EP3963277A1 - Elément pour échangeur de chaleur ou caloduc, et procédé de fabrication - Google Patents

Elément pour échangeur de chaleur ou caloduc, et procédé de fabrication

Info

Publication number
EP3963277A1
EP3963277A1 EP20721236.6A EP20721236A EP3963277A1 EP 3963277 A1 EP3963277 A1 EP 3963277A1 EP 20721236 A EP20721236 A EP 20721236A EP 3963277 A1 EP3963277 A1 EP 3963277A1
Authority
EP
European Patent Office
Prior art keywords
sheet
successive layers
folding
superposition
interstices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20721236.6A
Other languages
German (de)
English (en)
Inventor
Pierre Billat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stiral
Original Assignee
Stiral
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stiral filed Critical Stiral
Publication of EP3963277A1 publication Critical patent/EP3963277A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/10Particular layout, e.g. for uniform temperature distribution

Definitions

  • the present invention relates to an element for a heat exchanger or heat pipe, the element comprising a sheet comprising at least 90% by mass of a metal or a metal alloy, the sheet comprising a plurality of folds parallel to a bending direction,
  • the sheet forming successive layers superimposed in a direction of superposition substantially perpendicular to the direction of folding, the successive layers being separated by an average distance less than or equal to 1 millimeter in the direction of superposition,
  • the sheet being delimited in the folding direction by at least one sinuous edge defining at least one side face of the element, the successive layers defining between them a plurality of circulation channels for fluids in the folding direction, the channels of circulation respectively defining interstices in the side face, the sheet having at least one side portion extending in the fold direction from the meandering edge.
  • the invention also relates to an exchanger or a heat pipe incorporating such an element, as well as a method of manufacturing this element or the exchanger or the heat pipe.
  • a known type of heat exchanger uses a metal sheet folded back on itself like an accordion. Two plates attached to either side of the metal sheet define circulation channels parallel to each other and located on either side of the metal sheet. The ends of the channels open onto the side faces of the accordion sheet in which the channels define interstices.
  • the channels located on one side of the metal sheet are traversed by a cold fluid, while those located on the other side are traversed by a hot fluid.
  • a cold fluid between two plates circulate two fluids, separated from each other by the metal sheet and exchanging heat with each other through the metal sheet.
  • the accordion-like sheets and the plates covered on both sides with a solder film are stacked alternately on top of each other so as to constitute a block called a “matrix” or “assembly”.
  • This stack is then assembled in a first step in a brazing furnace.
  • the assembly comprises for example a first and a last plates of greater thickness than the other plates.
  • closure bars are generally attached to the die. Fluid feed heads are then added to the die to form the exchanger.
  • brazing steps are generally performed, between which machining operations are carried out so as to guarantee the clearances between parts.
  • This practice requires great mastery of the grades of the input alloys so as not to degrade the joints made in the previous step during the next step.
  • FR 3 066 935 describes a brazing or resurfacing process suitable for closing the micro-interstices of such accordion-shaped sheets, in order to produce exchangers of small dimensions. Nevertheless, the implementation of this method remains expensive because it generally requires several passes through the brazing furnace.
  • An aim of the invention is therefore to facilitate the manufacture of heat exchangers or heat pipes of small dimensions.
  • the invention relates to an element for a heat exchanger or heat pipe as described above, in which, in each of the successive layers, the lateral part of the sheet forms reliefs comprising at least one projecting portion. and at least one recessed portion in the direction of superposition, each of the interstices having, perpendicular to the direction of folding, at least one passage section obstructed at least 70%, preferably at least 90%, by said reliefs.
  • the element comprises one or more of the following characteristics, taken in isolation or in any technically possible combination:
  • said passage section is obstructed at least by a necking formed by two of the portions projecting belonging to two adjacent layers taken from among the successive layers, and for the other interstices, said passage section is obstructed at least by a necking formed by two of the recessed portions belonging to two adjacent layers taken from among the successive layers;
  • said two of the protruding portions are separated by a distance of less than 50 ⁇ m in the direction of superposition, and are preferably in contact with each other, and in said necking formed by two of the recessed portions, said two of the recessed portions are separated by a distance of less than 50 ⁇ m in the direction of superposition, and are preferably in contact with each other;
  • the protruding portions and the recessed portions are oriented substantially parallel to a profile direction substantially perpendicular to the direction of folding and to the direction of superposition;
  • the projecting portions and the recessed portions have a triangular or trapezoidal profile perpendicular to the profile direction;
  • the sheet further comprises at least one running part extending in the direction of folding from the lateral part, the running part comprising corrugations adapted to ensure a substantially constant spacing between the successive layers in the direction of superposition;
  • the corrugations are oriented in the same direction of corrugation, the direction of corrugation forming an angle with the direction of folding, the angle being between 20 and 70 degrees.
  • the invention also relates to a heat exchanger or a heat pipe comprising:
  • the closure member is deposited on the element by brazing or by electrodeposition, or comprises a seal forced against the side face.
  • the invention relates to a method of manufacturing an element as described above, comprising the following steps:
  • the heat exchanger or the heat pipe are capable of being obtained, or are obtained, by a manufacturing process as described above.
  • FIG. 1 is a perspective view of a stage of a heat exchanger according to the invention
  • FIG. 1 is a partial front view of an element according to the invention present in the exchanger stage shown in Figure 1,
  • FIG. 3 is a view of the element shown in Figures 1 and 2, in section perpendicular to the successive layers of the element and parallel to the bending direction,
  • FIG. 4 is a partial perspective view of the element shown in Figures 1 to 3,
  • FIG. 5 is a view similar to that shown in Figure 4, except that one of the successive layers of the element has been removed to reveal the one below, and
  • FIG. 6 is a schematic side view of the element shown in Figures 1 to 5, seen in the direction of folding.
  • the heat exchanger 1 advantageously forms a stage of a heat exchange system, not shown.
  • the heat exchanger 1 comprises an element 5 consisting of a sheet 7 having a plurality of folds 9 parallel to a fold direction X, the sheet forming successive layers 1 1 superimposed in a direction of superposition Y substantially perpendicular to the direction folding X.
  • a profile direction Z is also defined which is substantially perpendicular to the direction of folding X and to the direction of superposition Y.
  • the heat exchanger 1 is, for example, of substantially parallelepipedal shape.
  • the heat exchanger 1 further comprises two plates 13, 15 perpendicular to the direction of the Z profile and fixed to the folds 9 on either side of the sheet 7, for example by brazing.
  • the sheet 7 is glued to the rest of the heat exchanger 1, in particular if the latter is not entirely metallic.
  • the heat exchanger 1 also comprises two plugging members 17, 19.
  • the heat exchanger 1 has two side faces 21, 23 opposite in the direction of superposition Y, and two side faces 25, 27 ( Figures 1 and 3) opposite in the direction of folding X.
  • the side faces 21, 23 are formed by the sheet 7 itself and the plates 13, 15, while the side faces 25, 27 are formed by the stopper members 17, 19 and the plates 13, 15.
  • closure bars are attached to some of the side faces.
  • the plates 13, 15 are for example structurally similar to each other.
  • the plate 15 is deduced for example from the plate 13 by a 180 ° rotation around the direction of folding X and a translation in the direction of profile Z.
  • Each of the plates 13, 15 has two cutouts 29, 31 extending mainly in the direction of superposition Y and opening respectively on the side faces 23 and 21 to form collecting or distributing channels for fluids.
  • the cutouts 29, 31 open onto the side faces 25 and 27.
  • the cutouts 29, 31 are non-emerging: the distribution of the fluids is then effected by brazed perforated plates above plate 13 and respectively below plate 15.
  • the cutout 31 of the plate 13 defines an inlet E1 for a cold fluid F1.
  • the cutout 29 of the plate 13 defines an outlet S1 for a heated fluid F1 ’resulting from a heating of the cold fluid F1.
  • cutout 29 of plate 15 defines an inlet E2 for hot fluid F2.
  • the cutout 31 (not visible in Figure 1) of the plate 15 defines an outlet S2 for a cooled fluid F2 ’resulting from the cooling of the hot fluid F2 by heat exchange with the cold fluid F1.
  • the cutout 31 of the plate 15 defines the input E2, the output S2 being defined by the cutout 29 of the same plate 15.
  • the cold fluid F1 is for example water or a mixture of water and glycol, in particular if the heat exchanger 1 is a heat pump condenser (not shown).
  • the hot fluid F2 is, for example, a refrigerant of FIFE (hydrofluoroether), hydrocarbon (propane) or FIFO (hydrofluoroolefin) type, as is case in a heat pump.
  • FIFE fluorofluoroether
  • hydrocarbon propane
  • FIFO hydrofluoroolefin
  • the heat exchanger 1 is an evaporator, the nature of the cold fluid F1 and the hot fluid F2 are for example reversed.
  • the sheet 7 comprises at least 90% by mass of a metal or a metal alloy.
  • the sheet 7 is made of stainless steel, for example of 316L.
  • the sheet 7 is made of copper, aluminum or titanium.
  • the sheet 7 is bounded in the fold direction X by at least one sinuous edge 33 defining a side face 35 of the element 5.
  • the successive layers 1 1 define between them and with the plates 13, 15 a plurality of circulation channels 37 extending in the direction of folding X and respectively defining interstices 39 in the side face 35. Similar interstices (not visible on Figure 1) exist on the other side of sheet 7 in the fold direction X.
  • the circulation channels 37 located above the sheet 7 are intended to receive the cold fluid F1, and the circulation channels located under the sheet are intended to receive the hot fluid F2 in the example shown.
  • the sheet 7 comprises, successively in the direction of folding X, a first side part 41 extending from the sinuous edge 33, a running part 43, and a second side part 45 advantageously symmetrical of the first lateral part with respect to a plane P perpendicular to the folding direction X. Also, in the following, only the first lateral part 41 will be described in detail.
  • the successive layers 1 1 are separated by an average distance D less than or equal to 1 millimeter in the direction of superposition Y.
  • each of the successive layers 11 forms reliefs 47 comprising at least one projecting portion 49 and at least one recessed portion 51 in the direction of superposition Y seen from the same side of the sheet 7.
  • each of the successive layers 1 1 comprises, in the direction of folding X from the edge 33, first the recessed portion 51, then the projecting portion 49.
  • the passage section is obstructed at least by a necking 53 formed by two of the projecting portions 49 belonging to two adjacent layers taken from the successive layers 1 1.
  • the passage section is obstructed at least by a necking 55 formed by two of the recessed portions 51 belonging to two adjacent layers taken from the successive layers 11.
  • the passage section is advantageously flat.
  • X% obstructed is meant for example that X% of the surface is obstructed.
  • the gap 39 located between the layers 1 1 B and 1 1 C is partially blocked by the projecting portions 49 of the layers 1 1 B and 1 1 C.
  • these projecting portions 49 are in mechanical contact. one with the other or, failing this, separated by a distance of less than 50 ⁇ m in the direction of superposition Y.
  • the gap 39 located between the layers 1 1 A and 1 1 B is partially blocked by the recessed portions 51 of the layers 1 1 A and 1 1 B.
  • these recessed portions 51 are also in mechanical contact with one another. the other or, failing this, separated by a distance of less than 50 ⁇ m in the direction of superposition Y.
  • the projecting portions 49 and the recessed portions 51 are oriented substantially parallel to the direction of profile Z, that is to say, for example, that they form, when viewed in the direction of superposition Y, a angle of less than 30 ° degrees with the direction of profile Z.
  • the protruding portions 49 and the recessed portions 51 are parallel to the direction of profile Z.
  • the projecting portions 49 and the recessed portions 51 have for example a triangular profile (at a point) perpendicular to the profile direction Z.
  • their profile is trapezoidal, or rounded, or has any shape enabling surfaces to be obtained advantageously separated from each other by less than 50 ⁇ m in the direction of superposition Y, and preferably in contact. .
  • the running part 43 advantageously comprises corrugations 57 adapted to ensure a substantially constant spacing between the successive layers 1 1 in the direction of superposition Y. Assuming the sheet 7 unfolded and flat in a plane P '( Figure 2) perpendicular to the direction of superposition Y, the corrugations 57 are advantageously oriented in the same direction of corrugation C.
  • the corrugations 57 have for example a triangular profile.
  • the corrugation direction C forms an angle a with the bending direction X, the angle a being, for example, between 20 and 70 degrees.
  • the angle a is approximately 45 degrees in the example shown.
  • the corrugations 57 are adapted so as not to substantially obstruct the circulation channels 37.
  • the corrugation 57 of successive layers 1 1 consecutive are staggered relative to each other. Therefore, the corrugations 57 of consecutive layers are in relatively point contact with each other, while the reliefs 47 of consecutive layers are in extensive contact.
  • the plugging members 17, 19 are symmetrical to each other with respect to the plane P in the example. Also only the closure member 17 will be described below.
  • the plugging member 17 of the heat exchanger 1 is adapted to plug the interstices 39 of the side face 35 of the sheet 7.
  • the plugging member 17 is for example made of a metal or a metal alloy. and extends into the interstices 39 in the fold direction X, advantageously to the necks 53, 55.
  • the stopper 17 is for example obtained by electrolytic deposition, advantageously as explained in application FR 18 71828 by the same inventor.
  • the closure member 17 is then for example made of nickel.
  • it is made of copper, of a copper-nickel alloy, or of aluminum.
  • the thickness of the closure member 17 in the folding direction X is advantageously between 0.5 mm and 5 mm, and is for example about 1 mm.
  • the plugging member 17 is for example obtained by one or more brazing or resurfacing operations, advantageously as described in published application FR 3 066 935 A1, also by the same inventor.
  • the closure member 17 is then obtained by depositing one or more layer (s) consisting respectively of one or more predominantly metallic powder (s) (by mass), and by brazing these layers.
  • the closure member 17 is deposited on the element 5 by any other composite process, for example by inserting a flat gasket constrained uniformly on the side faces 35.
  • a flat gasket constrained uniformly on the side faces 35 we start from the sheet 7 not yet folded.
  • the protruding portions 49 and the recessed portions 51 are formed in the not yet folded sheet.
  • the corrugations 57 are also formed.
  • the sheet 7 is folded to form the plurality of folds 9 parallel to the folding direction X to obtain the successive layers 1 1.
  • the reliefs 47 form continuous grooves in the lateral part 41 of the sheet.
  • the cold fluid F1 ( Figure 1) enters element 5 through inlet E1.
  • the cold fluid F1 flows in the superimposed direction Y in the cutout 31 of the plate 13, which acts as a distributor.
  • the cold fluid F1 then enters the circulation channels 37 located above the sheet 7, and flows in the fold direction X towards the cutout 29 of the plate 13.
  • the cold fluid F1 is heated by heat exchange with the hot fluid F2, which also circulates in the circulation channels 37 located on the other side of the sheet 7 relative to the cold fluid F1.
  • the heated fluid F1 ’ is collected in the cutout 29 of the plate 13 and leaves through the outlet S1.
  • the hot fluid F2 enters the element 5 through the inlet E2, borrows the cutout 29 of the plate 15 and enters the circulation channels 37 located under the sheet.
  • the hot fluid F2 cools in the circulation channels 37 by transferring heat to the cold fluid F1.
  • the cooled fluid F2 ’ is collected in the cutout 31 of the plate 15 and leaves through the outlet S2.
  • the reliefs 47 located in the lateral parts 41, 43 of the sheet 7, that is to say at the ends of the circulation channels 37 in the direction of folding X the obturation of the interstices 39 is produced much more easily than in the absence of these reliefs, for example by brazing / resurfacing, or by electrolytic deposition.
  • the manufacture of the heat exchanger 1, and in general of exchangers or heat pipes of small dimensions, is therefore facilitated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Elément pour échangeur de chaleur ou caloduc, et procédé de fabrication Elément (5) pour échangeur de chaleur ou caloduc, comprenant une feuille (7) comportant une pluralité de plis (9) parallèles à une direction de pliage (X), la feuille formant des couches successives (11) superposées dans une direction de superposition (Y) sensiblement perpendiculaire à la direction de pliage, la feuille étant délimitée dans la direction de pliage par au moins un bord sinueux (33) définissant au moins une face latérale de l'élément, les couches successives définissant entre elles une pluralité de canaux de circulation pour des fluides dans la direction de pliage, les canaux de circulation définissant respectivement des interstices (39) dans la face latérale, la feuille comportant au moins une partie latérale (41) s'étendant dans la direction de pliage depuis le bord sinueux. Dans chacune des couches successives, la partie latérale de la feuille forme des reliefs (47) comportant au moins une portion en saillie (49) et au moins une portion en creux (51) dans la direction de superposition, chacun des interstices ayant, perpendiculairement à la direction de pliage, au moins une section de passage obstruée à au moins 70% par lesdits reliefs.

Description

Elément pour échangeur de chaleur ou caloduc, et procédé de fabrication
La présente invention concerne un élément pour échangeur de chaleur ou caloduc, l’élément comprenant une feuille comportant au moins 90% en masse d’un métal ou un alliage de métaux, la feuille comportant une pluralité de plis parallèles à une direction de pliage,
la feuille formant des couches successives superposées dans une direction de superposition sensiblement perpendiculaire à la direction de pliage, les couches successives étant séparées par une distance moyenne inférieure ou égale à 1 millimètre dans la direction de superposition,
la feuille étant délimitée dans la direction de pliage par au moins un bord sinueux définissant au moins une face latérale de l’élément, les couches successives définissant entre elles une pluralité de canaux de circulation pour des fluides dans la direction de pliage, les canaux de circulation définissant respectivement des interstices dans la face latérale, la feuille comportant au moins une partie latérale s’étendant dans la direction de pliage depuis le bord sinueux.
L’invention concerne aussi un échangeur ou un caloduc intégrant un tel élément, ainsi qu’un procédé de fabrication de cet élément ou de l’échangeur ou du caloduc.
Il existe un besoin, dans différents secteurs industriels, tels que l’automobile ou l’aéronautique, de réduire, d’une part, l’encombrement créé par les circuits thermiques et leur masse et, d’autre part, la quantité de fluides impliqués dans les échanges. En effet, ces fluides ont parfois une incidence sur l’environnement ou la sécurité des systèmes dans lesquels ils sont intégrés, qu’il convient de réduire au maximum.
En outre, un type connu d’échangeur de chaleur met en oeuvre une feuille métallique repliée sur elle-même en accordéon. Deux plaques fixées de part et d’autre de la feuille métallique définissent des canaux de circulation parallèles entre eux et situés de chaque côté de la feuille métallique. Les extrémités des canaux débouchent sur des faces latérales de la feuille en accordéon dans lesquelles les canaux définissent des interstices.
Dans le cas d’un échangeur de chaleur, les canaux situés d’un côté de la feuille métallique sont parcourus par un fluide froid, tandis que ceux situés de l’autre côté sont parcourus par un fluide chaud. Ainsi, entre deux plaques circulent deux fluides, séparés l'un de l'autre par la feuille métallique et échangeant de la chaleur l'un avec l'autre au travers de la feuille métallique. Les feuilles en accordéon, et les plaques recouvertes sur leurs deux faces d'un film de brasure sont alternativement empilées les unes sur les autres de façon à constituer un bloc appelé « matrice » ou « ensemble ». Cet empilement est ensuite assemblé en une première étape dans un four de brasage. L’ensemble comprend par exemple une première et une dernière plaques d’une épaisseur plus importante que les autres plaques.
Pour étanchéifier l’ensemble sur son pourtour, des barres, appelées "barres de fermeture" sont généralement fixées sur la matrice. Des têtes d’alimentation en fluides sont ensuite ajoutées à la matrice pour constituer l'échangeur.
Du fait des différentiels de dilatation entre les pièces, qui empêchent de trop contraindre géométriquement les constituants du futur échangeur, il est généralement pratiqué plusieurs étapes de brasage, entre lesquelles des opérations d'usinage sont réalisées de façon à garantir les jeux entre pièces. Cette pratique nécessite une grande maîtrise des nuances d’alliages d’apport de façon à ne pas dégrader lors de l’étape suivante les jonctions réalisées à l’étape précédente.
Toutefois, plus les échangeurs sont de dimensions réduites, plus le brasage des barres de fermeture sur la face des feuilles en accordéon, et plus généralement le bouchage des interstices, s’avère difficile.
FR 3 066 935 décrit un procédé de brasage ou de rechargement adapté pour obturer les micro-interstices de telles feuilles en accordéon, afin réaliser des échangeurs de faibles dimensions. Néanmoins, la mise en oeuvre de ce procédé reste onéreuse car elle nécessite généralement plusieurs passages au four de brasage.
Les mêmes remarques valent pour des caloducs intégrant de telles feuilles en accordéon ou plus généralement des pièces métalliques comportant des micro-interstices.
Un but de l’invention est donc de faciliter la fabrication d’échangeurs de chaleur ou de caloducs de faibles dimensions.
A cet effet, l’invention a pour objet un élément pour échangeur de chaleur ou caloduc tel que décrit ci-dessus, dans lequel, dans chacune des couches successives, la partie latérale de la feuille forme des reliefs comportant au moins une portion en saillie et au moins une portion en creux dans la direction de superposition, chacun des interstices ayant, perpendiculairement à la direction de pliage, au moins une section de passage obstruée à au moins 70%, de préférence à au moins 90%, par lesdits reliefs.
Selon des modes particuliers de réalisation, l’élément comprend l’une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou selon toutes les combinaisons techniquement possibles :
- pour un sur deux des interstices selon la direction de superposition, ladite section de passage est obstruée au moins par une striction formée par deux des portions en saillie appartenant à deux couches adjacentes prises parmi les couches successives, et pour les autres interstices, ladite section de passage est obstruée au moins par une striction formée par deux des portions en creux appartenant à deux couches adjacentes prises parmi les couches successives ;
- dans ladite striction formée par deux des portions en saillie, lesdites deux des portions en saillie sont séparées par une distance inférieure à 50 pm dans la direction de superposition, et sont préférentiellement en contact l’une avec l’autre, et dans ladite striction formée par deux des portions en creux, lesdites deux des portions en creux sont séparées par une distance inférieure à 50 pm dans la direction de superposition, et sont préférentiellement en contact l’une avec l’autre ;
- les portions en saillie et les portions en creux sont orientées sensiblement parallèlement à une direction de profil sensiblement perpendiculaire à la direction de pliage et à la direction de superposition ;
- pour chacune des couches successives, les portions en saillie et les portions en creux ont un profil triangulaire ou trapézoïdal perpendiculairement à la direction de profil ;
- la feuille comporte en outre au moins une partie courante s’étendant dans la direction de pliage à partir de la partie latérale, la partie courante comportant des corrugations adaptées pour assurer un espacement sensiblement constant entre les couches successives selon la direction de superposition ; et
- la feuille étant considérée dépliée et à plat dans un plan, les corrugations sont orientées selon une même direction de corrugation, la direction de corrugation formant un angle avec la direction de pliage, l’angle étant compris entre 20 et 70 degrés.
L’invention concerne aussi un échangeur de chaleur ou un caloduc comprenant :
- au moins un élément tel que décrit ci-dessus ; et
- au moins un organe de bouchage adapté pour boucher lesdits interstices.
Selon un mode particulier de réalisation, l’organe de bouchage est déposé sur l’élément par brasage ou par électrodéposition, ou comprend un joint d’étanchéité contraint contre la face latérale.
L’invention concerne enfin un procédé de fabrication d’un élément tel que décrit ci- dessus, comprenant les étapes suivantes :
- obtention de la feuille non encore pliée ;
- formation des portions en saillie et des portions en creux dans la feuille non encore pliée ; et
- pliage de la feuille pour former la pluralité de plis parallèles à la direction de pliage et obtention des couches successives. Selon des modes particuliers de réalisation, l’échangeur de chaleur ou le caloduc sont susceptibles d’être obtenus, ou sont obtenus, par un procédé de fabrication tel que décrit ci-dessus.
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple et faite en se référant aux dessins annexés, sur lesquels :
- la figure 1 est une vue en perspective d’un étage d’un échangeur de chaleur selon l’invention,
- la figure 2 est une vue partielle, de face, d’un élément selon l’invention présent dans l’étage d’échangeur représenté sur la figure 1 ,
- la figure 3 est une vue de l’élément représenté sur les figures 1 et 2, en coupe perpendiculairement aux couches successives de l’élément et parallèlement à la direction de pliage,
- la figure 4 est une vue partielle en perspective de l’élément représenté sur les figures 1 à 3,
- la figure 5 est une vue analogue à celle représentée sur la figure 4, si ce n’est que l’une des couches successives de l’élément a été retirée pour faire apparaître celle située en dessous, et
- la figure 6 est une vue schématique de côté de l’élément représenté sur les figures 1 à 5, vu selon la direction de pliage.
En référence à la figure 1 , on décrit un échangeur de chaleur 1 selon l’invention. Dans l’exemple représenté, l’échangeur de chaleur 1 forme avantageusement un étage d’un système d’échange thermique non représenté.
L’échangeur de chaleur 1 comprend un élément 5 constitué d’une feuille 7 comportant une pluralité de plis 9 parallèles à une direction de pliage X, la feuille formant des couches successives 1 1 superposées dans une direction de superposition Y sensiblement perpendiculaire à la direction de pliage X.
On définit également une direction de profil Z sensiblement perpendiculaire à la direction de pliage X et à la direction de superposition Y.
L’échangeur de chaleur 1 est par exemple de forme sensiblement parallélépipédique.
L’échangeur de chaleur 1 comprend en outre deux plaques 13, 15 perpendiculaires à la direction de profil Z et fixées sur les plis 9 de part et d’autre de la feuille 7, par exemple par brasage.
Selon un mode de réalisation particulier, la feuille 7 est collée sur le reste de l’échangeur de chaleur 1 , notamment si celui-ci n’est pas intégralement métallique. Dans l’exemple, l’échangeur de chaleur 1 comprend aussi deux organes de bouchage 17, 19.
L’échangeur de chaleur 1 comporte deux faces latérales 21 , 23 opposées selon la direction de superposition Y, et deux faces latérales 25, 27 (Figures 1 et 3) opposées selon la direction de pliage X.
Dans l’exemple, les faces latérales 21 , 23 sont formées par la feuille 7 elle-même et les plaques 13, 15, tandis que les faces latérales 25, 27 sont formées par les organes de bouchage 17, 19 et les plaques 13, 15.
En variante, des barres de fermeture (non-représentées) sont fixées sur certaines des faces latérales.
Les plaques 13, 15 sont par exemple structurellement analogues l’une à l’autre. La plaque 15 se déduit par exemple de la plaque 13 par une rotation à 180° autour de la direction de pliage X et une translation dans la direction de profil Z.
Chacune des plaques 13, 15 comporte deux découpes 29, 31 s’étendant principalement dans la direction de superposition Y et débouchant respectivement sur les faces latérales 23 et 21 pour former des canaux collecteurs ou distributeurs pour des fluides.
Selon une première variante non représentée, les découpes 29, 31 débouchent sur les faces latérales 25 et 27. selon une deuxième variante non représentée, les découpes 29, 31 sont non-débouchantes : la distribution des fluides se fait alors par des plaques percées brasées au-dessus de la plaque 13 et respectivement en-dessous de la plaque 15.
La découpe 31 de la plaque 13 définit une entrée E1 pour un fluide froid F1 . La découpe 29 de la plaque 13 définit une sortie S1 pour un fluide réchauffé F1’ résultant d’un réchauffement du fluide froid F1 .
Dans un fonctionnement à contre-courant de l’échangeur de chaleur 1 , la découpe 29 de la plaque 15 définit une entrée E2 pour un fluide chaud F2. La découpe 31 (non visible sur la Figure 1 ) de la plaque 15 définit une sortie S2 pour un fluide refroidi F2’ issu du refroidissement du fluide chaud F2 par échange de chaleur avec le fluide froid F1 .
Dans un fonctionnement à co-courant (non représenté), la découpe 31 de la plaque 15 définit l’entrée E2, la sortie S2 étant définie par la découpe 29 de la même plaque 15.
Le fluide froid F1 est par exemple de l’eau ou un mélange d’eau et de glycol, notamment si l’échangeur de chaleur 1 est un condenseur de pompe à chaleur (non représenté).
Le fluide chaud F2 est par exemple un liquide frigorigène de type FIFE (hydrofluoroéther), hydrocarbure (propane) ou FIFO (hydrofluorooléfine), comme c’est le cas dans une pompe à chaleur. Dans le cas du refroidissement de l’huile d’un moteur thermique, le fluide chaud est par exemple l’huile à refroidir.
Si l’échangeur de chaleur 1 est un évaporateur, les natures du fluide froid F1 et du fluide chaud F2 sont par exemple inversées.
La feuille 7 comporte au moins 90% en masse d’un métal ou un alliage de métaux. Avantageusement la feuille 7 est en acier inoxydable, par exemple en 316L.
Selon des variantes, la feuille 7 est en cuivre, en aluminium, ou en titane.
La feuille 7 est délimitée dans la direction de pliage X par au moins un bord sinueux 33 définissant une face latérale 35 de l’élément 5.
Les couches successives 1 1 définissent entre elles et avec les plaques 13, 15 une pluralité de canaux de circulation 37 s’étendant dans la direction de pliage X et définissant respectivement des interstices 39 dans la face latérale 35. Des interstices analogues (non visibles sur la Figure 1 ) existent de l’autre côté de la feuille 7 dans la direction de pliage X.
Les canaux de circulation 37 situés au-dessus de la feuille 7 sont destinés à recevoir le fluide froid F1 , et les canaux de circulation situés sous la feuille sont destinés à recevoir le fluide chaud F2 dans l’exemple représenté.
Comme visible sur la Figure 2, la feuille 7 comprend, successivement dans la direction de pliage X, une première partie latérale 41 s’étendant à partir du bord sinueux 33, une partie courante 43, et une deuxième partie latérale 45 avantageusement symétrique de la première partie latérale par rapport à un plan P perpendiculaire à la direction de pliage X. Aussi, dans la suite, seule la première partie latérale 41 sera décrite en détail.
Les couches successives 1 1 sont séparées par une distance moyenne D inférieure ou égale à 1 millimètre dans la direction de superposition Y.
Dans chacune des couches successives 1 1 , la première partie latérale 41 de la feuille 7 forme des reliefs 47 comportant au moins une portion en saillie 49 et au moins une portion en creux 51 dans la direction de superposition Y vu depuis un même côté de la feuille 7. Dans l’exemple représenté, chacune des couches successives 1 1 comporte, dans la direction de pliage X à partir du bord 33, d’abord la portion en creux 51 , puis la portion en saillie 49.
Sur les Figures 3 à 6 sont représentées trois des couches successives 1 1 . Ces couches portent les références 1 1 A, 1 1 B, 1 1 C.
Sur la Figure 4, la portion en creux 51 de la couche 1 1 A pointe vers le bas, tandis que la portion en saillie 49 pointe vers le haut.
Comme visible sur la Figure 5, la situation est inversée pour la couche 1 1 B située immédiatement en dessous de la couche 1 1 A, du fait du pliage. La portion en creux 51 de la couche 1 1 B pointe vers le haut, tandis que sa portion en saillie 49 pointe vers le bas. Comme visible sur la Figure 6, chacun des interstices 39 a, perpendiculairement à la direction de pliage X, au moins une section de passage dans la direction de pliage X obstruée à au moins 70% (en surface), de préférence à au moins 90%, par les reliefs 47.
Pour un interstice 39 sur deux selon la direction de superposition Y, la section de passage est obstruée au moins par une striction 53 formée par deux des portions en saillie 49 appartenant à deux couches adjacentes prises parmi les couches successives 1 1 . Pour les autres interstices 39, la section de passage est obstruée au moins par une striction 55 formée par deux des portions en creux 51 appartenant à deux couches adjacentes prises parmi les couches successives 1 1 .
La section de passage est avantageusement plane. Par « obstruée à X% », on entend par exemple que X% de la surface est obstruée.
Ainsi, par exemple, l’interstice 39 situé entre les couches 1 1 B et 1 1 C est partiellement obstrué par les portions en saillie 49 des couches 1 1 B et 1 1 C. Avantageusement, ces portions en saillies 49 sont en contact mécanique l’une avec l’autre ou, à défaut, séparées par une distance inférieure à 50 pm dans la direction de superposition Y.
L’interstice 39 situé entre les couches 1 1 A et 1 1 B est partiellement obstrué par les portions en creux 51 des couches 1 1 A et 1 1 B. Avantageusement, ces portions en creux 51 sont également en contact mécanique l’une avec l’autre ou, à défaut, séparées par une distance inférieure à 50 pm dans la direction de superposition Y.
Avantageusement, les portions en saillie 49 et les portions en creux 51 sont orientées sensiblement parallèlement à la direction de profil Z, c’est-à-dire, par exemple, qu’elles forment, en vue selon la direction de superposition Y, un angle de moins de 30° degrés avec la direction de profil Z. Dans l’exemple représenté, les portions en saillie 49 et les portions en creux 51 sont parallèles à la direction de profil Z.
Comme visible sur la Figure 3, les portions en saillie 49 et les portions en creux 51 ont par exemple un profil triangulaire (en pointe) perpendiculairement à la direction de profil Z.
Selon des variantes non représentées, leur profil est trapézoïdal, ou arrondi, ou présente toute forme permettant l’obtention de surfaces avantageusement séparées l’une de l’autre de moins de 50 pm dans la direction de superposition Y, et de préférence en contact.
La partie courante 43 comporte avantageusement des corrugations 57 adaptées pour assurer un espacement sensiblement constant entre les couches successives 1 1 selon la direction de superposition Y. En supposant la feuille 7 dépliée et à plat dans un plan P’ (Figure 2) perpendiculaire à la direction de superposition Y, les corrugations 57 sont avantageusement orientées selon une même direction de corrugation C. Les corrugations 57 ont par exemple un profil triangulaire.
La direction de corrugation C forme un angle a avec la direction de pliage X, l’angle a étant par exemple compris entre 20 et 70 degrés. L’angle a est d’environ 45 degrés dans l’exemple représenté.
Contrairement aux reliefs 47 des parties latérales 41 et 45 qui obstruent sensiblement les interstices 39, les corrugations 57 sont adaptées pour ne pas obstruer sensiblement les canaux de circulation 37.
Comme visible en comparant les Figures 4 et 5, les corrugation 57 de couches successives 1 1 consécutives, telles que les couches 1 1 A et 1 1 B, sont en quinconce les unes par rapport aux autres. De ce fait, les corrugations 57 de couches consécutives sont en contact relativement ponctuel les unes avec les autres, alors que les reliefs 47 de couches consécutives sont en contact étendu.
Les organes de bouchage 17, 19 sont symétriques l’un de l’autre par rapport au plan P dans l’exemple. Aussi seul l’organe de bouchage 17 sera décrit ci-après.
L’organe de bouchage 17 de l’échangeur de chaleur 1 est adapté pour boucher les interstices 39 de la face latérale 35 de la feuille 7. L’organe de bouchage 17 est par exemple constituée d’un métal ou d’un alliage métallique et s’étend dans les interstices 39 dans la direction de pliage X, avantageusement jusqu’aux strictions 53, 55.
L’organe de bouchage 17 est par exemple obtenu par dépôt électrolytique, avantageusement comme expliqué dans la demande FR 18 71828 du même inventeur. L’organe de bouchage 17 est alors par exemple en nickel.
Selon des variantes, il est en cuivre, en alliage cuivre-nickel, ou en aluminium.
L’épaisseur de l’organe de bouchage 17 dans la direction de pliage X est avantageusement comprise entre 0,5 mm et 5 mm, et est par exemple d’environ 1 mm.
Selon un autre mode de réalisation, l’organe de bouchage 17 est par exemple obtenu par une ou plusieurs opérations de brasage ou de rechargement, avantageusement comme décrit dans la demande publiée FR 3 066 935 A1 , également du même inventeur. L’organe de bouchage 17 est alors obtenu en déposant une ou plusieurs couche(s) constituée(s) respectivement d’une ou plusieurs poudre(s) majoritairement métallique(s) (en masse), et en brasant ces couches.
Selon d’autres variantes, l’organe de bouchage 17 est déposé sur l’élément 5 par tout autre procédé composite, par exemple par insertion d’un joint plat contraint uniformément sur les faces latérales 35. Pour fabriquer l’élément 5, par exemple, on part de la feuille 7 non encore pliée.
Puis, on forme les portions en saillie 49 et des portions en creux 51 dans la feuille non encore pliée. Optionnellement, on forme également les corrugations 57.
Ensuite, on plie la feuille 7 pour former la pluralité de plis 9 parallèles à la direction de pliage X pour obtenir les couches successives 1 1 . Avantageusement, avant ce pliage, les reliefs 47 forment des sillons continus dans la partie latérale 41 de la feuille.
Le fonctionnement de l’échangeur de chaleur 1 se déduit de sa structure et va maintenant être brièvement décrit.
Dans l’exemple représenté, le fonctionnement est à contre-courant. On rappelle qu’un fonctionnement à co-courant est bien évidemment possible.
Le fluide froid F1 (Figure 1 ) pénètre dans l’élément 5 par l’entrée E1 .
Le fluide froid F1 s’écoule dans la direction de superposition Y dans la découpe 31 de la plaque 13, qui agit comme un distributeur. Le fluide froid F1 pénètre ensuite dans les canaux de circulation 37 situés au-dessus de la feuille 7, et s’écoule dans la direction de pliage X vers la découpe 29 de la plaque 13.
Dans les canaux de circulation 37, le fluide froid F1 se réchauffe par échange thermique avec le fluide chaud F2, qui circule aussi dans les canaux de circulation 37 situés de l’autre côté de la feuille 7 par rapport au fluide froid F1 .
Le fluide réchauffé F1’ est collecté dans la découpe 29 de la plaque 13 et sort par la sortie S1 .
De même, le fluide chaud F2 pénètre dans l’élément 5 par l’entrée E2, emprunte la découpe 29 de la plaque 15 et pénètre dans les canaux de circulation 37 situés sous la feuille. Le fluide chaud F2 se refroidit dans les canaux de circulation 37 en cédant de la chaleur au fluide froid F1 .
Le fluide refroidi F2’ est collecté dans la découpe 31 de la plaque 15 et sort par la sortie S2.
Les organes de bouchage 17 et 19, qui obturent les extrémités des canaux de circulation 37, empêchent les fluides circulant dans les canaux de s’échapper de l’élément 5 par les interstices 39 de la feuille 7, et par conséquent, de se mélanger entre eux.
Grâce aux caractéristiques décrites ci-dessus, en particulier les reliefs 47 situés dans les parties latérales 41 , 43 de la feuille 7, c’est-à-dire aux extrémités des canaux de circulation 37 dans la direction de pliage X, l’obturation des interstices 39 est réalisée de manière beaucoup plus aisée qu’en l’absence de ces reliefs, par exemple par brasage/rechargement, ou par dépôt électrolytique. La fabrication de l’échangeur de chaleur 1 , et de manière générale d’échangeurs ou de caloducs de faibles dimensions, est donc facilitée.

Claims

REVENDICATIONS
1. Elément (5) pour échangeur de chaleur (1 ) ou caloduc, l’élément (5) comprenant une feuille (7) comportant au moins 90% en masse d’un métal ou un alliage de métaux, la feuille (7) comportant une pluralité de plis (9) parallèles à une direction de pliage (X), la feuille (7) formant des couches successives (1 1 ) superposées dans une direction de superposition (Y) sensiblement perpendiculaire à la direction de pliage (X), les couches successives (1 1 ) étant séparées par une distance moyenne (D) inférieure ou égale à 1 millimètre dans la direction de superposition (Y),
la feuille (7) étant délimitée dans la direction de pliage (X) par au moins un bord sinueux (33) définissant au moins une face latérale (35) de l’élément (5), les couches successives (1 1 ) définissant entre elles une pluralité de canaux de circulation (37) pour des fluides dans la direction de pliage (X), les canaux de circulation (37) définissant respectivement des interstices (39) dans la face latérale (35),
la feuille (7) comportant au moins une partie latérale (41 ) s’étendant dans la direction de pliage (X) depuis le bord sinueux (33),
caractérisé en ce que, dans chacune des couches successives (1 1 ), la partie latérale (41 ) de la feuille (7) forme des reliefs (47) comportant au moins une portion en saillie (49) et au moins une portion en creux (51 ) dans la direction de superposition (Y), chacun des interstices (39) ayant, perpendiculairement à la direction de pliage (X), au moins une section de passage obstruée à au moins 70%, de préférence à au moins 90%, par lesdits reliefs (47).
2. Elément (5) selon la revendication 1 , dans lequel :
- pour un sur deux des interstices (39) selon la direction de superposition (Y), ladite section de passage est obstruée au moins par une striction (53) formée par deux des portions en saillie (49) appartenant à deux couches adjacentes (1 1 B, 1 1 C) prises parmi les couches successives (1 1 ), et
- pour les autres interstices (39), ladite section de passage est obstruée au moins par une striction (55) formée par deux des portions en creux (51 ) appartenant à deux couches adjacentes (1 1 A, 1 1 B) prises parmi les couches successives (1 1 ).
3. Elément (5) selon la revendication 2, dans lequel :
- dans ladite striction (53) formée par deux des portions en saillie (49), lesdites deux des portions en saillie (49) sont séparées par une distance inférieure à 50 pm dans la direction de superposition (Y), et sont préférentiellement en contact l’une avec l’autre, et - dans ladite striction (55) formée par deux des portions en creux (51 ), lesdites deux des portions en creux (51 ) sont séparées par une distance inférieure à 50 pm dans la direction de superposition (Y), et sont préférentiellement en contact l’une avec l’autre.
4. Elément (5) selon l’une quelconque des revendications 1 à 3, dans lequel les portions en saillie (49) et les portions en creux (51 ) sont orientées sensiblement parallèlement à une direction de profil (Z) sensiblement perpendiculaire à la direction de pliage (X) et à la direction de superposition (Y).
5. Elément (5) selon la revendication 4, dans lequel, pour chacune des couches successives (1 1 ), les portions en saillie (49) et les portions en creux (51 ) ont un profil triangulaire ou trapézoïdal perpendiculairement à la direction de profil (Z).
6. Elément (5) selon l’une quelconque des revendications 1 à 5, dans lequel la feuille (7) comporte en outre au moins une partie courante (43) s’étendant dans la direction de pliage (X) à partir de la partie latérale (41 ), la partie courante (43) comportant des corrugations (57) adaptées pour assurer un espacement sensiblement constant entre les couches successives (1 1 ) selon la direction de superposition (Y).
7. Elément (5) selon la revendication 6, dans lequel, la feuille (7) étant considérée dépliée et à plat dans un plan (P’), les corrugations (57) sont orientées selon une même direction de corrugation (C), la direction de corrugation (C) formant un angle (a) avec la direction de pliage (X), l’angle (a) étant compris entre 20 et 70 degrés.
8. Echangeur de chaleur (1 ) ou caloduc comprenant :
- au moins un élément (5) selon l’une quelconque des revendications 1 à 7, et
- au moins un organe de bouchage (17) adapté pour boucher lesdits interstices (39).
9. Echangeur de chaleur (1 ) ou caloduc selon la revendication 8, dans lequel l’organe de bouchage (17) est déposé sur l’élément (5) par brasage ou par électrodéposition, ou comprend un joint d’étanchéité contraint contre la face latérale (35).
10. Procédé de fabrication d’un élément (5) selon l’une quelconque des revendications 1 à 7, comprenant les étapes suivantes :
- obtention de la feuille (7) non encore pliée, - formation des portions en saillie (49) et des portions en creux (51 ) dans la feuille (7) non encore pliée, et
- pliage de la feuille (7) pour former la pluralité de plis (9) parallèles à la direction de pliage (X) et obtention des couches successives (1 1 ).
EP20721236.6A 2019-04-30 2020-04-28 Elément pour échangeur de chaleur ou caloduc, et procédé de fabrication Withdrawn EP3963277A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1904584A FR3095692B1 (fr) 2019-04-30 2019-04-30 Elément pour échangeur de chaleur ou caloduc, et procédé de fabrication
PCT/EP2020/061760 WO2020221748A1 (fr) 2019-04-30 2020-04-28 Elément pour échangeur de chaleur ou caloduc, et procédé de fabrication

Publications (1)

Publication Number Publication Date
EP3963277A1 true EP3963277A1 (fr) 2022-03-09

Family

ID=67742731

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20721236.6A Withdrawn EP3963277A1 (fr) 2019-04-30 2020-04-28 Elément pour échangeur de chaleur ou caloduc, et procédé de fabrication

Country Status (3)

Country Link
EP (1) EP3963277A1 (fr)
FR (1) FR3095692B1 (fr)
WO (1) WO2020221748A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2408462A1 (de) * 1974-02-22 1975-08-28 Kernforschungsanlage Juelich Waermetauscher fuer getrennt gefuehrte medien
SE7903535L (sv) * 1979-04-23 1980-10-24 Sigurd Hultgren Vermevexlare
US6408941B1 (en) * 2001-06-29 2002-06-25 Thermal Corp. Folded fin plate heat-exchanger
FR3066935B1 (fr) 2017-06-01 2019-06-28 Stiral Procede de brasage ou rechargement d'une piece a micro-interstices, et echangeur thermique obtenu par un tel procede.

Also Published As

Publication number Publication date
WO2020221748A1 (fr) 2020-11-05
FR3095692B1 (fr) 2021-06-25
FR3095692A1 (fr) 2020-11-06

Similar Documents

Publication Publication Date Title
EP2208955B1 (fr) Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur.
FR2812382A1 (fr) Procede de fabrication d'une ailette d'echangeur de chaleur, ailettes selon le procede et module d'echange comportant ces ailettes
FR2941522A1 (fr) Echangeur de chaleur pour deux fluides, en particulier evaporateur de stockage pour dispositif de climatisation
FR2861166A1 (fr) Echangeur de chaleur utilisant un fluide d'accumulation
WO2010133791A1 (fr) Procede de fabrication d'un faisceau de plaques pour un echangeur thermique
WO2007101817A1 (fr) Echangeur de chaleur, en particulier refroidisseur de gaz, comportant deux nappes de tubes reliées
EP3630403B1 (fr) Procédé de brasage ou rechargement d'une pièce à micro-interstices, et échangeur thermique obtenu par un tel procédé
FR2878946A1 (fr) Tube en metal lamine profile et procede de fabrication de celui-ci
EP3963277A1 (fr) Elément pour échangeur de chaleur ou caloduc, et procédé de fabrication
FR2832788A1 (fr) Profils de tubes pour echangeur thermique
EP3728977B1 (fr) Echangeur de chaleur avec elements et plaques a texturation de surface
EP2655000A1 (fr) Procédé de brasage pour échangeur thermique, tube et échangeur thermique correspondants
WO2019025719A1 (fr) Tube pour echangeur de chaleur avec dispositif de perturbation
WO1999017070A1 (fr) Plaques d'un faisceau de plaques d'echange thermique
EP2893278B1 (fr) Élément d'échangeur pour échangeur de chaleur, échangeur de chaleur comprenant un tel élément d'échangeur et procédé de fabrication d'un tel élément d'échangeur
EP3384224A1 (fr) Échangeur de chaleur pour véhicule automobile comprenant une boîte collectrice
EP3887743A1 (fr) Procédé de fabrication d'un échangeur thermique ou d'un caloduc
EP3762670B1 (fr) Echangeur thermique, ainsi que procédé de fabrication d'un tel échangeur thermique
WO2021156233A1 (fr) Procédé de fabrication d'un échangeur thermique ou d'un caloduc
FR3034184A1 (fr) Boite collectrice pour echangeur thermique a faisceau de tubes
WO2023198872A1 (fr) Echangeur de chaleur interne à plaques
WO2007063083A1 (fr) Boîte collectrice pour un echangeur de chaleur et echangeur comportant une telle boîte collectrice
FR3062198A1 (fr) Circuit de circulation d'un fluide refrigerant pour un evaporateur a deux nappes
FR2938324A1 (fr) Tube d'echange de chaleur ameliore et procede de fabrication

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20231101