EP3887743A1 - Procédé de fabrication d'un échangeur thermique ou d'un caloduc - Google Patents

Procédé de fabrication d'un échangeur thermique ou d'un caloduc

Info

Publication number
EP3887743A1
EP3887743A1 EP19805692.1A EP19805692A EP3887743A1 EP 3887743 A1 EP3887743 A1 EP 3887743A1 EP 19805692 A EP19805692 A EP 19805692A EP 3887743 A1 EP3887743 A1 EP 3887743A1
Authority
EP
European Patent Office
Prior art keywords
assembly
interstices
manufacturing
face
defining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19805692.1A
Other languages
German (de)
English (en)
Other versions
EP3887743B1 (fr
Inventor
Pierre Billat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stiral
Original Assignee
Stiral
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stiral filed Critical Stiral
Publication of EP3887743A1 publication Critical patent/EP3887743A1/fr
Application granted granted Critical
Publication of EP3887743B1 publication Critical patent/EP3887743B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2220/00Closure means, e.g. end caps on header boxes or plugs on conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements

Definitions

  • TITLE Process for manufacturing a heat exchanger or a heat pipe
  • the present invention relates to a method of manufacturing an exchanger or a heat pipe comprising an assembly comprising at least one part comprising at least 90% by mass of a metal or a metal alloy, the part defining a plurality of channels circulation for one or more fluids.
  • the invention also relates to a corresponding heat exchanger or heat pipe.
  • a known type of heat exchanger implements a part consisting of a metal sheet folded back on itself in an accordion.
  • Two plates fixed on either side of the metal sheet define parallel circulation channels between them and located on each side of the metal sheet.
  • the longitudinal ends of the channels open onto faces of the accordion-shaped sheet in which the channels define interstices.
  • the channels located on one side of the metal sheet are traversed by a cold fluid, while those located on the other side are traversed by a hot fluid.
  • a cold fluid In the case of a heat exchanger, the channels located on one side of the metal sheet are traversed by a cold fluid, while those located on the other side are traversed by a hot fluid.
  • the accordion sheets, and the plates covered on both sides with a brazing film are alternately stacked on top of each other so as to constitute a block called “matrix” or “assembly”. This stack is then assembled in a first step in a brazing oven.
  • the assembly generally comprises a first and last plate of greater thickness than the plates.
  • closure bars are generally fixed on the matrix. Fluid supply heads are then added to the matrix to form the exchanger.
  • a first method consists in making, initially, a closed or semi-open frame in which we will insert an accordion sheet to assemble it by brazing for the first time.
  • a set of these frames is assembled by brazing in order to constitute the exchanger matrix.
  • the fluid connection tubes are brazed to the matrix.
  • a second method consists, firstly, in assembling by brazing all of the accordion sheets on all of the plates, to which are possibly joined the longitudinally oriented closing bars.
  • the sides of the accordion sheets are machined to align them perfectly, in order to assemble them by brazing with the closing bars oriented transversely.
  • the matrix of the exchanger is thus obtained.
  • the fluid connection tubes are welded or brazed to the matrix.
  • An object of the invention is therefore to provide a method of manufacturing a heat exchanger or a heat pipe integrating a part such as the aforementioned accordion part, that is to say having micro-interstices, in particular when the heat exchanger or the heat pipe is small.
  • the invention relates to a process for manufacturing a heat exchanger or a heat pipe, comprising at least the following steps:
  • an assembly comprising at least one part comprising at least 90% by mass of a metal or a metal alloy, the part having at least one face defining a plurality of interstices, each of the interstices comprising at least two edges opposites separated on the face by a maximum distance less than or equal to 550 micrometers, the part defining a plurality of circulation channels for fluids, each of the circulation channels defining one of the interstices, and
  • the method comprises one or more of the following characteristics, taken alone or in any technically possible combination:
  • the part comprises a metal sheet folded in accordion, a corrugated edge of the sheet forming the edges of the interstices, the circulation channels extending parallel to, and on both sides of the sheet;
  • the part is made of stainless steel, copper, aluminum, or titanium;
  • the step of obtaining the assembly includes a sub-step for fixing the part on at least two plates, the part being located between the two plates in a direction;
  • the fixing sub-step comprises brazing the part on said at least two plates
  • the method also comprises one or more of the following steps prior to the immersion and electroplating step:
  • the electrolytic bath comprises nickel, the layer mainly comprising nickel;
  • the electrolytic bath comprises nickel sulfamate
  • the manufacturing process also includes a step of immersing the assembly in a Wood bath to pre-nickel the part before said step of immersing the assembly in an electrolytic and electroplating bath .
  • the invention also relates to a heat exchanger or a heat pipe comprising:
  • an assembly comprising at least one part comprising at least 90% by mass of a metal or a metal alloy, the part having at least one face defining a plurality of interstices, each of the interstices comprising at least two opposite opposite edges on the face by a maximum distance less than or equal to 550 micrometers, the part defining a plurality of circulation channels for fluids, each of the circulation channels defining one of the interstices, and - a metal layer electro-deposited on said face and covering the interstices.
  • the exchanger or the heat pipe can be obtained, or are actually obtained, by a manufacturing process as described above.
  • FIG 1 is a perspective view of a heat exchanger according to the invention
  • FIG 2 is a perspective view of an assembly (matrix) of the heat exchanger shown in Figure 1, the fluid collectors having been removed,
  • FIG 3 is a partial front view of the assembly shown in Figures 1 and 2,
  • FIG. 4 is a perspective view of one of the stages of the assembly shown in FIGS. 2 and 3,
  • FIG. 5 is an exploded perspective view of the stage shown in FIG. 4, and of electro-deposited layers,
  • Figure 6 is a schematic view illustrating a step of immersing the assembly in an electrolytic bath of a process according to the invention.
  • Figure 7 is a schematic view, in section, illustrating a step of electrodeposition of a method according to the invention.
  • the heat exchanger 1 includes a set 5
  • the cold fluid is for example water or a mixture of water and glycol.
  • the hot fluid is for example an HFE type refrigerant
  • the assembly 5 comprises for example four stages 15, 17, 19, 21 superimposed in a direction Z, for example vertical, and two end plates 23, 25 respectively forming an upper face 27 and a lower face 29 of the assembly.
  • the assembly 5 is for example of general parallelepiped shape.
  • the assembly 5 comprises two lateral faces 31, 33 (FIG. 2) opposite in a direction Y substantially perpendicular to the direction Z, and two lateral faces 35, 37 opposite in a direction X substantially perpendicular to the direction Z and to the direction Y .
  • the lateral faces 31, 33, 35, 37 are for example rectangular, and two of them consecutive around the direction Z advantageously form a substantially right angle.
  • the lateral face 31 comprises for example three inputs E1, E2, E3 for three flows F1 1, F12 and F13 coming from the cold fluid F1, and two outputs S1 ', S2' for two flows F21 'and F22' intended to form the fluid cooled F2 '.
  • the side face 33 has two inlets (not visible in FIG. 2 because they are located at the rear) for two streams F21 and F22 coming from the hot fluid F2, and three outlets (also not visible in FIG. 2) for three streams F1 1 ', F12' and F13 'intended to form the heated fluid F1'.
  • the stages 15, 17, 19, 21 are substantially similar to each other.
  • inlets and outlets are presented, for example, as slots extending in the direction X on the lateral faces 31, 33.
  • the inputs E1, E2 and E3 are for example aligned in the direction Z and situated opposite the member 7.
  • the outputs S1 'and S2' are for example superimposed in the direction Z and located opposite the member 13. The same applies for the outputs located on the lateral face 33, except that 'They are located opposite the member 9.
  • the stages 15 to 21 are formed by plates 39, 41, 43, 45, 47 (FIG. 3) substantially perpendicular to the direction Z and alternating with parts 49, 51, 53, 55.
  • the parts 49, 51, 53, 55 are similar to each other, so only the part 53 belonging to stage 19 will be described below with reference to FIGS. 3 to 5.
  • Part 53 comprises at least 90% by mass of a metal or a metal alloy.
  • the part 53 is made of stainless steel, for example 316L.
  • the part 53 is made of copper, aluminum, or titanium.
  • the part 53 is formed by a metal sheet 58 folded back on itself in an accordion, in the example parallel to the direction X.
  • the part 53 defines a plurality of circulation channels 63 located above the metal sheet 58 and intended to receive the flow F12, and a plurality of circulation channels 65 located under the metal sheet and intended to receive the flow F22.
  • the part 53 is fixed to the plates 43, 45, advantageously by brazing.
  • the part 53 is glued to the rest of the assembly 5, in particular if the latter is not entirely metallic.
  • the part 53 has two faces 59, 60 opposite in the direction X, on which a corrugated edge 60A of the sheet 58 defines interstices 61.
  • the faces 59, 60 are for example perpendicular to the direction X.
  • the circulation channels 63, 65 are oriented substantially in the direction X.
  • the interstices 61 have two edges 67, 69 (FIG. 3) opposite in the direction Y and separated by a maximum distance D less than or equal to 550 ⁇ m, preferably less than or equal to 250 ⁇ m, and for example less than 150 ⁇ m.
  • the plates 39, 41, 43, 45, 47 are structurally similar to each other.
  • the plates 39, 43, 47 have the same orientation in space, while the plates 41 and 45 have another orientation in space, deduced from the first for example by a rotation of 180 ° around the direction X .
  • Each of the plates 39, 41, 43, 45, 47 for example has a generally rectangular shape in view in the direction Z.
  • Each of the plates comprises two cutouts 71, 73 (FIG. 5), for example symmetrical to one another by relative to a point S located in the center of the plate.
  • Each of the cutouts 71, 73 extends in the example in the direction Y from one of the side faces 31 or 33 the assembly 5, above or below the circulation channels 63, 65.
  • the plates 39, 41, 43, 45, 47 are made of metal or a metal alloy, for example stainless steel, advantageously 316L.
  • the plates are fixed respectively on the parts 49, 51, 53, 55, for example by conventional brazing.
  • the plates are made of copper, aluminum, or titanium.
  • the plates are made of the same material as the parts 49, 51, 53, 55.
  • the organs 7, 9, 1 1, 13 are advantageously similar to each other. Also, only the member 7 will be described in detail below.
  • the member 7 is made of metal or a metal alloy, for example stainless steel, advantageously 316L.
  • the member 7 is made of copper, aluminum, or titanium.
  • the member 7 is made of the same material as the plates 39, 41, 43, 45, 47.
  • the member 7 comprises a tubular upper part 79, and a lower part 81 situated in the extension of the first part in the direction Z and obtained by cutting along a plane corresponding to the upper face 27 and along a plane corresponding to the lateral face 31.
  • the member 7 also comprises a bottom 83.
  • the heat exchanger 1 also includes electro-metallic layers 85 deposited in particular on the faces 59 and 60 of the parts 49, 51, 53, 55, and possibly on other faces.
  • the layers 85 are adapted to plug the interstices 61 on the faces 59, 60.
  • the layers 85 are for example made of nickel.
  • the layers 85 are made of copper, copper-nickel alloy, or aluminum.
  • the thickness of the layer 85 is advantageously between 0.5 mm and 5 mm, and is for example around 1 mm.
  • the heat exchanger 1 comprises other electro-deposited layers (not shown).
  • the assembly 5 or the heat exchanger 1 are covered by one or more electro-deposited layers.
  • a heat pipe according to the invention is also described. This is not strictly represented in the figures, but is easily deduced therefrom.
  • the circulation channels 63, 65 respectively define an upper space situated above the part 53, and a lower space situated below the part 53. These spaces are closed in the direction X by the electro-deposited layers 85, and in the direction Y by the extreme folds of the part 53. Suitable fluids, distinct or not, are present in these spaces and free to circulate in the circulation channels 63, 65.
  • the heat pipe contains a fluid injected by an airtight filling device (not shown), for example a tapping made on the plate 43.
  • the heat pipe is used in vertical position, that is to say that the direction X is then vertical.
  • the face 60 is in the high position and the face 59 in the low position.
  • the lower face 59 is placed on an object (not shown) to be cooled, for example an electronic component whose temperature must be maintained between 20 and 30 ° C.
  • the heat thus collected at the face 59 causes the fluid to boil, in the liquid phase in the lower part of the heat pipe.
  • the vapor propagates to the upper part, towards the face 58, which itself is cooled on its external part by a refrigeration / refrigeration device. Consequently, on this upper face 60, the vapor condenses and falls by gravity towards the lower part.
  • the changes of state by successive evaporations and condensations make it possible to extract a very large amount of heat from the object in contact with the face 59 in the lower part.
  • the heat pipe is particularly effective, because both in the low zone (evaporation) and in the high zone (condensation), the exchange surface / volume ratio is very important.
  • the manufacture of the heat exchanger 1 will now be described. It illustrates a manufacturing process according to the invention.
  • the brazing sheets 87 are made of a brazing alloy, for example of BNi-2 alloy, or of any other material suitable for the composition of parts 49, 51, 53, 55 and plates 39, 41, 43, 45, for example made of copper-silver eutectic alloy for brazing copper parts.
  • the assembly of the parts 49, 51, 53, 55, of the plates 39, 41, 43, 45, 47, of the end plates 23 and 25, and of the brazing sheets 87 is produced by stacking, and mechanically maintained by means of a tool. adapted (not shown).
  • the assembly is heated to a brazing temperature to obtain the assembly 5.
  • the assembly is not obtained by brazing, but for example by gluing.
  • the assembly 5 then undergoes chemical degreasing and electrolytic degreasing. These operations are known in themselves to those skilled in the art in order to clean surfaces with a view to depositing them by electrolysis.
  • Electrolytic degreasing is for example carried out in a conventional bath for stainless steel and nickel in cathodic polarization, with a current density of 4A / dm 2 for 10 minutes at 35 ° C.
  • the assembly 5 then undergoes anodic activation in an acid medium, for example for two minutes.
  • the assembly 5 thus cleaned and activated undergoes an electrolytic pre-nickel plating by immersion in a Wood bath, for example at 25 ° C., with a cathodic current density of 6 A / dm 2 for 8 minutes.
  • Wood's bath includes, for example, nickel chloride NiCI 2 .6H 2 0 at 100-250 g / liter, and hydrochloric acid HCl at 85-125 cm 3 / liter.
  • the assembly 5 thus prepared is immersed in an electrolytic bath 89, and the layer 85 is electro-deposited on the faces 59, 60 of the parts 49, 51, 53, 55.
  • the electrolytic bath 89 advantageously comprises nickel sulfamate.
  • the electrolytic bath 89 is for example a mixture of copper sulphate and sulfuric acid.
  • the electrolytic bath 89 comprises for example an organic solvent, such as a mixture of tetrahydrofuran and benzene, in which aluminum chloride AICI is advantageously dissolved. 3 and lithium aluminum hydride UAIH 4 .
  • the assembly 5 is electrically connected to the cathode of a generator 91.
  • the assembly 5 therefore plays the role of cathode in electrolysis.
  • a consumable anode 93 is immersed in the electrolytic bath 89 and connected to the anode of the generator 91.
  • Anode 93 is for example made of nickel beads depolarized with sulfur.
  • metallic seeds 95 appear almost only at the level of the gap 61 on the wavy edge 60A of the parts 49, 51, 53, 55.
  • the seeds 95 grow by forming a swelling of the wavy edge. Then, the seeds 95 join in the direction Y and grow further to form the layer 85, which completely blocks the interstices 61 of the faces 59, 60.
  • the germs 85 grow little in the X direction towards the inside of the circulation channels 63, 65.
  • the members 7, 9, 1 1, 13 are then fixed to the assembly 5 by soldering, welding, bonding or any other process suitable for the heat exchanger 1.
  • the members 7, 9, 1 1, 13 are fixed on the assembly 5 during the assembly operation, before the step or steps of electroplating.
  • the heat pipe described above is produced in a similar manner. It is for example composed of five parts: the sheet 58, the two distribution plates 43 and 45 provided with opening 71 closed on their outer edge and two end plates 23 and 25.
  • the parts 23, 25, 43, 45 and 53 are assembled by brazing, in a similar manner to the case of the exchanger.
  • the faces 59 and 60 are closed by electrodeposition.
  • the end plates 23 and 25 are drilled to allow the fixing by welding or brazing of tubes used for filling the fluid. This last operation can also take place before the deposit step.
  • the cold fluid F1 enters the member 7.
  • the cold fluid F1 flows along the lateral face 31 of the assembly 5 and is divided into the flows F1 1, F12 and F13 (FIG. 2) .
  • the flows F11, F12 and F13 enter the set 5 through the inputs E1, E2, E3.
  • the flow F12 flows substantially in the direction Y in the cutout 73 of the plate 43 which plays the role of distributor (FIG. 5).
  • the flow F12 flows then penetrates into the circulation channels 63 (upper) of the part 53 and into the circulation channels 65 (lower) of the part 51 (FIG. 3).
  • the cold fluid exchanges heat with the hot fluid F2 situated respectively on the other side of each of the parts 51, 53, and becomes cools and becomes flow F12 '.
  • the flow F12 ′ leaves the assembly 5 via the face 33 at the cutout 71 of the plate 43.
  • the flows F1 1 and F13 flow through the assembly 5 from the side face 31 to the side face 33 by exchanging heat against the current with the flows F21 and F22.
  • the hot fluid F2 penetrates into the member 11 and divides into the flows F21 and F22 which enter the assembly 5 through the lateral face 33.
  • the flow F22 penetrates through the cutout 73 of the plate 45 and enters the channels 65 (lower) defined by the part 53 and in the channels 63 of the part 55.
  • the flows F21 and F22 are cooled by heat exchange through the parts 49, 51 on the one hand and 53, 55 on the other hand and emerge in the form of cooled flows F21 'and F22'.
  • the streams F21 “and F22" combine in the member 13 to form the cooled fluid F2 ".
  • the process allows the manufacture of the heat exchanger 1 or of the heat pipe described above, by treating the parts 49, 51, 53, 55 having the micro-interstices 61. This makes it possible in particular to give small dimensions to the heat exchanger 1 and to the heat pipe described above.
  • the method allows the manufacture of the heat exchanger 1 or the heat pipe while minimizing the number of brazing steps. This makes it possible to obtain exchangers of small dimensions, at reduced cost, and possibly in a single brazing step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Procédé de fabrication d'un échangeur thermique ou d'un caloduc, comprenant au moins les étapes suivantes : - obtention d'un ensemble (5) comprenant au moins une pièce (53) comportant au moins 90% en masse d'un métal ou un alliage de métaux, la pièce ayant au moins une face définissant une pluralité d'interstices (61), chacun des interstices comportant au moins deux bords opposés (67, 69) séparés sur la face par une distance maximale (D) inférieure ou égale à 550 micromètres, la pièce définissant une pluralité de canaux de circulation (63, 65) pour des fluides, chacun des canaux de circulation définissant l'un des interstices, et - immersion de l'ensemble dans un bain électrolytique et électrodéposition d'une couche métallique sur ladite face, ladite couche étant adaptée pour boucher les interstices. Echangeur thermique ou caloduc correspondant.

Description

DESCRIPTION
TITRE : Procédé de fabrication d’un échangeur thermique ou d’un caloduc
La présente invention concerne un procédé de fabrication d’un échangeur ou d’un caloduc comprenant un ensemble comprenant au moins une pièce comportant au moins 90% en masse d’un métal ou un alliage de métaux, la pièce définissant une pluralité de canaux de circulation pour un ou plusieurs fluides.
L’invention concerne aussi un échangeur ou un caloduc correspondant.
Il est bien connu recourir au brasage pour assembler des pièces, en particulier en vue d’assembler un échangeur thermique ou un caloduc.
En outre, un type connu d’échangeur thermique met en œuvre une pièce constituée d’une feuille métallique repliée sur elle-même en accordéon. Deux plaques fixées de part et d’autre de la feuille métallique définissent des canaux de circulation parallèles entre eux et situés de chaque côté de la feuille métallique. Les extrémités longitudinales des canaux débouchent sur des faces de la feuille en accordéon dans lesquelles les canaux définissent des interstices.
Dans le cas d’un échangeur thermique, les canaux situés d’un côté de la feuille métallique sont parcourus par un fluide froid, tandis que ceux situés de l’autre côté sont parcourus par un fluide chaud. Ainsi, entre deux plaques circulent deux fluides, séparés l'un de l'autre par la feuille métallique et échangeant de la chaleur l'un avec l'autre au travers de la feuille métallique.
Les feuilles en accordéon, et les plaques recouvertes sur leurs deux faces d'un film de brasure sont alternativement empilées les unes sur les autres de façon à constituer un bloc appelé « matrice » ou « ensemble ». Cet empilement est ensuite assemblé en une première étape dans un four de brasage. L’ensemble comprend généralement une première et dernière plaque d’une épaisseur plus importante que les plaques.
Pour étanchéifier l’ensemble sur son pourtour, des barres, appelées "barres de fermeture" sont généralement fixées sur la matrice. Des têtes d’alimentation en fluides sont ensuite ajoutées à la matrice pour constituer l'échangeur.
Du fait des différentiels de dilatation entre les pièces, qui empêchent de trop contraindre géométriquement les constituants du futur échangeur, il est généralement pratiqué plusieurs étapes de brasage, entre lesquelles des opérations d'usinage sont réalisées de façon à garantir les jeux entre pièces. Cette pratique nécessite une grande maîtrise des nuances d’alliages d’apport de façon à ne pas dégrader lors de l’étape suivante les jonctions réalisées à l’étape précédente.
Une première méthode consiste à réaliser, dans un premier temps, un cadre fermé ou semi-ouvert dans lequel on va insérer une feuille en accordéon pour l’assembler par brasage une première fois. Dans un deuxième temps, on assemble par brasage un ensemble de ces cadres afin de constituer la matrice de l’échangeur. Dans un troisième temps, les tubes de connexion des fluides sont brasés sur la matrice.
Une seconde méthode consiste, dans un premier temps, à assembler par brasage l’ensemble des feuilles en accordéon sur l’ensemble des plaques, auxquelles sont jointes éventuellement les barres de fermeture orientées longitudinalement. Dans un deuxième temps, on usine les faces des feuilles en accordéon pour les aligner parfaitement, afin de les assembler par brasage avec les barres de fermetures orientées transversalement. On obtient ainsi la matrice de l’échangeur. Enfin, dans un troisième temps, les tubes de connexion des fluides sont soudés ou brasés sur la matrice.
Par ailleurs, il existe un besoin, dans différents secteurs industriels, tels que l’automobile ou l’aéronautique, de réduire, d’une part, l’encombrement créé par les circuits thermiques et leur masse et, d’autre part, la quantité de fluides impliqués dans les échanges. En effet, ces fluides ont parfois une incidence sur l’environnement, qu’il convient de réduire au maximum.
Les mêmes remarques valent pour des caloducs intégrant de telles feuilles en accordéon ou plus généralement des pièces métalliques comportant des micro interstices.
Toutefois, plus les échangeurs sont de dimensions réduites, plus la deuxième étape s’avère difficile, c’est-à-dire le brasage des barres de fermeture sur la face des feuilles en accordéon présentant les interstices décrits plus haut.
Un but de l’invention est donc de fournir un procédé de fabrication d’un échangeur thermique ou d’un caloduc intégrant une pièce telle que la pièce en accordéon précitée, c’est-à-dire présentant des micro-interstices, en particulier lorsque l’échangeur ou le caloduc est de faibles dimensions.
A cet effet, l’invention concerne un procédé de fabrication d’un échangeur thermique ou d’un caloduc, comprenant au moins les étapes suivantes :
- obtention d’un ensemble comprenant au moins une pièce comportant au moins 90% en masse d’un métal ou un alliage de métaux, la pièce ayant au moins une face définissant une pluralité d’interstices, chacun des interstices comportant au moins deux bords opposés séparés sur la face par une distance maximale inférieure ou égale à 550 micromètres, la pièce définissant une pluralité de canaux de circulation pour des fluides, chacun des canaux de circulation définissant l’un des interstices, et
- immersion de l’ensemble dans un bain électrolytique et électrodéposition d’une couche métallique sur ladite face, ladite couche étant adaptée pour boucher les interstices.
Selon des modes particuliers de réalisation, le procédé comprend l’une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou selon toutes les combinaisons techniquement possibles :
- la pièce comprend une feuille métallique pliée en accordéon, un bord ondulé de la feuille formant les bords des interstices, les canaux de circulation s’étendant parallèlement à, et de part et d’autre de la feuille ;
- la pièce est en acier inoxydable, en cuivre, en aluminium, ou en titane ;
- l’étape d’obtention de l’ensemble comprend une sous-étape de fixation de la pièce sur au moins deux plaques, la pièce étant située entre les deux plaques selon une direction ;
- la sous-étape de fixation comprend un brasage de la pièce sur lesdites au moins deux plaques ;
- le procédé comprend en outre l’une ou plusieurs des étapes suivantes préalablement à l’étape d’immersion et d’électrodéposition :
- dégraissage chimique de l’ensemble,
- dégraissage électrolytique de l’ensemble, et/ou
- activation anodique acide de l’ensemble ;
- le bain électrolytique comprend du nickel, la couche comportant majoritairement du nickel ;
- le bain électrolytique comprend du sulfamate de nickel ; et
- le procédé de fabrication comprend en outre une étape d’immersion de l’ensemble dans un bain de Wood pour réaliser un pré-nickelage de la pièce préalablement à ladite étape d’immersion de l’ensemble dans un bain électrolytique et d’électrodéposition.
L’invention concerne aussi un échangeur thermique ou un caloduc comprenant :
- un ensemble comprenant au moins une pièce comportant au moins 90% en masse d’un métal ou un alliage de métaux, la pièce ayant au moins une face définissant une pluralité d’interstices, chacun des interstices comportant au moins deux bords opposés séparés sur la face par une distance maximale inférieure ou égale à 550 micromètres, la pièce définissant une pluralité de canaux de circulation pour des fluides, chacun des canaux de circulation définissant l’un des interstices, et - une couche métallique électro-déposée sur ladite face et bouchant les interstices.
Selon des modes particuliers de réalisation, l’échangeur ou le caloduc sont susceptibles d’être obtenus, ou sont effectivement obtenus, par un procédé de fabrication tel que décrit ci-dessus.
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple et faite en se référant aux dessins annexés, sur lesquels :
[Fig 1] la figure 1 est une vue en perspective d’un échangeur thermique selon l’invention,
[Fig 2] la figure 2 est une vue en perspective d’un ensemble (matrice) de l’échangeur thermique représenté sur la figure 1 , les collecteurs de fluide ayant été supprimés,
[Fig 3] la figure 3 est une vue de face, partielle, de l’ensemble représenté sur les figures 1 et 2,
[Fig 4] la figure 4 est une vue en perspective d’un des étages de l’ensemble représenté sur les figures 2 et 3,
[Fig 5] la figure 5 est une vue en perspective éclatée de l’étage représenté sur la figure 4, et de couches électro-déposées,
[Fig 6] la figure 6 est une vue schématique illustrant une étape d’immersion de l’ensemble dans un bain électrolytique d’un procédé selon l’invention, et
[Fig 7] la figure 7 est une vue schématique, en section, illustrant une étape d’électrodéposition d’un procédé selon l’invention.
En référence aux figures 1 à 3, on décrit un échangeur thermique 1 selon l’invention.
Comme visible sur la figure 1 , l’échangeur thermique 1 comprend un ensemble 5
(matrice), et quatre organes 7, 9, 1 1 , 13 pour respectivement apporter un fluide froid F1 , récupérer un fluide réchauffé F1’, amener un fluide chaud F2, et récupérer un fluide refroidi F2’.
Le fluide froid est par exemple de l’eau ou un mélange d’eau et de glycol.
Le fluide chaud est par exemple un liquide frigorigène de type HFE
(hydrofluoroéther) ou HFO (hydrofluorooléfine), comme c’est le cas dans une pompe à chaleur. Dans le cas du refroidissement de l’huile d’un moteur thermique, le fluide chaud est l’huile à refroidir.
Comme visible sur les figures 2 et 3, l’ensemble 5 comprend par exemple quatre étages 15, 17, 19, 21 superposés selon une direction Z par exemple verticale, et deux plaques extrêmes 23, 25 formant respectivement une face supérieure 27 et une face inférieure 29 de l’ensemble.
L’ensemble 5 est par exemple de forme générale parallélépipédique. L’ensemble 5 comporte deux faces latérales 31 , 33 (figure 2) opposées selon une direction Y sensiblement perpendiculaire à la direction Z, et deux faces latérales 35, 37 opposées selon une direction X sensiblement perpendiculaire à la direction Z et à la direction Y.
Les faces latérales 31 , 33, 35, 37 sont par exemple rectangulaires, et deux d’entre elles consécutives autour de la direction Z forment avantageusement un angle sensiblement droit.
La face latérale 31 comporte par exemple trois entrées E1 , E2, E3 pour trois flux F1 1 , F12 et F13 issus du fluide froid F1 , et deux sorties S1’, S2’ pour deux flux F21’ et F22’ destinés à former le fluide refroidi F2’.
La face latérale 33 comporte deux entrées (non visibles sur la figure 2 car situées à l’arrière) pour deux flux F21 et F22 issus du fluide chaud F2, et trois sorties (également non visibles sur la figure 2) pour trois flux F1 1’, F12’ et F13’ destinés à former le fluide réchauffé F1’.
Comme visible sur les figures 2 et 3, les étages 15, 17, 19, 21 sont sensiblement analogues les uns aux autres.
Les entrées et les sorties précitées se présentent par exemple comme des fentes s’étendant selon la direction X sur les faces latérales 31 , 33.
Les entrées E1 , E2 et E3 sont par exemple alignées selon la direction Z et situées en vis-à-vis de l’organe 7.
Il en va de même pour les entrées situées sur la face latérale 33, si ce n’est qu’elles sont situées en vis-à-vis de l’organe 1 1.
Les sorties S1’ et S2’ sont par exemple superposées selon la direction Z et situées en vis-à-vis de l’organe 13. Il en va de même pour les sorties situées sur la face latérale 33, si ce n’est qu’elles sont situées en vis-à-vis de l’organe 9.
Les étages 15 à 21 sont formés par des plaques 39, 41 , 43, 45, 47 (figure 3) sensiblement perpendiculaires à la direction Z et alternant avec des pièces 49, 51 , 53, 55. Dans l’exemple représenté, les pièces 49, 51 , 53, 55 sont analogues entre elles, aussi seule la pièce 53 appartenant à l’étage 19 sera décrite ci-après en référence aux figures 3 à 5.
La pièce 53 comprend au moins 90% en masse d’un métal ou d’un alliage métallique. Avantageusement la pièce 53 est en acier inoxydable, par exemple en 316L.
Selon des variantes, la pièce 53 est en cuivre, en aluminium, ou en titane. La pièce 53 est formée par une feuille métallique 58 repliée sur elle-même en accordéon, dans l’exemple parallèlement à la direction X. La pièce 53 définit une pluralité de canaux de circulation 63 situés au-dessus de la feuille métallique 58 et destinés à recevoir le flux F12, et une pluralité de canaux de circulation 65 situés sous la feuille métallique et destinés à recevoir le flux F22.
La pièce 53 est fixée sur les plaques 43, 45, avantageusement par brasage.
Selon un mode de réalisation particulier, la pièce 53 est collée sur le reste de l’ensemble 5, notamment si celui-ci n’est pas intégralement métallique.
La pièce 53 comporte deux faces 59, 60 opposées selon la direction X, sur lesquelles un bord ondulé 60A de la feuille 58 définit des interstices 61.
Les faces 59, 60 sont par exemple perpendiculaires à la direction X.
Les canaux de circulation 63, 65 sont orientés sensiblement selon la direction X.
Les interstices 61 comportent deux bords 67, 69 (figure 3) opposés selon la direction Y et séparés par une distance maximale D inférieure ou égale à 550 pm, de préférence inférieure ou égale à 250 pm, et par exemple inférieure à 150 pm.
Les plaques 39, 41 , 43, 45, 47 sont structurellement analogues les unes aux autres. Les plaques 39, 43, 47 présentent la même orientation dans l’espace, tandis que les plaques 41 et 45 présentent une autre orientation dans l’espace, se déduisant de la première par exemple par une rotation de 180° autour de la direction X.
Chacune des plaques 39, 41 , 43, 45, 47 présente par exemple une forme générale rectangulaire en vue selon la direction Z. Chacune des plaques comprend deux découpes 71 , 73 (figure 5) par exemple symétriques l’une de l’autre par rapport à un point S situé au centre de la plaque.
Chacune des découpes 71 , 73 s’étend dans l’exemple selon la direction Y à partir d’une des faces latérales 31 ou 33 l’ensemble 5, au-dessus ou en-dessous des canaux de circulation 63, 65.
Les plaques 39, 41 , 43, 45, 47 sont en métal ou en alliage métallique, par exemple en acier inoxydable, avantageusement en 316L. Les plaques sont fixées respectivement sur les pièces 49, 51 , 53, 55, par exemple par un brasage classique.
En variante, les plaques sont en cuivre, en aluminium, ou en titane.
Avantageusement, les plaques sont réalisées dans le même matériau que les pièces 49, 51 , 53, 55.
Les organes 7, 9, 1 1 , 13 sont avantageusement analogues les uns aux autres. Aussi, seul l’organe 7 sera décrit en détail ci-après.
L’organe 7 est en métal ou en alliage métallique, par exemple en acier inoxydable, avantageusement en 316L. En variante, l’organe 7 est en cuivre, en aluminium, ou en titane.
Avantageusement, l’organe 7 est réalisé dans le même matériau que les plaques 39, 41 , 43, 45, 47.
L’organe 7 comprend une partie supérieure 79 tubulaire, et une partie inférieure 81 située dans le prolongement de la première partie selon la direction Z et obtenue par découpe selon un plan correspondant à la face supérieure 27 et selon un plan correspondant à la face latérale 31. L’organe 7 comprend en outre un fond 83.
L’échangeur thermique 1 comprend aussi des couches 85 métalliques électro déposées notamment sur les faces 59 et 60 des pièces 49, 51 , 53, 55, et éventuellement sur d’autres faces.
Les couches 85 sont adaptées pour boucher les interstices 61 sur les faces 59 ,60.
Les couches 85 sont par exemple en nickel.
Selon des variantes, les couches 85 sont en cuivre, alliage cuivre-nickel, ou en aluminium.
L’épaisseur de la couche 85 est avantageusement comprise entre 0,5 mm et 5mm, et est par exemple d’environ 1 mm.
Avantageusement, l’échangeur thermique 1 comporte d’autres couches électro déposées (non représentées). Par exemple l’ensemble 5 ou l’échangeur thermique 1 sont recouverts par une ou plusieurs couches électro-déposées.
On décrit aussi un caloduc selon l’invention. Celui-ci n’est pas strictement représenté sur les figures, mais s’en déduit facilement. Par exemple, sur la figure 5, on remplace les plaques 43, 45 par des plaques sans découpe. Les canaux de circulation 63, 65 définissent respectivement un espace supérieur situé au-dessus de la pièce 53, et un espace inférieur situé en dessous de la pièce 53. Ces espaces sont fermés selon la direction X par les couches 85 électro-déposées, et selon la direction Y par les plis extrêmes de la pièce 53. Des fluides adaptés, distincts ou non, sont présent dans ces espaces et libres de circuler dans les canaux de circulation 63, 65.
Le caloduc contient un fluide injecté par un dispositif de remplissage hermétique (non représenté), par exemple un piquage réalisé sur la plaque 43.
Le caloduc est utilisé en position verticale, c’est-à-dire que la direction X est alors verticale. Par exemple, la face 60 est en position haute et la face 59 en position basse.
La face basse 59 est posée sur un objet (non représenté) à refroidir, par exemple un composant électronique dont la température doit être maintenue entre 20 et 30°C.
La chaleur ainsi récoltée au niveau de la face 59 provoque l’ébullition du fluide, en phase liquide dans la partie basse du caloduc. La vapeur se propage jusqu’en partie haute, en direction de la face 58, qui elle-même est refroidie sur sa partie externe par un dispositif réfrigérant/frigorigène. En conséquence, sur cette face 60supérieure, la vapeur condense et retombe par gravité vers la partie basse. Les changements d’état par évaporations et condensations successives permettent d’extraire une très grande quantité de chaleur de l’objet en contact avec la face 59 dans la partie basse.
Le caloduc est particulièrement efficace, car aussi bien dans la zone basse (évaporation) que dans la zone haute (condensation), le ratio surface d’échange/volume est très important.
La fabrication de l’échangeur thermique 1 va maintenant être décrite. Elle illustre un procédé de fabrication selon l’invention.
On fournit tout d’abord les pièces 49, 51 , 53, 55, ainsi que les plaques 39, 41 , 43, 45, 47 intercalaires, les plaques extrêmes 23, 25, et les organes 7, 9, 1 1 , 13.
Ces éléments sont empilés comme représenté sur les figures 3 et 4 selon la direction Z, en intercalant entre chacun des feuilles de brasage 87 comme représenté sur la figure 5.
Les feuilles de brasage 87 sont en alliage de brasure, par exemple en alliage BNi- 2, ou dans tout autre matériau adapté à la composition des pièces 49, 51 , 53, 55 et des plaques 39, 41 , 43, 45, par exemple en alliage eutectique cuivre-argent pour braser des pièces en cuivre.
L’assemblage des pièces 49, 51 , 53, 55, des plaques 39, 41 , 43, 45, 47, des plaques extrêmes 23 et 25, et des feuilles de brasage 87 est réalisé par empilement, et maintenu mécaniquement grâce à un outillage adapté (non représenté).
Puis, on chauffe l’assemblage à une température de brasage pour obtenir l’ensemble 5.
En variante, l’assemblage n’est pas obtenu par brasage, mais par exemple par collage.
Avantageusement, l’ensemble 5 subit ensuite un dégraissage chimique et un dégraissage électrolytique. Ces opérations sont connues en elles-mêmes de l’homme du métier afin de nettoyer des surfaces en vue de réaliser des dépôts par électrolyse.
Le dégraissage électrolytique est par exemple réalisé dans un bain classique pour acier inoxydable et nickel en polarisation cathodique, avec une densité de courant de 4A/dm2 pendant 10 minutes à 35°C.
Avantageusement, l’ensemble 5 subit ensuite une activation anodique en milieu acide, par exemple pendant deux minutes.
Optionnellement, l’ensemble 5 ainsi nettoyé et activé subit un pré-nickelage électrolytique par immersion dans un bain de Wood, par exemple à 25°C, avec une densité de courant cathodique de 6A/dm2 pendant 8 minutes. Le bain de Wood comprend, par exemple, du chlorure de nickel NiCI2.6H20 à 100- 250 g/litre, et de l’acide chlorhydrique HCl à 85-125 cm3/litre.
Ensuite, comme représenté schématiquement sur la figure 6, l’ensemble 5 ainsi préparé est immergé dans un bain électrolytique 89, et la couche 85 est électro-déposée sur les faces 59, 60 des pièces 49, 51 , 53, 55.
Le bain électrolytique 89 comprend avantageusement du sulfamate de nickel.
En variante, si les pièces 49, 51 , 53, 55 sont en cuivre, le bain électrolytique 89 est par exemple un mélange de sulfate de cuivre et d’acide sulfurique.
En variante, si les pièces 49, 51 , 53, 55 sont en aluminium, le bain électrolytique 89 comporte par exemple un solvant organique, tel qu’un mélange de tétrahydrofurane et de benzène, dans lequel est avantageusement dissous du chlorure d’aluminium AICI3 et de l’hydrure d’aluminium lithium UAIH4.
Pendant l’électrodéposition de la couche 85, l’ensemble 5 est relié électriquement à la cathode d’un générateur 91 . L’ensemble 5 joue donc le rôle de cathode dans l’électrolyse.
Une anode 93 consommable est immergée dans le bain électrolytique 89 et reliée à l’anode du générateur 91 . L’anode 93 est par exemple constituée de billes de nickel dépolarisées au soufre.
De manière surprenante, comme visible sur la figure 7, des germes 95 métalliques apparaissent presque uniquement au niveau des interstice 61 sur le bord ondulé 60A des pièces 49, 51 , 53, 55. Les germes 95 grandissent en formant une boursoufflure du bord ondulé. Puis, les germes 95 se rejoignent dans la direction Y et croissent encore pour former la couche 85, laquelle bouche totalement les interstices 61 des faces 59, 60.
De manière surprenante également, les germes 85 croissent peu dans la direction X vers l’intérieur des canaux de circulation 63, 65.
Ainsi, les interstices 61 des faces 59, 60 sont obturés de manière simple et avantageuse.
Les organes 7, 9, 1 1 , 13 sont ensuite fixés sur l’ensemble 5 par brasage, soudure, collage ou tout autre procédé adapté à l’échangeur thermique 1.
Selon une variante, les organes 7, 9, 1 1 , 13 sont fixés sur l’ensemble 5 pendant l’opération d’assemblage, avant la ou les étapes d’électrodéposition.
Optionnellement, d’autres étapes d’électrodéposition sont réalisées pour parachever l’échangeur thermique 1.
Le caloduc décrit plus haut est fabriqué de manière analogue. Il est par exemple composé de cinq pièces : la feuille 58, les deux plaques de distribution 43 et 45 dotées d’ouverture 71 fermées sur leur bord extérieur et de deux plaques extrêmes 23 et 25. Dans un premier temps, les pièces 23, 25, 43, 45 et 53 sont assemblées par brasage, de manière analogue au cas de l’échangeur. Dans un deuxième temps, les faces 59 et 60 sont obturées par électrodéposition. Dans un troisième temps, les plaques extrêmes 23 et 25 sont percées pour permettre la fixation par soudage ou brasage de tubes servant au remplissage du fluide. Cette dernière opération peut aussi avoir lieu avant l’étape de dépôt.
Le fonctionnement de l’échangeur thermique 1 se déduit de sa structure et va maintenant être brièvement décrit.
Le fluide froid F1 (figure 1 ) pénètre dans l’organe 7. Le fluide froid F1 s’écoule le long de la face latérale 31 de l’ensemble 5 et se divise en les flux F1 1 , F12 et F13 (figure 2).
Les flux F11 , F12 et F13 entrent dans l’ensemble 5 par les entrées E1 , E2, E3.
Le flux F12 s’écoule sensiblement selon la direction Y dans la découpe 73 de la plaque 43 qui joue le rôle de distributeur (figure 5). Le flux F12 s’écoule pénètre alors dans les canaux de circulation 63 (supérieurs) de la pièce 53 et dans les canaux de circulation 65 (inférieurs) de la pièce 51 (figure 3). A mesure qu’il s’écoule dans la direction X dans les canaux de circulation 63, 65, le fluide froid échange de la chaleur avec le fluide chaud F2 situé respectivement de l’autre côté de chacune des pièces 51 , 53, et se refroidit et devient le flux F12’. Le flux F12’ sort de l’ensemble 5 par la face 33 au niveau de la découpe 71 de la plaque 43.
De même, les flux F1 1 et F13 s’écoulent au travers de l’ensemble 5 depuis la face latérale 31 jusqu’à la face latérale 33 en échangeant de la chaleur à contre-courant avec les flux F21 et F22.
Une fois réchauffés, les flux F1 1 , F12, F13 deviennent des flux réchauffés F1 1’, F12’ et F13’ qui débouchent dans l’organe 9 et se combinent pour former le fluide réchauffé F1’.
De même, le fluide chaud F2 pénètre dans l’organe 1 1 et se divise en les flux F21 et F22 qui entrent dans l’ensemble 5 par la face latérale 33.
Par exemple, comme visible sur la figure 4, le flux F22 pénètre par la découpe 73 de la plaque 45 et entre dans les canaux 65 (inférieurs) définis par la pièce 53 et dans les canaux 63 de la pièce 55. Les flux F21 et F22 se refroidissent par échange thermique à travers les pièces 49, 51 d’une part et 53, 55 d’autre part et ressortent sous la forme de flux refroidis F21’ et F22’. Les flux F21’ et F22’ se combinent dans l’organe 13 pour former le fluide refroidi F2’.
Ainsi, grâce aux caractéristiques décrites ci-dessus, le procédé permet la fabrication de l’échangeur thermique 1 ou du caloduc décrit ci-dessus, en traitant les pièces 49, 51 , 53, 55 présentant les micro-interstices 61. Ceci permet en particulier de donner de faibles dimensions à l’échangeur thermique 1 et au caloduc décrits ci-dessus.
En outre, le procédé permet la fabrication de l’échangeur thermique 1 ou du caloduc en minimisant le nombre d’étapes de brasage. Ceci permet d’obtenir des échangeurs de faibles dimensions, à coût réduit, et possiblement en une seule étape de brasage.

Claims

REVENDICATIONS
1. Procédé de fabrication d’un échangeur thermique (1 ) ou d’un caloduc, comprenant au moins les étapes suivantes :
- obtention d’un ensemble (5) comprenant au moins une pièce (53) comportant au moins 90% en masse d’un métal ou un alliage de métaux, la pièce (53) ayant au moins une face (59) définissant une pluralité d’interstices (61 ), chacun des interstices (61 ) comportant au moins deux bords opposés (67, 69) séparés sur la face (59) par une distance maximale (D) inférieure ou égale à 550 micromètres, la pièce (53) définissant une pluralité de canaux de circulation (63, 65) pour des fluides (F1 , F2), chacun des canaux de circulation (63, 65) définissant l’un des interstices, et
- immersion de l’ensemble (5) dans un bain électrolytique (89) et électrodéposition d’une couche (85) métallique sur ladite face (59), ladite couche (85) étant adaptée pour boucher les interstices (61 ).
2. Procédé de fabrication selon la revendication 1 , dans lequel la pièce (53) comprend une feuille (58) métallique pliée en accordéon, un bord ondulé (60A) de la feuille (58) formant les bords (67, 69) des interstices (61 ), les canaux de circulation (63, 65) s’étendant parallèlement à, et de part et d’autre de la feuille (58).
3. Procédé de fabrication selon l’une quelconque des revendications 1 ou 2, dans lequel la pièce (53) est en acier inoxydable, en cuivre, en aluminium, ou en titane.
4. Procédé de fabrication selon l’une quelconque des revendications 1 à 3, dans lequel l’étape d’obtention de l’ensemble (5) comprend une sous-étape de fixation de la pièce (53) sur au moins deux plaques (43, 45), la pièce (53) étant située entre les deux plaques (43, 45) selon une direction (Z).
5. Procédé de fabrication selon la revendication 4, dans lequel la sous-étape de fixation comprend un brasage de la pièce (53) sur lesdites au moins deux plaques (43, 45).
6. Procédé de fabrication selon l’une quelconque des revendications 1 à 5, dans lequel le procédé comprend en outre l’une ou plusieurs des étapes suivantes préalablement à l’étape d’immersion et d’électrodéposition :
- dégraissage chimique de l’ensemble (5), - dégraissage électrolytique de l’ensemble (5), et/ou
- activation anodique acide de l’ensemble (5).
7. Procédé de fabrication selon l’une quelconque des revendications 1 à 6, dans lequel le bain électrolytique (89) comprend du nickel, la couche (85) comportant majoritairement du nickel.
8. Procédé de fabrication selon la revendication 7, dans lequel le bain électrolytique (89) comprend du sulfamate de nickel.
9. Procédé de fabrication selon l’une quelconque des revendications 1 à 8, comprenant en outre une étape d’immersion de l’ensemble (5) dans un bain de Wood pour réaliser un pré-nickelage de la pièce (53) préalablement à ladite étape d’immersion de l’ensemble (5) dans un bain électrolytique (89) et d’électrodéposition.
10. Echangeur thermique (1 ) ou caloduc comprenant :
- un ensemble (5) comprenant au moins une pièce (53) comportant au moins 90% en masse d’un métal ou un alliage de métaux, la pièce (53) ayant au moins une face (59) définissant une pluralité d’interstices (61 ), chacun des interstices (61 ) comportant au moins deux bords opposés (67, 69) séparés sur la face (59) par une distance maximale (D) inférieure ou égale à 550 micromètres, la pièce (53) définissant une pluralité de canaux de circulation (63, 65) pour des fluides (F1 , F2), chacun des canaux de circulation (63, 65) définissant l’un des interstices (61 ), et
- une couche (85) métallique électro-déposée sur ladite face (59) et bouchant les interstices (61 ).
EP19805692.1A 2018-11-26 2019-11-22 Procédé de fabrication d'un échangeur thermique ou d'un caloduc Active EP3887743B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1871828A FR3088999B1 (fr) 2018-11-26 2018-11-26 Procédé de fabrication d’un échangeur thermique ou d’un caloduc
PCT/EP2019/082195 WO2020109155A1 (fr) 2018-11-26 2019-11-22 Procédé de fabrication d'un échangeur thermique ou d'un caloduc

Publications (2)

Publication Number Publication Date
EP3887743A1 true EP3887743A1 (fr) 2021-10-06
EP3887743B1 EP3887743B1 (fr) 2022-05-18

Family

ID=65861459

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19805692.1A Active EP3887743B1 (fr) 2018-11-26 2019-11-22 Procédé de fabrication d'un échangeur thermique ou d'un caloduc

Country Status (3)

Country Link
EP (1) EP3887743B1 (fr)
FR (1) FR3088999B1 (fr)
WO (1) WO2020109155A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522747B (zh) * 2020-11-19 2022-01-07 瑞声科技(南京)有限公司 均温板上盖板的制备方法以及均温板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050263273A1 (en) * 2004-05-26 2005-12-01 Crumly William R Electroformed microchannel cooler and methods of making same
KR100992961B1 (ko) * 2010-07-30 2010-11-08 주식회사 동화엔텍 플레이트형 열교환기 제조방법
FR3026890B1 (fr) * 2014-10-03 2017-12-22 Commissariat Energie Atomique Procede de controle de la fermeture de cavite par depot non conforme d'une couche
KR101891444B1 (ko) * 2017-09-29 2018-08-23 주식회사프로스트 니켈 도금에 의해 내식성이 강한 번들타입의 판형 열교환모듈 및 이의 제조방법

Also Published As

Publication number Publication date
FR3088999B1 (fr) 2020-12-11
WO2020109155A1 (fr) 2020-06-04
FR3088999A1 (fr) 2020-05-29
EP3887743B1 (fr) 2022-05-18

Similar Documents

Publication Publication Date Title
EP3113902B1 (fr) Tôle de brasage à placages multiples
EP3630403B1 (fr) Procédé de brasage ou rechargement d'une pièce à micro-interstices, et échangeur thermique obtenu par un tel procédé
FR2681419A1 (fr) Echangeur de chaleur a faisceau tubulaire comportant plusieurs circuits de fluides.
WO2012160267A1 (fr) Alliages pour tube d'échangeur thermique à placage interne protecteur et à perturbateur brasé
CN1813166A (zh) 用于制造钎焊热交换器的方法和热交换器设备
EP3887743B1 (fr) Procédé de fabrication d'un échangeur thermique ou d'un caloduc
WO2019122651A1 (fr) Element intercalaire a texturation de surface, echangeur de chaleur et procede de fabrication associes
FR2832788A1 (fr) Profils de tubes pour echangeur thermique
EP2060866A1 (fr) Boîte collectrice pour échangeur de chaleur amélioré et échangeur de chaleur correspondant
FR2953919A1 (fr) Echangeur de chaleur en aluminium brase
FR2995073A1 (fr) Element d'echangeur pour echangeur de chaleur, echangeur de chaleur comprenant un tel element d'echangeur et procede de fabrication d'un tel element d'echangeur
EP3728978B1 (fr) Echangeur de chaleur avec éléments intercalaires superposés
FR3106769A1 (fr) Procédé de fabrication d’un échangeur thermique ou d’un caloduc
EP3762670B1 (fr) Echangeur thermique, ainsi que procédé de fabrication d'un tel échangeur thermique
FR3095692A1 (fr) Elément pour échangeur de chaleur ou caloduc, et procédé de fabrication
WO2017109345A1 (fr) Échangeur thermique, notamment pour véhicule automobile
EP4018146A1 (fr) Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d'un tel échangeur de chaleur
EP3394544B1 (fr) Échangeur thermique, notamment pour véhicule automobile
FR3009985A1 (fr) Depot de brasure par pulverisation cathodique ou par depot en phase chimique
WO2024121005A1 (fr) Echangeur de chaleur à structure alvéolaire
FR3075341A1 (fr) Echangeur de chaleur avec elements intercalaires a texturation de surface
FR2598794A1 (fr) Condenseur notamment du type condenseur a plaques
WO2011151543A1 (fr) Échangeur de chaleur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20211022

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BILLAT, PIERRE

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20211222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019015150

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1493383

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220518

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1493383

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220819

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220928

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221114

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019015150

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

26N No opposition filed

Effective date: 20230221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602019015150

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130