EP3956101A1 - Method for supplying cryogenic fluid to a machining machine - Google Patents

Method for supplying cryogenic fluid to a machining machine

Info

Publication number
EP3956101A1
EP3956101A1 EP20715401.4A EP20715401A EP3956101A1 EP 3956101 A1 EP3956101 A1 EP 3956101A1 EP 20715401 A EP20715401 A EP 20715401A EP 3956101 A1 EP3956101 A1 EP 3956101A1
Authority
EP
European Patent Office
Prior art keywords
machining
fluid
tool
valve
cold box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20715401.4A
Other languages
German (de)
French (fr)
Inventor
Alban Poirier
Marc GRAVIER
Fabrice Bouquin
Etienne CHARVE
Olivier Matile
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Air Liquide France Industrie SA
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Air Liquide France Industrie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude, Air Liquide France Industrie SA filed Critical Air Liquide SA
Publication of EP3956101A1 publication Critical patent/EP3956101A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1038Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality
    • B23Q11/1053Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality using the cutting liquid at specially selected temperatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1038Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1076Arrangements for cooling or lubricating tools or work with a cutting liquid nozzle specially adaptable to different kinds of machining operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0169Liquefied gas, e.g. LPG, GPL subcooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0169Liquefied gas, e.g. LPG, GPL subcooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0545Tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to the field of machining mechanical parts.
  • Machining is a process of shaping parts by removing material.
  • the mechanical energy required for machining, and therefore the formation of chips, is almost entirely transformed into heat.
  • the use of cutting fluid remains mandatory to ensure:
  • These cutting fluids are mainly whole or soluble oils with a mineral or synthetic base.
  • the temperatures encountered in the heart of the cutting zone (commonly +800 ° C to +1000 ° C) lead, on the one hand, to the production of fumes or gases harmful to the external environment, and on the other hand, chemical pollution of shavings and machined surfaces going as far as the alteration of their properties.
  • cryogenic machining In the other cases of machining, those which require a strong cooling of the cutting zone, the machining by supplying cryogenic fluid, which will be called in what follows “cryogenic machining”, appear as a cooling solution and lubrication of the very attractive cutting zone, combining the advantages of oils (evacuation of chips, heat transfer fluid, etc.) and those of dry machining (respect for the environment, non-pollution of the surfaces generated, recycling of chips , increased tool life, etc.).
  • This cryogenic fluid can be nitrogen and CO2.
  • 3 major machining processes are listed: turning, milling and drilling.
  • the present invention seeks to provide a system for bringing the cryogen, for example liquid nitrogen, under the best possible conditions in the machining area, and making it possible to take into account the requirements in terms of the machining process, whether it is turning, milling, or drilling.
  • cryogen for example liquid nitrogen
  • the system allows communication with the control cabinet (piloting) associated with the machine tool, all in safety.
  • cryogen box equipment for implementing the cryogen
  • Anglo-Saxons call this "skid”
  • control / command device of the invention communicating with the existing control cabinet of the machining machine for:
  • the machining center calls for fluid and waits for the control / command device to validate that we are in the required operating conditions.
  • cryogen for example nitrogen
  • the criteria to be followed are mainly the temperature, the pressure and the diphasic rate of the fluid reaching the machining station.
  • Too much flow can cause weakening of the cutting tool and premature breakage and
  • each recipe which entails a change of cutting tool (uncoupling then re-coupling of the tool at the end of the spindle)
  • cryogenic control valve which self-regulates its opening rate as a function of the downstream pressure requested.
  • This allows to have a fixed and adjustable pressure upstream of the liquid nitrogen injection ports in the cutting tool and therefore a fixed but adjustable flow rate.
  • For each machining recipe we can impose a pressure regulation and therefore flow. This allows us to obtain the optimum flow of liquid nitrogen while maintaining the diameter and passage of liquid nitrogen. The number and position of these holes is sometimes uncontrollable and may meet other requirements.
  • the invention therefore relates to a method of machining parts, implementing in the machining zone an inlet of a cryogenic fluid, characterized in that it is implemented on the line connecting the fluid source.
  • a valve capable of self-regulating its opening rate according to the pressure requested downstream, making it possible to deliver a fixed and adjustable pressure, and therefore a fixed and adjustable flow , to the machining tool, whatever the tool used, and therefore the number of orifices and the diameter of the fluid ejection orifices characterizing the tool considered.
  • the fluid used can be liquid nitrogen or another cryogenic fluid
  • the purge gas can be nitrogen gaseous or gaseous CO2 or another gas etc ...
  • Cooling ensures that the nitrogen is always at a temperature close to the equilibrium point of liquid nitrogen, which ensures that it is in the liquid phase and not in the gas phase (and in any case of minimize the rate of two-phase).
  • the cooling is carried out until the outlet of the cold box (11 in the appended figure), upstream of the hose 13 in the appended figure.
  • the nitrogen temperature is controlled (for example just before entering the machining center): if this temperature rises above a set point (close to equilibrium point), we open the purge valve to call for nitrogen and purge the gas part which has not been sufficiently purged, for example in a degasser pot. During this re-cooling phase, a stop contact at the machining center is given.
  • cryogen for example liquid nitrogen
  • Tool disconnection The purging of the openings and grooves for the passage of liquid nitrogen with nitrogen gas at each tool change and when the installation is started allows cleaning and removal of humidity. This purge can be a nitrogen gas injection delay at each change of machining recipe. A "recipe" is possible depending on the type of tool to set this purge time.
  • Nitrogen is used to heat the tool holder to aid in uncoupling. For this function, we could also preheat gaseous nitrogen to help with this warming.
  • a temperature measurement of the fluid delivered for example just before entering the machining zone, and an adaptation of the flow rate implemented according to of this fluid temperature measurement. It can be seen in particular that when the upstream fluid storage has recently been filled, the fluid is in a sub-cooled state, therefore colder than in normal times, it is then advantageous to adjust the pressure supplied by said regulating valve. , to reduce the flow delivered while maintaining the same available energy.
  • “recently” filled is meant a filling that took place at most a few hours before, or even a day before ...
  • FIG. 1 The attached Figure 1 provides a partial schematic view of an installation suitable for the implementation of the invention.
  • Nomenclature figure 1 is a diagrammatic representation of Nomenclature figure 1
  • the present invention is concerned with regulating the pressure delivered to the machining station, this as a function of a “recipe” implemented in this station, ie for all and each tool condition used, from number of orifices, diameter of these orifices etc ...
  • the approach according to these previous works focused on supplying several machining stations in parallel, with sub-cooled liquid, at a fixed pressure in each station, and proceeded to this involves immersion of the cryogen in a cryogenic bath, before its arrival at the machining station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Turning (AREA)

Abstract

Method for machining workpieces, employing an intake of a cryogenic fluid in the machining zone (1), characterized in that use is made, on the line connecting the fluid source to the machining tool (5) in the machining zone, of a valve able to self-regulate its degree of opening according to the pressure required downstream thereof, making it possible to deliver a fixed and adjustable pressure, and therefore a fixed adjustable flow, to the machining tool irrespective of the tool used, and therefore the number of orifices and the diameter of the fluid ejection orifices characterizing the tool in question.

Description

Procédé d'alimentation en fluide cryogénique d'une machine d'usinage Process for supplying cryogenic fluid to a machining machine
La présente invention concerne le domaine de l’usinage de pièces mécaniques. The present invention relates to the field of machining mechanical parts.
L’usinage est un procédé de mise en forme de pièces par enlèvement de matière. L’énergie mécanique nécessaire à l’usinage, et donc la formation de copeaux, est quasiment intégralement transformée en chaleur. Malgré les bonnes conductivités thermiques de certains matériaux usinés et usinant, l’emploi d’un fluide de coupe demeure obligatoire pour garantir: Machining is a process of shaping parts by removing material. The mechanical energy required for machining, and therefore the formation of chips, is almost entirely transformed into heat. Despite the good thermal conductivities of certain machined and machining materials, the use of cutting fluid remains mandatory to ensure:
Le refroidissement et la lubrification de la zone de coupe ; Cooling and lubricating the cutting area;
Mais aussi l’évacuation des copeaux en dehors de l’espace de travail. But also the evacuation of chips outside the workspace.
Ces fluides de coupe sont majoritairement des huiles entières ou solubles à base minérale ou synthétique. Les températures rencontrées au coeur de la zone de coupe (couramment +800 °C à +1 000 °C) conduisent, d’une part, à la production de fumées ou gaz nocifs pour l’environnement extérieur, et d’autre part, à une pollution chimique des copeaux et surfaces usinées allant jusqu’à l’altération de leurs propriétés. These cutting fluids are mainly whole or soluble oils with a mineral or synthetic base. The temperatures encountered in the heart of the cutting zone (commonly +800 ° C to +1000 ° C) lead, on the one hand, to the production of fumes or gases harmful to the external environment, and on the other hand, chemical pollution of shavings and machined surfaces going as far as the alteration of their properties.
Les huiles sont un poste important de dépenses à travers leurs coûts d’achat et de recyclage mais aussi leur gestion. Dans ce cadre, les méthodes de lubrification dites de «micro-lubrification» ou «à sec» réduisent, voire suppriment, la consommation des fluides de coupe. Les performances d’usinage s’en trouvent dégradées, c’est pourquoi ces méthodes ne sont appliquées que dans les cas d’usinage qui ne requièrent qu’un faible refroidissement de la zone de coupe (tels que usinage de matériaux à base aluminium, usinage grande vitesse, etc...). Oils are a major expense item through their purchasing and recycling costs but also their management. In this context, the so-called “micro-lubrication” or “dry” lubrication methods reduce or even eliminate the consumption of cutting fluids. The machining performance is degraded, which is why these methods are only applied in cases of machining which require only a slight cooling of the cutting zone (such as machining of aluminum-based materials, high speed machining, etc ...).
Dans les autres cas d’usinage, ceux qui requièrent un fort refroidissement de la zone de coupe, l’usinage par apport de fluide cryogénique, qu’on appellera dans ce qui suit «usinage cryogénique», se présentent comme une solution de refroidissement et de lubrification de la zone de coupe très attractive, alliant les avantages des huiles (évacuation des copeaux, fluide caloporteur, etc.) et ceux de l’usinage à sec (respect de l’environnement, non pollution des surfaces générées, recyclage des copeaux, augmentation de la durée de vie des outils etc.). In the other cases of machining, those which require a strong cooling of the cutting zone, the machining by supplying cryogenic fluid, which will be called in what follows “cryogenic machining”, appear as a cooling solution and lubrication of the very attractive cutting zone, combining the advantages of oils (evacuation of chips, heat transfer fluid, etc.) and those of dry machining (respect for the environment, non-pollution of the surfaces generated, recycling of chips , increased tool life, etc.).
Ce fluide cryogénique peut être de l’azote et du CO2. On rappelera que 3 grands procédés d’usinage sont répertoriés : tournage, fraisage et perçage. This cryogenic fluid can be nitrogen and CO2. Remember that 3 major machining processes are listed: turning, milling and drilling.
La présente invention s’attache à proposer un système pour amener le cryogène, par exemple l’azote liquide, dans les meilleures conditions possibles dans la zone d’usinage, et permettant de prendre en compte les impératifs en terme de procédé d’usinage, qu’il s’agisse de tournage, fraisage, ou encore perçage. The present invention seeks to provide a system for bringing the cryogen, for example liquid nitrogen, under the best possible conditions in the machining area, and making it possible to take into account the requirements in terms of the machining process, whether it is turning, milling, or drilling.
Comme on le verra plus en détails dans ce qui suit, le système permet de communiquer avec l’armoire de commande (pilotage) associée à la machine-outil, le tout en sécurité. As will be seen in more detail below, the system allows communication with the control cabinet (piloting) associated with the machine tool, all in safety.
Considérons dans ce qui suit une installation existante d’usinage, comportant une machine d’usinage, munie de son armoire de commande existante (traditionnelle), l’invention propose l’intervention des deux éléments suivants , positionnés en amont de la machine d’usinage : Let us consider in what follows an existing machining installation, comprising a machining machine, provided with its existing (traditional) control cabinet, the invention proposes the intervention of the following two elements, positioned upstream of the machine. machining:
un dispositif de contrôle/commande ; et a control / command device; and
un équipement de mise en oeuvre du cryogène, que l’on peut appeler « boite froide » (les anglo-saxons nomment cela « skid ») ; equipment for implementing the cryogen, which can be called a "cold box" (the Anglo-Saxons call this "skid");
le dispositif de contrôle/commande de l’invention communiquant avec l’armoire de commande existante de la machine d’usinage pour: the control / command device of the invention communicating with the existing control cabinet of the machining machine for:
pour obtenir un « GO » de démarrage de la part de la machine d’usinage et un « STOP » en fin d’usinage. to obtain a starting "GO" from the machining machine and a "STOP" at the end of machining.
pour recevoir un numéro ou un nom de recette de la part de la machine d’usinage en fonction de la pièce qui va être traitée et du traitement qui va lui être appliqué. to receive a recipe number or name from the machining machine depending on the part that will be processed and the treatment that will be applied to it.
pour recevoir une demande de fluide, par exemple en azote gazeux ou en azote liquide i.e le centre d'usinage fait un appel de fluide et attend que le dispositif de contrôle/commande valide que l'on soit dans les conditions opératoires requises. to receive a request for fluid, for example in gaseous nitrogen or in liquid nitrogen, i.e. the machining center calls for fluid and waits for the control / command device to validate that we are in the required operating conditions.
pour donner, de la part du dispositif de contrôle/commande, un « GO » à la machine d’usinage quand l’alimentation en fluide est disponible et considérée comme effectuée dans les conditions requises en aval (que l’on définira plus loin, i.e selon recette etc... ). On cherche notamment dans le cadre de la présente invention à permettre d’avoir du cryogène (par exemple de l’azote) sous forme liquide à l’entrée du poste d’usinage dès le démarrage du cycle tel qu’annoncé par l’armoire de commande, et de conserver les caractéristiques de ce cryogène liquide tout au long de l’opération d’usinage de la pièce considérée. Les critères à suivre sont principalement la température, la pression et le taux de diphasique du fluide parvenant au poste d’usinage. to give, on the part of the control / command device, a "GO" to the machining machine when the fluid supply is available and considered to have been carried out under the conditions required downstream (which will be defined below, ie according to recipe etc ...). In particular, within the framework of the present invention, it is sought to make it possible to have cryogen (for example nitrogen) in liquid form at the entrance to the machining station from the start of the cycle as announced by the cabinet. control, and to maintain the characteristics of this liquid cryogen throughout the machining operation of the part considered. The criteria to be followed are mainly the temperature, the pressure and the diphasic rate of the fluid reaching the machining station.
Selon des modes avantageux de mise en œuvre de l’invention on cherchera par ailleurs : According to advantageous modes of implementing the invention, we will also seek:
A assurer un débit constant de fluide pendant l’usinage, débit adapté pour chaque outil et phase de coupe quels que soient les outils de coupe mis en œuvre. On peut pointer à cet égard plusieurs phénomènes : To ensure a constant flow of fluid during machining, flow rate adapted for each tool and cutting phase regardless of the cutting tools used. Several phenomena can be pointed out in this regard:
Trop de débit peut entraîner une fragilisation de l'outil de coupe et une casse prématurée et Too much flow can cause weakening of the cutting tool and premature breakage and
Chaque outil de coupe n'engendre pas autant de dissipation d'énergie Not every cutting tool generates as much energy dissipation
Entre chaque fabrication, chaque recette, qui entraîne un changement d’outil de coupe (désaccouplement puis réaccouplement de l’outil en bout de broche), on souhaite que le système purge (purge gazeuse) l’ensemble de l’alimentation en fluide, par exemple en azote, par exemple de la boîte froide à l’extrémité de la broche dans un premier temps puis de la boîte froide à l’outil de coupe. Between each production, each recipe, which entails a change of cutting tool (uncoupling then re-coupling of the tool at the end of the spindle), we want the system to purge (gas purge) the entire fluid supply, for example in nitrogen, for example from the cold box to the end of the spindle first and then from the cold box to the cutting tool.
Il apparaît en effet important : It appears to be important:
• de purger le liquide pour des raisons de sécurité • to drain the liquid for safety reasons
• de réchauffer le porte outil pour favoriser un meilleur désaccouplement • to heat the tool holder to promote better disconnection
• de supprimer toute humidité dans le nouvel outil de coupe et d’enlever d’éventuels résidus (copeaux par exemple), cette humidité et ces résidus pourraient entraîner un bouchon lors de l’arrivée directe d’azote liquide et donc le débit constant d’azote liquide nécessaire au procédé ne serait plus assuré. Avec une injection simple en utilisation d’une vanne simple de type Tout Ou Rien (TOR) en tant que vanne de régulation on observerait un débit d’azote liquide proportionnel à la somme des surfaces des trous sur l’outil de coupe (ou alors se limitant au diamètre de la cannelure dans la broche de l’outil). Plus il y aura de trous dans l’outil plus le débit d’azote liquide sera important. • remove all moisture from the new cutting tool and remove any residues (eg chips), this moisture and these residues could cause a blockage during the direct arrival of liquid nitrogen and therefore the constant flow of liquid nitrogen required for the process would no longer be provided. With a simple injection using a simple On-Or-Nothing (TOR) type valve as a control valve, a flow of liquid nitrogen would be observed proportional to the sum of the surfaces of the holes on the cutting tool (or else limited to the diameter of the spline in the tool spindle). The more holes there are in the tool, the greater the flow of liquid nitrogen will be.
On propose donc selon la présente invention l’utilisation d’une vanne de régulation cryogénique qui autorégule son taux d’ouverture en fonction de la pression en aval demandée. Cela permet d’avoir une pression fixe et ajustable en amont des orifices d’injection d’azote liquide dans l’outil de coupe et donc un débit fixe mais réglable. Pour chaque recette d’usinage on peut imposer une régulation de pression et donc de débit. Cela nous permet d’obtenir le débit optimal d’azote liquide tout en conservant les diamètre et trou de passage de l’azote liquide. Le nombre et la position de ces trous est parfois non maîtrisable et peuvent répondre à d’autres impératifs. According to the present invention, therefore, the use of a cryogenic control valve is proposed which self-regulates its opening rate as a function of the downstream pressure requested. This allows to have a fixed and adjustable pressure upstream of the liquid nitrogen injection ports in the cutting tool and therefore a fixed but adjustable flow rate. For each machining recipe we can impose a pressure regulation and therefore flow. This allows us to obtain the optimum flow of liquid nitrogen while maintaining the diameter and passage of liquid nitrogen. The number and position of these holes is sometimes uncontrollable and may meet other requirements.
L’invention concerne alors un procédé d’usinage de pièces, mettant en oeuvre dans la zone d’usinage une arrivée d’un fluide cryogénique, se caractérisant en ce que l’on met en œuvre, sur la ligne reliant la source de fluide à l’outil d’usinage dans la zone d’usinage, une vanne apte à autoréguler son taux d’ouverture en fonction de la pression demandée en son aval, permettant de délivrer une pression fixe et réglable, et donc un débit fixe et réglable, à l’outil d’usinage, quel que soit l’outil mis en œuvre, et donc le nombre d’orifices et le diamètre des orifices d’éjection de fluide caractérisant l’outil considéré. The invention therefore relates to a method of machining parts, implementing in the machining zone an inlet of a cryogenic fluid, characterized in that it is implemented on the line connecting the fluid source. to the machining tool in the machining area, a valve capable of self-regulating its opening rate according to the pressure requested downstream, making it possible to deliver a fixed and adjustable pressure, and therefore a fixed and adjustable flow , to the machining tool, whatever the tool used, and therefore the number of orifices and the diameter of the fluid ejection orifices characterizing the tool considered.
On parlera dans ce qui suit de fluide, de gaz, d’azote, ayant toujours à l’esprit que le fluide utilisé peut être de l’azote liquide ou un autre fluide cryogénique, que le gaz de purge peut être de l’azote gazeux ou du C02 gazeux ou un autre gaz etc... We will speak in what follows of fluid, gas, nitrogen, always bearing in mind that the fluid used can be liquid nitrogen or another cryogenic fluid, that the purge gas can be nitrogen gaseous or gaseous CO2 or another gas etc ...
L’invention pourra par ailleurs avantageusement adopter l’un ou plusieurs des modes de réalisation suivants The invention may also advantageously adopt one or more of the following embodiments
• Une mise en froid permet de s’assurer que l’azote est toujours à une température proche du point d’équilibre de l’azote liquide ce qui assure d’être en phase liquide et non en phase gaz (et en tout cas de minimiser le taux de diphasique). La mise en froid est réalisée jusqu’à la sortie de la boite froide (11 sur la figure annexée), en amont du flexible 13 sur la figure annexée.• Cooling ensures that the nitrogen is always at a temperature close to the equilibrium point of liquid nitrogen, which ensures that it is in the liquid phase and not in the gas phase (and in any case of minimize the rate of two-phase). The cooling is carried out until the outlet of the cold box (11 in the appended figure), upstream of the hose 13 in the appended figure.
• Purge : Pendant tout le cycle d’usinage la température de l’azote est contrôlée (par exemple juste avant l’entrée dans le centre de l’usinage) : si cette température s’élève au dessus d’une consigne (proche du point d’équilibre), on ouvre la vanne de purge pour faire un appel d’azote et purger la partie gaz qui n’a pas été suffisamment purgée, par exemple dans un pot dégazeur. Pendant cette phase de remise en froid un contact d’arrêt au centre d’usinage est donné. • Purge: During the entire machining cycle, the nitrogen temperature is controlled (for example just before entering the machining center): if this temperature rises above a set point (close to equilibrium point), we open the purge valve to call for nitrogen and purge the gas part which has not been sufficiently purged, for example in a degasser pot. During this re-cooling phase, a stop contact at the machining center is given.
• En parallèle du critère de température une possibilité est donnée pour réguler la pression de cryogène, par exemple d’azote liquide, délivrée selon une consigne de la recette d’usinage suivie via un pourcentage d’ouverture auto régulé sur consigne de la vanne. • In parallel with the temperature criterion, a possibility is given to regulate the pressure of cryogen, for example liquid nitrogen, delivered according to a setpoint of the machining recipe followed by a self-regulated opening percentage on the setpoint of the valve.
Le contrôle de ces 2 paramètres température et pression permet de garantir la stabilité de fourniture de l’azote en température, pression et taux de diphasique. The control of these 2 temperature and pressure parameters makes it possible to guarantee the stability of the supply of nitrogen in temperature, pressure and two-phase rate.
• Désaccouplement outil : La purge par de l’azote gazeux des orifices et cannelures de passage de l’azote liquide à chaque changement d’outil et au démarrage de l’installation permet de nettoyer et de supprimer l’humidité. Cette purge peut être une temporisation d’injection d’azote gazeux à chaque changement de recette d’usinage. Une « recette » est possible selon le type d’outil pour régler ce temps de purge. • Tool disconnection: The purging of the openings and grooves for the passage of liquid nitrogen with nitrogen gas at each tool change and when the installation is started allows cleaning and removal of humidity. This purge can be a nitrogen gas injection delay at each change of machining recipe. A "recipe" is possible depending on the type of tool to set this purge time.
• L’azote permet de chauffer le porte outil pour aider au désaccouplement. Pour cette fonction on pourrait d’ailleurs préchauffer l’azote gazeux pour aider à ce réchauffement. • Nitrogen is used to heat the tool holder to aid in uncoupling. For this function, we could also preheat gaseous nitrogen to help with this warming.
• Selon un des modes de mise en oeuvre de l’invention, on procède à une mesure de température du fluide délivré, par exemple juste avant l’entrée dans la zone d’usinage, et à une adaptation du débit mis en oeuvre en fonction de cette mesure de température du fluide. On constate notamment que lorsque le stockage de fluide en amont a été récemment rempli, le fluide est en état sous-refroidi, donc plus froid qu’en temps normal, il est alors avantageux d’ajuster la pression fournie par la dite vanne de régulation, pour diminuer le débit fourni tout en maintenant la même énergie disponible. On entend par « récemment » rempli un remplissage intervenu tout au plus quelques heures avant, voire une journée avant... • According to one of the embodiments of the invention, a temperature measurement of the fluid delivered, for example just before entering the machining zone, and an adaptation of the flow rate implemented according to of this fluid temperature measurement. It can be seen in particular that when the upstream fluid storage has recently been filled, the fluid is in a sub-cooled state, therefore colder than in normal times, it is then advantageous to adjust the pressure supplied by said regulating valve. , to reduce the flow delivered while maintaining the same available energy. By "recently" filled is meant a filling that took place at most a few hours before, or even a day before ...
[Fig. 1 ] La figure 1 annexée fournit une vue schématique partielle d’une installation convenant pour la mise en oeuvre de l’invention. [Fig. 1] The attached Figure 1 provides a partial schematic view of an installation suitable for the implementation of the invention.
Nomenclature figure 1 : Nomenclature figure 1:
1 : le centre d’usinage 1: the machining center
2 : l’armoire de commande du centre d’usinage 2: the control cabinet of the machining center
3 : broche 3: pin
4 : tourelle ou porte-outil 4: turret or tool holder
5 : outil 5: tool
6 : pièce à usiner 6: workpiece
7 : capteurs de sécurité 7: safety sensors
10 : installation convenant pour la mise en oeuvre de l’invention 10: installation suitable for the implementation of the invention
11 : équipement de mise en œuvre/boite froide (comportant la vanne de régulation) 11: installation equipment / cold box (including the control valve)
12 : dispositif de contrôle/commande de l’invention 12: control / command device of the invention
13 : flexible 13: flexible
14 : capteurs de sécurité 14: safety sensors
On connaît l’approche antérieure du document EP-2986887 (au nom de la Demanderesse), approche qui était différente. The prior approach is known from EP-2986887 (on behalf of the Applicant), which approach was different.
En effet si la présente invention s’attache à réguler la pression délivrée au poste d’usinage, cela en fonction d’une « recette » mise en oeuvre dans ce poste, i.e pour toutes et chaque condition d’outil mis en oeuvre, de nombre d’orifices, de diamètre de ces orifices etc... la démarche selon ces travaux antérieurs s’attachait à alimenter plusieurs postes d’usinage en parallèle, en liquide sous-refroidi, à une pression fixe en chaque poste, et procédait pour cela à une immersion du cryogène dans un bain cryogénique, avant son arrivée au poste d’usinage. Indeed, if the present invention is concerned with regulating the pressure delivered to the machining station, this as a function of a “recipe” implemented in this station, ie for all and each tool condition used, from number of orifices, diameter of these orifices etc ... the approach according to these previous works focused on supplying several machining stations in parallel, with sub-cooled liquid, at a fixed pressure in each station, and proceeded to this involves immersion of the cryogen in a cryogenic bath, before its arrival at the machining station.

Claims

REVENDICATIONS
1. Procédé d’usinage de pièces (6), mettant en oeuvre dans la zone d’usinage (1 ) une arrivée d’un fluide cryogénique, se caractérisant en ce que l’on met en œuvre, sur la ligne reliant une source de fluide à l’outil d’usinage (5) dans la zone d’usinage, une vanne apte à autoréguler son taux d’ouverture en fonction de la pression demandée en son aval, vanne située au sein d’une boite froide (11 ) de mise en œuvre du fluide cryogénique, vanne permettant de délivrer une pression fixe et réglable, et donc un débit fixe réglable, à l’outil d’usinage, quel que soit l’outil mis en œuvre, et donc le nombre d’orifices et le diamètre des orifices d’éjection de fluide caractérisant l’outil considéré. 1. Method of machining parts (6), implementing in the machining zone (1) an arrival of a cryogenic fluid, characterized in that it is implemented on the line connecting a source fluid to the machining tool (5) in the machining area, a valve capable of self-regulating its opening rate according to the pressure required downstream, valve located in a cold box (11 ) implementation of the cryogenic fluid, valve making it possible to deliver a fixed and adjustable pressure, and therefore an adjustable fixed flow rate, to the machining tool, whatever the tool used, and therefore the number of orifices and the diameter of the fluid ejection orifices characterizing the tool considered.
2. Procédé selon la revendication 1 , se caractérisant en ce que au démarrage de l’installation d’usinage, et entre deux opérations d’usinage entraînant un changement d’outil d’usinage, et donc un désaccouplement puis ré-accouplement d’outils en bout de broche (3), on procède à une purge gazeuse de la ligne, par exemple à l’aide d’azote gazeux, entre la boite froide et l’outil d’usinage, par exemple de la boîte froide à l’extrémité de la broche dans un premier temps puis de la boîte froide à l’outil d’usinage, le gaz fourni permettant de chauffer le porte-outil et ainsi aider au désaccouplement. 2. Method according to claim 1, characterized in that at the start of the machining installation, and between two machining operations resulting in a change of machining tool, and therefore a disconnection and then re-coupling of tools at the end of the spindle (3), a gas purge of the line, for example using gaseous nitrogen, is carried out between the cold box and the machining tool, for example from the cold box to the 'end of the spindle first and then from the cold box to the machining tool, the gas supplied making it possible to heat the tool holder and thus help uncoupling.
3. Procédé selon la revendication 2, se caractérisant en ce que le gaz utilisé pour la purge est préchauffé. 3. Method according to claim 2, characterized in that the gas used for the purge is preheated.
4. Procédé selon l’une des revendications précédentes, se caractérisant en ce que l’on procède à une mesure de température du fluide délivré, par exemple juste avant son entrée dans la zone d’usinage, et à une adaptation du débit mis en œuvre en fonction de cette mesure de température du fluide. 4. Method according to one of the preceding claims, characterized in that one takes a temperature measurement of the fluid delivered, for example just before its entry into the machining zone, and an adaptation of the flow rate set. works based on this fluid temperature measurement.
5. Procédé selon la revendication 4, se caractérisant en ce que lorsque la source de fluide en amont a été récemment remplie, le fluide étant alors en état sous- refroidi, donc plus froid qu’en temps normal, on procède alors à un ajustement de la pression fournie par la dite vanne, pour diminuer le débit fourni, tout en maintenant la même énergie disponible. 5. Method according to claim 4, characterized in that when the upstream source of fluid has been recently filled, the fluid then being in a sub-cooled state, therefore colder than in normal times, an adjustment is then carried out. of the pressure supplied by said valve, to reduce the flow rate supplied, while maintaining the same available energy.
EP20715401.4A 2019-04-18 2020-04-06 Method for supplying cryogenic fluid to a machining machine Pending EP3956101A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1904159A FR3095153B1 (en) 2019-04-18 2019-04-18 Process for supplying cryogenic fluid to a machining machine
PCT/EP2020/059796 WO2020212187A1 (en) 2019-04-18 2020-04-06 Method for supplying cryogenic fluid to a machining machine

Publications (1)

Publication Number Publication Date
EP3956101A1 true EP3956101A1 (en) 2022-02-23

Family

ID=67956964

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20715401.4A Pending EP3956101A1 (en) 2019-04-18 2020-04-06 Method for supplying cryogenic fluid to a machining machine

Country Status (7)

Country Link
US (1) US20220203490A1 (en)
EP (1) EP3956101A1 (en)
JP (1) JP7510954B2 (en)
CN (1) CN113784818A (en)
CA (1) CA3136390C (en)
FR (1) FR3095153B1 (en)
WO (1) WO2020212187A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3143396A1 (en) 2022-12-20 2024-06-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Fluid distribution nozzle and machining installation comprising such a nozzle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3096282B2 (en) * 1997-12-12 2000-10-10 株式会社ダイナテック Gas lubricant generator
JP4865371B2 (en) 2006-03-15 2012-02-01 ブラザー工業株式会社 Spindle cooling device for machine tools
CN201006580Y (en) * 2006-12-26 2008-01-16 浙江工业大学 Stock removing processing refrigerating mechanism
CA2697916C (en) * 2007-08-28 2012-12-04 Air Products And Chemicals, Inc. Apparatus and method for controlling the temperature of a cryogen
US8303220B2 (en) 2009-04-22 2012-11-06 Creare Incorporated Device for axial delivery of cryogenic fluids through a machine spindle
US9581386B2 (en) * 2010-07-05 2017-02-28 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Products Georges Claude Apparatus and process for separating air by cryogenic distillation
FR3004784B1 (en) 2013-04-18 2015-04-10 Air Liquide METHOD AND SYSTEM FOR SUPPLYING AT LEAST ONE WORKING UNIT IN SUB-COOLING CRYOGENIC LIQUID
US9821425B2 (en) * 2014-03-05 2017-11-21 5Me Ip, Llc Device for supplying subcooled liquid cryogen to cutting tools
FR3024540B1 (en) * 2014-07-29 2018-02-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude FLOW METER USED FOR THE ASSAY OF ENERGY USED IN A PROCESS USING A CRYOGENIC FLUID
CN105498566B (en) * 2014-09-23 2020-11-06 上海航天设备制造总厂 Gas-liquid two-phase flow mixed low-temperature nitrogen jet generating device
US20180104750A1 (en) 2016-10-18 2018-04-19 United Technologies Corporation Feedback-controlled system for cyrogenically cooling machining tools
JP2018137388A (en) 2017-02-23 2018-08-30 東芝メモリ株式会社 Semiconductor storage device and manufacturing method of the same
CN108857570A (en) * 2018-07-17 2018-11-23 珠海格力电器股份有限公司 Oil cooling unit system and control method thereof

Also Published As

Publication number Publication date
US20220203490A1 (en) 2022-06-30
FR3095153A1 (en) 2020-10-23
CA3136390C (en) 2023-09-19
WO2020212187A1 (en) 2020-10-22
CN113784818A (en) 2021-12-10
CA3136390A1 (en) 2020-10-22
JP2022528789A (en) 2022-06-15
JP7510954B2 (en) 2024-07-04
FR3095153B1 (en) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2020212187A1 (en) Method for supplying cryogenic fluid to a machining machine
EP2986887B1 (en) Method and facility for supplying at least one machining station with subcooled cryogenic liquid
EP1828697B1 (en) Method and installation for producing treated natural gas from a c3+ hydrocarbon-rich cut and ethane-rich stream
FR2571129A1 (en) METHOD AND INSTALLATION OF CRYOGENIC FRACTIONATION OF GASEOUS LOADS
FR2940978A1 (en) METHOD AND COOLING SECTION OF A METAL BAND THROUGH A PROJECTION OF A LIQUID
WO1996005008A1 (en) Cryogenic machining
FR2995808A1 (en) DRILLING TOOL AND CRYOGENIC COOLING DRILLING DEVICE AND METHOD FOR DRILLING A STACK OF HETEROGENEOUS MATERIALS
EP2334468B1 (en) Tool holder comprising cooling means with a vortex tube
EP1827721A1 (en) Method for feeding lubricant during a hot rolling process
EP0287420B2 (en) Process and nozzle for oxy-cutting
FR2804492A1 (en) Process for the lubrication and machining of materials uses liquid carbon dioxide as lubricant
FR2763668A1 (en) OXYCOUTING TORCH
FR2852353A1 (en) An exit diffusion stage for a compressed gas expansion turbine which is manufactured in a polyethylene polymer or copolymer with low thermal conductivity to reduce heat exchange between input and exit gas flows
EP1213093A1 (en) Machining method and mist supplying apparatus for use in the method
FR2747060A1 (en) CONTINUOUS CASTING PROCESS FOR METALS AND CASTING PLANT FOR IMPLEMENTING SAME
EP0922117B1 (en) Device for coupling a blow lance with a header
FR2537160A1 (en) DEVICE FOR DRYING AND DEHUILING METAL CHIPS
BE697455A (en)
EP0308346A1 (en) Process and installation for the use of high viscosity refinery waste oil
CH690065A5 (en) Method of retaining parts for machining by freezing using a liquefied gas
BE544355A (en)
FR2553012A1 (en) Method for controlling the lubrication conditions of a mandrel of a pilgrim step rolling mill (pilger mill) and device for implementing this method
FR2727335A1 (en) Extrusion spinning of low grade aluminium@ alloy
CH287632A (en) Oxy-cutting process and torches for the implementation of this process.
BE620040A (en)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIR LIQUIDE FRANCE INDUSTRIE

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)