt gemäß dem ersten Aspekt oder einer der dazu beschriebenen Ausgestaltungsvarianten oder umfasst eine Brennkammer gemäß dem zweiten Aspekt.According to a third aspect for better understanding of the present disclosure, a rocket engine comprises a combustion chamber section according to the first aspect or one of the embodiment variants described therefor or comprises a combustion chamber according to the second aspect.

Gemäß einem vierten Aspekt zum besseren Verständnis der vorliegenden Offenbarung umfasst ein Verfahren zum Herstellen eines Brennkammerabschnitts gemäß dem ersten Aspekt oder einer seiner Ausgestaltungsvarianten ein Schichtbauverfahren, wobei der Brennkammerabschnitt im Schichtbauverfahren aufgebaut wird. Insbesondere kann dabei an Positionen, an denen die Kühlmittelkanäle des Brennkammerkörpers und der mindestens eine Kühlmittelkanal des Leitblechs liegen, kein Material durch das Schichtbauverfahren zusammengefügt werden.According to a fourth aspect for better understanding of the present disclosure, a method for producing a combustion chamber section according to the first aspect or one of its design variants comprises a layer construction method, wherein the combustion chamber section is constructed using a layer construction method. In particular, no material can be joined together by the layer construction process at positions where the coolant channels of the combustion chamber body and the at least one coolant channel of the baffle are located.

Gemäß einem fünften Aspekt zum besseren Verständnis der vorliegenden Offenbarung umfasst ein Computer-lesbarer Datenträger Instruktionen, die, wenn sie auf einem Prozessor ausgeführt werden, eine Maschine dazu veranlassen, das Schichtbauverfahren gemäß dem vierten Aspekt durchzuführen. Bei diesen Instruktionen kann es sich um CAD-Daten handeln oder ähnliche Daten, die die Form des Brennkammerabschnitts gemäß dem ersten Aspekt und/oder der Brennkammer gemäß dem zweiten Aspekt beschreibt oder definiert, insbesondere so, dass eine Maschine den Brennkammerabschnitt und/oder die Brennkammer schichtweise formen kann.According to a fifth aspect for better understanding the present disclosure, a computer readable medium includes instructions that, when executed on a processor, cause a machine to perform the layer building method according to the fourth aspect. With these Instructions may be CAD data or similar data that describes or defines the shape of the combustion chamber section according to the first aspect and/or the combustion chamber according to the second aspect, in particular such that a machine shapes the combustion chamber section and/or the combustion chamber in layers can.

Die oben beschriebenen Ausgestaltungen und Varianten können selbstverständlich kombiniert werden, ohne dass dies explizit beschrieben ist. Die vorliegende Offenbarung ist somit nicht auf die einzelnen Ausgestaltungen und Varianten in der beschriebenen Reihenfolge oder einer bestimmten Kombination der Aspekte und Ausgestaltungsvarianten beschränkt.The configurations and variants described above can of course be combined without this being explicitly described. The present disclosure is therefore not limited to the individual embodiments and variants in the order described or to a specific combination of the aspects and embodiment variants.

Bevorzugte Ausführungsformen der Erfindung werden nun anhand der beigefügten schematischen Zeichnungen näher erläutert, wobei

Figur 1
schematisch eine perspektivische Ansicht einer Brennkammer zeigt;
Figur 2
schematisch einen Ausschnitt eines Brennkammerabschnitts zeigt; und
Figur 3
schematisch einen Ausschnitt eines Brennkammerabschnitts mit ringförmigem Leitblech zeigt.
Preferred embodiments of the invention will now be explained in more detail with reference to the accompanying schematic drawings, where:
Figure 1
schematically shows a perspective view of a combustion chamber;
Figure 2
schematically shows a section of a combustion chamber section; and
Figure 3
schematically shows a section of a combustion chamber section with an annular baffle.

Figur 1 zeigt schematisch eine perspektivische Ansicht einer Brennkammer 100, die beispielsweise in einem Raketentriebwerk 10 verwendet werden kann. Die Düse des Raketentriebwerks 10 ist in Figur 1 lediglich mit gestrichelten Linien angedeutet. Die Brennkammer 100, wie sie in Figur 1 vereinfacht dargestellt ist, umfasst einen Brennkammerabschnitt 110, in dem ein Großteil der Vermischung und Verbrennung der Treibstoffkomponenten stattfindet. Stromabwärts (in Strömungsrichtung der Verbrennungsgase) schließt an den Brennkammerabschnitt 110 ein subsonischer Düsenabschnitt 112 an, in dem die Verbrennungsgase beschleunigt werden, gefolgt von einem Düsenüberschallsegment 114. Figure 1 schematically shows a perspective view of a combustion chamber 100, which can be used, for example, in a rocket engine 10. The nozzle of rocket engine 10 is in Figure 1 only indicated with dashed lines. The combustion chamber 100, as shown in Figure 1 shown in simplified form, includes a combustion chamber section 110 in which much of the mixing and combustion of the fuel components takes place. Downstream (in the direction of flow of the combustion gases), the combustion chamber section 110 is adjoined by a subsonic nozzle section 112, in which the combustion gases are accelerated, followed by a supersonic nozzle segment 114.

Im Bereich des Düsenüberschallsegments 114 befindet sich ein Anschluss 131 für Kühlmittel, der in einen Verteilring 132 (auch Verteilermanifold genannt) mündet. Der Verteilring 132 erstreckt sich in Umfangsrichtung und bildet ein durchgehendes ringförmiges Volumen. In dieses Volumen münden Kühlmittelkanäle 130 bzw. in Strömungsrichtung des Kühlmittels betrachtet (in Figur 1 durch gestrichelten Pfeil dargestellt) beginnen eine Vielzahl von Kühlmittelkanälen 130 in dem Verteilring 132.In the area of the nozzle supersonic segment 114 there is a connection 131 for coolant, which opens into a distribution ring 132 (also called a distributor manifold). The distribution ring 132 extends in the circumferential direction and forms a continuous annular volume. Coolant channels 130 open into this volume or viewed in the flow direction of the coolant (in Figure 1 shown by a dashed arrow), a plurality of coolant channels 130 begin in the distribution ring 132.

Der Brennkammerabschnitt 110 besteht aus einem Brennkammerkörper 120 der ein Brennkammervolumen umschließt und in dem ebenfalls die Kühlmittelkanäle 130 angeordnet sind. Der in Figur 1 zylindrisch dargestellte Brennkammerabschnitt 110 kann jede beliebige Querschnittsform einnehmen, die der effizienten Verbrennung der Treibstoffkomponenten dient. Der Brennkammerabschnitt 110 umfasst ferner mindestens ein Leitblech (Baffle) 140 das einstückig mit dem Brennkammerkörper 120 gebildet ist und von dem Brennkammerkörper 120 in das Innere der Brennkammer ragt.The combustion chamber section 110 consists of a combustion chamber body 120 which encloses a combustion chamber volume and in which the coolant channels 130 are also arranged. The in Figure 1 Combustion chamber section 110, shown cylindrically, can assume any cross-sectional shape that serves to efficiently burn the fuel components. The combustion chamber section 110 further comprises at least one baffle 140 which is formed in one piece with the combustion chamber body 120 and projects from the combustion chamber body 120 into the interior of the combustion chamber.

Am in Blickrichtung der Strömungsrichtung der Verbrennungsgase stromaufwärts gelegenen Ende des Brennkammerabschnitts 110 ist ein Flansch 125 vorgesehen. Dieser Flansch 125 dient dem Anschluss des Einspritzkopfes (nicht dargestellt). Wie in der Detailansicht in der Figur 1 gezeigt ist, befinden sich im Bereich des Flansch 125 eine Vielzahl von Kühlmittelausgängen 138, wobei jeder Kühlmittelkanal 130 in dem Brennkammerkörper 120 einen solchen Kühlmittelausgang 138 aufweist. Die Kühlmittelausgänge 138 sind in Umfangsrichtung entlang eines Querschnitts des Brennkammerkörpers 120 nebeneinander angeordnet. Die Kühlmittelausgänge 138 können in einen nicht dargestellten Verteilring oder Sammelring münden, der entsprechend dem Verteilring 132 am anderen Ende der Brennkammer 100 vorgesehen ist.A flange 125 is provided at the end of the combustion chamber section 110 located upstream in the direction of flow of the combustion gases. This flange 125 is used to connect the injection head (not shown). As in the detailed view in the Figure 1 is shown, there are a plurality of coolant outlets 138 in the area of the flange 125, each coolant channel 130 in the combustion chamber body 120 having such a coolant outlet 138. The coolant outlets 138 are arranged next to one another in the circumferential direction along a cross section of the combustion chamber body 120. The coolant outlets 138 can open into a distribution ring or collecting ring, not shown, which is provided at the other end of the combustion chamber 100 corresponding to the distribution ring 132.

Wie insbesondere der Detailansicht in Figur 1 entnommen werden kann, weist mindestens eines der Leitbleche 140 einen Kühlmittelkanal 133 - 135 auf, um das Leitblech 140 zu kühlen. Der Kühlmittelkanal 133 - 135 ist mit mindestens einem der Kühlmittelkanäle 130 in dem Brennkammerkörper 120 fluidisch verbunden.Like the detailed view in particular Figure 1 can be removed, at least one of the baffles 140 has a coolant channel 133 - 135 in order to cool the baffle 140. The coolant channel 133 - 135 is fluidly connected to at least one of the coolant channels 130 in the combustion chamber body 120.

Figur 2 zeigt schematisch einen Ausschnitt eines Brennkammerabschnitts 110, wobei insbesondere die Kühlmittelkanäle 130 in dem Brennkammerkörper 120 und die Kühlmittelkanäle 133 - 135 in dem Leitblech 140 zu erkennen sind. Das Leitblech 140 ist nur beispielhaft trapezförmig dargestellt, kann aber jede beliebige Form einnehmen, um Schwingungen innerhalb des Brennkammerabschnitts 110 zu dämpfen. Das Leitblech 140 unterteilt das Brennkammervolumen in verschiedene Abschnitte, wodurch Schwingungen unterdrückt oder zumindest gedämpft werden. Je nach Art des Treibstoffs können die Schwingungen unterschiedliche Parameter aufweisen, sodass das Leitblech 140 in Längsrichtung und/oder Umfangsrichtung des Brennkammerabschnitts 110 entsprechend dimensioniert sein muss, um die ansonsten entstehenden Schwingungen zu dämpfen oder zu unterdrücken. Figure 2 shows schematically a section of a combustion chamber section 110, in particular the coolant channels 130 in the combustion chamber body 120 and the coolant channels 133 - 135 in the baffle 140 can be seen. The baffle 140 is shown as a trapezoidal shape only as an example, but can take any shape in order to dampen vibrations within the combustion chamber section 110. The baffle 140 divides the combustion chamber volume into different sections, whereby vibrations are suppressed or at least dampened. Depending on the type of fuel, the vibrations can have different parameters, so that the guide plate 140 must be dimensioned accordingly in the longitudinal direction and/or circumferential direction of the combustion chamber section 110 in order to dampen or suppress the vibrations that would otherwise arise.

Das in Figur 2 beispielhaft dargestellte Leitblech 140 weist einen Kühlmitteleingang 136 und einen Kühlmittelausgang 137 auf. Der mindestens eine Kühlmittelkanal 133 - 135 des Leitblechs 140 verläuft dabei zwischen dem Kühlmitteleingang 136 und dem Kühlmittelausgang 137. Beispielsweise kann der Kühlmitteleingang 136 des Leitblechs 140 mit mindestens einem der Kühlmittelkanäle 130 in dem Brennkammerkörper 120 fluidisch verbunden sein. In einer einfachen Ausgestaltung, wie sie in Figur 2 gezeigt ist, weist das Leitblech in Umfangsrichtung des Brennkammerkörpers 120 eine Breite auf, die etwas größer ist als die Breite eines Kühlmittelkanals 130 in dem Brennkammerkörper 120. Somit können die Kühlmittelkanäle 133 - 135 in dem Leitblech 140 in Umfangsrichtung des Brennkammerkörpers 120 eine Breite aufweisen, die in etwa gleich der Breite eines Kühlmittelkanals 130 in dem Brennkammerkörper 120 ist. Insbesondere kann die Querschnittsfläche des Kühlmittelkanals 130 in dem Brennkammerkörper 120 der Querschnittsfläche des Kühlmittelkanals 133 bzw. des Kühlmitteleingangs 136 in dem Leitblech 140 entsprechen.This in Figure 2 Baffle 140 shown as an example has a coolant inlet 136 and a coolant outlet 137. The at least one coolant channel 133 - 135 of the guide plate 140 runs between the coolant inlet 136 and the coolant outlet 137. For example, the coolant inlet 136 of the baffle 140 can be fluidly connected to at least one of the coolant channels 130 in the combustion chamber body 120. In a simple embodiment, as in Figure 2 As shown, the baffle has a width in the circumferential direction of the combustion chamber body 120 that is slightly larger than the width of a coolant channel 130 in the combustion chamber body 120. The coolant channels 133 - 135 in the baffle 140 can therefore have a width in the circumferential direction of the combustion chamber body 120. which is approximately equal to the width of a coolant channel 130 in the combustion chamber body 120. In particular, the cross-sectional area of the coolant channel 130 in the combustion chamber body 120 can correspond to the cross-sectional area of the coolant channel 133 or the coolant inlet 136 in the baffle 140.

Der Kühlmitteleingang 136 des Leitblechs 140 kann mit dem mindestens einen der Kühlmittelkanäle 130 in dem Brennkammerkörper 120 fluidisch verbunden sein. Wie in Figur 2 zu erkennen ist, endet der Kühlmittelkanal 130 in dem Brennkammerkörper 120 in Längsrichtung des Brennkammerkörpers 120 betrachtet auf Höhe des Kühlmitteleingangs 136 des Leitblechs 140, sodass der Kühlmittelkanal 130 in dem Brennkammerkörper 120 in den Kühlmittelkanal 133 in dem Leitblech 140 mündet. Im Gegensatz dazu, sind in Längsrichtung des Brennkammerkörpers 120 betrachtet die benachbarten Kühlmittelkanäle 130 in dem Brennkammerkörper 120 länger.The coolant inlet 136 of the baffle 140 can be fluidly connected to the at least one of the coolant channels 130 in the combustion chamber body 120. As in Figure 2 can be seen, the coolant channel 130 in the combustion chamber body 120 ends in the longitudinal direction of the combustion chamber body 120 at the level of the coolant inlet 136 of the baffle 140, so that the coolant channel 130 in the combustion chamber body 120 opens into the coolant channel 133 in the baffle 140. In contrast, when viewed in the longitudinal direction of the combustion chamber body 120, the adjacent coolant channels 130 in the combustion chamber body 120 are longer.

Die Kühlmittelausgänge 138 jedes Kühlmittelkanals 130 in dem Brennkammerkörper 120 liegen in Umfangsrichtung des Kühlmittelkörpers 120 nebeneinander. Im Bereich des Leitblechs 140, wo der Kühlmittelkanal 130 in dem Brennkammerkörper 120 kürzer ist, ist einem Kühlmittelausgang 138 in dem Brennkammerkörper 120 der Kühlmittelausgang 137 des Leitblechs 140 benachbart angeordnet. Dadurch münden sämtliche Kühlmittelkanäle 130 in dem Brennkammerkörper 120 und auch die Kühlmittelkanäle 133 - 135 in dem Leitblech 140 in den Sammelring (nicht dargestellt), wie dies auch bei einer Vielzahl von Kühlmittelkanälen 130 in dem Brennkammerkörper 120 ohne Leitblech 140 der Fall wäre. Der Sammelring und die daran anschließenden Komponenten müssen daher nicht verändert werden.The coolant outlets 138 of each coolant channel 130 in the combustion chamber body 120 lie next to one another in the circumferential direction of the coolant body 120. In the area of the baffle 140, where the coolant channel 130 in the combustion chamber body 120 is shorter, the coolant outlet 137 of the baffle 140 is arranged adjacent to a coolant outlet 138 in the combustion chamber body 120. As a result, all coolant channels 130 in the combustion chamber body 120 and also the coolant channels 133 - 135 in the baffle 140 open into the collecting ring (not shown), as would be the case with a large number of coolant channels 130 in the combustion chamber body 120 without a baffle 140. The collecting ring and the components connected to it therefore do not need to be changed.

Um eine ausreichende Kühlung des Leitblechs 140 zu erzielen, sieht das in Figur 2 dargestellte Leitblech 140 einen ersten Kühlmittelkanal 133 vor, der ein Kühlmittelzuleitungskanal ist. Der Kühlmittelzuleitungskanal 133 ist fluidisch mit dem (kürzeren) Kühlmittelkanal 130 in dem Brennkammerkörper 120 verbunden. Ein zweiter Kühlmittelkanal 134 in dem Leitblech 140 bildet einen Kühlmittelableitungskanal und mündet in den Kühlmittelausgang 137 des Leitblechs 140. Der Kühlmittelzuleitungskanal 133 und der Kühlmittelableitungskanal 134 sind fluidisch miteinander verbunden. Beispielsweise können Sie über mindestens einen dritten Kühlmittelkanal 135 miteinander verbunden sein. Je größer die Anzahl des mindestens einen dritten Kühlmittelkanals 135 ist, desto gleichmäßiger kann das Leitblech 140 von Kühlmittel durchströmt werden und desto gleichmäßiger wird es gekühlt.In order to achieve sufficient cooling of the baffle 140, this looks like Figure 2 Baffle 140 shown has a first coolant channel 133, which is a coolant supply channel. The coolant supply channel 133 is fluidly connected to the (shorter) coolant channel 130 in the combustion chamber body 120. A second coolant channel 134 in the baffle 140 forms a coolant discharge channel and opens into the coolant outlet 137 of the baffle 140. The coolant supply channel 133 and the coolant discharge channel 134 are fluidly connected to each other. For example, they can be connected to one another via at least a third coolant channel 135. The greater the number of at least one third coolant channel 135, the more evenly coolant can flow through the guide plate 140 and the more evenly it is cooled.

Da die freie Spitze des Leitblechs 140, die am weitesten von dem Brennkammerkörper 120 beabstandet ist, am weitesten in die Brennkammer ragt, ist diese Spitze auch der höchsten Wärmebelastung ausgesetzt. Um weiterhin eine gleichmäßige Kühlung erzielen zu können, kann der Abstand zwischen zwei dritten Kühlmittelkanälen 135 mit zunehmendem Abstand vom Brennkammerkörper 120 kleiner werden.Since the free tip of the baffle 140, which is furthest away from the combustion chamber body 120, projects furthest into the combustion chamber, this tip is also exposed to the highest heat load. In order to continue to achieve uniform cooling, the distance between two third coolant channels 135 can become smaller as the distance from the combustion chamber body 120 increases.

Um auch die Außenseiten des Leitblechs 140 (in Strömungsrichtung der Verbrennungsgase betrachtet) zu kühlen, kann der Kühlmittelzuleitungskanal 133 entlang einer ersten Seite des Leitblechs 140 verlaufen und der Kühlmittelableitungskanal 134 entlang einer zweiten Seite des Leitblechs 140 verlaufen. Selbstverständlich können die Anordnung und der Verlauf der Kühlmittelkanäle 133 - 135 abweichend von den dargestellten Verläufen so gewählt werden, dass möglichst kühles Kühlmittel an den zu erwartenden heißesten Stellen des Leitblechs 140 vorbeigeführt wird.In order to also cool the outer sides of the baffle 140 (viewed in the flow direction of the combustion gases), the coolant supply channel 133 can run along a first side of the baffle 140 and the coolant discharge channel 134 can run along a second side of the baffle 140. Of course, the arrangement and course of the coolant channels 133 - 135 can be chosen differently from the courses shown so that the coolest possible coolant is guided past the expected hottest points of the baffle 140.

Figur 3 zeigt schematisch einen Ausschnitt eines Brennkammerabschnitts 110 mit einem ringförmigen Leitblech 150. Sowohl der Brennkammerabschnitt 110 als auch das ringförmige Leitblech 150 sind kreisförmig dargestellt. Selbstverständlich kann das ringförmige Leitblech 150 auch eine andere Form einnehmen, beispielsweise eine polygonale Form. Dieses ringförmige Leitblech 150 unterteilt ebenfalls das Brennkammervolumen, wodurch Schwingungen gedämpft oder vermieden werden. Figure 3 shows schematically a section of a combustion chamber section 110 with an annular baffle 150. Both the combustion chamber section 110 and the annular baffle 150 are shown circular. Of course, the annular baffle 150 can also take on a different shape, for example a polygonal shape. This annular baffle 150 also divides the combustion chamber volume, thereby dampening or avoiding vibrations.

Das ringförmige Leitblech 150 kann ebenfalls mindestens einen Kühlmittelkanal 151 umfassen, wobei in Figur 3 beispielhaft zwei Kühlmittelkanäle 151 an gegenüberliegenden Seiten (in Strömungsrichtung der Verbrennungsgase betrachtet) des ringförmigen Leitblechs 150 gezeigt sind. Dieser mindestens eine Kühlmittelkanal 151 in dem ringförmigen Leitblech 150 kann mit mindestens einem Kühlmittelkanal 133 - 135 in mindestens einem der Leitbleche 140 fluidisch gekoppelt sein, sodass Kühlmittel aus mindestens einem der Leitbleche 140 in das ringförmige Leitblech 150 strömen kann, um das ringförmige Leitblech 150 zu kühlen.The annular baffle 150 can also include at least one coolant channel 151, wherein in Figure 3 For example, two coolant channels 151 are shown on opposite sides (viewed in the flow direction of the combustion gases) of the annular baffle 150. This at least one coolant channel 151 in the annular baffle 150 can be fluidically coupled to at least one coolant channel 133 - 135 in at least one of the baffles 140, so that coolant can flow from at least one of the baffles 140 into the annular baffle 150 in order to close the annular baffle 150 cool.

Optional hierzu kann mindestens einer der Kühlmittelkanäle 151 des ringförmigen Leitblechs 150 einen Kühlmittelausgang 152, 153 umfassen. So ein Kühlmittelausgang 152, 153 des ringförmigen Leitblechs 150 kann entweder auf einer der Brennkammer 100 abgewandten Seite oder auf einer der Brennkammer 100 zugewandten Seite angeordnet sein. Der der Brennkammer 100 abgewandte Kühlmittelausgang 152 lässt sich als Kühlmittelanschluss verwenden, um Kühlmittel in den Einspritzkopf zu leiten. Ein auf der Brennkammer 100 zugewandten Seite des Leitblechs 150 angeordneter Kühlmittelausgang 153 hingegen lässt sich als Einspritzelement verwenden. Beispielsweise kann in dem Kühlmittelausgang 153 ein Einspritzelement eingebaut oder integriert werden, wodurch Kühlmittel (hier eine Treibstoffkomponente) in einem von der Einspritzplatte (nicht dargestellt) beabstandeten Bereich in die Brennkammer 100 geleitet werden kann.Optionally, at least one of the coolant channels 151 of the annular baffle 150 can include a coolant outlet 152, 153. Such a coolant outlet 152, 153 of the annular baffle 150 can either be on be arranged on a side facing away from the combustion chamber 100 or on a side facing the combustion chamber 100. The coolant outlet 152 facing away from the combustion chamber 100 can be used as a coolant connection to direct coolant into the injection head. However, a coolant outlet 153 arranged on the side of the guide plate 150 facing the combustion chamber 100 can be used as an injection element. For example, an injection element can be installed or integrated in the coolant outlet 153, whereby coolant (here a fuel component) can be directed into the combustion chamber 100 in an area spaced from the injection plate (not shown).

Ebenfalls optional können Kühlmittelausgänge (nicht dargestellt) auch in den Leitblechen 140 angeordnet werden. Dabei können diese Kühlmittelausgänge auch auf einer der Brennkammer 100 abgewandten Seite oder auf einer der Brennkammer 100 zugewandten Seite angeordnet sein und die gleichen Funktionen wie die Kühlmittelausgänge 152, 153 erfüllen.Also optionally, coolant outlets (not shown) can also be arranged in the baffles 140. These coolant outlets can also be arranged on a side facing away from the combustion chamber 100 or on a side facing the combustion chamber 100 and fulfill the same functions as the coolant outlets 152, 153.

Aus Figuren 2 und 3 ist ersichtlich, dass der Brennkammerabschnitt 110 (oder die gesamte Brennkammer 100) in einem Schichtbauverfahren (3D-Druck oder ALM) recht schnell und einfach hergestellt werden kann. Das das Leitblech 140 und/oder ringförmige Leitblech 150 bildende Material kann mit dem Brennkammerkörper 120 schichtweise aufgetragen werden und der gesamte Brennkammerabschnitt 110 kann schichtweise hergestellt werden. Sämtliche Kühlmittelkanäle 130, 133, 134, 135, 151 können dabei durch Weglassen eines Materialauftrags und somit Erzeugen eines Hohlraums hergestellt werden. Durch das Schichtbauverfahren können die unterschiedlichen und gegebenenfalls verzweigten Hohlräume, die die Kühlmittelkanäle 130, 133, 134, 135, 151 und Kühlmittelausgänge 137, 138, 152, 153 bilden, in einfacher Weise hergestellt werden. Dadurch lassen sich auch komplexe Strukturen, insbesondere im Bereich der Leitbleche 140, 150, verwirklichen, die mit anderen Herstellerverfahren nicht möglich wären. Somit lassen sich gut zu kühlende Leitbleche 140, 150 in einem einfachen Herstellerverfahren bereitstellen, wobei insbesondere auch eine gute Schwingungsdämpfung erzielt werden kann, unabhängig von einem komplizierten Verlauf der Kühlmittelkanäle 130, 133, 134, 135, 151.Out of Figures 2 and 3 It can be seen that the combustion chamber section 110 (or the entire combustion chamber 100) can be manufactured quite quickly and easily in a layered construction process (3D printing or ALM). The material forming the baffle 140 and/or annular baffle 150 can be applied in layers with the combustion chamber body 120 and the entire combustion chamber section 110 can be produced in layers. All coolant channels 130, 133, 134, 135, 151 can be produced by omitting a material application and thus creating a cavity. The layer construction process allows the different and possibly branched cavities that form the coolant channels 130, 133, 134, 135, 151 and coolant outlets 137, 138, 152, 153 to be produced in a simple manner. This makes it possible to create complex structures, particularly in the area of the baffles 140, 150, which would not be possible with other manufacturing processes. Thus, baffles 140, 150 that are easy to cool can be provided in a simple manufacturing process, and in particular good vibration damping can be achieved, regardless of a complicated course of the coolant channels 130, 133, 134, 135, 151.

Claims (13)

  1. A combustion chamber section (110) for a combustion chamber (100) for a rocket engine (10), wherein the combustion chamber section (110) comprising:
    - a combustion chamber body (120) which encloses a combustion chamber volume and in which coolant channels (130) are arranged, wherein the combustion chamber body (120) is cylindrical or has a polygonal or elliptical cross-section, and wherein the combustion chamber body (120) is adapted to be connected to an injection head,
    characterised by
    - at least one baffle (140), which is formed integrally with the combustion chamber body (120), arranged on an inner side of the combustion chamber body (120) and projects from the combustion chamber body (120) into the interior of the combustion chamber,
    wherein the at least one baffle (140) comprises at least one coolant channel (133 - 135) which is fluidically connected to at least one of the coolant channels (130) in the combustion chamber body (120).
  2. The combustion chamber section (110) according to claim 1, wherein the baffle (140) has a coolant inlet (136) and a coolant outlet (137), and wherein the at least one coolant channel (133 - 135) of the baffle (140) extends between the coolant inlet (136) and the coolant outlet (137).
  3. The combustion chamber section (110) according to claim 2, wherein the coolant inlet (136) of the baffle (140) is fluidically connected to the at least one of the coolant channels (130) in the combustion chamber body (120).
  4. The combustion chamber section (110) according to claim 2 or 3, wherein each of the coolant channels (130) in the combustion chamber body (120) has a coolant outlet (138), and wherein a further coolant outlet (138) of a coolant channel (130) in the combustion chamber body (120) or the coolant outlet (137) of the baffle (140) is arranged in the circumferential direction along a cross-section of the combustion chamber body (120) next to one of the coolant outlets (138).
  5. The combustion chamber section (110) according to one of claims 2 to 4, wherein a coolant channel (130) in the combustion chamber body (120) ends in the longitudinal direction of the combustion chamber body (120) at the level of the coolant inlet (136) of the baffle (140) and opens into the at least one coolant channel (133 - 135) of the baffle (140).
  6. The combustion chamber section (110) according to any one of claims 1 to 5, wherein a first coolant channel (133) in the baffle (140) is a coolant supply channel that is fluidically connected to the at least one coolant channel (130) in the combustion chamber body (120) and extends on a first side of the baffle (140), and wherein a second coolant channel (134) in the baffle plate (140) is a coolant discharge channel which extends on a second side of the baffle plate (140), and wherein preferably at least one third coolant channel (135) fluidically connects the coolant supply channel (133) to the coolant discharge channel (134).
  7. The combustion chamber section (110) according to any one of claims 1 to 6, wherein a plurality of baffles (140) protrude into the interior of the combustion chamber, and wherein all of the plurality of baffles (140) are connected at their inner end by an annular baffle (150).
  8. The combustion chamber section (110) according to claim 7, wherein the annular baffle (150) comprises at least one coolant channel (151) which is fluidically coupled to the at least one coolant channel (133-135) of the plurality of baffles (140).
  9. The combustion chamber section (110) according to claim 8, wherein the at least one coolant channel (151) of the annular baffle (150) comprises a coolant outlet (152, 153), which is preferably arranged either on a side facing away from the combustion chamber or on a side facing the combustion chamber.
  10. A combustion chamber (100) for a rocket engine (10) with a combustion chamber section (110) according to one of claims 1 to 9.
  11. A rocket engine (10) with a combustion chamber section (110) according to one of claims 1 to 9 or with a combustion chamber (100) according to claim 10.
  12. A method of manufacturing a combustion chamber section (110) according to any one of claims 1 to 9, wherein the combustion chamber section (110) is built up by an additive layer manufacturing technique, wherein at positions where the coolant channels (130) of the combustion chamber body (120) and the at least one coolant channel (133-135) of the baffle (140) are located, no material is joined by the additive layer manufacturing technique.
  13. A computer-readable medium comprising instructions which, when executed on a processor, cause a machine to perform the additive layer manufacturing process according to claim 12.
EP21191880.0A 2020-09-21 2021-08-18 Combustion chamber section with integrated baffle and method for manufacturing a combustion chamber section Active EP3971406B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020124530.0A DE102020124530A1 (en) 2020-09-21 2020-09-21 Combustor section with integrated baffle and method of manufacturing a combustor section

Publications (2)

Publication Number Publication Date
EP3971406A1 EP3971406A1 (en) 2022-03-23
EP3971406B1 true EP3971406B1 (en) 2024-03-20

Family

ID=77398454

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21191880.0A Active EP3971406B1 (en) 2020-09-21 2021-08-18 Combustion chamber section with integrated baffle and method for manufacturing a combustion chamber section

Country Status (4)

Country Link
US (1) US11846255B2 (en)
EP (1) EP3971406B1 (en)
JP (1) JP7339986B2 (en)
DE (1) DE102020124530A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2558484A (en) * 1947-06-25 1951-06-26 Daniel And Florence Guggenheim Cooling jacket and heat-resistant cap for combustion chambers
US3242668A (en) * 1961-06-05 1966-03-29 Aerojet General Co Means for reducing rocket motor combustion chamber instability
US3200589A (en) * 1961-11-03 1965-08-17 North American Aviation Inc Two stage baffled injector
US3242670A (en) 1962-08-27 1966-03-29 United Aircraft Corp Segmented baffle injector design
DE1257489B (en) * 1965-05-15 1967-12-28 Boelkow Gmbh Rocket engine for liquid fuels with a main combustion chamber and a pre-combustion chamber
GB1102138A (en) * 1969-05-26 1968-02-07 Boelkow Gmbh Injection device for jet propulsion units
DE2356572C3 (en) * 1973-11-13 1979-03-29 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Liquid-cooled rocket combustion chamber with thrust nozzle
DE19901422C2 (en) 1999-01-18 2000-11-16 Daimler Chrysler Ag Combustion chamber cooling structure for a rocket engine
CN105841193B (en) * 2016-05-18 2018-07-20 葛明龙 Two kinds of aerospace fanjets
DE102016209650B4 (en) 2016-06-02 2019-03-14 Arianegroup Gmbh INJECTION DEVICE FOR A ROCKET ACTUATOR
SG11201901765PA (en) * 2016-09-01 2019-03-28 Additive Rocket Corp Additive manufactured combustion engine
DE102017129321A1 (en) 2017-12-08 2019-06-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Combustion chamber device, vehicle

Also Published As

Publication number Publication date
DE102020124530A1 (en) 2022-03-24
JP2022051696A (en) 2022-04-01
US11846255B2 (en) 2023-12-19
US20220090562A1 (en) 2022-03-24
EP3971406A1 (en) 2022-03-23
JP7339986B2 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
EP2010757B1 (en) Turbine blade
DE69919298T2 (en) Cooling structure for a gas turbine combustor
DE102010017623B4 (en) Monolithic fuel injector and associated manufacturing process
EP2233836B1 (en) Swirler, method for reducing flashback in a burner with at least one swirler and burner
DE602005001682T2 (en) Helmholtz resonator for a combustor of a gas turbine engine
EP3087323B1 (en) Fuel nozzle, burner having such a fuel nozzle, and gas turbine having such a burner
EP2340397B1 (en) Burner insert for a gas turbine combustion chamber and gas turbine
DE102011052239A1 (en) Integrated fuel nozzle and inlet flow conditioner and associated method
EP3489501B1 (en) Engine, injection head for an engine, missile and method for producing an injection head
CH698347A2 (en) Fuel nozzle with integrated Einlassströmungskonditionierer.
DE2012949B2 (en) COMBUSTION CHAMBER WALL IN PARTICULAR FOR GAS TURBINE ENGINES
EP1203879B1 (en) Cooling for a combustion chamber for rockets
DE112019004946B4 (en) Burner component, burner, gas turbine and burner component manufacturing method
CH703596A2 (en) Combustion chamber for a combustion turbine.
EP3456923B1 (en) Blade of a turbomachine having cooling passage and displacement body arranged therein and method for producing the same
CH703588A2 (en) Combustion chamber for a gas turbine.
DE102004041272B4 (en) Hybrid burner lance
DE19901422C2 (en) Combustion chamber cooling structure for a rocket engine
EP1431662B1 (en) Turbine combustor with closed circuit cooling
WO2009103671A1 (en) Gas turbine having an improved cooling architecture
EP3971406B1 (en) Combustion chamber section with integrated baffle and method for manufacturing a combustion chamber section
EP3245451B1 (en) Gas turbine combustion chamber having a wall contour
DE2815916C2 (en) Annular combustion chamber with fuel pre-evaporation for gas turbine engines
EP3910238A1 (en) Pilot cone
EP3971407A1 (en) Combustion chamber with vibration-damping inner wall and method for manufacturing a combustion chamber section

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230612

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003015

Country of ref document: DE