EP3938538A1 - Méthodes d'utilisation de matrices spatiales pour le séquençage d'organismes unicellulaires - Google Patents
Méthodes d'utilisation de matrices spatiales pour le séquençage d'organismes unicellulairesInfo
- Publication number
- EP3938538A1 EP3938538A1 EP20716618.2A EP20716618A EP3938538A1 EP 3938538 A1 EP3938538 A1 EP 3938538A1 EP 20716618 A EP20716618 A EP 20716618A EP 3938538 A1 EP3938538 A1 EP 3938538A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cell
- capture
- cells
- biological sample
- analyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6841—In situ hybridisation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
Definitions
- Cells within a tissue of a subject have differences in cell morphology and/or function due to varied analyte levels (e.g., gene and/or protein expression) within the different cells.
- the specific position of a cell within a tissue e.g., the cell’s position relative to neighboring cells or the cell’s position relative to the tissue microenvironment
- RNA-seq pre-defmed subpolulations and subsequent genomic profiling
- a biological analyte present in a cell- containing biological sample comprising: (a) providing a substrate comprising a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises a spatial barcode and a capture domain; (b) contacting a plurality of cells from the cell-containing biological sample with the substrate such that a cell from the plurality of cells occupies a distinct spatial position on the substrate; (c) treating the plurality of cells such that a biological analyte from the cell is released and bound by a capture probe associated with the distinct spatial position on the substrate; (d) detecting the bound biological analyte; and (e) correlating the bound biological analyte with the spatial barcode of the bound capture probe associated with the distinct spatial position on the substrate, thereby profiling the biological analyte as having been present in the cell from the cell-containing biological sample at the distinct spatial position on the substrate.
- the plurality of cells is from a suspension of cells. In some embodiments, the plurality of cells is from disassociated tissue or a tissue section. In some embodiments, the plurality of cells is from a cell culture.
- the cell from the plurality of cells is immobilized on the substrate after the plurality of cells are contacted with the substrate. In some embodiments, the cell from the plurality of cells is immobilized on the substrate prior to the treating of the plurality of cells. In some embodiments, the treating comprises lysing the plurality of cells. In some embodiments, the cell from the plurality of cells is immobilized on the substrate comprising a hydrogel. In some embodiments, the cell from the plurality of cells is immobilized by applying an electric field to the substrate. In some embodiments, the cell from the plurality of cells is immobilized by using a labelling agent that facilitates attachment of the cell to the capture probe on the substrate. In some embodiments, the labelling agent comprises a biotinlylated compound. In some embodiments, the substrate comprises a protein selected from the group consisting of streptavidin, avidin, neutravidin, and combinations thereof.
- a biological analyte present in a cell- containing biological sample comprising: (a) providing a substrate comprising a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises a spatial barcode and a capture domain, and wherein the substrate comprises a cell- permissive coating; (b) culturing a plurality of cells from the cell-containing biological sample on the cell-permissive coating of the substrate; (c) treating the plurality of cells on the cell-permissive coating such that a biological analyte is released and bound by a capture probe; (d) detecting the bound biological analyte; and (e) correlating the bound biological analyte with a spatial location on the substrate.
- the cell-permissive coating comprises at least one biological material. In some embodiments, the cell-permissive coating comprises at least one synthetic material. In some embodiments, the cell-permissive coating comprises an extracellular matrix component.
- the plurality of cells comprises adherent cells.
- the adherent cells are from cell lines selected from the group consisting of: BT549, HS 578T, MCF7, MDA-MB-231, MDA-MB-468, T-47D, SF268, SF295, SF539, SNB-19, SNB-75, U251, Colo205, HCC 2998, HCT-116, HCT-15, HT29, KM12, SW620, 786-0, A498, ACHN, CAKI, RXF 393, SN12C, TK-10, UO-31, A549, EKVX, HOP-62, HOP-92, NCI-H226, NCI-H23, NCI-H460, NCI-H522, LOX IMVI, M14, MALME-3M, MDA-MB-435, SK-, EL-2, SK-MEL-28, SK-MEL-5, UACC-257, UACC
- any one of the methods described herein comprises imaging the plurality of cells.
- the imaging is performed prior to treating the plurality of cells.
- the imaging is performed after treating the plurality of cells.
- the imaging is used to determine a region of interest on the substrate.
- the imaging is used to determine the morphology of a cell from the plurality of cells.
- the morphology of a cell or the region of interest is correlated to the spatial location of the biological analyte.
- the plurality of cells is fixed and treated prior to releasing the biological analyte from the the plurality of cells.
- the treating comprises permeabilizing the plurality of cells.
- methods for generating partitions from a cell-containing biological sample comprising: (a) providing a substrate, wherein the substrate comprises a removable coating; (b) contacting the cell-containing biological sample with the substrate; (c) adding to the substrate a plurality of crosslinkable polymer precursors; (d) cross-linking members of the plurality of crosslinkable polymer precursors to generate a plurality of cross-linked voxels; and (e) dissociating the plurality of cross-linked voxels by treating the removable coating with a releasing agent, thereby generating partitions.
- the partitions are single-cell partitions. In some embodiments, the partitions comprise the plurality of cross-linked voxels, wherein a cross-linked voxel of the plurality of cross-linked voxels comprises a single cell from the biological sample. In some embodiments, the plurality of crosslinkable polymer precursors cover the substrate and the cell containing biological sample.
- the removable coating comprises a hydrogel. In some embodiments, the removable coating comprises a dithiothreitol-(DTT)-sensitive hydrogel. In some embodiments, the releasing agent is DTT.
- the cell-containing biological sample and substrate are assembled in a flow cell prior to the addition of the crosslinkable polymer precursors.
- the flow cell is dismantled after generating the plurality of cross-linked voxels.
- the cross-linking comprises subjecting the plurality of crosslinkable polymer precursors to a light source.
- the plurality of crosslinkable polymer precursors are subjected to a light source having a spatial pattern.
- subjecting the plurality of crosslinkable polymer precursors to a light source having a spatial pattern results in the generation of a voxel comprising a single cell from the biological sample.
- the substrate comprises a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises a spatial barcode and a capture domain, wherein the spatial barcode corresponds to a distinct spatial position on the substrate.
- any one of the methods described herein further comprises contacting the biological sample to the substrate such that a biological analyte from the biological sample is bound by a capture probe of the plurality of capture probes, determining the identity of the spatial barcode of the capture probe to identify the distinct spatial position of the biological analyte on the substrate, and correlating the distinct spatial position of the biological analyte on the substrate with a spatial location of the biological analyte in the biological sample.
- the spatial location of the biological analyte in the biological sample is resolved to a single cell present in one of the plurality of cross-linked voxels.
- the biological analyte is DNA. In some embodiments, the biological analyte is RNA. In some embodiments, the biological analyte is two or more of a DNA, an RNA, a protein, a metabolite, a small molecule, a lipid, or combinations thereof.
- the capture domain comprises a poly-dT sequence. In some embodiments, the capture domain is configured to hybridize to a poly-A tail of a mRNA. In some embodiments, the capture probe further comprises a unique molecular identifier (UMI). In some embodiments, the capture probe further comprises a functional domain. In some embodiments, the capture probe further comprises a cleavage domain.
- UMI unique molecular identifier
- each when used in reference to a collection of items, is intended to identify an individual item in the collection but does not necessarily refer to every item in the collection, unless expressly stated otherwise, or unless the context of the usage clearly indicates otherwise.
- FIG. 1 shows an exemplary spatial analysis workflow.
- FIG. 2 shows an exemplary spatial analysis workflow.
- FIG. 3 shows an exemplary spatial analysis workflow.
- FIG. 4 shows an exemplary spatial analysis workflow.
- FIG. 5 shows an exemplary spatial analysis workflow.
- FIG. 6 is a schematic diagram showing an example of a barcoded capture probe, as described herein.
- FIG. 7 is a schematic illustrating a cleavable capture probe, wherein the cleaved capture probe can enter into a non-permeabilized cell and bind to target analytes within the sample.
- FIG. 8 is a schematic diagram of an exemplary multiplexed spatially-barcoded feature.
- FIG. 9 is a schematic diagram of an exemplary analyte capture agent.
- FIG. 10 is a schematic diagram depicting an exemplary interaction between a feature- immobilized capture probe 1024 and an analyte capture agent 1026.
- FIG. 11A, 11B, and 11C are schematics illustrating how streptavidin cell tags can be utilized in an array-based system to produce a spatially-barcoded cells or cellular contents.
- FIG. 12 is a schematic showing the arrangement of barcoded features within an array.
- FIG. 13 is a schematic illustrating a side view of a diffusion-resistant medium, e.g., a lid.
- FIG. 14A and 14B are schematics illustrating expanded FIG. 14A and side views FIG. 14B of an electrophoretic transfer system configured to direct transcript analytes toward a spatially-barcoded capture probe array.
- FIG. 15 is a schematic illustrating an exemplary workflow protocol utilizing an electrophoretic transfer system.
- FIG. 16 shows an example of a microfluidic channel structure 1600 for partitioning dissociated sample (e.g., biological particles or individual cells from a sample).
- dissociated sample e.g., biological particles or individual cells from a sample.
- FIG. 17A shows an example of a microfluidic channel structure 1700 for delivering spatial barcode carrying beads to droplets.
- FIG. 17B shows a cross-section view of another example of a microfluidic channel structure 1750 with a geometric feature for controlled partitioning.
- FIG. 17C shows an example of a workflow schematic.
- FIG. 18 is a schematic depicting cell tagging using either covalent conjugation of the analyte binding moiety to the cell surface or non-covalent interactions with cell membrane elements.
- FIG. 19 is a schematic depicting cell tagging using either cell-penetrating peptides or delivery systems.
- FIG. 20A is a workflow schematic illustrating exemplary, non-limiting, non- exhaustive steps for“pixelating” a sample, wherein the sample is cut, stamped,
- microdissected or transferred by hollow-needle or microneedle, moving a small portion of the sample into an individual partition or well.
- FIG. 20B is a schematic depicting multi-needle pixilation, wherein an array of needles punched through a sample on a scaffold and into nanowells containing gel beads and reagents below. Once the needle is in the nano well, the cell(s) are ejected.
- FIG. 21 shows a workflow schematic illustrating exemplary, non-limiting, non- exhaustive steps for dissociating a spatially-barcoded sample for analysis via droplet or flow cell analysis methods.
- FIG. 22A is a schematic diagram showing an example sample handling apparatus that can be used to implement various steps and methods described herein.
- FIG. 22B is a schematic diagram showing an example imaging apparatus that can be used to obtain images of biological samples, analytes, and arrays of features.
- FIG. 22C is a schematic diagram of an example of a control unit of the apparatus of
- FIGS. 22A and 22B show a histological section of an invasive ductal carcinoma annotated by a pathologist.
- FIG. 23B shows a tissue plot with spots colored by unsupervised clustering.
- FIG. 23C is a tSNE plot of spots colored by unsupervised clustering.
- FIG. 23D shows a gene expression heat map of the most variable genes between 9 clusters.
- FIG. 23E shows the expression levels of genes corresponding to human epidermal growth factor receptor 2 (ERBB2), estrogen receptor (ESR1), and progesterone receptor (PGR) in the tissue section.
- ERBB2 human epidermal growth factor receptor 2
- ESR1 estrogen receptor 1
- PGR progesterone receptor
- FIG. 23F shows the expression levels of genes of top differentially expressed genes from each of the 9 clusters on individual plots.
- FIG. 23G shows the expression levels of genes of top differentially expressed genes from each of the 5 clusters on a single plot.
- FIG. 23H is a plot of the expression levels of the top differentially expressed genes from each of the 8 clusters in invasive ductal cell carcinoma (IDC) and normal breast tissue.
- IDC invasive ductal cell carcinoma
- FIG. 231 shows the expression of KRT14 in IDC and match normal tissue.
- FIG. 23J is a plot of the expression levels of extracellular matrix genes in IDC and normal tissue.
- FIG. 24A shows a schematic of an example analytical workflow in which
- electrophoretic migration of analytes is performed after permeabilization.
- FIG. 24B shows a schematic of an example analytical workflow in which
- electrophoretic migration of analytes and permeabilization are performed simultaneously.
- FIG. 25A shows an example perpendicular, single slide configuration for use during electrophoresis.
- FIG. 25B shows an example parallel, single slide configuration for use during electrophoresis
- FIG. 25C shows an example multi-slide configuration for use during electrophoresis.
- FIG. 26 shows an exemplary array comprising cells from a cell culture, wherein the cells can be distributed on an array such that at least one cell (larger overlaid circles) occupies a distinct spatial position on the array (smaller underlaid spots).
- FIG. 27 shows an exemplary workflow for spatial profiling biological analytes present in a cell culture.
- FIG. 28 shows an exemplary method for generating single-cell partitions from a biological sample.
- This disclosure describes apparatus, systems, methods, and compositions for spatial analysis of biological samples. This section describes certain general terminology, analytes, sample types, and preparative steps that are referred to in later sections of the disclosure.
- Tissues and cells can be obtained from any source.
- tissues and cells can be obtained from single-cell or multicellular organisms (e.g., a mammal).
- Tissues and cells obtained from a mammal e.g., a human, often have varied analyte levels (e.g., gene and/or protein expression) which can result in differences in cell morphology and/or function.
- the position of a cell or a subset of cells (e.g., neighboring cells and/or non-neighboring cells) within a tissue can affect, e.g., the cell’s fate, behavior, morphology, and signaling and cross talk with other cells in the tissue.
- Information regarding the differences in analyte levels (gene and/or protein expression) within different cells in a tissue of a mammal can also help physicians select or administer a treatment that will be effective and can allow researchers to identify and elucidate differences in cell morphology and/or cell function in the single-cell or multicellular organisms (e.g., a mammal) based on the detected differences in analyte levels within different cells in the tissue.
- Differences in analyte levels within different cells in a tissue of a mammal can also provide information on how tissues (e.g., healthy and diseased tissues) function and/or develop.
- Differences in analyte levels within different cells in a tissue of a mammal can also provide information of different mechanisms of disease pathogenesis in a tissue and mechanism of action of a therapeutic treatment within a tissue. Differences in analyte levels within different cells in a tissue of a mammal can also provide information on drug resistance mechanisms and the development of the same in a tissue of a mammal.
- Differences in the presence or absence of analytes within different cells in a tissue of a multicellular organism can provide information on drug resistance mechanisms and the development of the same in a tissue of a multicellular organism.
- the spatial analysis methodologies herein provide for the detection of differences in an analyte level (e.g., gene and/or protein expression) within different cells in a tissue of a mammal or within a single cell from a mammal.
- spatial analysis methodologies can be used to detect the differences in analyte levels (e.g., gene and/or protein expression) within different cells in histological slide samples, the data from which can be reassembled to generate a three-dimensional map of analyte levels (e.g., gene and/or protein expression) of a tissue sample obtained from a mammal, e.g., with a degree of spatial resolution (e.g., single cell resolution).
- RNA-seq RNA-seq
- Such approaches however, rely on a relatively small set of pre-defmed markers, therefore introducing selection bias that limits discovery.
- RNA-seq RNA-seq
- Spatial RNA assays traditionally relied on staining for a limited number of RNA species.
- single-cell RNA-sequencing allows for deep profiling of cellular gene expression (including non-coding RNA), but the established methods separate cells from their native spatial context.
- Spatial analysis methodologies described herein provide a vast amount of analyte level and/or expression data for a variety of multiple analytes within a sample at high spatial resolution, e.g., while retaining the native spatial context.
- Spatial analysis methods include, e.g., the use of a capture probe including a spatial barcode (e.g., a nucleic acid sequence that provides information as to the position of the capture probe within a cell or a tissue sample (e.g., mammalian cell or a mammalian tissue sample) and a capture domain that is capable of binding to an analyte (e.g., a protein and/or nucleic acid) produced by and/or present in a cell.
- a spatial barcode e.g., a nucleic acid sequence that provides information as to the position of the capture probe within a cell or a tissue sample (e.g., mammalian cell or a mammalian tissue sample)
- an analyte e
- the spatial barcode can be a nucleic acid that has a unique sequence, a unique fluorophore or a unique combination of fluorophores, a unique amino acid sequence, a unique heavy metal or a unique combination of heavy metals, or any other unique detectable agent.
- the capture domain can be any agent that is capable of binding to an analyte produced by and/or present in a cell (e.g., a nucleic acid that is capable of hybridizing to a nucleic acid from a cell (e.g., an mRNA, genomic DNA, mitochondrial DNA, or miRNA), a substrate including an analyte, a binding partner of an analyte, or an antibody that binds specifically to an analyte).
- a capture probe can also include a nucleic acid sequence that is complementary to a sequence of a universal forward and/or universal reverse primer.
- a capture probe can also include a cleavage site (e.g., a cleavage recognition site of a restriction endonuclease), a photolabile bond, a thermosensitive bond, or a chemical-sensitive bond.
- the binding of an analyte to a capture probe can be detected using a number of different methods, e.g., nucleic acid sequencing, fluorophore detection, nucleic acid amplification, detection of nucleic acid ligation, and/or detection of nucleic acid cleavage products.
- the detection is used to associate a specific spatial barcode with a specific analyte produced by and/or present in a cell (e.g., a mammalian cell).
- Capture probes can be, e.g., atached to a surface, e.g., a solid array, a bead, or a coversbp. In some examples, capture probes are not atached to a surface. In some examples, capture probes can be encapsulated within, embedded within, or layered on a surface of a permeable composition (e.g., any of the substrates described herein). For example, capture probes can be encapsulated or disposed within a permeable bead (e.g., a gel bead). In some examples, capture probes can be encapsulated within, embedded within, or layered on a surface of a substrate (e.g., any of the exemplary substrates described herein, such as a hydrogel or a porous membrane).
- a permeable composition e.g., any of the substrates described herein.
- capture probes can be encapsulated or disposed within a permeable bead (e.
- a cell or a tissue sample including a cell are contacted with capture probes atached to a substrate (e.g., a surface of a substrate), and the cell or tissue sample is permeabilized to allow analytes to be released from the cell and bind to the capture probes attached to the substrate.
- analytes released from a cell can be actively directed to the capture probes atached to a substrate using a variety of methods, e.g., electrophoresis, chemical gradient, pressure gradient, fluid flow, or magnetic field.
- a capture probe can be directed to interact with a cell or a tissue sample using a variety of methods, e.g., inclusion of a lipid anchoring agent in the capture probe, inclusion of an agent that binds specifically to, or forms a covalent bond with a membrane protein in the capture probe, fluid flow, pressure gradient, chemical gradient, or magnetic field.
- A“barcode” is a label, or identifier, that conveys or is capable of conveying information (e.g., information about an analyte in a sample, a bead, and/or a capture probe).
- a barcode can be part of an analyte, or independent of an analyte.
- a barcode can be attached to an analyte.
- a particular barcode can be unique relative to other barcodes.
- Barcodes can have a variety of different formats.
- barcodes can include non-random, semi-random, and/or random nucleic acid and/or amino acid sequences, and synthetic nucleic acid and/or amino acid sequences.
- a barcode can be attached to an analyte or to another moiety or structure in a reversible or irreversible manner.
- a barcode can be added to, for example, a fragment of a deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sample before or during sequencing of the sample.
- Barcodes can allow for identification and/or quantification of individual sequencing-reads (e.g., a barcode can be or can include a unique molecular identifier or“UMI”).
- Barcodes can spatially-resolve molecular components found in biological samples, for example, at single-cell resolution (e.g., a barcode can be or can include a“spatial barcode”).
- a barcode includes both a UMI and a spatial barcode.
- a barcode includes two or more sub-barcodes that together function as a single barcode (e.g., a polynucleotide barcode).
- a polynucleotide barcode can include two or more polynucleotide sequences (e.g., sub-barcodes) that may be separated by one or more non-barcode sequences.
- nucleic acid and“nucleotide” are intended to be consistent with their use in the art and to include naturally-occurring species or functional analogs thereof.
- Particularly useful functional analogs of nucleic acids are capable of hybridizing to a nucleic acid in a sequence-specific fashion (e.g., capable of hybridizing to two nucleic acids such that ligation can occur between the two hybridized nucleic acids) or are capable of being used as a template for replication of a particular nucleotide sequence.
- Naturally-occurring nucleic acids generally have a backbone containing phosphodiester bonds.
- An analog structure can have an alternate backbone linkage including any of a variety of those known in the art.
- Naturally- occurring nucleic acids generally have a deoxyribose sugar (e.g., found in deoxyribonucleic acid (DNA)) or a ribose sugar (e.g., found in ribonucleic acid (RNA)).
- a deoxyribose sugar e.g., found in deoxyribonucleic acid (DNA)
- RNA ribonucleic acid
- a nucleic acid can contain nucleotides having any of a variety of analogs of these sugar moieties that are known in the art.
- a nucleic acid can include native or non-native nucleotides.
- a native deoxyribonucleic acid can have one or more bases selected from the group consisting of adenine (A), thymine (T), cytosine (C), or guanine (G)
- a ribonucleic acid can have one or more bases selected from the group consisting of uracil (U), adenine (A), cytosine (C), or guanine (G).
- Useful non-native bases that can be included in a nucleic acid or nucleotide are known in the art.
- A“probe” or a“target,” when used in reference to a nucleic acid or sequence of a nucleic acids, is intended as a semantic identifier for the nucleic acid or sequence in the context of a method or composition, and does not limit the structure or function of the nucleic acid or sequence beyond what is expressly indicated.
- oligonucleotide and“polynucleotide” are used interchangeably to refer to a single-stranded multimer of nucleotides from about 2 to about 500 nucleotides in length.
- Oligonucleotides can be synthetic, made enzymatically (e.g., via polymerization), or using a “split-pool” method.
- Oligonucleotides can include ribonucleotide monomers (i.e., can be oligoribonucleotides) and/or deoxyribonucleotide monomers (i.e.,
- oligonucleotides can include a combination of both deoxyribonucleotide monomers and ribonucleotide monomers in the oligonucleotide (e.g., random or ordered combination of deoxyribonucleotide monomers and ribonucleotide monomers).
- An oligonucleotide can be 4 to 10, 10 to 20, 21 to 30, 31 to 40, 41 to 50, 51 to 60, 61 to 70, 71 to 80, 80 to 100, 100 to 150, 150 to 200, 200 to 250, 250 to 300, 300 to 350, 350 to 400, or 400-500 nucleotides in length, for example.
- Oligonucleotides can include one or more functional moieties that are attached (e.g., covalently or non-covalently) to the multimer structure.
- an oligonucleotide can include one or more detectable labels (e.g., a radioisotope or fluorophore).
- Subject A“subject” is an animal, such as a mammal (e.g., human or a non-human simian), or avian (e.g., bird), or other organism, such as a plant.
- a mammal such as a rodent, mouse, rat, rabbit, guinea pig, ungulate, horse, sheep, pig, goat, cow, cat, dog, primate (i.e. human or non-human primate); a plant such as
- Dictyostelium discoideum a fungi such as Pneumocystis carinii, Takifugu rubripes, yeast, Saccharamoyces cerevisiae or Schizosaccharomyces pombe or a Plasmodium falciparum.
- A“genome” generally refers to genomic information from a subject, which can be, for example, at least a portion of, or the entirety of, the subject’s gene-encoded hereditary information.
- a genome can include coding regions (e.g., that code for proteins) as well as non-coding regions.
- a genome can include the sequences of some or all of the subject’s chromosomes. For example, the human genome ordinarily has a total of 46 chromosomes.
- An“adaptor,” an“adapter,” and a“tag” are terms that are used interchangeably in this disclosure, and refer to species that can be coupled to a polynucleotide sequence (in a process referred to as“tagging”) using any one of many different techniques including (but not limited to) ligation, hybridization, and tagmentation.
- Adaptors can also be nucleic acid sequences that add a function, e.g., spacer sequences, primer sequences/sites, barcode sequences, unique molecular identifier sequences.
- pairing can be achieved by any process in which a nucleic acid sequence joins with a substantially or fully complementary sequence through base pairing to form a hybridization complex.
- two nucleic acid sequences are“substantially complementary” if at least 60% (e.g., at least 70%, at least 80%, or at least 90%) of their individual bases are complementary to one another.
- Primer A“primer” is a single-stranded nucleic acid sequence having a 3’ end that can be used as a chemical substrate for a nucleic acid polymerase in a nucleic acid extension reaction.
- RNA primers are formed of RNA nucleotides, and are used in RNA synthesis, while DNA primers are formed of DNA nucleotides and used in DNA synthesis.
- Primers can also include both RNA nucleotides and DNA nucleotides (e.g., in a random or designed pattern). Primers can also include other natural or synthetic nucleotides described herein that can have additional functionality.
- DNA primers can be used to prime RNA synthesis and vice versa (e.g., RNA primers can be used to prime DNA synthesis).
- Primers can vary in length. For example, primers can be about 6 bases to about 120 bases. For example, primers can include up to about 25 bases.
- A“primer extension” refers to any method where two nucleic acid sequences (e.g., a constant region from each of two distinct capture probes) become linked (e.g., hybridized) by an overlap of their respective terminal complementary nucleic acid sequences (i.e., for example, 3’ termini). Such linking can be followed by nucleic acid extension (e.g., an enzymatic extension) of one, or both termini using the other nucleic acid sequence as a template for extension. Enzymatic extension can be performed by an enzyme including, but not limited to, a polymerase and/or a reverse transcriptase.
- A“proximity ligation” is a method of ligating two (or more) nucleic acid sequences that are in proximity with each other through enzymatic means (e.g., a ligase).
- proximity ligation can include a“gap-filling” step that involves incorporation of one or more nucleic acids by a polymerase, based on the nucleic acid sequence of a template nucleic acid molecule, spanning a distance between the two nucleic acid molecules of interest (see, e.g., U.S. Patent No. 7,264,929, the entire contents of which are incorporated herein by reference).
- a wide variety of different methods can be used for proximity ligating nucleic acid molecules, including (but not limited to)“sticky-end” and“blunt-end” ligations.
- single-stranded ligation can be used to perform proximity ligation on a single- stranded nucleic acid molecule.
- Sticky-end proximity ligations involve the hybridization of complementary single-stranded sequences between the two nucleic acid molecules to be joined, prior to the ligation event itself.
- Blunt-end proximity ligations generally do not include hybridization of complementary regions from each nucleic acid molecule because both nucleic acid molecules lack a single-stranded overhang at the site of ligation.
- A“nucleic acid extension” generally involves incorporation of one or more nucleic acids (e.g., A, G, C, T, U, nucleotide analogs, or derivatives thereof) into a molecule (such as, but not limited to, a nucleic acid sequence) in a template-dependent manner, such that consecutive nucleic acids are incorporated by an enzyme (such as a polymerase or reverse transcriptase), thereby generating a newly synthesized nucleic acid molecule.
- an enzyme such as a polymerase or reverse transcriptase
- a primer that hybridizes to a complementary nucleic acid sequence can be used to synthesize a new nucleic acid molecule by using the complementary nucleic acid sequence as a template for nucleic acid synthesis.
- a 3’ polyadenylated tail of an mRNA transcript that hybridizes to a poly (dT) sequence can be used as a template for single-strand synthesis of a corresponding cDNA molecule.
- A“PCR amplification” refers to the use of a polymerase chain reaction (PCR) to generate copies of genetic material, including DNA and RNA sequences. Suitable reagents and conditions for implementing PCR are described, for example, in U.S. Patents 4,683,202, 4,683,195, 4,800,159, 4,965,188, and 5,512,462, the entire contents of each of which are incorporated herein by reference.
- the reaction mixture includes the genetic material to be amplified, an enzyme, one or more primers that are employed in a primer extension reaction, and reagents for the reaction.
- the oligonucleotide primers are of sufficient length to provide for hybridization to complementary genetic material under annealing conditions.
- the length of the primers generally depends on the length of the amplification domains, but will typically be at least 4 bases, at least 5 bases, at least 6 bases, at least 8 bases, at least 9 bases, at least 10 base pairs (bp), at least 11 bp, at least 12 bp, at least 13 bp, at least 14 bp, at least 15 bp, at least 16 bp, at least 17 bp, at least 18 bp, at least 19 bp, at least 20 bp, at least 25 bp, at least 30 bp, at least 35 bp, and can be as long as 40 bp or longer, where the length of the primers will generally range from 18 to 50 bp.
- the genetic material can be contacted with a single primer or a set of two primers (forward and reverse primers), depending upon whether primer extension, linear or exponential amplification of the genetic material is desired.
- the PCR amplification process uses a DNA polymerase enzyme.
- the DNA polymerase activity can be provided by one or more distinct DNA polymerase enzymes.
- the DNA polymerase enzyme is from a bacterium, e.g., the DNA polymerase enzyme is a bacterial DNA polymerase enzyme.
- the DNA polymerase can be from a bacterium of the genus Escherichia, Bacillus, Thermus, or Pyrococcus .
- DNA polymerases that can be used include, but are not limited to: E.coli DNA polymerase I, Bsu DNA polymerase, Bst DNA polymerase, Taq DNA polymerase, VENTTM DNA polymerase, DEEPVENTTM DNA polymerase, LongAmp® Taq DNA polymerase, LongAmp® Hot Start Taq DNA polymerase, Crimson LongAmp® Taq DNA polymerase, Crimson Taq DNA polymerase, OneTaq® DNA polymerase, OneTaq® Quick-Load® DNA polymerase, Hemo KlenTaq® DNA polymerase, REDTaq® DNA polymerase, Phusion® DNA polymerase, Phusion® High-Fidelity DNA polymerase, Platinum Pfx DNA polymerase, AccuPrime Pfx DNA polymerase, Phi29 DNA polymerase, Klenow fragment, Pwo DNA polymerase, Pfu DNA polymerase, T4 DNA polymerase and T7 DNA polymerase enzyme
- DNA polymerase includes not only naturally-occurring enzymes but also all modified derivatives thereof, including derivatives of naturally-occurring DNA polymerase enzymes. For instance, in some embodiments, the DNA polymerase is modified to remove 5’-3’ exonuclease activity. Sequence-modified derivatives or mutants of DNA polymerase enzymes that can be used include, but are not limited to, mutants that retain at least some of the functional, e.g., DNA polymerase activity of the wild-type sequence.
- Mutations can affect the activity profile of the enzymes, e.g., enhance or reduce the rate of polymerization, under different reaction conditions, e.g., temperature, template concentration, primer concentration, etc. Mutations or sequence-modifications can also affect the exonuclease activity and/or thermostability of the enzyme.
- PCR amplification can include reactions such as, but not limited to, a strand-displacement amplification reaction, a rolling circle amplification reaction, a ligase chain reaction, a transcription-mediated amplification reaction, an isothermal amplification reaction, and/or a loop-mediated amplification reaction.
- reactions such as, but not limited to, a strand-displacement amplification reaction, a rolling circle amplification reaction, a ligase chain reaction, a transcription-mediated amplification reaction, an isothermal amplification reaction, and/or a loop-mediated amplification reaction.
- PCR amplification uses a single primer that is complementary to the 3’ tag of target DNA fragments. In some embodiments, PCR amplification uses a first and a second primer, where at least a 3’ end portion of the first primer is complementary to at least a portion of the 3’ tag of the target nucleic acid fragments, and where at least a 3’ end portion of the second primer exhibits the sequence of at least a portion of the 5’ tag of the target nucleic acid fragments.
- a 5’ end portion of the first primer is non-complementary to the 3’ tag of the target nucleic acid fragments, and a 5’ end portion of the second primer does not exhibit the sequence of at least a portion of the 5’ tag of the target nucleic acid fragments.
- the first primer includes a first universal sequence and/or the second primer includes a second universal sequence.
- the PCR amplification products can be ligated to additional sequences using a DNA ligase enzyme.
- the DNA ligase activity can be provided by one or more distinct DNA ligase enzymes.
- the DNA ligase enzyme is from a bacterium, e.g., the DNA ligase enzyme is a bacterial DNA ligase enzyme.
- the DNA ligase enzyme is from a virus (e.g., a bacteriophage).
- the DNA ligase can be T4 DNA ligase.
- Other enzymes appropriate for the ligation step include, but are not limited to, Tth DNA ligase, Taq DNA ligase, Thermococcus sp. (strain 9oN) DNA ligase (9oNTM DNA ligase, available from New England Biolabs, Ipswich, MA), and Ampligase ® (available from Lucigen, Middleton, WI). Derivatives, e.g., sequence-modified derivatives, and/or mutants thereof, can also be used.
- genetic material is amplified by reverse transcription polymerase chain reaction (RT-PCR).
- the desired reverse transcriptase activity can be provided by one or more distinct reverse transcriptase enzymes (i.e., RNA dependent DNA polymerases), suitable examples of which include, but are not limited to: M-MLV, MuLV, AMV, HIV, ArrayScriptTM, MultiScribeTM, ThermoScriptTM, and Superscript® I, II, III, and IV enzymes.“Reverse transcriptase” includes not only naturally occurring enzymes, but all such modified derivatives thereof, including also derivatives of naturally-occurring reverse transcriptase enzymes.
- reverse transcription can be performed using sequence-modified derivatives or mutants of M-MLV, MuLV, AMV, and HIV reverse transcriptase enzymes, including mutants that retain at least some of the functional, e.g., reverse transcriptase, activity of the wild-type sequence.
- the reverse transcriptase enzyme can be provided as part of a composition that includes other components, e.g., stabilizing components that enhance or improve the activity of the reverse transcriptase enzyme, such as RNase inhibitor(s), inhibitors of DNA-dependent DNA synthesis, e.g., actinomycin D.
- sequence-modified derivative or mutants of reverse transcriptase enzymes e.g., M-MLV
- compositions including unmodified and modified enzymes are commercially available, e.g., ArrayScriptTM, MultiScribeTM, ThermoScriptTM, and Superscript® I, II, III, and IV enzymes.
- Certain reverse transcriptase enzymes can synthesize a complementary DNA strand using both RNA (cDNA synthesis) and single-stranded DNA (ssDNA) as a template.
- the reverse transcription reaction can use an enzyme (reverse transcriptase) that is capable of using both RNA and ssDNA as the template for an extension reaction, e.g., an AMV or MMLV reverse transcriptase.
- the quantification of RNA and/or DNA is carried out by real time PCR (also known as quantitative PCR or qPCR), using techniques well known in the art, such as but not limited to“TAQMANTM”, or dyes such as“SYBR®”, or on capillaries (“LightCycler® Capillaries”).
- the quantification of genetic material is determined by optical absorbance and with real-time PCR.
- the quantification of genetic material is determined by digital PCR.
- the genes analyzed can be compared to a reference nucleic acid extract (DNA and RNA) corresponding to the expression (mRNA) and quantity (DNA) in order to compare expression levels of the target nucleic acids.
- An“antibody” is a polypeptide molecule that recognizes and binds to a
- Antibodies typically have a molecular structure shape that resembles a Y shape, or polymers thereof.
- Naturally-occurring antibodies referred to as immunoglobulins, belong to one of the immunoglobulin classes IgG, IgM, IgA, IgD, and IgE.
- Antibodies can also be produced synthetically.
- recombinant antibodies which are monoclonal antibodies, can be synthesized using synthetic genes by recovering the antibody genes from source cells, amplifying into an appropriate vector, and introducing the vector into a host to cause the host to express the recombinant antibody.
- recombinant antibodies can be cloned from any species of antibody-producing animal using suitable oligonucleotide primers and/or hybridization probes. Recombinant techniques can be used to generate antibodies and antibody fragments, including non-endogenous species.
- Synthetic antibodies can be derived from non-immunoglobulin sources.
- antibodies can be generated from nucleic acids (e.g., aptamers), and from non-immunoglobulin sources.
- immunoglobulin protein scaffolds such as peptide aptamers
- hypervariable loops are inserted to form antigen binding sites.
- Synthetic antibodies based on nucleic acids or peptide structures can be smaller than immunoglobulin-derived antibodies, leading to greater tissue penetration.
- Antibodies can also include affimer proteins, which are affinity reagents that typically have a molecular weight of about 12-14 kDa.
- Affimer proteins generally bind to a target (e.g., a target protein) with both high affinity and specificity. Examples of such targets include, but are not limited to, ubiquitin chains, immunoglobulins, and C-reactive protein.
- affimer proteins are derived from cysteine protease inhibitors, and include peptide loops and a variable N-terminal sequence that provides the binding site.
- Antibodies can also include single domain antibodies (VHH domains and VNAR domains), scFvs, and Fab fragments.
- An“affinity group” is a molecule or molecular moiety which has a high affinity or preference for associating or binding with another specific or particular molecule or moiety.
- the association or binding with another specific or particular molecule or moiety can be via a non-covalent interaction, such as hydrogen bonding, ionic forces, and van der Waals interactions.
- An affinity group can, for example, be biotin, which has a high affinity or preference to associate or bind to the protein avidin or streptavidin.
- An affinity group for example, can also refer to avidin or streptavidin which has an affinity to biotin.
- an affinity group and specific or particular molecule or moiety to which it binds or associates with include, but are not limited to, antibodies or antibody fragments and their respective antigens, such as digoxigenin and anti-digoxigenin antibodies, lectin, and carbohydrates (e.g., a sugar, a monosaccharide, a disaccharide, or a polysaccharide), and receptors and receptor ligands.
- antibodies or antibody fragments and their respective antigens such as digoxigenin and anti-digoxigenin antibodies, lectin, and carbohydrates (e.g., a sugar, a monosaccharide, a disaccharide, or a polysaccharide), and receptors and receptor ligands.
- affinity group and its specific or particular molecule or moiety to which it binds or associates with can have their roles reversed, for example, such that between a first molecule and a second molecule, in a first instance the first molecule is characterized as an affinity group for the second molecule, and in a second instance the second molecule is characterized as an affinity group for the first molecule.
- detectable label refers to a directly or indirectly detectable moiety that is associated with (e.g., conjugated to) a molecule to be detected, e.g., a capture probe or analyte.
- the detectable label can be directly detectable by itself (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, can be indirectly detectable, e.g., by catalyzing chemical alterations of a chemical substrate compound or composition, which chemical substrate compound or composition is directly detectable.
- Detectable labels can be suitable for small scale detection and/or suitable for high-throughput screening.
- suitable detectable labels include, but are not limited to, radioisotopes, fluorophores, chemiluminescent compounds, bioluminescent compounds, and dyes.
- the detectable label can be qualitatively detected (e.g., optically or spectrally), or it can be quantified.
- Qualitative detection generally includes a detection method in which the existence or presence of the detectable label is confirmed, whereas quantifiable detection generally includes a detection method having a quantifiable (e.g., numerically reportable) value such as an intensity, duration, polarization, and/or other properties.
- the detectable label is bound to a feature or to a capture probe associated with a feature.
- detectably labeled features can include a fluorescent, a colorimetric, or a chemiluminescent label attached to a bead (see, for example, Rajeswari et al., J.
- a plurality of detectable labels can be attached to a feature, capture probe, or composition to be detected.
- detectable labels can be incorporated during nucleic acid polymerization or amplification (e.g., Cy 5 ⁇ -labelled nucleotides, such as Cy5®-dCTP). Any suitable detectable label can be used.
- the detectable label is a fluorophore.
- the fluorophore can be from a group that includes: 7-AAD (7-Aminoactinomycin D), Acridine Orange (+DNA), Acridine Orange (+RNA), Alexa Fluor® 350, Alexa Fluor® 430, Alexa Fluor® 488, Alexa Fluor® 532, Alexa Fluor® 546, Alexa Fluor® 555, Alexa Fluor® 568, Alexa Fluor® 594, Alexa Fluor® 633, Alexa Fluor® 647, Alexa Fluor® 660, Alexa Fluor® 680, Alexa Fluor® 700, Alexa Fluor® 750, Allophycocyanin (APC), AMCA / AMCA-X, 7-Aminoactinomycin D (7- AAD), 7- Amino-4-methylcoumarin, 6-Aminoquinobne, Aniline Blue, ANS, APC-Cy7, ATTO-TAGTM CBQCA, ATTO-TAGTM FQ, Auramine O-Feulgen
- IAEDANS Indo-1 (high calcium), Indo-1 (low calcium), Indodicarbocyanine,
- LysoSensorTM Green (pH 5), LysoSensorTM Yellow/Blue (pH 4.2), LysoTracker® Green, LysoTracker® Red, LysoTracker® Yellow, Mag-Fura-2, Mag-Indo-1, Magnesium GreenTM, Marina Blue®, 4-Methylumbelliferone, Mithramycin, MitoTracker® Green, MitoTracker® Orange, MitoTracker® Red, NBD (amine), Nile Red, Oregon Green® 488, Oregon Green® 500, Oregon Green® 514, Pacific Blue, PBF1, PE (R-phycoerythrin), PE-Cy5, PE-Cy7, PE- Texas Red, PerCP (Peridinin chlorphyll protein), PerCP-Cy5.5 (TruRed), PharRed (APC- Cy7), C-phycocyanin, R-phycocyanin, R-phycoerythrin (PE), PI (Propidium Iodide), PKH26, PKH67
- SITS SNAFL®-1 (high pH), SNAFL®-2, SNARF®-1 (high pH), SNARF®-1 (low pH), Sodium GreenTM, SpectrumAqua®, SpectrumGreen® #1, SpectrumGreen® #2,
- SpectrumOrange® SpectrumRed®, SYTO® 11, SYTO® 13, SYTO® 17, SYTO® 45, SYTOX® Blue, SYTOX® Green, SYTOX® Orange, 5-TAMRA (5- Carboxytetramethylrhodamine), Tetramethylrhodamine (TRITC), Texas Red® / Texas Red®-X, Texas Red®-X (NHS Ester), Thiadicarbocyanine, Thiazole Orange, TOTO®-l / TO-PRO®-l, TOTO®-3 / TO-PRO®-3, TO-PRO®-5, Tri-color (PE-Cy5), TRITC
- a detectable label is or includes a luminescent or chemiluminescent moiety.
- luminescent/chemiluminescent moieties include, but are not limited to, peroxidases such as horseradish peroxidase (HRP), soybean peroxidase (SP), alkaline phosphatase, and luciferase. These protein moieties can catalyze chemiluminescent reactions given the appropriate chemical substrates (e.g., an oxidizing reagent plus a chemiluminescent compound). A number of compound families are known to provide chemiluminescence under a variety of conditions.
- Non-limiting examples of chemiluminescent compound families include 2,3-dihydro-l,4-phthalazinedione luminol, 5- amino-6,7,8-trimethoxy- and the dimethylamino[ca]benz analog. These compounds can luminesce in the presence of alkaline hydrogen peroxide or calcium hypochlorite and base.
- chemiluminescent compound families include, e.g., 2,4,5- triphenylimidazoles, para-dimethylamino and - methoxy substituents, oxalates such as oxalyl active esters, p-nitrophenyl, N-alkyl acridinum esters, luciferins, lucigenins, or acridinium esters.
- A“template switching oligonucleotide” is an oligonucleotide that hybridizes to untemplated nucleotides added by a reverse transcriptase (e.g., enzyme with terminal transferase activity) during reverse transcription.
- a template switching oligonucleotide hybridizes to untemplated poly(C) nucleotides added by a reverse transcriptase.
- the template switching oligonucleotide adds a common 5’ sequence to full-length cDNA that is used for cDNA amplification.
- the template switching oligonucleotide adds a common sequence onto the 5’ end of the RNA being reverse transcribed.
- a template switching oligonucleotide can hybridize to untemplated poly(C) nucleotides added onto the end of a cDNA molecule and provide a template for the reverse transcriptase to continue replication to the 5’ end of the template switching oligonucleotide, thereby generating full- length cDNA ready for further amplification.
- the template switching oligonucleotide can serve as a primer in a cDNA amplification reaction.
- a template switching oligonucleotide is added before, contemporaneously with, or after a reverse transcription, or other terminal transferase-based reaction. In some embodiments, a template switching oligonucleotide is included in the capture probe. In certain embodiments, methods of sample analysis using template switching oligonucleotides can involve the generation of nucleic acid products from analytes of the tissue sample, followed by further processing of the nucleic acid products with the template switching oligonucleotide.
- Template switching oligonucleotides can include a hybridization region and a template region.
- the hybridization region can include any sequence capable of hybridizing to the target.
- the hybridization region can, e.g., include a series of G bases to complement the overhanging C bases at the 3’ end of a cDNA molecule.
- the series of G bases can include 1 G base, 2 G bases, 3 G bases, 4 G bases, 5 G bases, or more than 5 G bases.
- the template sequence can include any sequence to be incorporated into the cDNA.
- the hybridization region can include at least one base in addition to at least one G base.
- the hybridization can include bases that are not a G base.
- the template region includes at least 1 (e.g., at least 2, 3, 4, 5 or more) tag sequences and/or functional sequences.
- the template region and hybridization region are separated by a spacer.
- the template regions include a barcode sequence.
- the barcode sequence can act as a spatial barcode and/or as a unique molecular identifier.
- Template switching oligonucleotides can include deoxyribonucleic acids; ribonucleic acids; modified nucleic acids including 2-aminopurine, 2,6-diaminopurine (2-amino-dA), inverted dT, 5- methyl dC, 2’-deoxyInosine, Super T (5-hydroxybutynl-2’-deoxyuridine), Super G (8-aza-7- deazaguanosine), locked nucleic acids (LNAs), unlocked nucleic acids (UNAs, e.g., UNA-A, UNA-U, UNA-C, UNA-G), Iso-dG, Iso-dC, 2’ fluoro bases (e.g., Fluoro C, Fluoro U, Fluoro A, and Fluoro G), or any combination of the for
- the length of a template switching oligonucleotide can be at least about 1, 2, 10, 20, 50, 75, 100, 150, 200, or 250 nucleotides or longer. In some embodiments, the length of a template switching oligonucleotide can be at most about 2, 10, 20, 50, 100, 150, 200, or 250 nucleotides or longer.
- A“splint oligonucleotide” is an oligonucleotide that, when hybridized to other polynucleotides, acts as a“splint” to position the polynucleotides next to one another so that they can be ligated together.
- the splint oligonucleotide is DNA or RNA.
- the splint oligonucleotide can include a nucleotide sequence that is partially complimentary to nucleotide sequences from two or more different oligonucleotides.
- the splint oligonucleotide assists in ligating a“donor” oligonucleotide and an “acceptor” oligonucleotide.
- an RNA ligase, a DNA ligase, or another other variety of ligase is used to ligate two nucleotide sequences together
- the splint oligonucleotide is between 10 and 50
- oligonucleotides in length e.g., between 10 and 45, 10 and 40, 10 and 35, 10 and 30, 10 and 25, or 10 and 20 oligonucleotides in length.
- the splint oligonucleotide is between 15 and 50, 15 and 45, 15 and 40, 15 and 35, 15 and 30, 15 and 30, or 15 and 25 nucleotides in length.
- an“analyte” can include any biological substance, structure, moiety, or component to be analyzed.
- the term“target” can similarly refer to an analyte of interest.
- Analytes can be broadly classified into one of two groups: nucleic acid analytes, and non-nucleic acid analytes.
- non-nucleic acid analytes include, but are not limited to, lipids, carbohydrates, peptides, proteins, glycoproteins (N-linked or O-linked), lipoproteins, phosphoproteins, specific phosphorylated or acetylated variants of proteins, amidation variants of proteins, hydroxylation variants of proteins, methylation variants of proteins, ubiquitylation variants of proteins, sulfation variants of proteins, viral coat proteins, extracellular and intracellular proteins, antibodies, and antigen binding fragments.
- the analyte can be an organelle (e.g., nuclei or mitochondria).
- Cell surface features corresponding to analytes can include, but are not limited to, a receptor, an antigen, a surface protein, a transmembrane protein, a cluster of differentiation protein, a protein channel, a protein pump, a carrier protein, a phospholipid, a glycoprotein, a glycolipid, a cell-cell interaction protein complex, an antigen-presenting complex, a major histocompatibility complex, an engineered T-cell receptor, a T-cell receptor, a B-cell receptor, a chimeric antigen receptor, an extracellular matrix protein, a posttranslational modification (e.g., phosphorylation, glycosylation, ubiquitination, nitrosylation, methylation, acetylation or lipidation) state of a cell surface protein, a gap junction, and an adherens junction.
- a posttranslational modification e.g., phosphorylation, glycosylation, ubiquitination, nitrosylation, methylation, ace
- Analytes can be derived from a specific type of cell and/or a specific sub-cellular region.
- analytes can be derived from cytosol, from cell nuclei, from
- mitochondria from microsomes, and more generally, from any other compartment, organelle, or portion of a cell.
- Permeabilizing agents that specifically target certain cell compartments and organelles can be used to selectively release analytes from cells for analysis.
- nucleic acid analytes examples include DNA analytes such as genomic DNA, methylated DNA, specific methylated DNA sequences, fragmented DNA, mitochondrial DNA, in situ synthesized PCR products, and RNA/DNA hybrids.
- nucleic acid analytes also include RNA analytes such as various types of coding and non-coding RNA.
- RNA analytes such as various types of coding and non-coding RNA.
- examples of the different types of RNA analytes include messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), microRNA (miRNA), and viral RNA.
- the RNA can be a transcript (e.g., present in a tissue section).
- the RNA can be small (e.g., less than 200 nucleic acid bases in length) or large (e.g., RNA greater than 200 nucleic acid bases in length).
- Small RNAs mainly include 5.8S ribosomal RNA (rRNA), 5S rRNA, transfer RNA (tRNA), microRNA (miRNA), small interfering RNA (siRNA), small nucleolar RNA (snoRNAs), Piwi-interacting RNA (piRNA), tRNA-derived small RNA (tsRNA), and small rDNA-derived RNA (srRNA).
- the RNA can be double- stranded RNA or single-stranded RNA.
- the RNA can be circular RNA.
- the RNA can be a bacterial rRNA (e.g., 16s rRNA or 23s rRNA).
- analytes include mRNA and cell surface features (e.g., using the labelling agents described herein), mRNA and intracellular proteins (e.g., transcription factors), mRNA and cell methylation status, mRNA and accessible chromatin (e.g., ATAC- seq, DNase-seq, and/or MNase-seq), mRNA and metabolites (e.g., using the labelling agents described herein), a barcoded labelling agent (e.g., the oligonucleotide tagged antibodies described herein) and a V(D)J sequence of an immune cell receptor (e.g., T-cell receptor), mRNA and a perturbation agent (e.g., a CRISPR crRNA/sgRNA, TALEN, zinc finger nuclease, and/or antisense oligonucleotide as described herein).
- a perturbation agent can be a small molecule, an antibody, a drug, an antisense oligon
- Analytes can include a nucleic acid molecule with a nucleic acid sequence encoding at least a portion of a V(D)J sequence of an immune cell receptor (e.g., a TCR or BCR).
- the nucleic acid molecule is cDNA first generated from reverse transcription of the corresponding mRNA, using a poly(T) containing primer. The generated cDNA can then be barcoded using a capture probe, featuring a barcode sequence (and optionally, a UMI sequence) that hybridizes with at least a portion of the generated cDNA.
- a template switching oligonucleotide hybridizes to a poly(C) tail added to a 3’end of the cDNA by a reverse transcriptase enzyme.
- the original mRNA template and template switching oligonucleotide can then be denatured from the cDNA and the barcoded capture probe can then hybridize with the cDNA and a complement of the cDNA generated.
- Additional methods and compositions suitable for barcoding cDNA generated from mRNA transcripts including those encoding V(D)J regions of an immune cell receptor and/or barcoding methods and composition including a template switch oligonucleotide are described in PCT Patent Application PCT/US2017/057269, filed October 18, 2017, and U.S. Patent Application Serial No.
- V(D)J analysis can also be completed with the use of one or more labelling agents that bind to particular surface features of immune cells and associated with barcode sequences.
- the one or more labelling agents can include an MHC or MHC multimer.
- the analyte can include a nucleic acid capable of functioning as a component of a gene editing reaction, such as, for example, clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing.
- the capture probe can include a nucleic acid sequence that is complementary to the analyte (e.g., a sequence that can hybridize to the CRISPR RNA (crRNA), single guide RNA (sgRNA), or an adapter sequence engineered into a crRNA or sgRNA).
- an analyte can be extracted from a live cell. Processing conditions can be adjusted to ensure that a biological sample remains live during analysis, and analytes are extracted from (or released from) live cells of the sample. Live cell-derived analytes can be obtained only once from the sample, or can be obtained at intervals from a sample that continues to remain in viable condition.
- the systems, apparatus, methods, and compositions can be used to analyze any number of analytes.
- the number of analytes that are analyzed can be at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, at least about 10, at least about 11, at least about 12, at least about 13, at least about 14, at least about 15, at least about 20, at least about 25, at least about 30, at least about 40, at least about 50, at least about 100, at least about 1,000, at least about 10,000, at least about 100,000 or more different analytes present in a region of the sample or within an individual feature of the substrate.
- Methods for performing multiplexed assays to analyze two or more different analytes will be discussed in a subsequent section of this disclosure.
- A“biological sample” is obtained from the subject for analysis using any of a variety of techniques including, but not limited to, biopsy, surgery, and laser capture microscopy (LCM), and generally includes cells and/or other biological material from the subject.
- a biological sample can be obtained from non mammalian organisms (e.g., a plants, an insect, an arachnid, a nematode (e.g.,
- a biological sample can be obtained from a prokaryote such as a bacterium, e.g., Escherichia coli, Staphylococci or Mycoplasma pneumoniae, an archaea; a virus such as Hepatitis C virus or human immunodeficiency virus; or a viroid.
- a biological sample can be obtained from a eukaryote, such as a patient derived organoid (PDO) or patient derived xenograft (PDX).
- PDO patient derived organoid
- PDX patient derived xenograft
- the biological sample can include organoids, a miniaturized and simplified version of an organ produced in vitro in three dimensions that shows realistic micro-anatomy.
- Organoids can be generated from one or more cells from a tissue, embryonic stem cells, and/or induced pluripotent stem cells, which can self-organize in three-dimensional culture owing to their self-renewal and differentiation capacities.
- an organoid is a cerebral organoid, an intestinal organoid, a stomach organoid, a lingual organoid, a thyroid organoid, a thymic organoid, a testicular organoid, a hepatic organoid, a pancreatic organoid, an epithelial organoid, a lung organoid, a kidney organoid, a gastruloid, a cardiac organoid, or a retinal organoid.
- Subjects from which biological samples can be obtained can be healthy or asymptomatic individuals, individuals that have or are suspected of having a disease (e.g., cancer) or a pre-disposition to a disease, and/or individuals that are in need of therapy or suspected of needing therapy.
- a disease e.g., cancer
- pre-disposition to a disease e.g., cancer
- Bio samples can be derived from a homogeneous culture or population of the subjects or organisms mentioned herein or alternatively from a collection of several different organisms, for example, in a community or ecosystem.
- Biological samples can include one or more diseased cells.
- a diseased cell can have altered metabolic properties, gene expression, protein expression, and/or morphologic features. Examples of diseases include inflammatory disorders, metabolic disorders, nervous system disorders, and cancer. Cancer cells can be derived from solid tumors, hematological malignancies, cell lines, or obtained as circulating tumor cells.
- Biological samples can also include fetal cells.
- a procedure such as amniocentesis can be performed to obtain a fetal cell sample from maternal circulation.
- Sequencing of fetal cells can be used to identify any of a number of genetic disorders, including, e.g., aneuploidy such as Down’s syndrome, Edwards syndrome, and Patau syndrome.
- cell surface features of fetal cells can be used to identify any of a number of disorders or diseases.
- Biological samples can also include immune cells. Sequence analysis of the immune repertoire of such cells, including genomic, proteomic, and cell surface features, can provide a wealth of information to facilitate an understanding the status and function of the immune system. By way of example, determining the status (e.g., negative or positive) of minimal residue disease (MRD) in a multiple myeloma (MM) patient following autologous stem cell transplantation is considered a predictor of MRD in the MM patient (see, e.g., U.S. Patent Application Publication No. 2018/0156784, the entire contents of which are incorporated herein by reference).
- MRD minimal residue disease
- immune cells in a biological sample include, but are not limited to, B cells, T cells (e.g., cytotoxic T cells, natural killer T cells, regulatory T cells, and T helper cells), natural killer cells, cytokine induced killer (CIK) cells, myeloid cells, such as granulocytes (basophil granulocytes, eosinophil granulocytes, neutrophil
- T cells e.g., cytotoxic T cells, natural killer T cells, regulatory T cells, and T helper cells
- natural killer cells e.g., cytokine induced killer (CIK) cells
- myeloid cells such as granulocytes (basophil granulocytes, eosinophil granulocytes, neutrophil
- granulocytes/hypersegmented neutrophils granulocytes/hypersegmented neutrophils
- monocytes/macrophages granulocytes/hypersegmented neutrophils
- mast cells granulocytes/macrophages
- thrombocytes/megakaryocytes granulocytes/hypersegmented neutrophils
- dendritic cells dendritic cells
- the biological sample can include any number of macromolecules, for example, cellular macromolecules and organelles (e.g., mitochondria and nuclei).
- the biological sample can be a nucleic acid sample and/or protein sample.
- the biological sample can be a carbohydrate sample or a lipid sample.
- the biological sample can be obtained as a tissue sample, such as a tissue section, biopsy, a core biopsy, needle aspirate, or fine needle aspirate.
- the sample can be a fluid sample, such as a blood sample, urine sample, or saliva sample.
- the sample can be a skin sample, a colon sample, a cheek swab, a histology sample, a histopathology sample, a plasma or serum sample, a tumor sample, living cells, cultured cells, a clinical sample such as, for example, whole blood or blood-derived products, blood cells, or cultured tissues or cells, including cell suspensions.
- Cell-free biological samples can include extracellular polynucleotides.
- Extracellular polynucleotides can be isolated from a bodily sample, e.g., blood, plasma, serum, urine, saliva, mucosal excretions, sputum, stool, and tears.
- a biological sample can include a single analyte of interest, or more than one analyte of interest.
- Methods for performing multiplexed assays to analyze two or more different analytes in a single biological sample is discussed in a subsequent section of this disclosure.
- a biological sample can be harvested from a subject (e.g., via surgical biopsy, whole subject sectioning), grown in vitro on a growth substrate or culture dish as a population of cells, or prepared as a tissue slice or tissue section. Grown samples may be sufficiently thin for analysis without further processing steps. Alternatively, grown samples, and samples obtained via biopsy or sectioning, can be prepared as thin tissue sections using a mechanical cutting apparatus such as a vibrating blade microtome. As another alternative, in some embodiments, a thin tissue section can be prepared by applying a touch imprint of a biological sample to a suitable substrate material.
- the thickness of the tissue section can be a fraction of (e.g., less than 0.9, 0.8, 0.7,
- tissue sections having a thickness that is larger than the maximum cross-section cell dimension can also be used.
- cryostat sections can be used, which can be, e.g., 10-20 micrometers thick.
- the thickness of a tissue section typically depends on the method used to prepare the section and the physical characteristics of the tissue, and therefore sections having a wide variety of different thicknesses can be prepared and used.
- the thickness of the tissue section can be at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 1.5, 2, 3, 4, 5, 6,
- Thicker sections can also be used if desired or convenient, e.g., at least 70, 80, 90, or 100 micrometers or more.
- the thickness of a tissue section is between 1-100 micrometers, 1-50 micrometers, 1-30 micrometers, 1-25 micrometers, 1-20 micrometers, 1-15 micrometers, 1-10 micrometers, 2-8 micrometers, 3-7 micrometers, or 4-6 micrometers, but as mentioned above, sections with thicknesses larger or smaller than these ranges can also be analysed.
- Multiple sections can also be obtained from a single biological sample.
- multiple tissue sections can be obtained from a surgical biopsy sample by performing serial sectioning of the biopsy sample using a sectioning blade. Spatial information among the serial sections can be preserved in this manner, and the sections can be analysed successively to obtain three-dimensional information about the biological sample.
- the biological sample e.g., a tissue section as described above
- a temperature suitable to maintain or preserve the integrity e.g., the physical characteristics
- a temperature can be, e.g., less than -20°C, or less than -25°C, -30°C, -40°C, -50°C, -60°C, -70°C, 80°C -90°C, - 100°C, -110°C, -120°C, -130°C, -140°C, -150°C, -160°C, -170°C, -180°C, -190°C, or - 200°C.
- the frozen tissue sample can be sectioned, e.g., thinly sliced, onto a substrate surface using any number of suitable methods.
- a tissue sample can be prepared using a chilled microtome (e.g., a cryostat) set at a temperature suitable to maintain both the structural integrity of the tissue sample and the chemical properties of the nucleic acids in the sample.
- a temperature can be, e.g., less than -15°C, less than -20°C, or less than -25°C.
- a sample can be snap frozen in isopentane and liquid nitrogen. Frozen samples can be stored in a sealed container prior to embedding.
- the biological sample can be prepared using formalin-fixation and paraffin-embedding (FFPE), which are established methods.
- FFPE formalin-fixation and paraffin-embedding
- cell suspensions and other non-tissue samples can be prepared using formalin-fixation and paraffin-embedding.
- the sample can be sectioned as described above.
- the paraffin- embedding material can be removed from the tissue section (e.g., deparaffinization) by incubating the tissue section in an appropriate solvent (e.g., xylene) followed by a rinse (e.g., 99.5% ethanol for 2 minutes, 96% ethanol for 2 minutes, and 70% ethanol for 2 minutes).
- a biological sample can be fixed in any of a variety of other fixatives to preserve the biological structure of the sample prior to analysis.
- a sample can be fixed via immersion in ethanol, methanol, acetone, formaldehyde (e.g., 2% formaldehyde), paraformaldehy de-Triton, glutaraldehyde, or combinations thereof.
- acetone fixation is used with fresh frozen samples, which can include, but are not limited to, cortex tissue, mouse olfactory bulb, human brain tumor, human post-mortem brain, and breast cancer samples.
- a compatible fixation method is chosen and/or optimized based on a desired workflow. For example, formaldehyde fixation may be chosen as compatible for workflows using IHC/IF protocols for protein visualization. As another example, methanol fixation may be chosen for workflows emphasizing RNA/DNA library quality.
- Acetone fixation may be chosen in some applications to permeabilize the tissue. When acetone fixation is performed, pre- permeabilization steps (described below) may not be performed. Alternatively, acetone fixation can be performed in conjunction with permeabilization steps.
- a biological sample can be embedded in any of a variety of other embedding materials to provide a substrate to the sample prior to sectioning and other handling steps.
- the embedding material is removed prior to analysis of tissue sections obtained from the sample.
- suitable embedding materials include, but are not limited to, waxes, resins (e.g., methacrylate resins), epoxies, and agar.
- biological samples can be stained using a wide variety of stains and staining techniques.
- a sample can be stained using any number of biological stains, including but not limited to, acridine orange, Bismarck brown, carmine, coomassie blue, cresyl violet, DAPI, eosin, ethidium bromide, acid fuchsine, hematoxylin, Hoechst stains, iodine, methyl green, methylene blue, neutral red, Nile blue, Nile red, osmium tetroxide, propidium iodide, rhodamine, or safranin.
- biological stains including but not limited to, acridine orange, Bismarck brown, carmine, coomassie blue, cresyl violet, DAPI, eosin, ethidium bromide, acid fuchsine, hematoxylin, Hoechst stains, iodine, methyl green,
- the sample can be stained using known staining techniques, including Can-Grunwald, Giemsa, hematoxylin and eosin (H&E), Jenner’s, Leishman, Masson’s trichrome,
- PAS staining is typically performed after formalin or acetone fixation.
- the biological sample can be stained using a detectable label (e.g., radioisotopes, fluorophores, chemiluminescent compounds, bioluminescent compounds, and dyes) as described elsewhere herein.
- a biological sample is stained using only one type of stain or one technique.
- staining includes biological staining techniques such as H&E staining.
- staining includes identifying analytes using fluorescently -conjugated antibodies.
- a biological sample is stained using two or more different types of stains, or two or more different staining techniques.
- a biological sample can be prepared by staining and imaging using one technique (e.g., H&E staining and brightfield imaging), followed by staining and imaging using another technique (e.g., IHC/IF staining and fluorescence microscopy) for the same biological sample.
- one technique e.g., H&E staining and brightfield imaging
- another technique e.g., IHC/IF staining and fluorescence microscopy
- biological samples can be destained.
- Methods of destaining or discoloring a biological sample are known in the art, and generally depend on the nature of the stain(s) applied to the sample.
- H&E staining can be destained by washing the sample in HC1, or any other low pH acid (e.g., selenic acid, sulfuric acid, hydroiodic acid, benzoic acid, carbonic acid, malic acid, phosphoric acid, oxalic acid, succinic acid, salicylic acid, tartaric acid, sulfurous acid, trichloroacetic acid, hydrobromic acid, hydrochloric acid, nitric acid, orthophosphoric acid, arsenic acid, selenous acid, chromic acid, citric acid, hydrofluoric acid, nitrous acid, isocyanic acid, formic acid, hydrogen selenide, molybdic acid, lactic acid, acetic acid, carbonic acid, hydrogen sulfide, or combinations thereof).
- destaining can include 1, 2, 3, 4, 5, or more washes in a low pH acid (e.g., HC1).
- destaining can include adding HC1 to a downstream solution (e.g., permeabilization solution).
- destaining can include dissolving an enzyme used in the disclosed methods (e.g., pepsin) in a low pH acid (e.g.,
- HC1 solution after destaining hematoxylin with a low pH acid, other reagents can be added to the destaining solution to raise the pH for use in other applications.
- SDS can be added to a low pH acid destaining solution in order to raise the pH as compared to the low pH acid destaining solution alone.
- one or more immunofluorescence stains are applied to the sample via antibody coupling. Such stains can be removed using techniques such as cleavage of disulfide linkages via treatment with a reducing agent and detergent washing, chaotropic salt treatment, treatment with antigen retrieval solution, and treatment with an acidic glycine buffer.
- hydrogel formation occurs within a biological sample.
- a biological sample e.g., tissue section
- hydrogel subunits are infused into the biological sample, and polymerization of the hydrogel is initiated by an external or internal stimulus.
- A“hydrogel” as described herein can include a cross-linked 3D network of hydrophilic polymer chains.
- A“hydrogel subunit” can be a hydrophilic monomer, a molecular precursor, or a polymer that can be polymerized (e.g., cross-linked) to form a three-dimensional (3D) hydrogel network.
- a hydrogel can swell in the presence of water.
- a hydrogel comprises a natural material.
- a hydrogel includes a synthetic material.
- a hydrogel includes a hybrid material, e.g., the hydrogel material comprises elements of both synthetic and natural polymers. Any of the materials used in hydrogels or hydrogels comprising a polypeptide-based material described herein can be used.
- Embedding the sample in this manner typically involves contacting the biological sample with a hydrogel such that the biological sample becomes surrounded by the hydrogel.
- the sample can be embedded by contacting the sample with a suitable polymer material, and activating the polymer material to form a hydrogel.
- the hydrogel is formed such that the hydrogel is internalized within the biological sample.
- the biological sample is immobilized in the hydrogel via cross- linking of the polymer material that forms the hydrogel.
- Cross-linking can be performed chemically and/or photochemically, or alternatively by any other hydrogel-formation method known in the art.
- the biological sample can be immobilized in the hydrogel by polyacrylamide crosslinking.
- analytes of a biological sample can be immobilized in a hydrogel by crosslinking (e.g., polyacrylamide crosslinking).
- composition and application of the hydrogel to a biological sample typically depends on the nature and preparation of the biological sample (e.g., sectioned, non- sectioned, fresh-frozen tissue, type of fixation).
- a hydrogel can be any appropriate hydrogel where upon formation of the hydrogel on the biological sample the biological sample becomes anchored to or embedded in the hydrogel. Non-limiting examples of hydrogels are described herein or are known in the art.
- the hydrogel can include a monomer solution and an ammonium persulfate (APS) initiator/tetramethylethylenediamine (TEMED) accelerator solution.
- APS ammonium persulfate
- TEMED tetramethylethylenediamine
- the biological sample consists of cells (e.g., cultured cells or cells disassociated from a tissue sample)
- the cells can be incubated with the monomer solution and APS/TEMED solutions.
- hydrogel are formed in compartments, including but not limited to devices used to culture, maintain, or transport the cells.
- hydrogels can be formed with monomer solution plus APS/TEMED added to the compartment to a depth ranging from about 0.1 pm to about 5 mm.
- a hydrogel includes a linker that allows anchoring of the biological sample to the hydrogel.
- a hydrogel includes linkers that allow anchoring of biological analytes to the hydrogel.
- the linker can be added to the hydrogel before, contemporaneously with, or after hydrogel formation.
- linkers that anchor nucleic acids to the hydrogel can include 6-((Acryloyl)amino) hexanoic acid (Acryloyl-X SE) (available from ThermoFisher, Waltham, MA), Label-IT Amine (available from MirusBio, Madison, WI) and Label X (Chen et al, Nat. Methods 13:679-684, (2016)).
- functionalization chemistry can be used. In some embodiments,
- functionalization chemistry includes hydrogel-tissue chemistry (HTC).
- HTC hydrogel-tissue chemistry
- Any hydrogel-tissue backbone (e.g., synthetic or native) suitable for HTC can be used for anchoring biological macromolecules and modulating functionalization.
- Non-limiting examples of methods using HTC backbone variants include CLARITY, PACT, ExM, SWITCH and ePACT.
- hydrogel formation within a biological sample is permanent.
- biological macromolecules can permanently adhere to the hydrogel allowing multiple rounds of interrogation.
- hydrogel formation within a biological sample is reversible.
- additional reagents are added to the hydrogel subunits before, contemporaneously with, and/or after polymerization.
- additional reagents can include but are not limited to oligonucleotides (e.g., capture probes), endonucleases to fragment DNA, fragmentation buffer for DNA, DNA polymerase enzymes, dNTPs used to amplify the nucleic acid and to attach the barcode to the amplified fragments.
- Other enzymes can be used, including without limitation, RNA polymerase, transposase, ligase, proteinase K, and DNAse.
- Additional reagents can also include reverse transcriptase enzymes, including enzymes with terminal transferase activity, primers, and switch oligonucleotides.
- optical labels are added to the hydrogel subunits before, contemporaneously with, and/or after polymerization.
- HTC reagents are added to the hydrogel before,
- a cell tagging agent is added to the hydrogel before, contemporaneously with, and/or after polymerization.
- a cell-penetrating agent is added to the hydrogel before,
- a biological sample is embedded in a hydrogel to facilitate sample transfer to another location (e.g., to an array).
- archived biological samples e.g., FFPE tissue sections
- a biological sample on a substrate can be covered with any of the prepolymer solutions described herein.
- the prepolymer solution can be polymerized such that a hydrogel is formed on top of and/or around the biological sample. Hydrogel formation can occur in a manner sufficient to anchor (e.g., embed) the biological sample to the hydrogel.
- the biological sample is anchored to (e.g., embedded in) the hydrogel wherein separating the hydrogel from the substrate (e.g., glass slide) results in the biological sample separating from the substrate along with the hydrogel.
- the biological sample contained in the hydrogel can then be contacted with a spatial array, and spatial analysis can be performed on the biological sample.
- any variety of characteristics can determine the transfer conditions required for a given biological sample.
- characteristics likely to impact transfer conditions include the sample (e.g., thickness, fixation, and cross-linking) and/or the analyte of interest (different conditions to preserve and/or transfer different analytes (e.g., DNA, RNA, and protein)).
- the hydrogel is removed after contacting the biological sample with the spatial array.
- methods described herein can include an event-dependent (e.g., light or chemical) depolymerizing hydrogel, wherein upon application of the event (e.g., external stimuli) the hydrogel depolymerizes.
- a biological sample can be anchored to a DTT-sensitive hydrogel, where addition of DTT can cause the hydrogel to depolymerize and release the anchored biological sample.
- Hydrogels embedded within biological samples can be cleared using any suitable method.
- electrophoretic tissue clearing methods can be used to remove biological macromolecules from the hydrogel-embedded sample.
- a hydrogel-embedded sample is stored in a medium before or after clearing of hydrogel (e.g., a mounting medium, methylcellulose, or other semi-solid mediums).
- the hydrogel chemistry can be tuned to specifically bind (e.g., retain) particular species of analytes (e.g., RNA, DNA, protein, etc.).
- a hydrogel includes a linker that allows anchoring of the biological sample to the hydrogel.
- a hydrogel includes linkers that allow anchoring of biological analytes to the hydrogel. In such cases, the linker can be added to the hydrogel before,
- Non-limiting examples of linkers that anchor nucleic acids to the hydrogel can include 6-((Acryloyl)amino) hexanoic acid
- a biological sample immobilized on a substrate e.g., a biological sample prepared using methanol fixation or formalin-fixation and paraffin- embedding (FFPE)
- FFPE formalin-fixation and paraffin- embedding
- a hydrogel is formed on top of a biological sample on a substrate (e.g., glass slide).
- hydrogel formation can occur in a manner sufficient to anchor (e.g., embed) the biological sample to the hydrogel.
- the biological sample is anchored to (e.g., embedded in) the hydrogel wherein separating the hydrogel from the substrate results in the biological sample separating from the substrate along with the hydrogel.
- the biological sample can then be contacted with a spatial array, thereby allowing spatial profiling of the biological sample.
- the hydrogel is removed after contacting the biological sample with the spatial array.
- methods described herein can include an event-dependent (e.g., light or chemical) depolymerizing hydrogel, wherein upon application of the event (e.g., external stimuli) the hydrogel depolymerizes.
- a biological sample can be anchored to a DTT-sensitive hydrogel, where addition of DTT can cause the hydrogel to depolymerize and release the anchored biological sample.
- a hydrogel can be any appropriate hydrogel where upon formation of the hydrogel on the biological sample the biological sample becomes anchored to or embedded in the hydrogel.
- a hydrogel includes a linker that allows anchoring of the biological sample to the hydrogel.
- a hydrogel includes linkers that allow anchoring of biological analytes to the hydrogel. In such cases, the linker can be added to the hydrogel before, contemporaneously with, or after hydrogel formation.
- Non-limiting examples of linkers that anchor nucleic acids to the hydrogel can include 6-((Acryloyl)amino) hexanoic acid (Acryloyl-X SE) (available from ThermoFisher, Waltham, MA), Label-IT Amine (available from MirusBio, Madison, WI) and Label X (Chen et al, Nat. Methods 13:679-684, 2016). Any variety of characteristics can determine the transfer conditions required for a given biological sample.
- Non-limiting examples of characteristics likely to impact transfer conditions include the sample (e.g., thickness, fixation, and cross-linking) and/or the analyte of interest (different conditions to preserve and/or transfer different analytes (e.g., DNA, RNA, and protein)).
- hydrogel formation can occur in a manner sufficient to anchor the analytes (e.g., embed) in the biological sample to the hydrogel.
- the hydrogel can be imploded (e.g., shrunk) with the anchored analytes (e.g., embedded in the hydrogel) present in the biological sample.
- the hydrogel can be expanded (e.g., isometric expansion) with the anchored analytes (e.g., embedded in the hydrogel) present in the biological sample.
- the hydrogel can be imploded (e.g., shrunk) and subsequently expanded with anchored analytes (e.g., embedded in the hydrogel) present in the biological sample.
- a biological sample embedded in a hydrogel can be isometrically expanded.
- Isometric expansion methods that can be used include hydration, a preparative step in expansion microscopy, as described in Chen et al, Science
- the steps used to perform isometric expansion of the biological sample can depend on the characteristics of the sample (e.g., thickness of tissue section, fixation, cross- linking), and/or the analyte of interest (e.g., different conditions to anchor RNA, DNA, and protein to a gel).
- characteristics of the sample e.g., thickness of tissue section, fixation, cross- linking
- analyte of interest e.g., different conditions to anchor RNA, DNA, and protein to a gel.
- Isometric expansion can be performed by anchoring one or more components of a biological sample to a gel, followed by gel formation, proteolysis, and swelling. Isometric expansion of the biological sample can occur prior to immobilization of the biological sample on a substrate, or after the biological sample is immobilized to a substrate. In some embodiments, the isometrically expanded biological sample can be removed from the substrate prior to contacting the expanded biological sample with a spatially barcoded array (e.g., spatially barcoded capture probes on a substrate).
- a spatially barcoded array e.g., spatially barcoded capture probes on a substrate.
- proteins in the biological sample are anchored to a swellable gel such as a polyelectrolyte gel.
- An antibody can be directed to the protein before, after, or in conjunction with being anchored to the swellable gel.
- DNA and/or RNA in a biological sample can also be anchored to the swellable gel via a suitable linker.
- linkers include, but are not limited to, 6-((Acryloyl)amino) hexanoic acid (Acryloyl-X SE) (available from ThermoFisher, Waltham, MA), Label-IT Amine (available from MirusBio, Madison, WI) and Label X (described for example in Chen et al, Nat.
- Isometric expansion of the sample can increase the spatial resolution of the subsequent analysis of the sample.
- isometric expansion of the biological sample can result in increased resolution in spatial profiling (e.g., single-cell profiling).
- the increased resolution in spatial profiling can be determined by comparison of an isometrically expanded sample with a sample that has not been isometrically expanded.
- Isometric expansion can enable three-dimensional spatial resolution of the subsequent analysis of the sample.
- isometric expansion of the biological sample can occur in the presence of spatial profiling reagents (e.g., analyte capture agents or capture probes).
- the swellable gel can include analyte capture agents or capture probes anchored to the swellable gel via a suitable linker.
- spatial profiling reagents can be delivered to particular locations in an isometrically expanded biological sample.
- a biological sample is isometrically expanded to a volume at least 2x, 2.1x, 2.2x, 2.3x, 2.4x, 2.5x, 2.6x, 2.7x, 2.8x, 2.9x, 3x, 3. lx, 3.2x, 3.3x, 3.4x, 3.5x, 3.6x, 3.7x, 3.8x, 3.9x, 4x, 4. lx, 4.2x, 4.3x, 4.4x, 4.5x, 4.6x, 4.7x, 4.8x, or 4.9x its non- expanded volume.
- the sample is isometrically expanded to at least 2x and less than 20x of its non-expanded volume.
- a biological sample embedded in a hydrogel is isometrically expanded to a volume at least 2x, 2. lx, 2.2x, 2.3x, 2.4x, 2.5x, 2.6x, 2.7x, 2.8x, 2.9x, 3x, 3. lx, 3.2x, 3.3x, 3.4x, 3.5x, 3.6x, 3.7x, 3.8x, 3.9x, 4x, 4. lx, 4.2x, 4.3x, 4.4x, 4.5x, 4.6x, 4.7x, 4.8x, or 4.9x its non-expanded volume.
- the biological sample embedded in a hydrogel is isometrically expanded to at least 2x and less than 20x of its non-expanded volume.
- the biological sample can be attached to a substrate.
- substrates suitable for this purpose are described in detail below. Attachment of the biological sample can be irreversible or reversible, depending upon the nature of the sample and subsequent steps in the analytical method.
- the sample can be attached to the substrate reversibly by applying a suitable polymer coating to the substrate, and contacting the sample to the polymer coating.
- the sample can then be detached from the substrate using an organic solvent that at least partially dissolves the polymer coating.
- Hydrogels are examples of polymers that are suitable for this purpose.
- the substrate can be coated or functionalized with one or more substances to facilitate attachment of the sample to the substrate. Suitable substances that can be used to coat or functionalize the substrate include, but are not limited to, lectins, poly-lysine, antibodies, and polysaccharides.
- the biological sample corresponds to cells (e.g., derived from a cell culture or a tissue sample).
- cells e.g., derived from a cell culture or a tissue sample.
- individual cells can be naturally unaggregated.
- cells can be derived from a suspension of cells and/or disassociated or disaggregated cells from a tissue or tissue section.
- the cells in the sample may be aggregated, and may be disaggregated into individual cells using, for example, enzymatic or mechanical techniques.
- enzymes used in enzymatic disaggregation include, but are not limited to, dispase, collagenase, trypsin, or combinations thereof.
- Mechanical disaggregation can be performed, for example, using a tissue homogenizer.
- the cells are distributed onto the substrate such that at least one cell occupies a distinct spatial feature on the substrate.
- the cells can be immobilized on the substrate (e.g., to prevent lateral diffusion of the cells).
- a cell immobilization agent can be used to immobilize a non-aggregated or disaggregated sample on a spatially-barcoded array prior to analyte capture.
- A“cell immobilization agent” can refer to an antibody, attached to a substrate, which can bind to a cell surface marker.
- the distribution of the plurality of cells on the substrate follows Poisson statistics.
- cells from a plurality of cells are immobilized on a substrate.
- the cells are immobilized to prevent lateral diffusion, for example, by adding a hydrogel and/or by the application of an electric field.
- the biological sample can be derived from a cell culture grown in vitro.
- Samples derived from a cell culture can include one or more suspension cells which are anchorage-independent within the cell culture. Examples of such cells include, but are not limited to, cell lines derived from hematopoietic cells, and from the following cell lines: Colo205, CCRF-CEM, HL-60, K562, MOLT-4, RPMI-8226, SR, HOP-92, NCI-H322M, and MALME-3M.
- Samples derived from a cell culture can include one or more adherent cells which grow on the surface of the vessel that contains the culture medium.
- adherent cells include DU145 (prostate cancer) cells, H295R (adrenocortical cancer) cells, HeLa (cervical cancer) cells, KBM-7 (chronic myelogenous leukemia) cells, LNCaP (prostate cancer) cells, MCF-7 (breast cancer) cells, MDA-MB-468 (breast cancer) cells, PC3 (prostate cancer) cells, SaOS-2 (bone cancer) cells, SH-SY5Y (neuroblastoma, cloned from a myeloma) cells, T-47D (breast cancer) cells, THP-1 (acute myeloid leukemia) cells, U87 (glioblastoma) cells, National Cancer Institute’s 60 cancer cell line panel (NCI60), vero (African green monkey Chlorocebus kidney epithelial cell
- adherent cells are shown in Table 1 and catalogued, for example, in“A Catalog of in Vitro Cell Lines, Transplantable Animal and Human Tumors and Yeast,” The Division of Cancer Treatment and Diagnosis (DCTD), National Cancer Institute (2013), and in Abaan et al,“The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology,” Cancer Research 73(14):4372-82, 2013, the entire contents of each of which are incorporated by reference herein.
- the adherent cells are cells that correspond to one or more of the following cell lines: BT549, HS 578T, MCF7, MDA-MB-231, MDA-MB-468, T-47D, SF268, SF295, SF539, SNB-19, SNB-75, U251, Colo205, HCC 2998, HCT-116, HCT-15, HT29, KM12, SW620, 786-0, A498, ACHN, CAKI, RXF 393, SN12C, TK-10, UO-31,
- a biological sample can be permeabilized to facilitate transfer of analytes out of the sample, and/or to facilitate transfer of species (such as capture probes) into the sample. If a sample is not permeabilized sufficiently, the amount of analyte captured from the sample may be too low to enable adequate analysis. Conversely, if the tissue sample is too permeable, the relative spatial relationship of the analytes within the tissue sample can be lost. Hence, a balance between permeabilizing the tissue sample enough to obtain good signal intensity while still maintaining the spatial resolution of the analyte distribution in the sample is desirable.
- a biological sample can be permeabilized by exposing the sample to one or more permeabilizing agents.
- Suitable agents for this purpose include, but are not limited to, organic solvents (e.g., acetone, ethanol, and methanol), cross-linking agents (e.g., paraformaldehyde), detergents (e.g., saponin, Triton X-100TM, Tween-20TM, or sodium dodecyl sulfate (SDS)), and enzymes (e.g., trypsin, proteases (e.g., proteinase K).
- the detergent is an anionic detergent (e.g., SDS or N-lauroylsarcosine sodium salt solution).
- the biological sample can be permeabilized using any of the methods described herein (e.g., using any of the detergents described herein, e.g., SDS and/or N-lauroylsarcosine sodium salt solution) before or after enzymatic treatment (e.g., treatment with any of the enzymes described herein, e.g., trypin, proteases (e.g., pepsin and/or proteinase K)).
- any of the detergents described herein e.g., SDS and/or N-lauroylsarcosine sodium salt solution
- enzymatic treatment e.g., treatment with any of the enzymes described herein, e.g., trypin, proteases (e.g., pepsin and/or proteinase K)).
- a biological sample can be permeabilized by exposing the sample to greater than about 1.0 w/v % (e.g., greater than about 2.0 w/v %, greater than about 3.0 w/v %, greater than about 4.0 w/v%, greater than about 5.0 w/v %, greater than about 6.0 w/v %, greater than about 7.0 w/v %, greater than about 8.0 w/v %, greater than about 9.0 w/v %, greater than about 10.0 w/v %, greater than about 11.0 w/v %, greater than about 12.0 w/v %, or greater than about 13.0 w/v %) sodium dodecyl sulfate (SDS) and/or N- lauroylsarcosine or N-lauroylsarcosine sodium salt.
- SDS sodium dodecyl sulfate
- a biological sample can be permeabilized by exposing the sample (e.g., for about 5 minutes to about 1 hour, about 5 minutes to about 40 minutes, about 5 minutes to about 30 minutes, about 5 minutes to about 20 minutes, or about 5 minutes to about 10 minutes) to about 1.0 w/v % to about 14.0 w/v % (e.g., about 2.0 w/v % to about 14.0 w/v %, about 2.0 w/v % to about 12.0 w/v %, about 2.0 w/v % to about 10.0 w/v %, about 4.0 w/v % to about 14.0 w/v %, about 4.0 w/v % to about 12.0 w/v %, about 4.0 w/v % to about 10.0 w/v %, about 6.0 w/v % to about 14.0 w/v %, about 6.0 w/v % to about 12.0 w/v %, about 6.0 w/v %
- the biological sample can be incubated with a permeabilizing agent to facilitate permeabilization of the sample.
- a permeabilizing agent to facilitate permeabilization of the sample. Additional methods for sample permeabilization are described, for example, in Jamur et al Method Mol. Biol. 588:63-66, 2010, the entire contents of which are incorporated herein by reference.
- the biological sample can be permeabilized by adding one or more lysis reagents to the sample.
- suitable lysis agents include, but are not limited to, bioactive reagents such as lysis enzymes that are used for lysis of different cell types, e.g., gram positive or negative bacteria, plants, yeast, mammalian, such as lysozymes, achromopeptidase, lysostaphin, labiase, kitalase, lyticase, and a variety of other commercially available lysis enzymes.
- lysis agents can additionally or alternatively be added to the biological sample to facilitate permeabilization.
- surfactant-based lysis solutions can be used to lyse sample cells. Lysis solutions can include ionic surfactants such as, for example, sarcosyl and sodium dodecyl sulfate (SDS). More generally, chemical lysis agents can include, without limitation, organic solvents, chelating agents, detergents, surfactants, and chaotropic agents.
- the biological sample can be permeabilized by non-chemical permeabilization methods.
- Non-chemical permeabilization methods are known in the art.
- non-chemical permeabilization methods that can be used include, but are not limited to, physical lysis techniques such as electroporation, mechanical permeabilization methods (e.g., bead beating using a homogenizer and grinding balls to mechanically disrupt sample tissue structures), acoustic permeabilization (e.g., soni cation), and thermal lysis techniques such as heating to induce thermal permeabilization of the sample.
- a medium, solution, or permeabilization solution may contain one or more proteases.
- a biological sample treated with a protease capable of degrading histone proteins can result in the generation of fragmented genomic DNA.
- the fragmented genomic DNA can be captured using the same capture domain (e.g., capture domain having a poly(T) sequence) used to capture mRNA.
- a biological sample is treated with a protease capable of degrading histone proteins and an RNA protectant prior to spatial profiling in order to facilitate the capture of both genomic DNA and mRNA.
- a biological sample is permeabilized by exposing the sample to a protease capable of degrading histone proteins.
- histone protein typically refers to a linker histone protein (e.g., HI) and/or a core histone protein (e.g., H2A, H2B, H3, and H4).
- a protease degrades linker histone proteins, core histone proteins, or linker histone proteins and core histone proteins. Any suitable protease capable of degrading histone proteins in a biological sample can be used.
- Non-limiting examples of proteases capable of degrading histone proteins include proteases inhibited by leupeptin and TLCK (Tosyl-L-lysyl-chloromethane hydrochloride), a protease encoded by the EUO gene from Chlamydia trachomatis serovar A, granzyme A, a serine protease (e.g., trypsin or trypsin-like protease, neutral serine protease, elastase, cathepsin G), an aspartyl protease (e.g., cathepsin D), a peptidase family Cl enzyme (e.g., cathepsin L), pepsin, proteinase K, a protease that is inhibited by the diazomethane inhibitor Z-Phe-Phe- CHN(2) or the epoxide inhibitor E-64, a lysosomal protease, or
- a serine protease is a trypsin enzyme, trypsin-like enzyme or a functional variant or derivative thereof (e.g., P00761; C0HK48; Q8IYP2; Q8BW11; Q6IE06; P35035; P00760; P06871; Q90627;
- a trypsin enzyme is P00761, P00760, Q29463, or a combination thereof.
- a protease capable of degrading one or more histone proteins comprises an amino acid sequence with at least 80% sequence identity to P00761, P00760, or Q29463.
- a protease capable of degrading one or more histone proteins comprises an amino acid sequence with at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to P00761, P00760, or Q29463.
- a protease may be considered a functional variant if it has at least 50% e.g., at least 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% of the activity relative to the activity of the protease in condition optimum for the enzyme.
- the enzymatic treatment with pepsin enzyme, or pepsin like enzyme can include: P03954/PEPA1 MACFU;
- P27678/PEP A4 MACFU P28713/PEP A4 RABIT; P0DJD9/PEPA5 HUMAN;
- the pepsin enzyme can include: P00791/PEPA PIG; P00792/PEPA BOVIN, functional variants, derivatives, or combinations thereof.
- the protease may be contained in a reaction mixture (solution), which also includes other components (e.g., buffer, salt, chelator (e.g., EDTA), and/or detergent (e.g., SDS, N-Lauroylsarcosine sodium salt solution)).
- the reaction mixture may be buffered, having a pH of about 6.5-8.5, e.g., about 7.0-8.0.
- reaction mixture may be used at any suitable temperature, such as about 10-50°C, e.g., about 10-44°C, 11-43°C, 12- 42° C, 13-41°C, 14-40°C, 15-39°C, 16-38 °C, 17-37°C, e.g., about 10°C, 12°C, 15°C, 18°C, 20°C, 22°C, 25°C, 28°C, 30°C, 33°C, 35°C or 37 °C, preferably about 35-45°C, e.g., about 37°C.
- any suitable temperature such as about 10-50°C, e.g., about 10-44°C, 11-43°C, 12- 42° C, 13-41°C, 14-40°C, 15-39°C, 16-38 °C, 17-37°C, e.g., about 10°C, 12°C, 15°C, 18°C, 20°C, 22°C, 25°C, 28°C, 30°
- a permeabilization solution can contain additional reagents or a biological sample may be treated with additional reagents in order to optimize biological sample permeabilization.
- an additional reagent is an RNA protectant.
- RNA protectant typically refers to a reagent that protects RNA from RNA nucleases (e.g., RNases). Any appropriate RNA protectant that protects RNA from degradation can be used.
- RNA protectant includes organic solvents (e.g., at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% v/v organic solvent), which include, without limitation, ethanol, methanol, propan-2-ol, acetone, trichloroacetic acid, propanol, polyethylene glycol, acetic acid, or a combination thereof.
- a RNA protectant includes ethanol, methanol and/or propan-2-ol, or a combination thereof.
- a RNA protectant includes RNAlater ICE (ThermoFisher Scientific).
- the RNA protectant comprises at least about 60% ethanol.
- the RNA protectant comprises about 60-95% ethanol, about 0-35% methanol and about 0-35% propan-2-ol, wherein the total amount of organic solvent in the medium is not more than about 95%. In some embodiments, the RNA protectant comprises about 60-95% ethanol, about 5-20% methanol and about 5-20% propan- 2-ol, wherein the total amount of organic solvent in the medium is not more than about 95%.
- the RNA protectant includes a salt.
- the salt may include ammonium sulfate, ammonium bisulfate, ammonium chloride, ammonium acetate, cesium sulfate, cadmium sulfate, cesium iron (II) sulfate, chromium (III) sulfate, cobalt (II) sulfate, copper (II) sulfate, lithium chloride, lithium acetate, lithium sulfate, magnesium sulfate, magnesium chloride, manganese sulfate, manganese chloride, potassium chloride, potassium sulfate, sodium chloride, sodium acetate, sodium sulfate, zinc chloride, zinc acetate and zinc sulfate.
- the salt is a sulfate salt, for example, ammonium sulfate, ammonium bisulfate, cesium sulfate, cadmium sulfate, cesium iron (II) sulfate, chromium (III) sulfate, cobalt (II) sulfate, copper (II) sulfate, lithium sulfate, magnesium sulfate, manganese sulfate, potassium sulfate, sodium sulfate, or zinc sulfate.
- the salt is ammonium sulfate.
- the salt may be present at a concentration of about 20 g/100 ml of medium or less, such as about 15g/100 ml, lOg/100 ml, 9g/100 ml, 8g/100 ml, 7g/100 ml, 6g/100 ml, 5g/100 ml or less, e.g., about 4g, 3g, 2g or lg/lOOml.
- RNA protectant may be contained in a medium that further includes a chelator (e.g., EDTA), a buffer (e.g., sodium citrate, sodium acetate, potassium citrate, or potassium acetate, preferably sodium acetate), and/or buffered to a pH between about 4-8 (e.g., about 5).
- a chelator e.g., EDTA
- a buffer e.g., sodium citrate, sodium acetate, potassium citrate, or potassium acetate, preferably sodium acetate
- a pH between about 4-8 e.g., about 5
- the biological sample is treated with one or more RNA protectants before, contemporaneously with, or after permeabilization.
- a biological sample is treated with one or more RNA protectants prior to treatment with one or more permeabilization reagents (e.g., one or more proteases).
- a biological sample is treated with a solution including one or more RNA protectants and one or more permeabilization reagents (e.g., one or more proteases).
- a biological sample is treated with one or more RNA protectants after the biological sample has been treated with one or more permeabilization reagents (e.g., one or more proteases).
- a biological sample is treated with one or more RNA protectants prior to fixation.
- identifying the location of the captured analyte in the biological sample includes a nucleic acid extension reaction.
- a nucleic acid extension reaction includes DNA polymerase.
- a nucleic acid extension reaction includes using a DNA polymerase to extend the capture probe that is hybridized to the captured analyte (e.g., fragmented genomic DNA) using the captured analyte (e.g., fragmented genomic DNA) as a template.
- the product of the extension reaction includes a spatially - barcoded analyte (e.g., spatially-barcoded fragmented genomic DNA).
- the spatially- barcoded analyte (e.g., spatially-barcoded fragmented genomic DNA) can be used to identify the spatial location of the analyte in the biological sample.
- Any DNA polymerase that is capable of extending the capture probe using the captured analyte as a template can be used for the methods described herein.
- Non-limiting examples of DNA polymerases include T7 DNA polymerase; Bsu DNA polymerase; and E.coli DNA Polymerase pol I.
- a diffusion-resistant medium typically used to limit diffusion of analytes, can include at least one permeabilization reagent.
- the diffusion- resistant medium e.g., a hydrogel
- the diffusion- resistant medium can include wells (e.g., micro-, nano-, or picowells or pores) containing a permeabilization buffer or reagents.
- the diffusion- resistant medium e.g., a hydrogel
- the hydrogel or other diffusion-resistant medium can contain dried reagents or monomers to deliver permeabilization reagents when the diffusion-resistant medium is applied to a biological sample.
- the diffusion-resistant medium, e.g., hydrogel
- the diffusion-resistant medium is covalently attached to a solid substrate (e.g., an acrylated glass slide).
- the hydrogel can be modified to both deliver permeabilization reagents and contain capture probes.
- a hydrogel film can be modified to include spatially-barcoded capture probes. The spatially-barcoded hydrogel film is then soaked in permeabilization buffer before contacting the spatially-barcoded hydrogel film to the sample.
- a hydrogel can be modified to include spatially-barcoded capture probes and designed to serve as a porous membrane (e.g., a permeable hydrogel) when exposed to permeabilization buffer or any other biological sample preparation reagent.
- permeabilization reagent diffuses through the spatially-barcoded permeable hydrogel and permeabilizes the biological sample on the other side of the hydrogel.
- the analytes then diffuse into the spatially-barcoded hydrogel after exposure to permeabilization reagents.
- the spatially-barcoded hydrogel e.g., porous membrane
- biological analytes diffuse into the hydrogel before exposure to permeabilization reagents (e.g., when secreted analytes are present outside of the biological sample or in instances where a biological sample is lysed or permeabilized by other means prior to addition of permeabilization reagents).
- the permeabilization reagent is flowed over the hydrogel at a variable flow rate (e.g., any flow rate that facilitates diffusion of the permeabilization reagent across the spatially -barcoded hydrogel).
- the permeabilization reagents are flowed through a microfluidic chamber or channel over the spatially-barcoded hydrogel.
- biological sample preparation reagents can be flowed over the hydrogel to further facilitate diffusion of the biological analytes into the spatially-barcoded hydrogel.
- the spatially-barcoded hydrogel film thus delivers permeabilization reagents to a sample surface in contact with the spatially-barcoded hydrogel, enhancing analyte migration and capture.
- the spatially- barcoded hydrogel is applied to a sample and placed in a permeabilization bulk solution.
- the hydrogel film soaked in permeabilization reagents is sandwiched between a sample and a spatially-barcoded array.
- target analytes are able to diffuse through the permeabilizing reagent soaked hydrogel and hybridize or bind the capture probes on the other side of the hydrogel.
- the thickness of the hydrogel is proportional to the resolution loss.
- wells can contain spatially-barcoded capture probes and permeabilization reagents and/or buffer.
- spatially-barcoded capture probes and permeabilization reagents are held between spacers.
- the sample is punch, cut, or transferred into the well, wherein a target analyte diffuses through the permeabilization reagent/buffer and to the spatially-barcoded capture probes.
- resolution loss may be proportional to gap thickness (e.g., the amount of permeabilization buffer between the sample and the capture probes).
- the diffusion-resistant medium e.g., hydrogel
- the diffusion-resistant medium is between approximately 50-500 micrometers thick including 500, 450, 400, 350, 300, 250, 200, 150, 100, or 50 micrometers thick, or any thickness within 50 and 500 micrometers.
- a biological sample is exposed to a porous membrane (e.g., a permeable hydrogel) to aid in permeabilization and limit diffusive analyte losses, while allowing permeabilization reagents to reach a sample.
- a porous membrane e.g., a permeable hydrogel
- Membrane chemistry and pore volume can be manipulated to minimize analyte loss.
- the porous membrane may be made of glass, silicon, paper, hydrogel, polymer monoliths, or other material.
- the material may be naturally porous.
- the material may have pores or wells etched into solid material.
- the permeabilization reagents are flowed through a microfluidic chamber or channel over the porous membrane.
- the flow controls the sample’s access to the permeabilization reagents.
- the porous membrane is a permeable hydrogel.
- a hydrogel is permeable when permeabilization reagents and/or biological sample preparation reagents can pass through the hydrogel using diffusion. Any suitable permeabilization reagents and/or biological sample preparation reagents described herein can be used under conditions sufficient to release analytes (e.g., nucleic acid, protein, metabolites, lipids, etc.) from the biological sample.
- a hydrogel is exposed to the biological sample on one side and permeabilization reagent on the other side.
- the permeabilization reagent diffuses through the permeable hydrogel and permeabilizes the biological sample on the other side of the hydrogel.
- permeabilization reagents are flowed over the hydrogel at a variable flow rate (e.g., any flow rate that facilitates diffusion of the permeabilization reagent across the hydrogel).
- the permeabilization reagents are flowed through a microfluidic chamber or channel over the hydrogel. Flowing permeabilization reagents across the hydrogel enables control of the concentration of reagents.
- hydrogel chemistry and pore volume can be tuned to enhance permeabilization and limit diffusive analyte losses.
- a porous membrane is sandwiched between a spatially - barcoded array and the sample, wherein permeabilization solution is applied over the porous membrane.
- the permeabilization reagents diffuse through the pores of the membrane and into the biological sample.
- the biological sample can be placed on a substrate (e.g., a glass slide).
- Biological analytes then diffuse through the porous membrane and into to the space containing the capture probes.
- the porous membrane is modified to include capture probes.
- the capture probes can be attached to a surface of the porous membrane using any of the methods described herein.
- the capture probes can be embedded in the porous membrane at any depth that allows interaction with a biological analyte.
- the porous membrane is placed onto a biological sample in a configuration that allows interaction between the capture probes on the porous membrane and the biological analytes from the biological sample.
- the capture probes are located on the side of the porous membrane that is proximal to the biological sample.
- permeabilization reagents on the other side of the porous membrane diffuse through the porous membrane into the location containing the biological sample and the capture probes in order to facilitate permeabilization of the biological sample (e.g., also facilitating capture of the biological analytes by the capture probes).
- the porous membrane is located between the sample and the capture probes.
- the permeabilization reagents are flowed through a microfluidic chamber or channel over the porous membrane.
- biological samples can be processed to selectively release an analyte from a subcellular region of a cell according to established methods.
- a method provided herein can include detecting at least one biological analyte present in a subcellular region of a cell in a biological sample.
- a“subcellular region” can refer to any subcellular region.
- a subcellular region can refer to cytosol, a mitochondria, a nucleus, a nucleolus, an endoplasmic reticulum, a lysosome, a vesicle, a Golgi apparatus, a plastid, a vacuole, a ribosome, cytoskeleton, or combinations thereof.
- the subcellular region comprises at least one of cytosol, a nucleus, a mitochondria, and a microsome. In some embodiments, the subcellular region is cytosol. In some embodiments, the subcellular region is a nucleus. In some embodiments, the subcellular region is a mitochondria. In some embodiments, the subcellular region is a microsome.
- a biological analyte can be selectively released from a subcellular region of a cell by selective permeabilization or selective lysing.
- “selective permeabilization” can refer to a permeabilization method that can permeabilize a membrane of a subcellular region while leaving a different subcellular region substantially intact (e.g., biological analytes are not released from subcellular region due to the applied
- Non-limiting examples of selective permeabilization methods include using electrophoresis and/or applying a permeabilization reagent.
- “selective lysing” can refer to a lysis method that can lyse a membrane of a subcellular region while leaving a different subcellular region substantially intact (e.g., biological analytes are not released from subcellular region due to the applied lysis method).
- Several methods for selective permeabilization or lysis are known to one of skill in the art including the methods described in Lu et al. Lab Chip. 2005 Jan;5(l):23-9; Niklas et al. Anal Biochem. 2011 Sep 15;416(2):218-27; Cox and Emili. Nat Protoc.
- “selective permeabilization” or“selective lysis” refer to the selective permeabilization or selective lysis of a specific cell type.
- “selective permeabilization” or“selective lysis” can refer to lysing one cell type while leaving a different cell type substantially intact (e.g., biological analytes are not released from the cell due to the applied permeabilization or lysis method).
- a cell that is a“different cell type” than another cell can refer to a cell from a different taxonomic kingdom, a prokaryotic cell versus a eukaryotic cell, a cell from a different tissue type, etc.
- Many methods are known to one of skill in the art for selectively permeabilizing or lysing different cell types. Non-limiting examples include applying a permeabilization reagent, electroporation, and/or sonication.
- applying a selective permeabilization or lysis reagent comprises contacting the biological sample with a hydrogel comprising the permeabilization or lysis reagent.
- the biological sample is contacted with two or more arrays (e.g., flexible arrays, as described herein). For example, after a subcellular region is permeabilized and a biological analyte from the subcellular region is captured on a first array, the first array can be removed, and a biological analyte from a different subcellular region can be captured on a second array.
- arrays e.g., flexible arrays, as described herein.
- RNA analyte species of interest can be selectively enriched (e.g., Adiconis, et. al, Comparative analysis of RNA sequencing methods for degraded and low-input samples, Nature, vol. 10, July 2013, 623- 632, herein incorporated by reference in its entirety).
- one or more species of RNA can be selected by addition of one or more oligonucleotides to the sample.
- the additional oligonucleotide is a sequence used for priming a reaction by a polymerase.
- one or more primer sequences with sequence complementarity to one or more RNAs of interest can be used to amplify the one or more RNAs of interest, thereby selectively enriching these RNAs.
- an oligonucleotide with sequence complementarity to the complementary strand of captured RNA e.g., cDNA
- biotinylated oligonucleotides with sequence complementary to one or more cDNAs of interest binds to the cDNA and can be selected using biotinylation- streptavidin affinity using any of a variety of methods known to the field (e.g., streptavidin beads).
- RNA e.g., ribosomal and/or mitochondrial RNA
- RNA depletion can be down-selected (e.g., removed, depleted) using any of a variety of methods.
- Non-limiting examples of a hybridization and capture method of ribosomal RNA depletion include RiboMinusTM, RiboCopTM, and Ribo-ZeroTM.
- Another non-limiting RNA depletion method involves hybridization of complementary DNA oligonucleotides to unwanted RNA followed by degradation of the RNA/DNA hybrids using RNase H.
- Non-limiting examples of a hybridization and degradation method include NEBNext® rRNA depletion, NuGEN Any Deplete, or RiboZero Plus.
- RNA depletion method includes ZapRTM digestion, for example SMARTer.
- SMARTer random nucleic acid adapters are hybridized to RNA for first-strand synthesis and tailing by reverse transcriptase, followed by template switching and extension by reverse transcriptase.
- first round PCR amplification adds full-length Illumina sequencing adapters (e.g., Illumina indexes). Ribosomal RNA is cleaved by ZapR v2 and R probes v2. A second round of PCR is performed, amplifying non-rRNA molecules (e.g., cDNA). Parts or steps of these ribosomal depletion protocols/kits can be further combined with the methods described herein to optimize protocols for a specific biological sample.
- Illumina sequencing adapters e.g., Illumina indexes
- Ribosomal RNA is cleaved by ZapR v2 and R probes v2.
- a second round of PCR is performed, amplifying non-rRNA molecules (e.g., cDNA). Parts or steps of these ribosomal depletion protocols/kits can be further combined with the methods described herein to optimize protocols for a specific biological sample.
- probes can be administered to a sample that selectively hybridize to ribosomal RNA (rRNA), thereby reducing the pool and concentration of rRNA in the sample.
- Probes can be administered to a biological sample that selectively hybridize to mitochondria RNA (mtRNA), thereby reducing the pool and concentration of mtRNA in the sample.
- mtRNA mitochondria RNA
- probes complementary to mitochondrial RNA can be added during cDNA synthesis, or probes complementary to both ribosomal and mitochondrial RNA can be added during cDNA synthesis. Subsequent application of capture probes to the sample can result in improved capture of other types of RNA due to a reduction in non-specific RNA (e.g., down-selected RNA) present in the sample.
- duplex- specific nuclease (DSN) treatment can remove rRNA (see, e.g., Archer, et al, Selective and flexible depletion of problematic sequences from RNA-seq libraries at the cDNA stage, BMC Genomics, 15 401, (2014), the entire contents of which are incorporated herein by reference).
- hydroxyapatite chromatography can remove abundant species (e.g., rRNA)
- Additional reagents can be added to a biological sample to perform various functions prior to analysis of the biological sample.
- nuclease inhibitors such as DNase and RNase inactivating agents or protease inhibitors, and/or chelating agents such as EDTA
- nucleases such as DNase or RNAse, or proteases, such as pepsin or proteinase K
- additional reagents may be dissolved in a solution or applied as a medium to the sample.
- additional reagents e.g., pepsin
- hematoxylin from an H&E stain, can be optionally removed from the biological sample by washing in dilute HC1 (0.001M to 0.1M) prior to further processing.
- pepsin can be dissolved in dilute HC1 (0.001M to 0.1M) prior to further processing.
- biological samples can be washed additional times (e.g., 2, 3, 4, 5, or more times) in dilute HC1 prior to incubation with a protease (e.g., pepsin), but after proteinase K treatment.
- the biological sample can be treated with one or more enzymes.
- one or more endonucleases to fragment DNA DNA polymerase enzymes, and dNTPs used to amplify nucleic acids can be added.
- Other enzymes that can also be added to the biological sample include, but are not limited to, polymerase, transposase, ligase, and DNAse, and RNAse.
- reverse transcriptase enzymes can be added to the sample, including enzymes with terminal transferase activity, primers, and template switch oligonucleotides (TSOs).
- Template switching can be used to increase the length of a cDNA, e.g., by appending a predefined nucleic acid sequence to the cDNA.
- the appended nucleic acid sequence comprises one or more ribonucleotides.
- additional reagents can be added to improve the recovery of one or more target molecules (e.g., cDNA molecules, mRNA transcripts).
- target molecules e.g., cDNA molecules, mRNA transcripts
- addition of carrier RNA to a RNA sample workflow process can increase the yield of extracted RNA/DNA hybrids from the biological sample.
- carrier molecules are useful when the concentration of input or target molecules is low as compared to remaining molecules. Generally, single target molecules cannot form a precipitate, and addition of the carrier molecules can help in forming a precipitate.
- Some target molecule recovery protocols use carrier RNA to prevent small amounts of target nucleic acids present in the sample from being irretrievably bound.
- carrier RNA can be added immediately prior to a second strand synthesis step.
- carrier RNA can be added immediately prior to a second strand cDNA synthesis on oligonucleotides released from an array. In some embodiments, carrier RNA can be added immediately prior to a post in vitro transcription clean-up step. In some embodiments, carrier RNA can be added prior to amplified RNA purification and quantification. In some embodiments, carrier RNA can be added before RNA quantification. In some embodiments, carrier RNA can be added immediately prior to both a second strand cDNA synthesis and a post in vitro transcription clean-up step.
- analytes in a biological sample can be pre-processed prior to interaction with a capture probe.
- polymerization reactions catalyzed by a polymerase e.g., DNA polymerase or reverse transcriptase
- a primer for the polymerization reaction includes a functional group that enhances hybridization with the capture probe.
- the capture probes can include appropriate capture domains to capture biological analytes of interest (e.g., poly(dT) sequence to capture poly(A) mRNA).
- biological analytes are pre-processed for library generation via next generation sequencing.
- analytes can be pre-processed by addition of a modification (e.g., ligation of sequences that allow interaction with capture probes).
- analytes e.g., DNA or RNA
- fragmentation techniques e.g., using transposases and/or fragmentation buffers.
- Fragmentation can be followed by a modification of the analyte.
- a modification can be the addition through ligation of an adapter sequence that allows hybridization with the capture probe.
- poly(A) tailing is performed. Addition of a poly(A) tail to RNA that does not contain a poly(A) tail can facilitate hybridization with a capture probe that includes a capture domain with a functional amount of poly(dT) sequence.
- ligation reactions catalyzed by a ligase are performed in the biological sample.
- ligation can be performed by chemical ligation.
- the ligation can be performed using click chemistry as further described below.
- the capture domain includes a DNA sequence that has complementarity to a RNA molecule, where the RNA molecule has complementarity to a second DNA sequence, and where the RNA-DNA sequence complementarity is used to ligate the second DNA sequence to the DNA sequence in the capture domain. In these embodiments, direct detection of RNA molecules is possible.
- target-specific reactions are performed in the biological sample.
- target specific reactions include, but are not limited to, ligation of target specific adaptors, probes and/or other oligonucleotides, target specific amplification using primers specific to one or more analytes, and target-specific detection using in situ hybridization, DNA microscopy, and/or antibody detection.
- a capture probe includes capture domains targeted to target- specific products (e.g., amplification or ligation).
- Array-based spatial analysis methods involve the transfer of one or more analytes from a biological sample to an array of features on a substrate, where each feature is associated with a unique spatial location on the array. Subsequent analysis of the transferred analytes includes determining the identity of the analytes and the spatial location of each analyte within the biological sample. The spatial location of each analyte within the biological sample is determined based on the feature to which each analyte is bound on the array, and the feature’s relative spatial location within the array.
- FIG. 1 depicts an exemplary embodiment of this general method.
- the spatially-barcoded array populated with capture probes (as described further herein) is contacted with a biological sample 101, and biological sample is permeabilized, allowing the analyte to migrate away from the sample and toward the array.
- the analyte interacts with a capture probe on the spatially-barcoded array 102.
- the sample is optionally removed from the array and the capture probes are analyzed in order to obtain spatially-resolved analyte information 103.
- FIG. 2 depicts an exemplary embodiment of this general method, the spatially-barcoded array populated with capture probes (as described further herein) can be contacted with a sample 201.
- the spatially-barcoded capture probes are cleaved and then interact with cells within the provided biological sample 202.
- the interaction can be a covalent or non-covalent cell-surface interaction.
- the interaction can be an intracellular interaction facilitated by a delivery system or a cell penetration peptide.
- the sample can be optionally removed for analysis.
- the sample can be optionally dissociated before analysis.
- the capture probes can be analyzed to obtain spatially -resolved information about the tagged cell 203.
- FIG. 3 shows an exemplary workflow that includes preparing a biological sample on a spatially-barcoded array 301.
- Sample preparation may include placing the sample on a slide, fixing the sample, and/or staining the biological sample for imaging.
- the stained sample can be then imaged on the array 302 using both brightfield (to image the sample hematoxylin and eosin stain) and/or fluorescence (to image features) modalities.
- the sample can be destained prior to permeabilization.
- analytes are then released from the sample and capture probes forming the spatially-barcoded array hybridize or bind the released analytes 303.
- the sample is then removed from the array 304 and the capture probes cleaved from the array 305.
- the biological sample and array are then optionally imaged a second time in one or both modalities 305B while the analytes are reverse transcribed into cDNA, and an amplicon library is prepared 306 and sequenced 307. Images are then spatially-overlaid in order to correlate spatially-identified biological sample information 308.
- a spot coordinate file is supplied instead.
- the spot coordinate file replaces the second imaging step 305B.
- amplicon library preparation 306 can be performed with a unique PCR adapter and sequenced 307.
- FIG. 4 shows another exemplary workflow that utilizes a spatially-barcoded array on a substrate, where spatially-barcoded capture probes are clustered at areas called features.
- the spatially-barcoded capture probes can include a cleavage domain, one or more functional domains, a spatial barcode, a unique molecular identifier, and a capture domain.
- the spatially-barcoded capture probes can also include a 5’ end modification for reversible attachment to the substrate.
- the spatially-barcoded array is contacted with a biological sample 401, and the sample is permeabilized through application of permeabilization reagents 402. Permeabilization reagents may be administered by placing the array/sample assembly within a bulk solution.
- permeabilization reagents may be administered to the sample via a diffusion-resistant medium and/or a physical barrier such as a lid, wherein the sample is sandwiched between the diffusion-resistant medium and/or barrier and the array- containing substrate.
- the analytes are migrated toward the spatially-barcoded capture array using any number of techniques disclosed herein.
- analyte migration can occur using a diffusion-resistant medium lid and passive migration.
- analyte migration can be active migration, using an electrophoretic transfer system, for example.
- the capture probes can hybridize or otherwise bind a target analyte 403.
- the biological sample can be optionally removed from the array 404.
- the capture probes can be optionally cleaved from the array 405, and the captured analytes can be spatially-barcoded by performing a reverse transcriptase first strand cDNA reaction.
- a first strand cDNA reaction can be optionally performed using template switching oligonucleotides.
- a template switching oligonucleotide can hybridize to a poly(C) tail added to a 3’end of the cDNA by a reverse transcriptase enzyme in a template independent manner.
- the original mRNA template and template switching oligonucleotide can then be denatured from the cDNA and the spatially-barcoded capture probe can then hybridize with the cDNA and a complement of the cDNA can be generated.
- the first strand cDNA can then be purified and collected for downstream amplification steps.
- the first strand cDNA can be amplified using PCR 406, where the forward and reverse primers flank the spatial barcode and analyte regions of interest, generating a library associated with a particular spatial barcode 407.
- the library preparation can be quantitated and/or quality controlled to verify the success of the library preparation steps 408.
- the cDNA comprises a sequencing by synthesis (SBS) primer sequence.
- SBS sequencing by synthesis
- RNA transcripts present in biological samples can be used for spatial transcriptome analysis.
- the barcoded oligonucleotides may be configured to prime, replicate, and consequently yield barcoded extension products from an RNA template, or derivatives thereof.
- oligonucleotides may include mRNA specific priming sequences, e.g., poly-T primer segments that allow priming and replication of mRNA in a reverse transcription reaction or other targeted priming sequences.
- mRNA specific priming sequences e.g., poly-T primer segments that allow priming and replication of mRNA in a reverse transcription reaction or other targeted priming sequences.
- random RNA priming may be carried out using random N-mer primer segments of the barcoded oligonucleotides.
- RTs can use an RNA template and a primer complementary to the 3’ end of the RNA template to direct the synthesis of the first strand complementary DNA (cDNA).
- Many RTs can be used in this reverse transcription reactions, including, for example, avian myeloblastosis virus (AMV) reverse transcriptase, moloney murine leukemia virus (M-MuLV or MMLV), and other variants thereof.
- AMV avian myeloblastosis virus
- M-MuLV moloney murine leukemia virus
- Some recombinant M-MuLV reverse transcriptase such as, for example, PROTOSCRIPT® II reverse transcriptase, can have reduced RNase H activity and increased thermostability when compared to its wild type counterpart, and provide higher specificity, higher yield of cDNA and more full-length cDNA products with up to 12 kilobase (kb) in length.
- the reverse transcriptase can have reduced RNase H activity and increased thermostability when compared to its wild type counterpart, and provide higher specificity, higher yield of cDNA and more full-length cDNA products with up to 12 kilobase (kb) in length.
- the reverse transcriptase such as, for example, PROTOSCRIPT® II reverse transcriptase
- transcriptase enzyme is a mutant reverse transcriptase enzyme such as, but not limited to, mutant MMLV reverse transcriptase.
- the reverse transcriptase is a mutant MMLV reverse transcriptase such as, but not limited to, one or more variants described in US Patent Publication No. 20180312822 and US Provisional Patent Application No. 62/946,885 filed on December 11, 2019, both of which are incorporated herein by reference in their entireties.
- FIG. 5 depicts an exemplary workflow where the biological sample is removed from the spatially-barcoded array and the spatially-barcoded capture probes are removed from the array for barcoded analyte amplification and library preparation.
- Another embodiment includes performing first strand synthesis using template switching oligonucleotides on the spatially-barcoded array without cleaving the capture probes.
- sample preparation 501 and permeabilization 502 are performed as described elsewhere herein. Once the capture probes capture the analyte(s), first strand cDNA created by template switching and reverse transcriptase 503 is then denatured and the second strand is then extended 504.
- the second strand cDNA is then denatured from the first strand cDNA, neutralized, and transferred to a tube 505.
- cDNA quantification and amplification can be performed using standard techniques discussed herein.
- the cDNA can then be subjected to library preparation 506 and indexing 507, including fragmentation, end-repair, and a-tailing, and indexing PCR steps.
- the library preparation can optionally be quality controlled to verify the success of the library preparation methods 508.
- a biological sample e.g., tissue section
- methanol stained with hematoxylin and eosin
- imaged can be destained prior to permeabilization.
- the images can be used to map spatial gene expression patterns back to the biological sample.
- a permeabilization enzyme can be used to permeabilize the biological sample directly on the slide.
- Analytes e.g., polyadenylated mRNA
- RT Reverse transcription
- Incubation with the RT reagents can produce spatially -barcoded full-length cDNA from the captured analytes (e.g., polyadenylated mRNA).
- Second strand reagents e.g., second strand primers, enzymes
- the resulting cDNA can be denatured from the capture probe template and transferred (e.g., to a clean tube) for amplification, and/or library construction.
- the spatially- barcoded, full-length cDNA can be amplified via PCR prior to library construction. The amplicons can then be enzymatically fragmented and/or size-selected in order to provide for desired amplicon size.
- P5 and P7 sequences can be added to the amplifcons thereby allowing for capture of the library preparation on a sequencing flowcell (e.g., on Illumina sequencing instruments). Additionally, i7 and i5 can index sequences be added as sample indexes if multiple libraries are to be pooled and sequenced together. Further, Read 1 and Read 2 sequences can be added to the library preparation for sequencing purposes.
- aftorementioned sequences can be added to a library preparation sample, fore example, via End Repair, A-tailing, Adaptor Ligation, and/or PCR.
- the cDNA fragments can then be sequenced using, for example, paired-end sequencing using TruSeq Read 1 and TruSeq Read 2 as sequencing primer sites.
- performing correlative analysis of data produced by this workflow, and other workflows described herein can yield over 95% correlation of genes expressed across two capture areas (e.g., 95% or greater, 96% or greater, 97% or greater,
- correlative analysis of the data can yield over 90% (e.g., over 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) correlation of genes expressed across two capture areas.
- the cDNA can be amplified directly on the substrate surface. Generating multiple copies of the cDNA (e.g., cDNA synthesized from captured analytes) via amplification directly on the substrate surface can improve final sequencing library complexity.
- cDNA can be amplified directly on the substrate surface by isothermal nucleic acid amplification.
- isothermal nucleic acid amplification can amplify RNA or DNA.
- isothermal amplification can be faster than a standard PCR reaction.
- isothermal amplification can be linear amplification (e.g., asymmetrical with a single primer), or exponential amplification (e.g., with two primers).
- isothermal nucleic acid amplification can be performed by a template switching oligonucleotide primer.
- oligonucleotide adds a common sequence onto the 5’ end of the RNA being reverse transcribed. For example, after a capture probe interacts with an analyte (e.g., mRNA) and reverse transcription is performed such that additional nucleotides are added to the end of the cDNA creating a 3’ overhang as described herein.
- analyte e.g., mRNA
- reverse transcription is performed such that additional nucleotides are added to the end of the cDNA creating a 3’ overhang as described herein.
- a template switching oligonucleotide hybridizes to untemplated poly(C) nucleotides added by a reverse transcriptase to continue replication to the 5’ end of the template switching oligonucleotide, thereby generating full-length cDNA ready for further amplification.
- the template switching oligonucleotide adds a common 5’ sequence to full-length cDNA that is used for cDNA amplification (e.g., a reverse complement of the template switching oligonucleotide).
- the template switching oligonucleotide can serve as a primer in a cDNA amplification reaction (e.g., with a DNA polymerase).
- double stranded cDNA e.g., first strand cDNA and second strand reverse complement cDNA
- the strand displacing DNA polymerase can generate a displaced second strand resulting in an amplified product.
- barcode exchange e.g., spatial barcode
- the free 3 ⁇ H end of the unused capture probes can be blocked by any suitable 3 ⁇ H blocking method.
- the 3 ⁇ H can be blocked by hairpin ligation.
- Isothermal nucleic acid amplification can be used in addition to, or as an alternative to standard PCR reactions (e.g., a PCR reaction that requires heating to about 95°C to denature double stranded DNA). Isothermal nucleic acid amplification generally does not require the use of a thermocycler, however in some embodiments, isothermal amplification can be performed in a thermocycler. In some embodiments, isothermal amplification can be performed from about 35°C to about 75°C.
- isothermal amplification can be performed from about 40°C, about 45°C, about 50°C, about 55°C, about 60°C, about 65°C, or about 70°C or anywhere in between depending on the polymerase and auxiliary enzymes used.
- Isothermal nucleic acid amplification techniques are known in the art, and can be used alone or in combination with any of the spatial methods described herein.
- suitable isothermal nucleic acid amplification techniques include transcription mediated amplification, nucleic acid sequence-based amplification, signal mediated amplification of RNA technology, strand displacement amplification, rolling circle amplification, loop-mediated isothermal amplification of DNA (LAMP), isothermal multiple displacement amplification, recombinase polymerase amplification, helicase-dependent amplification, single primer isothermal amplification, and circular helicase-dependent amplification (See, e.g., Gill and Ghaemi, Nucleic acid isothermal amplification
- the isothermal nucleic acid amplification is helicase-dependent nucleic acid amplification.
- Helicase-dependent isothermal nucleic acid amplification is described in Vincent, et. al, Helicase-dependent isothermal DNA amplification, EMBO Rep., 795-800 (2004) and U.S. Patent No. 7,282,328, which are both incorporated herein by reference in their entireties.
- helicase-dependent nucleic acid amplification on a substrate e.g., on-chip
- Andresen, et is described in Andresen, et.
- the isothermal nucleic acid amplification isothermal nucleic acid amplification
- Recombinase polymerase nucleic acid amplification Recombinase polymerase nucleic acid amplification. Recombinase polymerase nucleic acid amplification is described in Piepenburg, et al, DNA Detection Using Recombinant Proteins, PLoS Biol., 4, 7 e204 (2006) and Li, et. al, Review: a comprehensive summary of a decade development of the recombinase polymerase amplification, Analyst, 144, 31-67, doi:
- isothermal amplification techniques use standard PCR reagents (e.g., buffer, dNTPs etc.) known in the art. Some isothermal amplification techniques can require additional reagents.
- helicase dependent nucleic acid amplification uses a single- strand binding protein and an accessory protein.
- recombinase polymerase nucleic acid amplification uses recombinase (e.g., T4 UvsX), recombinase loading factor (e.g., TF UvsY), single-strand binding protein (e.g., T4 gp32), crowding agent (e.g., PEG- 35K), and ATP.
- the isothermally amplified cDNAs (e.g., single-stranded or double- stranded) can be recovered from the substrate, and optionally followed by amplification with typical cDNA PCR in microcentrifuge tubes. The sample can then be used with any of the spatial methods described herein.
- immunofluorescence or immunohistochemistry protocols can be performed as a part of, or in addition to, the exemplary spatial workflows presented herein.
- tissue sections can be fixed according to methods described herein.
- the biological sample can be transferred to an array (e.g., capture probe array), wherein analytes (e.g., proteins) are probed using an array (e.g., capture probe array), wherein analytes (e.g., proteins) are probed using an array.
- analytes e.g., proteins
- the sample can be rehydrated, blocked, and permeabilized (3XSSC, 2% BSA, 0.1% Triton X, 1 U/mI RNAse inhibitor for 10 min at 4°C) before being stained with fluorescent primary antibodies (1 : 100 in 3XSSC, 2% BSA, 0.1% Triton X, 1 U/mI RNAse inhibitor for 30 min at 4°C).
- the biological sample can be washed, coverslipped (in glycerol + 1 U/mI RNAse inhibitor), imaged (e.g., using a confocal microscope or other apparatus capable of fluorescent detection), washed, and processed according to analyte capture or spatial workflows described herein.
- an“antigen retrieval buffer” can improve antibody capture in IF/IHC protocols.
- An exemplary protocol for antigen retrieval can be preheating the antigen retrieval buffer (e.g., to 95°C), immersing the biological sample in the heated antigen retrieval buffer for a predetermined time, and then removing the biological sample from the antigen retrieval buffer and washing the biological sample.
- optimizing permeabilization can be useful for identifying intracellular analytes.
- Permeabilization optimization can include selection of
- Tissue permeabilization is discussed elsewhere herein.
- blocking an array and/or a biological sample in preparation of labeling the biological sample decreases unspecific binding of the antibodies to the array and/or biological sample (decreases background).
- Some embodiments provide for blocking buffers/blocking solutions that can be applied before and/or during application of the label, wherein the blocking buffer can include a blocking agent, and optionally a surfactant and/or a salt solution.
- a blocking agent can be bovine serum albumin (BSA), serum, gelatin (e.g., fish gelatin), milk (e.g., non-fat dry milk), casein, polyethylene glycol (PEG), polyvinyl alcohol (PVA), or polyvinylpyrrolidone (PVP), biotin blocking reagent, a peroxidase blocking reagent, levamisole, Camoy’s solution, glycine, lysine, sodium borohydride, pontamine sky blue, Sudan Black, trypan blue, FITC blocking agent, and/or acetic acid.
- the blocking buffer/blocking solution can be applied to the array and/or biological sample prior to and/or during labeling (e.g., application of fluorophore-conjugated antibodies) to the biological sample.
- additional steps or optimizations can be included in performing IF/IHC protocols in conjunction with spatial arrays. Additional steps or optimizations can be included in performing spatially-tagged analyte capture agent workflows discussed herein.
- analyte e.g., detecting the location of an analyte, e.g., a biological analyte
- a biological sample e.g., an analyte present in a biological sample, such as a tissue section
- a biological sample e.g., an analyte present in a biological sample, such as a tissue section
- a biological sample e.g., an analyte present in a biological sample, such as a tissue section
- a biological sample e.g., an analyte present in a biological sample, such as a tissue section
- the staining includes optical labels as described herein, including, but not limited to, fluorescent, radioactive, chemiluminescent, calorimetric, or colorimetric detectable labels.
- the staining includes a fluorescent antibody directed to a target analyte (e.g., cell surface or intracellular proteins) in the biological sample.
- the staining includes an immunohistochemistry stain directed to a target analyte (e.g., cell surface or intracellular proteins) in the biological sample.
- the staining includes a chemical stain such as hematoxylin and eosin (H&E) or periodic acid-schiff (PAS).
- H&E hematoxylin and eosin
- PAS periodic acid-schiff
- significant time e.g., days, months, or years
- step (d) includes placing the array onto the biological sample.
- the array is a flexible array where the plurality of spatially-barcoded features (e.g., a substrate with capture probes, a bead with capture probes) are atached to a flexible substrate.
- measures are taken to slow down a reaction (e.g., cooling the temperature of the biological sample or using enzymes that preferentially perform their primary function at lower or higher temperature as compared to their optimal functional temperature) before the array is contacted with the biological sample.
- step (e) is performed without bringing the biological sample out of contact with the array.
- step (e) is performed after the biological sample is no longer in contact with the array.
- the biological sample is tagged with an analyte capture agent before, contemporaneously with, or after staining and/or imaging of the biological sample. In such cases, significant time (e.g., days, months, or years) can elapse between staining and/or imaging and performing analysis.
- the array is adapted to facilitate biological analyte migration from the stained and/or imaged biological sample onto the array (e.g., using any of the materials or methods described herein).
- a biological sample is permeabilized before being contacted with an array.
- the rate of permeabilization is slowed prior to contacting a biological sample with an array (e.g., to limit diffusion of analytes away from their original locations in the biological sample).
- modulating the rate of permeabilization e.g., modulating the activity of a permeabilization reagent
- modulating the rate of permeabilization can occur by modulating a condition that the biological sample is exposed to (e.g., modulating
- permeabilization includes use of external stimuli (e.g., small molecules, enzymes, and/or activating reagents) to modulate the rate of permeabilization.
- external stimuli e.g., small molecules, enzymes, and/or activating reagents
- a permeabilization reagent can be provided to a biological sample prior to contact with an array, which permeabilization reagent is inactive until a condition (e.g., temperature, pH, and/or light) is changed or an external stimulus (e.g., a small molecule, an enzyme, and/or an activating reagent) is provided.
- analyte e.g., detecting the location of an analyte, e.g., a biological analyte
- a biological sample e.g., present in a biological sample such as a tissue section
- a biological sample e.g., present in a biological sample such as a tissue section
- A“capture probe” refers to any molecule capable of capturing (directly or indirectly) and/or labelling an analyte (e.g., an analyte of interest) in a biological sample.
- the capture probe is a nucleic acid or a polypeptide.
- the capture probe is a conjugate (e.g., an oligonucleotide-antibody conjugate).
- the capture probe includes a barcode (e.g., a spatial barcode and/or a unique molecular identifier (UMI)) and a capture domain.
- UMI unique molecular identifier
- FIG. 6 is a schematic diagram showing an example of a capture probe, as described herein.
- the capture probe 602 is optionally coupled to a feature 601 by a cleavage domain 603, such as a disulfide linker.
- the capture probe can include functional sequences that are useful for subsequent processing, such as functional sequence 604, which can include a sequencer specific flow cell attachment sequence, e.g., a P5 or P7 sequence, as well as functional sequence 606, which can include sequencing primer sequences, e.g., a R1 primer binding site, a R2 primer binding site.
- sequence 604 is a P7 sequence
- sequence 606 is a R2 primer binding site.
- a spatial barcode 605 can be included within the capture probe for use in barcoding the target analyte.
- the functional sequences can generally be selected for compatibility with any of a variety of different sequencing systems, e.g., Ion Torrent Proton or PGM, Illumina sequencing instruments, PacBio, Oxford
- functional sequences can be selected for compatibility with non-commercialized sequencing systems. Examples of such sequencing systems and techniques, for which suitable functional sequences can be used, include (but are not limited to) Ion Torrent Proton or PGM sequencing, Illumina sequencing, PacBio SMRT sequencing, and Oxford Nanopore sequencing. Further, in some embodiments, functional sequences can be selected for compatibility with other sequencing systems, including non-commercialized sequencing systems.
- the spatial barcode 605, functional sequences 604 (e.g., flow cell attachment sequence) and 606 (e.g., sequencing primer sequences) can be common to all of the probes attached to a given feature.
- the spatial barcode can also include a capture domain 607 to facilitate capture of a target analyte.
- each capture probe includes at least one capture domain.
- the “capture domain” can be an oligonucleotide, a polypeptide, a small molecule, or any combination thereof, that binds specifically to a desired analyte.
- a capture domain can be used to capture or detect a desired analyte.
- the capture domain is a functional nucleic acid sequence configured to interact with one or more analytes, such as one or more different types of nucleic acids (e.g., RNA molecules and DNA molecules).
- the functional nucleic acid sequence can include an N-mer sequence (e.g., a random N-mer sequence), which N-mer sequences are configured to interact with a plurality of DNA molecules.
- the functional sequence can include a poly(T) sequence, which poly(T) sequences are configured to interact with messenger RNA (mRNA) molecules via the poly(A) tail of an mRNA transcript.
- the functional nucleic acid sequence is the binding target of a protein (e.g., a transcription factor, a DNA binding protein, or a RNA binding protein), where the analyte of interest is a protein.
- Capture probes can include ribonucleotides and/or deoxy ribonucleotides as well as synthetic nucleotide residues that are capable of participating in Watson-Crick type or analogous base pair interactions.
- the capture domain is capable of priming a reverse transcription reaction to generate cDNA that is complementary to the captured RNA molecules.
- the capture domain of the capture probe can prime a DNA extension (polymerase) reaction to generate DNA that is complementary to the captured DNA molecules.
- the capture domain can template a ligation reaction between the captured DNA molecules and a surface probe that is directly or indirectly immobilized on the substrate.
- the capture domain can be ligated to one strand of the captured DNA molecules.
- SplintR ligase along with RNA or DNA sequences (e.g., degenerate RNA) can be used to ligate a single-stranded DNA or RNA to the capture domain.
- ligases with RNA-templated ligase activity e.g., SplintR ligase, T4 RNA ligase 2 or KOD ligase, can be used to ligate a single- stranded DNA or RNA to the capture domain.
- a capture domain includes a splint oligonucleotide.
- a capture domain captures a splint oligonucleotide.
- the capture domain is located at the 3’ end of the capture probe and includes a free 3’ end that can be extended, e.g., by template dependent polymerization, to form an extended capture probe as described herein.
- the capture domain includes a nucleotide sequence that is capable of hybridizing to nucleic acid, e.g., RNA or other analyte, present in the cells of the biological sample contacted with the array.
- the capture domain can be selected or designed to bind selectively or specifically to a target nucleic acid.
- the capture domain can be selected or designed to capture mRNA by way of hybridization to the mRNA poly (A) tail.
- the capture domain includes a poly(T) DNA oligonucleotide, e.g., a series of consecutive deoxythymidine residues linked by phosphodiester bonds, which is capable of hybridizing to the poly(A) tail of mRNA.
- the capture domain can include nucleotides that are functionally or structurally analogous to a poly(T) tail.
- the capture domain includes at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides. In some embodiments, the capture domain includes at least 25, 30, or 35 nucleotides.
- a capture probe includes a capture domain having a sequence that is capable of binding to mRNA and/or genomic DNA.
- the capture probe can include a capture domain that includes a nucleic acid sequence (e.g., a poly(T) sequence) capable of binding to a poly(A) tail of an mRNA and/or to a poly(A) homopolymeric sequence present in genomic DNA.
- a homopolymeric sequence is added to an mRNA molecule or a genomic DNA molecule using a terminal transferase enzyme in order to produce an analyte that has a poly (A) or poly(T) sequence.
- a poly(A) sequence can be added to an analyte (e.g., a fragment of genomic DNA) thereby making the analyte capable of capture by a poly(T) capture domain.
- random sequences can be used to form all or a part of the capture domain.
- random sequences can be used in conjunction with poly(T) (or poly(T) analogue) sequences.
- a capture domain includes a poly(T) (or a“poly(T)-like”) oligonucleotide
- it can also include a random oligonucleotide sequence (e.g.,“poly(T)-random sequence” probe). This can, for example, be located 5’ or 3’ of the poly(T) sequence, e.g., at the 3’ end of the capture domain.
- the poly(T)-random sequence probe can facilitate the capture of the mRNA poly(A) tail.
- the capture domain can be an entirely random sequence.
- degenerate capture domains can be used.
- a pool of two or more capture probes form a mixture, where the capture domain of one or more capture probes includes a poly(T) sequence and the capture domain of one or more capture probes includes random sequences. In some embodiments, a pool of two or more capture probes form a mixture where the capture domain of one or more capture probes includes poly(T)-like sequence and the capture domain of one or more capture probes includes random sequences. In some embodiments, a pool of two or more capture probes form a mixture where the capture domain of one or more capture probes includes a poly(T)-random sequences and the capture domain of one or more capture probes includes random sequences. In some embodiments, probes with degenerate capture domains can be added to any of the preceding combinations listed herein. In some embodiments, probes with degenerate capture domains can be substituted for one of the probes in each of the pairs described herein.
- the capture domain can be based on a particular gene sequence or particular motif sequence or common/conserved sequence, that it is designed to capture (i.e., a sequence- specific capture domain).
- the capture domain is capable of binding selectively to a desired sub-type or subset of nucleic acid, for example a particular type of RNA, such as mRNA, rRNA, tRNA, SRP RNA, tmRNA, snRNA, snoRNA, SmY RNA, scaRNA, gRNA, RNase P, RNase MRP, TERC, SL RNA, aRNA, cis-NAT, crRNA, IncRNA, miRNA, piRNA, siRNA, shRNA, tasiRNA, rasiRNA, 7SK, eRNA, ncRNA or other types of RNA.
- the capture domain can be capable of binding selectively to a desired subset of ribonucleic acids, for example, microbiome RNA,
- a capture domain includes an“anchor” or“anchoring sequence”, which is a sequence of nucleotides that is designed to ensure that the capture domain hybridizes to the intended analyte.
- an anchor sequence includes a sequence of nucleotides, including a 1-mer, 2-mer, 3-mer or longer sequence.
- the short sequence is random.
- a capture domain including a poly(T) sequence can be designed to capture an mRNA.
- an anchoring sequence can include a random 3-mer (e.g., GGG) that helps ensure that the poly(T) capture domain hybridizes to an mRNA.
- an anchoring sequence can be VN,
- the sequence can be designed using a specific sequence of nucleotides.
- the anchor sequence is at the 3’ end of the capture domain. In some embodiments, the anchor sequence is at the 5’ end of the capture domain.
- capture domains of capture probes are blocked prior to contacting the biological sample with the array, and blocking probes are used when the nucleic acid in the biological sample is modified prior to its capture on the array.
- the blocking probe is used to block or modify the free 3’ end of the capture domain.
- blocking probes can be hybridized to the capture probes to mask the free 3’ end of the capture domain, e.g., hairpin probes, partially double stranded probes, or complementary sequences.
- the free 3’ end of the capture domain can be blocked by chemical modification, e.g., addition of an azidomethyl group as a chemically reversible capping moiety such that the capture probes do not include a free 3’ end.
- Non-limiting examples of 3’ modifications include dideoxy C-3’ (3’-ddC), 3’ inverted dT, 3’ C3 spacer, 3’Amino, and 3’ phosphorylation.
- the nucleic acid in the biological sample can be modified such that it can be captured by the capture domain.
- an adaptor sequence including a binding domain capable of binding to the capture domain of the capture probe
- this is achieved by ligation of the adaptor sequence or extension of the nucleic acid.
- an enzyme is used to incorporate additional nucleotides at the end of the nucleic acid sequence, e.g., a poly(A) tail.
- the capture probes can be reversibly masked or modified such that the capture domain of the capture probe does not include a free 3’ end.
- the 3’ end is removed, modified, or made inaccessible so that the capture domain is not susceptible to the process used to modify the nucleic acid of the biological sample, e.g., ligation or extension.
- the capture domain of the capture probe is modified to allow the removal of any modifications of the capture probe that occur during modification of the nucleic acid molecules of the biological sample.
- the capture probes can include an additional sequence downstream of the capture domain, e.g., 3’ to the capture domain, namely a blocking domain.
- the capture domain of the capture probe can be a non-nucleic acid domain. Examples of suitable capture domains that are not exclusively nucleic-acid based include, but are not limited to, proteins, peptides, aptamers, antigens, antibodies, and molecular analogs that mimic the functionality of any of the capture domains described herein.
- Each capture probe can optionally include at least one cleavage domain.
- the cleavage domain represents the portion of the probe that is used to reversibly attach the probe to an array feature, as will be described further herein.
- one or more segments or regions of the capture probe can optionally be released from the array feature by cleavage of the cleavage domain.
- spatial barcodes and/or universal molecular identifiers (UMIs) can be released by cleavage of the cleavage domain.
- FIG. 7 is a schematic illustrating a cleavable capture probe, wherein the cleaved capture probe can enter into a non-permeabilized cell and bind to analytes within the sample.
- the capture probe 701 contains a cleavage domain 702, a cell penetrating peptide 703, a reporter molecule 704, and a disulfide bond (-S-S-). 705 represents all other parts of a capture probe, for example a spatial barcode and a capture domain.
- the cleavage domain linking the capture probe to a feature is a bond capable of cleavage by an enzyme.
- An enzyme can be added to cleave the cleavage domain, resulting in release of the capture probe from the feature.
- heating can also result in degradation of the cleavage domain and release of the attached capture probe from the array feature.
- laser radiation is used to heat and degrade cleavage domains of capture probes at specific locations.
- the cleavage domain is a photo-sensitive chemical bond (e.g., a chemical bond that dissociates when exposed to light such as ultraviolet light).
- the cleavage domain can be an ultrasonic cleavage domain.
- ultrasonic cleavage can depend on nucleotide sequence, length, pH, ionic strength, temperature, and the ultrasonic frequency (e.g., 22 kHz, 44 kHz) (Grokhovsky, S.L., Specificity of DNA cleavage by ultrasound, Molecular Biology, 40(2), 276-283 (2006)).
- Oligonucleotides with photo-sensitive chemical bonds have various advantages. They can be cleaved efficiently and rapidly (e.g., in nanoseconds and milliseconds). In some cases, photo-masks can be used such that only specific regions of the array are exposed to cleavable stimuli (e.g., exposure to UV light, exposure to light, exposure to heat induced by laser). When a photo-cleavable linker is used, the cleavable reaction is triggered by light, and can be highly selective to the linker and consequently biorthogonal. Typically, wavelength absorption for the photocleavable linker is located in the near-UV range of the spectrum.
- /.max of the photocleavable linker is from about 300 nm to about 400 nm, or from about 310 nm to about 365 nm. In some embodiments, max of the photocleavable linker is about 300 nm, about 312 nm, about 325 nm, about 330 nm, about 340 nm, about 345 nm, about 355 nm, about 365 nm, or about 400 nm.
- Non-limiting examples of a photo-sensitive chemical bond that can be used in a cleavage domain include those described in Leriche et al. Bioorg Med Chem. 2012 Jan 15;20(2):571-82 and U.S. Publication No. 2017/0275669, both of which are incorporated by reference herein in their entireties.
- linkers that comprise photo-sensitive chemical bonds include 3-amino-3-(2-nitrophenyl)propionic acid (ANP), phenacyl ester derivatives, 8-quinolinyl benzenesulfonate, dicoumarin, 6-bromo-7-alkixycoumarin-4- ylmethoxy carbonyl, a bimane-based linker, and a bis-arylhydrazone based linker.
- the photo-sensitive bond is part of a cleavable linker such as an ortho- nitrobenzyl (ONB) linker below:
- X is selected from O and NH;
- R 1 is selected from H and C1-3 alkyl;
- R 2 is selected from H and C1-3 alkoxy; n is 1, 2, or 3; and a and b each represent either the point of attachment of the linker to the substrate, or the point of attachment of the linker to the capture probe.
- X is O. In some embodiments, X is NH. In some embodiments, R 1 is H. In some embodiments, R 1 is Ci-3 alkyl. In some embodiments, R 1 is methyl. In some embodiments, R 2 is H. In some embodiments, R 2 is C1-3 alkoxy. In some embodiments, R 2 is methoxy. In some embodiments, R 1 is H and R 2 is H. In some embodiments, R 1 is H and R 2 is methoxy. In some embodiments, R 1 is methyl and R 2 is H. In some embodiments, R 1 is methyl and R 2 is methoxy. In some embodiments, R 1 is methyl and R 2 is H. In some embodiments, R 1 is methyl and R 2 is methoxy.
- the photocleavable linker has formula:
- the photocleavable linker has formula:
- the photocleavable linker has formula:
- the photocleavable linker has formula:
- the photocleavable linker has formula:
- the photocleavable linker is 3-amino-3-(2-nitrophenyl)propionic acid (ANP) linker:
- the photocleavable linker has formula:
- the photocleavable linker is phenacyl ester linker: wherein a and b are as described herein for the ortho-nitrobenzyl (ONB) linker.
- halogenated nucleosides such as bromodeoxyuridine (BrdU).
- BrdU is an analog of thymidine that can be readily incorporated into oligonucleotides (e.g., in the cleavage domain of a capture probe), and is sensitive to UVB light (280-320 nm range).
- a photo-cleavage reaction occurs (e.g., at a nucleoside immediately 5’ to the site of BrdU incorporation (Doddridge et al. Chem. Comm., 1998, 18: 1997-1998 and Cook et al. Chemistry and Biology. 1999, 6:451-459)) that results in release of the capture probe from the feature.
- cleavage domains include labile chemical bonds such as, but not limited to, ester linkages (e.g., cleavable with an acid, a base, or hydroxylamine), a vicinal diol linkage (e.g., cleavable via sodium periodate), a Diels-Alder linkage (e.g., cleavable via heat), a sulfone linkage (e.g., cleavable via a base), a silyl ether linkage (e.g., cleavable via an acid), a glycosidic linkage (e.g., cleavable via an amylase), a peptide linkage (e.g., cleavable via a protease), an abasic or apurinic/apyrimidinic (AP) site (e.g., cleavable with an alkali or an AP endonuclease), or a l
- the cleavage domain includes a sequence that is recognized by one or more enzymes capable of cleaving a nucleic acid molecule, e.g., capable of breaking the phosphodiester linkage between two or more nucleotides.
- a bond can be cleavable via other nucleic acid molecule targeting enzymes, such as restriction enzymes (e.g., restriction endonucleases).
- restriction enzymes e.g., restriction endonucleases
- the cleavage domain can include a restriction endonuclease (restriction enzyme) recognition sequence. Restriction enzymes cut double-stranded or single stranded DNA at specific recognition nucleotide sequences known as restriction sites.
- a rare-cutting restriction enzyme e.g., enzymes with a long recognition site (at least 8 base pairs in length), is used to reduce the possibility of cleaving elsewhere in the capture probe.
- the cleavage domain includes a poly(U) sequence which can be cleaved by a mixture of Uracil DNA glycosylase (UDG) and the DNA glycosylase-lyase Endonuclease VIII, commercially known as the USERTM enzyme.
- UDG Uracil DNA glycosylase
- USERTM enzyme commercially known as the USERTM enzyme.
- Releasable capture probes can be available for reaction once released.
- an activatable capture probe can be activated by releasing the capture probes from a feature.
- the cleavage domain includes one or more mismatch nucleotides, so that the complementary parts of the surface probe and the capture probe are not 100% complementary (for example, the number of mismatched base pairs can be one, two, or three base pairs).
- a mismatch is recognized, e.g., by the MutY and T7 endonuclease I enzymes, which results in cleavage of the nucleic acid molecule at the position of the mismatch.
- a“surface probe” can be any moiety present on the surface of the substrate capable of attaching to an agent (e.g., a capture probe).
- the surface probe is an oligonucleotide.
- the surface probe is part of the capture probe.
- the cleavage domain includes a nickase recognition site or sequence.
- Nickases are endonucleases which cleave only a single strand of a DNA duplex.
- the cleavage domain can include a nickase recognition site close to the 5’ end of the surface probe (and/or the 5’ end of the capture probe) such that cleavage of the surface probe or capture probe destabilizes the duplex between the surface probe and capture probe thereby releasing the capture probe) from the feature.
- Nickase enzymes can also be used in some embodiments where the capture probe is attached (e.g., immobilized) to the feature directly.
- the substrate can be contacted with a nucleic acid molecule that hybridizes to the cleavage domain of the capture probe to provide or reconstitute a nickase recognition site, e.g., a cleavage helper probe.
- cleavage helper probes can also be used to provide or reconstitute cleavage recognition sites for other cleavage enzymes, e.g., restriction enzymes.
- nickases introduce single-stranded nicks only at particular sites on a DNA molecule, by binding to and recognizing a particular nucleotide recognition sequence.
- a number of naturally-occurring nickases have been discovered, of which at present the sequence recognition properties have been determined for at least four.
- nickases are described in U.S. Patent No. 6,867,028, which is incorporated herein by reference in its entirety.
- any suitable nickase can be used to bind to a complementary nickase recognition site of a cleavage domain.
- the nickase enzyme can be removed from the assay or inactivated following release of the capture probes to prevent unwanted cleavage of the capture probes.
- capture domains that are not exclusively nucleic-acid based include, but are not limited to, proteins, peptides, aptamers, antigens, antibodies, and molecular analogs that mimic the functionality of any of the capture domains described herein.
- a cleavage domain is absent from the capture probe.
- substrates with atached capture probes lacking a cleavage domain are described for example in Macosko et al, (2015) Cell 161, 1202-1214, the entire contents of which are incorporated herein by reference.
- the region of the capture probe corresponding to the cleavage domain can be used for some other function.
- an additional region for nucleic acid extension or amplification can be included where the cleavage domain would normally be positioned.
- the region can supplement the functional domain or even exist as an additional functional domain.
- the cleavage domain is present but its use is optional.
- Each capture probe can optionally include at least one functional domain.
- Each functional domain typically includes a functional nucleotide sequence for a downstream analytical step in the overall analysis procedure.
- the capture probe can include a functional domain for attachment to a sequencing flow cell, such as, for example, a P5 sequence for Illumina® sequencing.
- the capture probe or derivative thereof can include another functional domain, such as, for example, a P7 sequence for attachment to a sequencing flow cell for Illumina® sequencing.
- the functional domains can be selected for compatibility with a variety of different sequencing systems, e.g., 454 Sequencing, Ion Torrent Proton or PGM, Illumina XI 0, etc., and the requirements thereof.
- the functional domain includes a primer.
- the primer can include an R1 primer sequence for Illumina® sequencing, and in some embodiments, an R2 primer sequence for Illumina® sequencing. Examples of such capture probes and uses thereof are described in U.S. Patent Publication Nos. 2014/0378345 and 2015/0376609, the entire contents of each of which are incorporated herein by reference.
- the capture probe can include one or more spatial barcodes (e.g., two or more, three or more, four or more, five or more) spatial barcodes.
- A“spatial barcode” is a contiguous nucleic acid segment or two or more non-contiguous nucleic acid segments that function as a label or identifier that conveys or is capable of conveying spatial information.
- a capture probe includes a spatial barcode that possesses a spatial aspect, where the barcode is associated with a particular location within an array or a particular location on a substrate.
- a spatial barcode can be part of an analyte, or independent from an analyte (e.g., part of the capture probe).
- a spatial barcode can be a tag attached to an analyte (e.g., a nucleic acid molecule) or a combination of a tag in addition to an endogenous characteristic of the analyte (e.g., size of the analyte or end sequence(s)).
- a spatial barcode can be unique. In some embodiments where the spatial barcode is unique, the spatial barcode functions both as a spatial barcode and as a unique molecular identifier (UMI), associated with one particular capture probe.
- UMI unique molecular identifier
- Spatial barcodes can have a variety of different formats.
- spatial barcodes can include polynucleotide spatial barcodes; random nucleic acid and/or amino acid sequences; and synthetic nucleic acid and/or amino acid sequences.
- a spatial barcode is attached to an analyte in a reversible or irreversible manner.
- a spatial barcode is added to, for example, a fragment of a DNA or RNA sample before, during, and/or after sequencing of the sample.
- a spatial barcode allows for identification and/or quantification of individual sequencing-reads.
- a spatial barcode is a used as a fluorescent barcode for which
- fluorescently labeled oligonucleotide probes hybridize to the spatial barcode.
- the spatial barcode is a nucleic acid sequence that does not substantially hybridize to analyte nucleic acid molecules in a biological sample. In some embodiments, the spatial barcode has less than 80% sequence identity (e.g., less than 70%, 60%, 50%, or less than 40% sequence identity) to the nucleic acid sequences across a substantial part (e.g., 80% or more) of the nucleic acid molecules in the biological sample.
- the spatial barcode sequences can include from about 6 to about 20 or more nucleotides within the sequence of the capture probes.
- the length of a spatial barcode sequence can be about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or longer.
- the length of a spatial barcode sequence can be at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or longer.
- the length of a spatial barcode sequence is at most about 6, 7, 8, 9, 10,
- nucleotides can be completely contiguous, e.g., in a single stretch of adjacent nucleotides, or they can be separated into two or more separate subsequences that are separated by 1 or more nucleotides.
- Separated spatial barcode subsequences can be from about 4 to about 16 nucleotides in length. In some embodiments, the spatial barcode subsequence can be about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or longer. In some embodiments, the spatial barcode subsequence can be at least about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or longer. In some embodiments, the spatial barcode subsequence can be at most about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or shorter.
- the one or more spatial barcode sequences of the multiple capture probes can include sequences that are the same for all capture probes coupled to the feature, and/or sequences that are different across all capture probes coupled to the feature.
- FIG. 8 is a schematic diagram of an exemplary multiplexed spatially-barcoded feature.
- the feature 801 can be coupled to spatially-barcoded capture probes, wherein the spatially-barcoded probes of a particular feature can possess the same spatial barcode, but have different capture domains designed to associate the spatial barcode of the feature with more than one target analyte.
- a feature may be coupled to four different types of spatially-barcoded capture probes, each type of spatially-barcoded capture probe possessing the spatial barcode 802.
- One type of capture probe associated with the feature includes the spatial barcode 802 in combination with a poly(T) capture domain 803, designed to capture mRNA target analytes.
- a second type of capture probe associated with the feature includes the spatial barcode 802 in combination with a random N-mer capture domain 804 for gDNA analysis.
- a third type of capture probe associated with the feature includes the spatial barcode 802 in combination with a capture domain complementary to the analyte capture agent of interest 805.
- a fourth type of capture probe associated with the feature includes the spatial barcode 802 in combination with a capture probe that can specifically bind a nucleic acid molecule 806 that can function in a CRISPR assay (e.g., CRISPR/Cas9). While only four different capture probe-barcoded constructs are shown in FIG.
- capture-probe barcoded constructs can be tailored for analyses of any given analyte associated with a nucleic acid and capable of binding with such a construct.
- the schemes shown in FIG. 8 can also be used for concurrent analysis of other analytes disclosed herein, including, but not limited to: (a) mRNA, a lineage tracing construct, cell surface or intracellular proteins and metabolites, and gDNA; (b) mRNA, accessible chromatin (e.g., ATAC-seq, DNase-seq, and/or MNase-seq) cell surface or intracellular proteins and metabolites, and a perturbation agent (e.g., a CRISPR crRNA/sgRNA, TALEN, zinc finger nuclease, and/or antisense oligonucleotide as described herein); (c) mRNA, cell surface or intracellular proteins and/or metabolites, a barcoded labelling agent (e.g., the MHC multimers described here
- Capture probes attached to a single array feature can include identical (or common) spatial barcode sequences, different spatial barcode sequences, or a combination of both. Capture probes attached to a feature can include multiple sets of capture probes. Capture probes of a given set can include identical spatial barcode sequences. The identical spatial barcode sequences can be different from spatial barcode sequences of capture probes of another set.
- the plurality of capture probes can include spatial barcode sequences (e.g., nucleic acid barcode sequences) that are associated with specific locations on a spatial array.
- a first plurality of capture probes can be associated with a first region, based on a spatial barcode sequence common to the capture probes within the first region
- a second plurality of capture probes can be associated with a second region, based on a spatial barcode sequence common to the capture probes within the second region.
- the second region may or may not be associated with the first region.
- Additional pluralities of capture probes can be associated with spatial barcode sequences common to the capture probes within other regions.
- the spatial barcode sequences can be the same across a plurality of capture probe molecules.
- multiple different spatial barcodes are incorporated into a single arrayed capture probe.
- a mixed but known set of spatial barcode sequences can provide a stronger address or attribution of the spatial barcodes to a given spot or location, by providing duplicate or independent confirmation of the identity of the location.
- the multiple spatial barcodes represent increasing specificity of the location of the particular array point.
- the capture probe can include one or more (e.g., two or more, three or more, four or more, five or more) Unique Molecular Identifiers (UMIs).
- UMIs Unique Molecular Identifiers
- a unique molecular identifier is a contiguous nucleic acid segment or two or more non-contiguous nucleic acid segments that function as a label or identifier for a particular analyte, or for a capture probe that binds a particular analyte (e.g., via the capture domain).
- a UMI can be unique.
- a UMI can include one or more specific polynucleotides sequences, one or more random nucleic acid and/or amino acid sequences, and/or one or more synthetic nucleic acid and/or amino acid sequences, or combinations thereof.
- the UMI is a nucleic acid sequence that does not substantially hybridize to analyte nucleic acid molecules in a biological sample. In some embodiments, the UMI has less than 80% sequence identity (e.g., less than 70%, 60%, 50%, or less than 40% sequence identity) to the nucleic acid sequences across a substantial part (e.g., 80% or more) of the nucleic acid molecules in the biological sample.
- sequence identity e.g., less than 70%, 60%, 50%, or less than 40% sequence identity
- the UMI can include from about 6 to about 20 or more nucleotides within the sequence of the capture probes.
- the length of a UMI sequence can be about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or longer.
- the length of a UMI sequence can be at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or longer.
- the length of a UMI sequence is at most about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 nucleotides or shorter.
- nucleotides can be completely contiguous, i.e., in a single stretch of adjacent nucleotides, or they can be separated into two or more separate subsequences that are separated by 1 or more nucleotides.
- Separated UMI subsequences can be from about 4 to about 16 nucleotides in length. In some embodiments, the UMI subsequence can be about 4,
- the UMI subsequence can be at least about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or longer. In some embodiments, the UMI subsequence can be at most about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 nucleotides or shorter.
- a UMI is attached to an analyte in a reversible or irreversible manner.
- a UMI is added to, for example, a fragment of a DNA or RNA sample before, during, and/or after sequencing of the analyte.
- a UMI allows for identification and/or quantification of individual sequencing-reads.
- a UMI is a used as a fluorescent barcode for which fluorescently labeled oligonucleotide probes hybridize to the UMI.
- an individual array feature can include one or more capture probes.
- an individual array feature includes hundreds or thousands of capture probes.
- the capture probes are associated with a particular individual feature, where the individual feature contains a capture probe including a spatial barcode unique to a defined region or location on the array.
- a particular feature can contain capture probes including more than one spatial barcode (e.g., one capture probe at a particular feature can include a spatial barcode that is different than the spatial barcode included in another capture probe at the same particular feature, while both capture probes include a second, common spatial barcode), where each spatial barcode corresponds to a particular defined region or location on the array.
- capture probes including more than one spatial barcode e.g., one capture probe at a particular feature can include a spatial barcode that is different than the spatial barcode included in another capture probe at the same particular feature, while both capture probes include a second, common spatial barcode
- each spatial barcode corresponds to a particular defined region or location on the array.
- multiple spatial barcode sequences associated with one particular feature on an array can provide a stronger address or atribution to a given location by providing duplicate or independent confirmation of the location.
- the multiple spatial barcodes represent increasing specificity of the location of the particular array point.
- a particular array point can be coded with two different spatial barcodes, where each spatial barcode identifies a particular defined region within the array, and an array point possessing both spatial barcodes identifies the sub-region where two defined regions overlap, e.g., such as the overlapping portion of a Venn diagram.
- a particular array point can be coded with three different spatial barcodes, where the first spatial barcode identifies a first region within the array, the second spatial barcode identifies a second region, where the second region is a subregion entirely within the first region, and the third spatial barcode identifies a third region, where the third region is a subregion entirely within the first and second subregions.
- capture probes atached to array features are released from the array features for sequencing.
- capture probes remain attached to the array features, and the probes are sequenced while remaining atached to the array features (e.g., via in situ sequencing). Further aspects of the sequencing of capture probes are described in subsequent sections of this disclosure.
- an array feature can include different types of capture probes attached to the feature.
- the array feature can include a first type of capture probe with a capture domain designed to bind to one type of analyte, and a second type of capture probe with a capture domain designed to bind to a second type of analyte.
- array features can include one or more (e.g., two or more, three or more, four or more, five or more, six or more, eight or more, ten or more, 12 or more, 15 or more, 20 or more, 30 or more, 50 or more) different types of capture probes attached to a single array feature.
- the capture probe is nucleic acid. In some embodiments, the capture probe is atached to the array feature via its 5’ end. In some embodiments, the capture probe includes from the 5’ to 3’ end: one or more barcodes (e.g., a spatial barcode and/or a UMI) and one or more capture domains. In some embodiments, the capture probe includes from the 5’ to 3’ end: one barcode (e.g., a spatial barcode or a UMI) and one capture domain. In some embodiments, the capture probe includes from the 5’ to 3’ end: a cleavage domain, a functional domain, one or more barcodes (e.g., a spatial barcode and/or a UMI), and a capture domain.
- the capture probe includes from the 5’ to 3’ end: a cleavage domain, a functional domain, one or more barcodes (e.g., a spatial barcode and/or a UMI), and a capture domain.
- the capture probe includes from the 5’ to 3’ end: a cleavage domain, a functional domain, one or more barcodes (e.g., a spatial barcode and/or a UMI), a second functional domain, and a capture domain.
- the capture probe includes from the 5’ to 3’ end: a cleavage domain, a functional domain, a spatial barcode, a UMI, and a capture domain.
- the capture probe does not include a spatial barcode.
- the capture probe does not include a UMI.
- the capture probe includes a sequence for initiating a sequencing reaction.
- the capture probe is immobilized on a feature via its 3’ end.
- the capture probe includes from the 3’ to 5’ end: one or more barcodes (e.g., a spatial barcode and/or a UMI) and one or more capture domains.
- one or more barcodes e.g., a spatial barcode and/or a UMI
- the capture probe includes from the 3’ to 5’ end: one barcode (e.g., a spatial barcode or a UMI) and one capture domain.
- the capture probe includes from the 3’ to 5’ end: a cleavage domain, a functional domain, one or more barcodes (e.g., a spatial barcode and/or a UMI), and a capture domain.
- the capture probe includes from the 3’ to 5’ end: a cleavage domain, a functional domain, a spatial barcode, a UMI, and a capture domain.
- a capture probe includes an in situ synthesized
- the in situ synthesized oligonucleotide can be atached to a substrate, or to a feature on a substrate.
- the in situ synthesized oligonucleotide includes one or more constant sequences, one or more of which serves as a priming sequence (e.g., a primer for amplifying target nucleic acids).
- the in situ synthesized oligonucleotide can, for example, include a constant sequence at the 3’end that is atached to a substrate, or atached to a feature on a substrate. Additionally or alternatively, the in situ synthesized
- oligonucleotide can include a constant sequence at the free 5’ end.
- the one or more constant sequences can be a cleavable sequence.
- the in situ synthesized oligonucleotide includes a barcode sequence, e.g., a variable barcode sequence.
- the barcode can be any of the barcodes described herein.
- the length of the barcode can be approximately 8 to 16 nucleotides (e.g., 8, 9, 10, 11, 12, 13, 14, 15, or 16 nucleotides).
- the length of the in situ synthesized oligonucleotide can be less than 100 nucleotides (e.g., less than 90, 80, 75, 70, 60, 50, 45, 40, 35, 30, 25 or 20 nucleotides). In some instances, the length of the in situ synthesized oligonucleotide is about 20 to about 40 nucleotides. Exemplary in situ synthesized oligonucleotides are produced by Affymetrix. In some embodiments, the in situ synthesized oligonucleotide is attached to a feature of an array.
- Additional oligonucleotides can be ligated to an in situ synthesized oligonucleotide to generate a capture probe.
- a primer complementary to a portion of the in situ synthesized oligonucleotide e.g., a constant sequence in the oligonucleotide
- oligonucleotide as a template e.g., a primer extension reaction
- a 3’ overhang can be created by template-independent ligases (e.g., terminal deoxynucleotidyl transferase (TdT) or poly(A) polymerase).
- TdT terminal deoxynucleotidyl transferase
- An additional oligonucleotide comprising one or more capture domains can be ligated to the 3’ overhang using a suitable enzyme (e.g., a ligase) and a splint oligonucleotide, to generate a capture probe.
- a capture probe is a product of two or more oligonucleotide sequences, (e.g., the in situ synthesized
- one of the oligonucleotide sequences is an in situ synthesized oligonucleotide.
- the capture probe can be prepared using a splint
- oligonucleotide e.g., any of the splint oligonucleotides described herein.
- Two or more oligonucleotides can be ligated together using a splint oligonucleotide and any variety of ligases known in the art or described herein (e.g., SplintR ligase).
- One of the oligonucleotides can include, for example, a constant sequence (e.g., a sequence complementary to a portion of a splint oligonucleotide), a degenerate sequence, and/or a capture domain (e.g., as described herein).
- One of the oligonucleotides can also include a sequence compatible for ligating or hybridizing to an analyte of interest in the biological sample.
- An analyte of interest e.g., an mRNA
- the capture probe is generated by having an enzyme add polynucleotides at the end of an oligonucleotide sequence.
- the capture probe can include a degenerate sequence, which can function as a unique molecular identifier.
- a degenerate sequence which is a sequence in which some positions of a nucleotide sequence contain a number of possible bases.
- a degenerate sequence can be a degenerate nucleotide sequence including about or at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, or 50 nucleotides.
- a nucleotide sequence contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, or more degenerate positions within the nucleotide sequence.
- the degenerate sequence is used as a UMI.
- a capture probe includes a restriction endonuclease recognition sequence or a sequence of nucleotides cleavable by specific enzyme activities.
- uracil sequences can be enzymatically cleaved from a nucleotide sequence using uracil DNA glycosylase (UDG) or Uracil Specific Excision Reagent (USER).
- UDG uracil DNA glycosylase
- Uracil Specific Excision Reagent Uracil Specific Excision Reagent
- other modified bases e.g., modified by methylation
- the capture probes can be subjected to an enzymatic cleavage, which removes the blocking domain and any of the additional nucleotides that are added to the 3’ end of the capture probe during the modification process. Removal of the blocking domain reveals and/or restores the free 3’ end of the capture domain of the capture probe.
- additional nucleotides can be removed to reveal and/or restore the 3’ end of the capture domain of the capture probe.
- a blocking domain can be incorporated into the capture probe when it is synthesized, or after its synthesis.
- the terminal nucleotide of the capture domain is a reversible terminator nucleotide (e.g., 3’-0-blocked reversible terminator and 3’-unblocked reversible terminator), and can be included in the capture probe during or after probe synthesis.
- An“extended capture probe” is a capture probe with an enlarged nucleic acid sequence.
- an“extended 3’ end” indicates that further nucleotides were added to the most 3’ nucleotide of the capture probe to extend the length of the capture probe, for example, by standard polymerization reactions utilized to extend nucleic acid molecules including templated polymerization catalyzed by a polymerase (e.g., a DNA polymerase or reverse transcriptase).
- a polymerase e.g., a DNA polymerase or reverse transcriptase
- extending the capture probe includes generating cDNA from the captured (hybridized) RNA. This process involves synthesis of a complementary strand of the hybridized nucleic acid, e.g., generating cDNA based on the captured RNA template (the RNA hybridized to the capture domain of the capture probe).
- the captured (hybridized) nucleic acid e.g., RNA
- the capture probe is extended using reverse transcription.
- reverse transcription includes synthesizing cDNA (complementary or copy DNA) from RNA, e.g., (messenger RNA), using a reverse transcriptase.
- reverse transcription is performed while the tissue is still in place, generating an analyte library, where the analyte library includes the spatial barcodes from the adjacent capture probes.
- the capture probe is extended using one or more DNA polymerases.
- the capture domain of the capture probe includes a primer for producing the complementary strand of the nucleic acid hybridized to the capture probe, e.g., a primer for DNA polymerase and/or reverse transcription.
- the nucleic acid, e.g., DNA and/or cDNA, molecules generated by the extension reaction incorporate the sequence of the capture probe.
- the extension of the capture probe e.g., a DNA polymerase and/or reverse transcription reaction, can be performed using a variety of suitable enzymes and protocols.
- a full-length DNA e.g., cDNA
- a“full-length” DNA molecule refers to the whole of the captured nucleic acid molecule. However, if the nucleic acid, e.g., RNA, was partially degraded in the tissue sample, then the captured nucleic acid molecules will not be the same length as the initial RNA in the tissue sample.
- the 3’ end of the extended probes e.g., first strand cDNA molecules, is modified. For example, a linker or adaptor can be ligated to the 3’ end of the extended probes.
- RNA ligase a single stranded ligation enzyme
- template switching oligonucleotides are used to extend cDNA in order to generate a full-length cDNA (or as close to a full-length cDNA as possible).
- a second strand synthesis helper probe (a partially double stranded DNA molecule capable of hybridizing to the 3’ end of the extended capture probe), can be ligated to the 3’ end of the extended probe, e.g., first strand cDNA, molecule using a double stranded ligation enzyme such as T4 DNA ligase.
- Other enzymes appropriate for the ligation step are known in the art and include, e.g., Tth DNA ligase, Taq DNA ligase, Thermococcus sp.
- a polynucleotide tail e.g., a poly(A) tail, is incorporated at the 3’ end of the extended probe molecules. In some embodiments, the polynucleotide tail is incorporated using a terminal transferase active enzyme.
- double-stranded extended capture probes are treated to remove any unextended capture probes prior to amplification and/or analysis, e.g., sequence analysis. This can be achieved by a variety of methods, e.g., using an enzyme to degrade the unextended probes, such as an exonuclease enzyme, or purification columns.
- extended capture probes are amplified to yield quantities that are sufficient for analysis, e.g., via DNA sequencing.
- the first strand of the extended capture probes e.g., DNA and/or cDNA molecules
- acts as a template for the amplification reaction e.g., a polymerase chain reaction.
- the amplification reaction incorporates an affinity group onto the extended capture probe (e.g., RNA-cDNA hybrid) using a primer including the affinity group.
- the primer includes an affinity group and the extended capture probes includes the affinity group.
- the affinity group can correspond to any of the affinity groups described previously.
- the extended capture probes including the affinity group can be coupled to an array feature specific for the affinity group.
- the substrate can include an antibody or antibody fragment.
- the array feature includes avidin or streptavidin and the affinity group includes biotin.
- the array feature includes maltose and the affinity group includes maltose binding protein.
- the array feature includes maltose-binding protein and the affinity group includes maltose.
- amplifying the extended capture probes can function to release the extended probes from the array feature, insofar as copies of the extended probes are not attached to the array feature.
- the extended capture probe or complement or amplicon thereof is released from an array feature.
- the step of releasing the extended capture probe or complement or amplicon thereof from an array feature can be achieved in a number of ways.
- an extended capture probe or a complement thereof is released from the feature by nucleic acid cleavage and/or by denaturation (e.g., by heating to denature a double-stranded molecule).
- the extended capture probe or complement or amplicon thereof is released from the array feature by physical means.
- methods for inducing physical release include denaturing double stranded nucleic acid molecules.
- Another method for releasing the extended capture probes is to use a solution that interferes with the hydrogen bonds of the double stranded molecules.
- the extended capture probe is released by applying heated water such as water or buffer of at least 85°C, e.g., at least 90,
- a solution including salts, surfactants, etc. that can further destabilize the interaction between the nucleic acid molecules is added to release the extended capture probe from the array feature.
- a formamide solution can be used to destabilize the interaction between nucleic acid molecules to release the extended capture probe from the array feature.
- methods are provided herein for amplifying a capture probe affixed to a spatial array, where amplification of the capture probe increases the number of capture domains and spatial barcodes on the spatial array.
- the amplification is performed by rolling circle amplification.
- the capture probe to be amplified includes sequences (e.g., docking sequences, functional sequences, and/or primer sequences) that enable rolling circle amplification.
- the capture probe can include a functional sequence that is capable of binding to a primer used for amplification.
- the capture probe can include one or more docking sequences (e.g., a first docking sequence and a second docking sequence) that can hybridize to one or more oligonucleotides (e.g., a padlock probe(s)) used for rolling circle amplification.
- additional probes are affixed to the substrate, where the additional probes include sequences (e.g., a docking sequence(s), a functional sequence(s), and/or a primer sequence(s)) that enable rolling circle amplification.
- the spatial array is contacted with an oligonucleotide (e.g., a padlock probe).
- a“padlock probe” refers to an oligonucleotide that has, at its 5’ and 3’ ends, sequences that are complementary to adjacent or nearby target sequences (e.g., docking sequences) on a capture probe. Upon hybridization to the target sequences (e.g., docking sequences), the two ends of the padlock probe are either brought into contact or an end is extended until the two ends are brought into contact, allowing circularization of the padlock probe by ligation (e.g., ligation using any of the methods described herein).
- target sequences e.g., docking sequences
- rolling circle amplification can be used to amplify the ligation product, which includes at least a capture domain and a spatial barcode from the capture probe.
- amplification of the capture probe using a padlock oligonucleotide and rolling circle amplification increases the number of capture domains and the number of spatial barcodes on the spatial array.
- a method of increasing capture efficiency of a spatial array includes amplifying all or part of a capture probe affixed to a substrate. For example, amplification of all or part of the capture probes affixed to the substrate can increase the capture efficiency of the spatial array by increasing the number of capture domains and spatial barcodes.
- a method of determining a location of an analyte in a biological sample includes using a spatial array having increased capture efficiency (e.g., a spatial array where a capture probe has been amplified as described herein). For example, the capture efficiency of a spatial array can be increased by amplification of all or part of the capture probe prior to contact with a biological sample.
- a method of producing a spatial array that has increased capture efficiency includes amplifying all or part of a capture probe.
- a spatial array having increased capture efficiency is produced by amplifying all or part of a capture probe, the amplification increases the number of capture domains and the number of spatial barcodes on the spatial array.
- a method of determining the location of a capture probe (i.e., a capture probe on a feature) on a spatial array includes amplifying all or part of a capture probe.
- amplification of the capture probe affixed to the substrate can increase the number of spatial barcodes used for direct decoding (e.g., direct decoding using any of the methods described herein including, without limitation, in situ sequencing) of the location of the capture probe.
- an“analyte capture agent” refers to an agent that interacts with an analyte (e.g., an analyte in a sample) and with a capture probe (e.g., a capture probe attached to a substrate) to identify the analyte.
- the analyte capture agent includes an analyte binding moiety and a capture agent barcode domain.
- FIG. 9 is a schematic diagram of an exemplary analyte capture agent 902 comprised of an analyte binding moiety 904 and a capture agent barcode domain 908.
- An analyte binding moiety 904 is a molecule capable of binding to an analyte 906 and interacting with a spatially-barcoded capture probe. The analyte binding moiety can bind to the analyte 906 with high affinity and/or with high specificity.
- the analyte capture agent can include a capture agent barcode domain 908, a nucleotide sequence (e.g., an oligonucleotide), which can hybridize to at least a portion or an entirety of a capture domain of a capture probe.
- the analyte binding moiety 904 can include a polypeptide and/or an aptamer (e.g., an aptamer (e.g., an aptamer).
- the analyte binding moiety 904 can include an antibody or antibody fragment (e.g., an antigen-binding fragment).
- analyte binding moiety refers to a molecule or moiety capable of binding to a macromolecular constituent (e.g., an analyte, e.g., a biological analyte).
- the analyte binding moiety of the analyte capture agent that binds to a biological analyte can include, but is not limited to, an antibody, or an epitope binding fragment thereof, a cell surface receptor binding molecule, a receptor ligand, a small molecule, a bi-specific antibody, a bi-specific T-cell engager, a T-cell receptor engager, a B-cell receptor engager, a pro-body, an aptamer, a monobody, an affimer, a darpin, and a protein scaffold, or any combination thereof.
- the analyte binding moiety can bind to the macromolecular constituent (e.g., analyte) with high affinity and/or with high specificity.
- the analyte binding moiety can include a nucleotide sequence (e.g., an oligonucleotide), which can correspond to at least a portion or an entirety of the analyte binding moiety.
- the analyte binding moiety can include a polypeptide and/or an aptamer (e.g., a polypeptide and/or an aptamer that binds to a specific target molecule, e.g., an analyte).
- the analyte binding moiety can include an antibody or antibody fragment (e.g., an antigen-binding fragment) that binds to a specific analyte (e.g., a polypeptide).
- an analyte binding moiety of an analyte capture agent includes one or more antibodies or antigen binding fragments thereof.
- the antibodies or antigen binding fragments including the analyte binding moiety can specifically bind to a target analyte.
- the analyte is a protein (e.g., a protein on a surface of the biological sample (e.g., a cell) or an intracellular protein).
- a plurality of analyte capture agents comprising a plurality of analyte binding moieties bind a plurality of analytes present in a biological sample.
- the plurality of analytes includes a single species of analyte (e.g., a single species of polypeptide). In some embodiments in which the plurality of analytes includes a single species of analyte, the analyte binding moieties of the plurality of analyte capture agents are the same.
- the analyte binding moieties of the plurality of analyte capture agents are the different (e.g., members of the plurality of analyte capture agents can have two or more species of analyte binding moieties, wherein each of the two or more species of analyte binding moieties binds a single species of analyte, e.g., at different binding sites).
- the plurality of analytes includes multiple different species of analyte (e.g., multiple different species of polypeptides).
- An analyte capture agent can include an analyte binding moiety.
- the analyte binding moiety can be an antibody.
- Exemplary, non-limiting antibodies that can be used as analyte binding moieties in an analyte capture agent or that can be used in the IHC/IF applications disclosed herein include any of the following including variations thereof: A- ACT,, A- AT, ACTH, Actin-Muscle-specific, Actin-Smooth Muscle (SMA), AE1, AE1/AE3, AE3, AFP, AKT Phosphate, ALK-1, Amyloid A, Androgen Receptor, Annexin Al, B72.3, BCA-225, BCL-1 (Cyclin Dl), BCL-1/CD20, BCL-2, BCL-2/BCL-6, BCL-6, Ber-EP4, Beta-amyloid, Beta-catenin, BG8 (Lewis Y), BOB-1, CA 19.9, CA 125, CAIX, Calc
- exemplary, non-limiting antibodies that can be used as analyte binding moieties in an analyte capture agent or that can be used in the IHC/IF applications disclosed herein include any of the following antibodies (and variations thereol) to: cell surface proteins, intracellular proteins, kinases (e.g., AGC kinase family (e.g., AKT1, AKT2, PDK1, Protein Kinase C, ROCK1, ROCK2, SGK3), CAMK kinase family (e.g, AMPK1, AMPK2, CAMK, Chkl, Chk2, Zip), CK1 kinase family, TK kinase family (e.g., Abl2, AXL, CD167, CD246/ALK, c-Met, CSK, c-Src, EGFR, ErbB2 (HER2/neu), ErbB3, ErbB4, FAK, Fyn, LCK, Lyn, PKT7, Syk, Za
- analyte capture agents are capable of binding to analytes present inside a cell.
- analyte capture agents are capable of binding to cell surface analytes that can include, without limitation, a receptor, an antigen, a surface protein, a transmembrane protein, a cluster of differentiation protein, a protein channel, a protein pump, a carrier protein, a phospholipid, a glycoprotein, a glycolipid, a cell-cell interaction protein complex, an antigen-presenting complex, a major histocompatibility complex, an engineered T-cell receptor, a T-cell receptor, a B-cell receptor, a chimeric antigen receptor, an extracellular matrix protein, a posttranslational modification (e.g.
- the analyte capture agents are capable of binding to cell surface analytes that are post-translationally modified.
- analyte capture agents can be specific for cell surface analytes based on a given state of posttranslational modification (e.g., phosphorylation, glycosylation, ubiquitination, nitrosylation, methylation, acetylation or lipidation), such that a cell surface analyte profile can include posttranslational modification information of one or more analytes.
- a given state of posttranslational modification e.g., phosphorylation, glycosylation, ubiquitination, nitrosylation, methylation, acetylation or lipidation
- the analyte capture agent includes a capture agent barcode domain that is conjugated or otherwise attached to the analyte binding moiety. In some embodiments, the capture agent barcode domain is covalently -linked to the analyte binding moiety. In some embodiments, a capture agent barcode domain is a nucleic acid sequence. In some embodiments, a capture agent barcode domain includes an analyte binding moiety barcode and an analyte capture sequence.
- analyte binding moiety barcode refers to a barcode that is associated with or otherwise identifies the analyte binding moiety. In some embodiments, by identifying an analyte binding moiety and its associated analyte binding moiety barcode, the analyte to which the analyte binding moiety binds can also be identified.
- An analyte binding moiety barcode can be a nucleic acid sequence of a given length and/or sequence that is associated with the analyte binding moiety.
- An analyte binding moiety barcode can generally include any of the variety of aspects of barcodes described herein.
- an analyte capture agent that is specific to one type of analyte can have coupled thereto a first capture agent barcode domain (e.g., that includes a first analyte binding moiety barcode), while an analyte capture agent that is specific to a different analyte can have a different capture agent barcode domain (e.g., that includes a second barcode analyte binding moiety barcode) coupled thereto.
- a capture agent barcode domain can include an analyte binding moiety barcode that permits identification of the analyte binding moiety to which the capture agent barcode domain is coupled.
- the selection of the capture agent barcode domain can allow significant diversity in terms of sequence, while also being readily attachable to most analyte binding moieties (e.g., antibodies or aptamers) as well as being readily detected, (e.g., using sequencing or array technologies).
- analyte binding moieties e.g., antibodies or aptamers
- the capture agent barcode domain of an analyte capture agent includes an analyte capture sequence.
- analyte capture sequence refers to a region or moiety configured to hybridize to, bind to, couple to, or otherwise interact with a capture domain of a capture probe.
- an analyte capture sequence includes a nucleic acid sequence that is complementary to or substantially complementary to the capture domain of a capture probe such that the analyte capture sequence hybridizes to the capture domain of the capture probe.
- an analyte capture sequence comprises a poly(A) nucleic acid sequence that hybridizes to a capture domain that comprises a poly(T) nucleic acid sequence.
- an analyte capture sequence comprises a poly(T) nucleic acid sequence that hybridizes to a capture domain that comprises a poly(A) nucleic acid sequence. In some embodiments, an analyte capture sequence comprises a non-homopolymeric nucleic acid sequence that hybridizes to a capture domain that comprises a non-homopolymeric nucleic acid sequence that is complementary (or substantially complementary) to the non-homopolymeric nucleic acid sequence of the analyte capture region.
- the capture agent barcode domain can be directly coupled to the analyte binding moiety, or they can be attached to a bead, molecular lattice, e.g., a linear, globular, cross-slinked, or other polymer, or other framework that is attached or otherwise associated with the analyte binding moiety, which allows attachment of multiple capture agent barcode domains to a single analyte binding moiety.
- Attachment (coupling) of the capture agent barcode domains to the analyte binding moieties can be achieved through any of a variety of direct or indirect, covalent or non-covalent associations or attachments.
- capture agent barcode domains can be covalently attached to a portion of the antibody or antigen-binding fragment using chemical conjugation techniques (e.g., Lightning-Link® antibody labelling kits available from Innova Biosciences).
- chemical conjugation techniques e.g., Lightning-Link® antibody labelling kits available from Innova Biosciences.
- a capture agent barcode domain can be coupled to an antibody or antigen-binding fragment using non-covalent attachment mechanisms (e.g., using biotinylated antibodies and oligonucleotides or beads that include one or more biotinylated linker(s), coupled to oligonucleotides with an avidin or streptavidin linker.)
- non-covalent attachment mechanisms e.g., using biotinylated antibodies and oligonucleotides or beads that include one or more biotinylated linker(s), coupled to oligonucleotides with an avidin or streptavidin linker.
- Antibody and oligonucleotide biotinylation techniques can be used, and are described for example in Fang et al, Nucleic Acids Res. (2003), 31(2): 708-715, the entire contents of which are incorporated by reference herein.
- the reactive moiety on the analyte binding moiety can also include amine for targeting aldehydes, amine for targeting maleimide (e.g., free thiols), azide for targeting click chemistry compounds (e.g., alkynes), biotin for targeting streptavidin, phosphates for targeting EDC, which in turn targets active ester (e.g., NH2).
- the reactive moiety on the analyte binding moiety can be a chemical compound or group that binds to the reactive moiety on the analyte binding moiety.
- Exemplary strategies to conjugate the analyte binding moiety to the capture agent barcode domain include the use of commercial kits (e.g., Solulink, Thunder link), conjugation of mild reduction of hinge region and maleimide labelling, stain-promoted click chemistry reaction to labeled amides (e.g., copper-free), and conjugation of periodate oxidation of sugar chain and amine conjugation.
- the analyte binding moiety is an antibody
- the antibody can be modified prior to or contemporaneously with conjugation of the oligonucleotide.
- the antibody can be glycosylated with a chemical substrate-permissive mutant of b- 1,4- galactosyltransferase, GalT (Y289L) and azide-bearing uridine diphosphate-N- acetylgalactosamine analog uridine diphosphate -GalNAz.
- the modified antibody can be conjugated to an oligonucleotide with a dibenzocyclooctyne-PEG4-NHS group.
- certain steps e.g., COOH activation (e.g., EDC) and homobifunctional cross linkers
- COOH activation e.g., EDC
- homobifunctional cross linkers can be avoided to prevent the analyte binding moieties from conjugating to themselves.
- the analyte capture agent e.g., analyte binding moiety coupled to an oligonucleotide
- the analyte capture agent can be delivered into the cell, e.g., by transfection (e.g., using transfectamine, cationic polymers, calcium phosphate or electroporation), by transduction (e.g., using a bacteriophage or recombinant viral vector), by mechanical delivery (e.g., magnetic beads), by lipid (e.g., 1,2- Dioleoyl-sn-glycero-3-phosphocholine (DOPC)), or by transporter proteins.
- transfection e.g., using transfectamine, cationic polymers, calcium phosphate or electroporation
- transduction e.g., using a bacteriophage or recombinant viral vector
- mechanical delivery e.g., magnetic beads
- lipid e.g., 1,2- Dioleoyl-sn
- An analyte capture agent can be delivered into a cell using exosomes.
- a first cell can be generated that releases exosomes comprising an analyte capture agent.
- An analyte capture agent can be attached to an exosome membrane.
- An analyte capture agent can be contained within the cytosol of an exosome. Released exosomes can be harvested and provided to a second cell, thereby delivering the analyte capture agent into the second cell.
- An analyte capture agent can be releasable from an exosome membrane before, during, or after delivery into a cell.
- the cell is permeabilized to allow the analyte capture agent to couple with intracellular constituents (such as, without limitation, intracellular proteins, metabolites, and nuclear membrane proteins).
- intracellular constituents such as, without limitation, intracellular proteins, metabolites, and nuclear membrane proteins.
- analyte capture agents can be used to analyze intracellular constituents as described herein.
- the capture agent barcode domain coupled to an analyte capture agent can include modifications that render it non-extendable by a polymerase.
- the capture agent barcode domain when binding to a capture domain of a capture probe or nucleic acid in a sample for a primer extension reaction, the capture agent barcode domain can serve as a template, not a primer.
- the capture agent barcode domain also includes a barcode (e.g., an analyte binding moiety barcode)
- such a design can increase the efficiency of molecular barcoding by increasing the affinity between the capture agent barcode domain and unbarcoded sample nucleic acids, and eliminate the potential formation of adaptor artifacts.
- the capture agent barcode domain can include a random N-mer sequence that is capped with modifications that render it non-extendable by a polymerase.
- the composition of the random N- mer sequence can be designed to maximize the binding efficiency to free, unbarcoded ssDNA molecules.
- the design can include a random sequence composition with a higher GC content, a partial random sequence with fixed G or C at specific positions, the use of guanosines, the use of locked nucleic acids, or any combination thereof.
- a modification for blocking primer extension by a polymerase can be a carbon spacer group of different lengths or a dideoxynucleotide.
- the modification can be an abasic site that has an apurine or apyrimidine structure, a base analog, or an analogue of a phosphate backbone, such as a backbone of N-(2-aminoethyl)-glycine linked by amide bonds, tetrahydrofuran, or G, 2’-Dideoxyribose.
- the modification can also be a uracil base, 2’OMe modified RNA, C3-18 spacers (e.g., structures with 3-18 consecutive carbon atoms, such as C3 spacer), ethylene glycol multimer spacers (e.g., spacer 18 (hexa- ethyleneglycol spacer), biotin, di-deoxynucleotide triphosphate, ethylene glycol, amine, or phosphate.
- C3-18 spacers e.g., structures with 3-18 consecutive carbon atoms, such as C3 spacer
- ethylene glycol multimer spacers e.g., spacer 18 (hexa- ethyleneglycol spacer)
- biotin di-deoxynucleotide triphosphate
- ethylene glycol, amine, or phosphate e.g., hexa- ethyleneglycol spacer
- the capture agent barcode domain coupled to the analyte binding moiety includes a cleavable domain.
- the capture agent barcode domain can be cleaved and collected for downstream analysis according to the methods as described herein.
- the cleavable domain of the capture agent barcode domain includes a U-excising element that allows the species to release from the bead.
- the U-excising element can include a single-stranded DNA (ssDNA) sequence that contains at least one uracil.
- the species can be attached to a bead via the ssDNA sequence.
- the species can be released by a combination of uracil-DNA glycosylase (e.g., to remove the uracil) and an endonuclease (e.g., to induce an ssDNA break). If the endonuclease generates a 5’ phosphate group from the cleavage, then additional enzyme treatment can be included in downstream processing to eliminate the phosphate group, e.g., prior to ligation of additional sequencing handle elements, e.g., Illumina full P5 sequence, partial P5 sequence, full R1 sequence, and/or partial R1 sequence.
- multiple different species of analytes e.g., polypeptides
- the multiple different species of analytes can be associated with locations of the analytes in the biological sample.
- information e.g., proteomic information when the analyte binding moiety(ies) recognizes a
- polypeptide(s)) can be used in association with other spatial information (e.g., genetic information from the biological sample, such as DNA sequence information, transcriptome information (i.e., sequences of transcripts), or both).
- a cell surface protein of a cell can be associated with one or more physical properties of the cell (e.g., a shape, size, activity, or a type of the cell). The one or more physical properties can be characterized by imaging the cell.
- the cell can be bound by an analyte capture agent comprising an analyte binding moiety that binds to the cell surface protein and an analyte binding moiety barcode that identifies that analyte binding moiety, and the cell can be subjected to spatial analysis (e.g., any of the variety of spatial analysis methods described herein).
- the analyte capture agent bound to the cell surface protein can be bound to a capture probe (e.g., a capture probe on an array), which capture probe includes a capture domain that interacts with an analyte capture sequence present on the capture agent barcode domain of the analyte capture agent.
- All or part of the capture agent barcode domain (including the analyte binding moiety barcode) can be copied with a polymerase using a 3’ end of the capture domain as a priming site, generating an extended capture probe that includes the all or part of
- an analyte capture agent with an extended capture agent barcode domain that includes a sequence complementary to a spatial barcode of a capture probe is called a “spatially -tagged analyte capture agent.”
- the spatial array with spatially-tagged analyte capture agents can be contacted with a sample, where the analyte capture agent(s) associated with the spatial array capture the target analyte(s).
- the analyte capture agent(s) containing the extended capture probe(s), which includes a sequence complementary to the spatial barcode(s) of the capture probe(s) and the analyte binding moiety barcode(s) can then be denatured from the capture probe(s) of the spatial array. This allows the spatial array to be reused.
- the sample can be dissociated into non-aggregated cells (e.g., single cells) and analyzed by the single cell / droplet methods described herein.
- the spatially -tagged analyte capture agent can be sequenced to obtain the nucleic acid sequence of the spatial barcode of the capture probe and the analyte binding moiety barcode of the analyte capture agent.
- the nucleic acid sequence of the extended capture probe can thus be associated with an analyte (e.g., cell surface protein), and in turn, with the one or more physical properties of the cell (e.g., a shape or cell type).
- the nucleic acid sequence of the extended capture probe can be associated with an intracellular analyte of a nearby cell, where the intracellular analyte was released using any of the cell permeabilization or analyte migration techniques described herein.
- the capture agent barcode domains released from the analyte capture agents can then be subjected to sequence analysis to identify which analyte capture agents were bound to analytes.
- sequence analysis to identify which analyte capture agents were bound to analytes.
- an analyte profile can be created for a biological sample.
- Profiles of individual cells or populations of cells can be compared to profiles from other cells, e.g.,‘normal’ cells, to identify variations in analytes, which can provide diagnostically relevant information.
- these profiles can be useful in the diagnosis of a variety of disorders that are characterized by variations in cell surface receptors, such as cancer and other disorders.
- FIG. 10 is a schematic diagram depicting an exemplary interaction between a feature- immobilized capture probe 1024 and an analyte capture agent 1026.
- the feature-immobilized capture probe 1024 can include a spatial barcode 1008 as well as one or more functional sequences 1006 and 1010, as described elsewhere herein.
- the capture probe can also include a capture domain 1012 that is capable of binding to an analyte capture agent 1026.
- the analyte capture agent 1026 can include a functional sequence 1018, capture agent barcode domain 1016, and an analyte capture sequence 1014 that is capable of binding to the capture domain 1012 of the capture probe 1024.
- the analyte capture agent can also include a linker 1020 that allows the capture agent barcode domain 1016 to couple to the analyte binding moiety 1022.
- the methods are used to identify immune cell profiles.
- Immune cells express various adaptive immunological receptors relating to immune function, such as T cell receptors (TCRs) and B cell receptors (BCRs). T cell receptors and B cell receptors play a part in the immune response by specifically recognizing and binding to antigens and aiding in their destruction.
- the T cell receptor is a molecule found on the surface of T cells that is generally responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules.
- MHC major histocompatibility complex
- the TCR is generally a heterodimer of two chains, each of which is a member of the immunoglobulin superfamily, possessing an N- terminal variable (V) domain, and a C terminal constant domain.
- V N- terminal variable
- C terminal constant domain In humans, in 95% of T cells, the TCR consists of an alpha (a) and beta (b) chain, whereas in 5% of T cells, the TCR consists of gamma and delta (g/d) chains. This ratio can change during ontogeny and in diseased states as well as in different species.
- MHC major histocompatibility complex
- Each of the two chains of a TCR contains multiple copies of gene segments - a variable‘V’ gene segment, a diversity‘D’ gene segment, and a joining T gene segment.
- the TCR alpha chain (TCRa) is generated by recombination of V and J segments, while the beta chain (TCRb) is generated by recombination of V, D, and J segments.
- generation of the TCR gamma chain involves recombination of V and J gene segments, while generation of the TCR delta chain occurs by recombination of V, D, and J gene segments.
- Complementarity determining regions e.g.. CDR1, CDR2, and CDR3, or hypervariable regions, are sequences in the variable domains of antigen receptors (e.g., T cell receptor and immunoglobulin) that can complement an antigen.
- antigen receptors e.g., T cell receptor and immunoglobulin
- Most of the diversity of CDRs is found in CDR3, with the diversity being generated by somatic recombination events during the development of T lymphocytes.
- a unique nucleotide sequence that arises during the gene arrangement process can be referred to as a clonotype.
- the B cell receptor is a molecule found on the surface of B cells.
- the antigen binding portion of a BCR is composed of a membrane-bound antibody that, like most antibodies (e.g., immunoglobulins), has a unique and randomly determined antigen-binding site.
- the antigen binding portion of a BCR includes membrane-bound immunoglobulin molecule of one isotype (e.g., IgD, IgM, IgA, IgG, or IgE).
- the BCR is composed of two genes IgH and IgK (or IgL) coding for antibody heavy and light chains. Immunoglobulins are formed by recombination among gene segments, sequence diversification at the junctions of these segments, and point mutations throughout the gene. Each heavy chain gene contains multiple copies of three different gene segments - a variable‘V’ gene segment, a diversity‘D’ gene segment, and a joining T gene segment.
- Each light chain gene contains multiple copies of two different gene segments for the variable region of the protein - a variable‘V’ gene segment and a joining T gene segment.
- the recombination can generate a molecule with one of each of the V, D, and J segments. Furthermore, several bases can be deleted and others added (called N and P nucleotides) at each of the two junctions, thereby generating further diversity.
- N and P nucleotides are added at each of the two junctions, thereby generating further diversity.
- activated B cells undergo the process of isotype switching.
- Antibodies with the same variable segments can have different forms (isotypes) depending on the constant segment. Whereas all naive B cells express IgM (or IgD), activated B cells mostly express IgG but also IgM, IgA, and IgE. This expression switching from IgM (and/or IgD) to IgG, IgA, or IgE occurs through a recombination event causing one cell to specialize in producing a specific isotype.
- a unique nucleotide sequence that arises during the gene arrangement process can similarly be referred to as a clonotype.
- Certain methods described herein are utilized to analyze the various sequences of TCRs and BCRs from immune cells, for example, various clonotypes.
- the methods are used to analyze the sequence of a TCR alpha chain, a TCR beta chain, a TCR delta chain, a TCR gamma chain, or any fragment thereof (e.g., variable regions including V(D)J or VJ regions, constant regions, transmembrane regions, fragments thereof, combinations thereof, and combinations of fragments thereof).
- the methods described herein can be used to analyze the sequence of a B cell receptor heavy chain, B cell receptor light chain, or any fragment thereof (e.g., variable regions including V(D)J or VJ regions, constant regions, transmembrane regions, fragments thereof, combinations thereof, and combinations of fragments thereof).
- primer sequences useful in any of the various operations for attaching barcode sequences and/or amplification reactions can include gene specific sequences which target genes or regions of genes of immune cell proteins, for example immune receptors.
- gene sequences include, but are not limited to, sequences of various T cell receptor alpha variable genes (TRAV genes), T cell receptor alpha joining genes (TRAJ genes), T cell receptor alpha constant genes (TRAC genes), T cell receptor beta variable genes (TRBV genes), T cell receptor beta diversity genes (TRBD genes), T cell receptor beta joining genes (TRBJ genes), T cell receptor beta constant genes (TRBC genes), T cell receptor gamma variable genes (TRGV genes), T cell receptor gamma joining genes (TRGJ genes), T cell receptor gamma constant genes (TRGC genes), T cell receptor delta variable genes (TRDV genes), T cell receptor delta diversity genes (TRDD genes), T cell receptor delta joining genes (TRDJ genes), and T cell receptor delta constant genes (TRDC genes).
- TRAV genes T cell receptor alpha variable genes
- TRAJ genes
- the analyte binding moiety is based on the Major
- the analyte binding moiety is an MHC multimer including, without limitation, MHC dextramers, MHC tetramers, and MHC pentamers (see, for example, U.S. Patent Application Publication Nos. US 2018/0180601 and US 2017/0343545, the entire contents of each of which are incorporated herein by reference.
- MHCs e.g., a soluble MHC monomer molecule
- MHCs can be used as analyte binding moieties of analyte capture agents that are coupled to capture agent barcode domains that include an analyte binding moiety barcode that identifies its associated MHC (and, thus, for example, the MHC’s TCR binding partner).
- MHCs are used to analyze one or more cell-surface features of a T-cell, such as a TCR.
- multiple MHCs are associated together in a larger complex (MHC multi-mer) to improve binding affinity of MHCs to TCRs via multiple ligand binding synergies.
- FIGs. 11A, 11B, and 11C are schematics illustrating how streptavidin cell tags can be utilized in an array-based system to produce a spatially-barcoded cell or cellular contents.
- peptide-bound major histocompatibility complex MHC
- biotin b2ih
- streptavidin moiety comprises multiple pMHC moieties.
- Each of these moieties can bind to a TCR such that the streptavidin binds to a target T-cell via multiple MCH/TCR binding interactions. Multiple interactions synergize and can substantially improve binding affinity.
- a capture agent barcode domain 1101 can be modified with streptavidin 1102 and contacted with multiple molecules of biotinylated MHC 1103 such that the biotinylated MHC 1103
- the capture agent barcode domain sequence 1101 can identify the MHC as its associated label and also includes optional functional sequences such as sequences for hybridization with other oligonucleotides. As shown in FIG. 11B
- one example oligonucleotide is capture probe 1106 that comprises a complementary sequence (e.g., rGrGrG corresponding to C C C), a barcode sequence and other functional sequences, such as, for example, a UMI, an adapter sequence (e.g., comprising a sequencing primer sequence (e.g., R1 or a partial R1 (“pRl”), R2), a flow cell attachment sequence (e.g., P5 or P7 or partial sequences thereof)), etc.
- capture probe 1106 may at first be associated with a feature (e.g., a gel bead) and released from the feature.
- capture probe 1106 can hybridize with a capture agent barcode domain 1101 of the MHC-oligonucleotide complex 1105.
- the hybridized oligonucleotides (Spacer C C C and Spacer rGrGrG) can then be extended in primer extension reactions such that constructs comprising sequences that correspond to each of the two spatial barcode sequences (the spatial barcode associated with the capture probe, and the barcode associated with the MHC-oligonucleotide complex) are generated.
- one or both of these corresponding sequences may be a complement of the original sequence in capture probe 1106 or capture agent barcode domain 1101.
- the capture probe and the capture agent barcode domain are ligated together.
- the resulting constructs can be optionally further processed (e.g., to add any additional sequences and/or for clean-up) and subjected to sequencing.
- a sequence derived from the capture probe 1106 spatial barcode sequence may be used to identify a feature and the sequence derived from spatial barcode sequence on the capture agent barcode domain 1101 may be used to identify the particular peptide MHC complex 1104 bound on the surface of the cell (e.g., when using MHC-peptide libraries for screening immune cells or immune cell populations).
- a substrate functions as a support for direct or indirect attachment of capture probes to features of the array.
- a substrate e.g., the same substrate or a different substrate
- a“substrate” is a support that is insoluble in aqueous liquid and which allows for positioning of biological samples, analytes, features, and/or capture probes on the substrate.
- Substrates can be formed from a variety of solid materials, gel-based materials, colloidal materials, semi-solid materials (e.g., materials that are at least partially cross-linked), materials that are fully or partially cured, and materials that undergo a phase change or transition to provide physical support.
- substrates examples include, but are not limited to, slides (e.g., slides formed from various glasses, slides formed from various polymers), hydrogels, layers and/or films, membranes (e.g., porous membranes), flow cells, cuvettes, wafers, plates, or combinations thereof.
- substrates can optionally include functional elements such as recesses, protruding structures, microfluidic elements (e.g., channels, reservoirs, electrodes, valves, seals), and various markings, as will be discussed in further detail below.
- a substrate can generally have any suitable form or format.
- a substrate can be flat, curved, e.g., convexly or concavely curved towards the area where the interaction between a biological sample, e.g., tissue sample, and a substrate takes place.
- a substrate is flat, e.g., planar, chip, or slide.
- a substrate can contain one or more patterned surfaces within the substrate (e.g., channels, wells, projections, ridges, divots, etc.).
- a substrate can be of any desired shape.
- a substrate can be typically a thin, flat shape (e.g., a square or a rectangle).
- a substrate structure has rounded comers (e.g., for increased safety or robustness).
- a substrate structure has one or more cut-off comers (e.g., for use with a slide clamp or cross-table).
- the substrate stmcture can be any appropriate type of support having a flat surface (e.g., a chip or a slide such as a microscope slide).
- Substrates can optionally include various structures such as, but not limited to, projections, ridges, and channels.
- a substrate can be micropattemed to limit lateral diffusion (e.g., to prevent overlap of spatial barcodes).
- a substrate modified with such structures can be modified to allow association of analytes, features (e.g., beads), or probes at individual sites.
- the sites where a substrate is modified with various structures can be contiguous or non-contiguous with other sites.
- the surface of a substrate can be modified so that discrete sites are formed that can only have or accommodate a single feature. In some embodiments, the surface of a substrate can be modified so that features adhere to random sites.
- the surface of a substrate is modified to contain one or more wells, using techniques such as (but not limited to) stamping, microetching, or molding techniques.
- the substrate in which a substrate includes one or more wells, can be a concavity slide or cavity slide.
- wells can be formed by one or more shallow depressions on the surface of the substrate.
- the wells can be formed by attaching a cassette (e.g., a cassette containing one or more chambers) to a surface of the substrate structure.
- the structures of a substrate can each bear a different capture probe.
- Different capture probes attached to each structure can be identified according to the locations of the structures in or on the surface of the substrate.
- Exemplary substrates include arrays in which separate structures are located on the substrate including, for example, those having wells that accommodate features.
- the structures can include physically altered sites.
- a substrate modified with various structures can include physical properties, including, but not limited to, physical
- the substrate is modified to contain various structures, including but not limited to wells, projections, ridges, features, or markings, the structures are applied in a pattern. Alternatively, the structures can be randomly distributed.
- the substrate e.g., or a bead or a feature on an array
- the substrate can include tens to hundreds of thousands or millions of individual oligonucleotide molecules (e.g., at least about 10,000, 50,000, 100,000, 500,000, 1,000,000, 10,000,000, 100,000,000, 1,000,000,000, or
- a substrate includes one or more markings on a surface of a substrate, e.g., to provide guidance for correlating spatial information with the
- a substrate can be marked with a grid of lines (e.g., to allow the size of objects seen under magnification to be easily estimated and/or to provide reference areas for counting objects).
- fiducial markers can be included on a substrate. Such markings can be made using techniques including, but not limited to, printing, sand-blasting, and depositing on the surface.
- imaging can be performed using one or more fiducial markers, i.e., objects placed in the field of view of an imaging system which appear in the image produced.
- Fiducial markers are typically used as a point of reference or measurement scale.
- Fiducial markers can include, but are not limited to, detectable labels such as fluorescent, radioactive, chemiluminescent, and colorimetric labels. The use of fiducial markers to stabilize and orient biological samples is described, for example, in Carter et al Applied Optics 46:421-427, 2007), the entire contents of which are incorporated herein by reference.
- a fiducial marker can be a physical particle (e.g., a nanoparticle, a microsphere, a nanosphere, a bead, a post, or any of the other exemplary physical particles described herein or known in the art).
- a fiducial marker can be present on a substrate to provide orientation of the biological sample.
- a microsphere can be coupled to a substrate to aid in orientation of the biological sample.
- a microsphere coupled to a substrate can produce an optical signal (e.g., fluorescence).
- a microsphere can be attached to a portion (e.g., comer) of an array in a specific pattern or design (e.g., hexagonal design) to aid in orientation of a biological sample on an array of features on the substrate.
- a quantum dot can be coupled to the substrate to aid in the orientation of the biological sample.
- a quantum dot coupled to a substrate can produce an optical signal.
- a fiducial marker can be an immobilized molecule with which a detectable signal molecule can interact to generate a signal.
- a marker nucleic acid can be linked or coupled to a chemical moiety capable of fluorescing when subjected to light of a specific wavelength (or range of wavelengths).
- Such a marker nucleic acid molecule can be contacted with an array before, contemporaneously with, or after the tissue sample is stained to visualize or image the tissue section.
- fiducial markers are included to facilitate the orientation of a tissue sample or an image thereof in relation to an immobilized capture probes on a substrate. Any number of methods for marking an array can be used such that a marker is detectable only when a tissue section is imaged.
- a molecule e.g., a fluorescent molecule that generates a signal
- Markers can be provided on a substrate in a pattern (e.g., an edge, one or more rows, one or more lines, etc.).
- a fiducial marker can be randomly placed in the field of view.
- an oligonucleotide containing a fluorophore can be randomly printed, stamped, synthesized, or attached to a substrate (e.g., a glass slide) at a random position on the substrate.
- a tissue section can be contacted with the substrate such that the oligonucleotide containing the fluorophore contacts, or is in proximity to, a cell from the tissue section or a component of the cell (e.g., an mRNA or DNA molecule).
- fiducial markers can be precisely placed in the field of view (e.g., at known locations on a substrate).
- a fiducial marker can be stamped, attached, or synthesized on the substrate and contacted with a biological sample.
- an image of the sample and the fiducial marker is taken, and the position of the fiducial marker on the substrate can be confirmed by viewing the image.
- a fiducial marker can be an immobilized molecule (e.g., a physical particle) attached to the substrate.
- a fiducial marker can be a nanoparticle, e.g., a nanorod, a nanowire, a nanocube, a nanopyramid, or a spherical nanoparticle.
- the nanoparticle can be made of a heavy metal (e.g., gold).
- the nanoparticle can be made from diamond.
- the fiducial marker can be visible by eye.
- any of the fiducial markers described herein can be located at a portion (e.g., comer) of an array in a specific pattern or design (e.g., hexagonal design) to aid in orientation of a biological sample on an array of features on the substrate.
- the fiducial markers located at a portion (e.g., comer) of an array can be patterned or designed in at least 1, at least 2, at least 3, or at least 4 unique patterns.
- the fiducial markers located at the comers of the array can have four unique patterns of fiducial markers.
- fiducial markers can surround the array.
- the fiducial markers allow for detection of, e.g., mirroring.
- the fiducial markers may completely surround the array.
- the fiducial markers may not completely surround the array.
- the fiducial markers identify the comers of the array.
- one or more fiducial markers identify the center of the array.
- the fiducial markers comprise patterned spots, wherein the diameter of one or more patterned spot fiducial markers is approximately 100
- the diameter of the fiducial markers can be any useful diameter including, but not limited to, 50 micrometers to 500 micrometers in diameter.
- the fiducial markers may be arranged in such a way that the center of one fiducial marker is between 100 micrometers and 200 micrometers from the center of one or more other fiducial markers surrounding the array.
- the array with the surrounding fiducial markers is approximately 8 mm by 8 mm. In some embodiments, the array without the surrounding fiducial markers is smaller than 8 mm by 50 mm.
- an array can be enclosed within a frame.
- the perimeter of an array can have fiducial markers such that the array is enclosed, or substantially enclosed.
- the perimeter of an array can be fiducial markers (e.g., any fiducial marker described herein).
- the perimeter of an array can be uniform.
- the fiducial markings can connect, or substantially connect, consecutive comers of an array in such a fashion that the non-comer portion of the array perimeter is the same on all sides (e.g., four sides) of the array.
- the fiducial markers attached to the non-comer portions of the perimeter can be pattered or designed to aid in the orientation of the biological sample on the array.
- the particles attached to the non-comer portions of the perimeter can be patterned or designed in at least 1, at least 2, at least 3, or at least 4 patterns.
- the patterns can have at least 2, at least 3, or at least 4 unique patterns of fiducial markings on the non-comer portion of the array perimeter.
- an array can include at least two fiducial markers (e.g., at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 12, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100 fiducial markers or more (e.g., several hundred, several thousand, or tens of thousands of fiducial markers)) in distinct positions on the surface of a substrate.
- Fiducial markers can be provided on a substrate in a pattern (e.g., an edge, one or more rows, one or more lines, etc.). A wide variety of different substrates can be used for the foregoing purposes.
- a substrate can be any suitable support material.
- Exemplary substrates include, but are not limited to, glass, modified and/or functionalized glass, hydrogels, films, membranes, plastics (including e.g., acrylics, polystyrene, copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonTM, cyclic olefins, polyimides etc.), nylon, ceramics, resins, Zeonor, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, optical fiber bundles, and polymers, such as polystyrene, cyclic olefin copolymers (COCs), cyclic olefin polymers (COPs), polypropylene, polyethylene polycarbonate, or combinations thereof.
- plastics including e.g., acrylics, polystyrene, copolymers of styrene and
- polystyrene is a hydrophobic material suitable for binding negatively charged macromolecules because it normally contains few hydrophilic groups.
- nucleic acids immobilized on glass slides by increasing the hydrophobicity of the glass surface the nucleic acid immobilization can be increased.
- Such an enhancement can permit a relatively more densely packed formation (e.g., provide improved specificity and resolution).
- a substrate can be a flow cell.
- Flow cells can be formed of any of the foregoing materials, and can include channels that permit reagents, solvents, features, and analytes to pass through the flow cell.
- a hydrogel embedded biological sample is assembled in a flow cell (e.g., the flow cell is utilized to introduce the hydrogel to the biological sample).
- a hydrogel embedded biological sample is not assembled in a flow cell.
- the hydrogel embedded biological sample can then be prepared and/or isometrically expanded as described herein.
- Conductive substrates e.g., electrophoretic compatible arrays generated as described herein can be used in the spatial detection of analytes.
- an electrophoretic field can be applied to facilitate migration of analytes towards the barcoded oligonucleotides (e.g., capture probes) on the array (e.g., capture probes immobilized on paper, capture probes immobilized in a hydrogel film, or capture probes immobilized on a glass slide having a conductive coating).
- an electrophoresis assembly can be arranged.
- an anode and a cathode can be arranged such that an array of capture probes (e.g., capture probes immobilized on paper, capture probes immobilized in a hydrogel film, or capture probes immobilized on a glass slide having a conductive coating) and a biological sample are positioned between the anode and the cathode.
- capture probes e.g., capture probes immobilized on paper, capture probes immobilized in a hydrogel film, or capture probes immobilized on a glass slide having a conductive coating
- a biological sample can be prepared (e.g., permeabilized) according to any method described herein.
- the barcoded oligonucleotides (e.g., capture probes) and captured analytes can be collected, processed, and/or analyzed (e.g., sequenced) using any of the methods described herein.
- a conductive substrate can include glass (e.g., a glass slide) that has been coated with a substance or otherwise modified to confer conductive properties to the glass.
- a glass slide can be coated with a conductive coating.
- a conductive coating includes tin oxide (TO) or indium tin oxide (ITO).
- a conductive coating includes a transparent conductive oxide (TCO).
- a conductive coating includes aluminum doped zinc oxide (AZO). In some embodiments, a conductive coating includes fluorine doped tin oxide (FTO).
- arrays that are spotted or printed with oligonucleotides can be generated on a conductive substrate (e.g., any of the conductive substrates described herein).
- the arrays described herein can be compatible with active analyte capture methods (e.g., any of the analyte capture methods described herein, including without limitation, electrophoretic capture methods).
- a conductive substrate is a porous medium.
- porous media that can be used in methods described herein that employ active analyte capture include a nitrocellulose or nylon membrane.
- a porous medium that can be used in methods described herein that employ active analyte capture includes paper.
- the oligonucleotides can be printed on a paper substrate.
- the printed oligonucleotides can interact with the substrate (e.g., interact with fibers of the paper).
- printed oligonucleotides can covalently bind the substrate (e.g., to fibers of the paper).
- oligonucleotides in a molecular precursor solution can be printed on a conductive substrate (e.g., paper).
- a molecular precursor solution can polymerize, thereby generating gel pads on the conductive substrate (e.g., paper).
- a molecular precursor solution can be polymerized by light (e.g., photocured).
- gel beads e.g., any of the variety of gel beads described herein
- oligonucleotides e.g., barcoded oligonucleotides such as capture probes
- the printed a conductive substrate e.g., paper
- oligonucleotides can be covalently attached into the gel matrix.
- a surface of a substrate can be coated with a cell-permissive coating to allow adherence of live cells.
- A“cell-permissive coating” is a coating that allows or helps cells to maintain cell viability (e.g., remain viable) on the substrate.
- a cell-permissive coating can enhance cell attachment, cell growth, and/or cell differentiation, e.g., a cell-permissive coating can provide nutrients to the live cells.
- a cell-permissive coating can include a biological material and/or a synthetic material.
- Non-limiting examples of a cell-permissive coating include coatings that feature one or more extracellular matrix (ECM) components (e.g., proteoglycans and fibrous proteins such as collagen, elastin, fibronectin and laminin), poly-lysine, poly(L)-omithine, and/or a biocompatible silicone (e.g., CYTOSOFT®).
- ECM extracellular matrix
- a cell-permissive coating that includes one or more extracellular matrix components can include collagen Type I, collagen Type II, collagen Type IV, elastin, fibronectin, laminin, and/or vitronectin.
- the cell- permissive coating includes a solubilized basement membrane preparation extracted from the Engelbreth-Holm- Swarm (EHS) mouse sarcoma (e.g., MATRIGEL®).
- EHS Engelbreth-Holm- Swarm
- MATRIGEL® solubilized basement membrane preparation extracted from the Engelbreth-Holm
- the cell-permissive coating includes collagen.
- a cell-permissive coating can be used to culture adherent cells on a spatially-barcoded array, or to maintain cell viability of a tissue sample or section while in contact with a spatially-barcoded array.
- a substrate is coated with a surface treatment such as poly(L)- lysine.
- a surface treatment such as poly(L)- lysine.
- the substrate can be treated by silanation, e.g., with epoxy-silane, amino-silane, and/or by a treatment with polyacrylamide.
- a substrate is treated in order to minimize or reduce non specific analyte hybridization within or between features.
- treatment can include coating the substrate with a hydrogel, film, and/or membrane that creates a physical barrier to non-specific hybridization.
- Any suitable hydrogel can be used.
- Treatment can include adding a functional group that is reactive or capable of being activated such that it becomes reactive after application of a stimulus (e.g., photoreactive functional groups). Treatment can include treating with polymers having one or more physical properties (e.g., mechanical, electrical, magnetic, and/or thermal) that minimize non specific binding (e.g., that activate a substrate at certain locations to allow analyte hybridization at those locations).
- A“removable coating” is a coating that can be removed from the surface of a substrate upon application of a releasing agent.
- a removable coating includes a hydrogel as described herein, e.g., a hydrogel including a polypeptide-based material.
- Non-limiting examples of a hydrogel featuring a polypeptide-based material include a synthetic peptide-based material featuring a combination of spider silk and a trans membrane segment of human muscle L-type calcium channel (e.g., PEPGEL®), an amphiphilic 16 residue peptide containing a repeating arginine-alanine-aspartate-alanine sequence (RAD ARAD ARAD A) (e.g, PURAMATRIX®), EAK16
- the hydrogel in the removable coating is a stimulus-responsive hydrogel.
- a stimulus-responsive hydrogel can undergo a gel-to-solution and/or gel-to-solid transition upon application of one or more external triggers (e.g., a releasing agent). See, e.g., Willner, Acc. Chem. Res. 50:657-658, 2017, which is incorporated herein by reference in its entirety.
- a stimulus-responsive hydrogel include a
- thermoresponsive hydrogel a pH-responsive hydrogel, a light-responsive hydrogel, a redox- responsive hydrogel, an analyte-responsive hydrogel, or a combination thereof.
- a stimulus-responsive hydrogel can be a multi-stimuli-responsive hydrogel.
- A“releasing agent” or“external trigger” is an agent that allows for the removal of a removable coating from a substrate when the releasing agent is applied to the removable coating.
- An external trigger or releasing agent can include physical triggers such as thermal, magnetic, ultrasonic, electrochemical, and/or light stimuli as well as chemical triggers such as pH, redox reactions, supramolecular complexes, and/or biocatalytically driven reactions. See e.g, Echeverria, et al. Gels (2016), 4, 54; doi: 10.3390/gels4020054, which is incorporated herein by reference in its entirety.
- the type of“releasing agent” or“external trigger” can depend on the type of removable coating.
- a removable coating featuring a redox-responsive hydrogel can be removed upon application of a releasing agent that includes a reducing agent such as dithiothreitol (DTT).
- a pH-responsive hydrogel can be removed upon the application of a releasing agent that changes the pH.
- a hydrogel can form a substrate.
- the term“hydrogel” herein refers to a macromolecular polymer gel including a network. Within the network, some polymer chains can optionally be cross-linked, although cross-linking does not always occur.
- the substrate includes a hydrogel and one or more second materials.
- the hydrogel is placed on top of one or more second materials.
- the hydrogel can be pre-formed and then placed on top of, underneath, or in any other configuration with one or more second materials.
- hydrogel formation occurs after contacting one or more second materials during formation of the substrate.
- Hydrogel formation can also occur within a structure (e.g., wells, ridges, features, projections, and/or markings) located on a substrate.
- a structure e.g., wells, ridges, features, projections, and/or markings
- the substrate includes a gel (e.g., a hydrogel or gel matrix)
- oligonucleotides within the gel can attach to the substrate.
- a hydrogel can include hydrogel subunits.
- the hydrogel subunits can include any convenient hydrogel subunits, such as, but not limited to, acrylamide, bis-acrylamide, polyacrylamide and derivatives thereof, poly(ethylene glycol) and derivatives thereof (e.g., PEG-acrylate (PEG-DA), PEG-RGD), gelatin-methacryloyl (GelMA), methacrylated hyaluronic acid (MeHA), polyaliphatic polyurethanes, poly ether polyurethanes, polyester polyurethanes, polyethylene copolymers, polyamides, polyvinyl alcohols, polypropylene glycol, polytetramethylene oxide, polyvinyl pyrrolidone, polyacrylamide, poly(hydroxyethyl acrylate), and poly(hydroxyethyl methacrylate), collagen, hyaluronic acid, chitosan, dextran, agarose, gelatin, alginate, protein polymers,
- methylcellulose and the like, or combinations thereof.
- a hydrogel includes a hybrid material, e.g., the hydrogel material includes elements of both synthetic and natural polymers. Examples of suitable hydrogels are described, for example, in U.S. Patent Nos. 6,391,937, 9,512,422, and
- cross-linkers and/or initiators are added to hydrogel subunits.
- cross-linkers include, without limitation, bis-acrylamide and diazirine.
- initiators include, without limitation, azobisisobutyronitrile (AIBN), riboflavin, and L- arginine. Inclusion of cross-linkers and/or initiators can lead to increased covalent bonding between interacting biological macromolecules in later polymerization steps.
- hydrogels can have a colloidal structure, such as agarose, or a polymer mesh structure, such as gelatin. In some embodiments, the hydrogel is a
- the hydrogel is a copolymeric hydrogel. In some embodiments, the hydrogel is a multipolymer interpenetrating polymeric hydrogel.
- hydrogel subunits are polymerized (e.g., undergo “formation”) covalently or physically cross-linked, to form a hydrogel network.
- hydrogel subunits can be polymerized by any method including, but not limited to, thermal crosslinking, chemical crosslinking, physical crosslinking, ionic crosslinking, photo- crosslinking, free-radical initiation crosslinking, an addition reaction, condensation reaction, water-soluble crosslinking reactions, irradiative crosslinking (e.g., x-ray, electron beam), or combinations thereof.
- Techniques such as lithographic photopolymerization can also be used to form hydrogels.
- gel beads containing oligonucleotides can be deposited on a substrate (e.g., a glass slide).
- gel pads can be deposited on a substrate (e.g., a glass slide).
- gel pads or gel beads are deposited on a substrate in an arrayed format.
- a hydrogel molecular precursor solution can be applied on top of the array (e.g., the array of gel pads or gel beads on a glass slide).
- a hydrogel molecular precursor solution can be polymerized such that the deposited gel pads or gel beads are immobilized within the polymerized hydrogel. Any suitable method of polymerization can be used or (e.g., any of the variety of methods described herein).
- a polymerized hydrogel that includes the gel pads or gel beads can be removed (e.g., peeled) from the substrate (e.g., glass slide) such that the gel beads or gel pads are secured in the hydrogel.
- a polymerized hydrogel that includes the gel pads or gel beads is a conductive substrate (as described herein) that can be used in accordance with any of the variety of analyte capture methods described herein (e.g., electrophoretic migration of analytes for capture).
- Arrays can be prepared by depositing features (e.g., droplets, beads) on a substrate surface to produce a spatially-barcoded array.
- features e.g., droplets, beads
- Methods of depositing (e.g., droplet manipulation) features are known in the art (see, U.S. Patent Application Publication No. 2008/0132429, Rubina, A.Y., et al, Biotechniques. 2003 May; 34(5): 1008-14, 1016-20, 1022 and Vasiliskov et al. Biotechniques . 1999 September; 27(3):592-4, 596-8, 600 passim each herein incorporated by reference in its entirety).
- a feature can be printed or deposited at a specific location on the substrate (e.g., inkjet printing).
- each feature can have a unique oligonucleotide that functions as a spatial barcode.
- each feature can have capture probes for multiplexing (e.g., capturing multiple analytes or multiple types of analytes, e.g., proteins and nucleic acids).
- a feature can be printed or deposited at the specific location using an electric field.
- a feature can contain a photo-crosslinkable polymer precursor and an oligonucleotide.
- the photo-crosslinkable polymer precursor can be deposited into a patterned feature on the substrate (e.g., well).
- A“photo-crosslinkable polymer precursor” refers to a compound that cross-links and/or polymerizes upon exposure to light.
- one or more of the photo-crosslinkable polymer precursor refers to a compound that cross-links and/or polymerizes upon exposure to light.
- one or more of the photo-crosslinkable polymer precursor refers to a compound that cross-links and/or
- photoinitiators may also be included to induce and/or promote polymerization and/or cross- linking. See, e.g., Choi et al. Biotechniques . 2019 Jan;66(l):40-53, which is incorporated herein by reference in its entirety.
- photo-crosslinkable polymer precursors include polyethylene (glycol) diacrylate (PEGDA), gelatin-methacryloyl (GelMA), and
- a photo-crosslinkable polymer precursor comprises polyethylene (glycol) diacrylate (PEGDA), gelatin- methacryloyl (GelMA), methacrylated hyaluronic acid (MeHA), or a combination thereof.
- a photo-crosslinkable polymer precursor e.g., PAZAM
- PAZAM polyethylene (glycol) diacrylate
- a photo-crosslinkable polymer precursor can be covalently linked (e.g., cross-linked) to a substrate.
- a photo- crosslinkable polymer precursor is not covalently linked to a substrate surface.
- a silane-free acrylamide can be used (See U.S. Patent Application Publication No.
- the photo-crosslinkable polymer precursor in a feature can be polymerized by any known method.
- the oligonucleotides can be polymerized in a cross-linked gel matrix (e.g., copolymerized or simultaneously polymerized).
- the features containing the photo-crosslinkable polymer precursor deposited on the substrate surface can be exposed to UV light.
- the UV light can induce polymerization of the photo-crosslinkable polymer precursor and result in the features becoming a gel matrix (e.g., gel pads) on the substrate surface (e.g., array).
- Polymerization methods for hydrogel subunits can be selected to form hydrogels with different properties (e.g., pore volume, swelling properties, biodegradability, conduction, transparency, and/or permeability of the hydrogel).
- a hydrogel can include pores of sufficient volume to allow the passage of macromolecules, (e.g., nucleic acids, proteins, chromatin, metabolites, gRNA, antibodies, carbohydrates, peptides, metabolites, and/or small molecules) to/from the sample (e.g., tissue section).
- macromolecules e.g., nucleic acids, proteins, chromatin, metabolites, gRNA, antibodies, carbohydrates, peptides, metabolites, and/or small molecules
- pore volume generally decreases with increasing concentration of hydrogel subunits and generally increases with an increasing ratio of hydrogel subunits to cross-linker. Therefore, a hydrogel composition can be prepared that includes a concentration of hydrogel subunits that allows the passage of such biological macromolecules.
- hydrogel formation on a substrate occurs before,
- hydrogel formation can be performed on the substrate already containing the capture probes.
- An“array” is a specific arrangement of a plurality of features that is either irregular or forms a regular pattern. Individual features in the array differ from one another based on their relative spatial locations. In general, at least two of the plurality of features in the array include a distinct capture probe (e.g., any of the examples of capture probes described herein).
- Arrays can be used to measure large numbers of analytes simultaneously.
- oligonucleotides are used, at least in part, to create an array.
- one or more copies of a single species of oligonucleotide e.g., capture probe
- a given feature in the array includes two or more species of oligonucleotides (e.g., capture probes).
- the two or more species of oligonucleotides (e.g., capture probes) attached directly or indirectly to a given feature on the array include a common (e.g., identical) spatial barcode.
- an array can include a capture probe atached directly or indirectly to the substrate.
- the capture probe can include a capture domain (e.g., a nucleotide sequence) that can specifically bind (e.g., hybridize) to a target analyte (e.g., mRNA, DNA, or protein) within a sample.
- a target analyte e.g., mRNA, DNA, or protein
- the binding of the capture probe to the target e.g., hybridization
- the intensity of the visual signal correlates with the relative abundance of each analyte in the biological sample. Since an array can contain thousands or millions of capture probes (or more), an array can interrogate many analytes in parallel.
- a substrate includes one or more capture probes that are designed to capture analytes from one or more organisms.
- a substrate can contain one or more capture probes designed to capture mRNA from one organism (e.g., a human) and one or more capture probes designed to capture DNA from a second organism (e.g., a bacterium).
- the capture probes can be atached to a substrate or feature using a variety of techniques.
- the capture probe is directly atached to a feature that is fixed on an array.
- the capture probes are immobilized to a substrate by chemical immobilization.
- a chemical immobilization can take place between functional groups on the substrate and corresponding functional elements on the capture probes.
- Exemplary corresponding functional elements in the capture probes can either be an inherent chemical group of the capture probe, e.g., a hydroxyl group, or a functional element can be introduced on to the capture probe.
- An example of a functional group on the substrate is an amine group.
- the capture probe to be immobilized includes a functional amine group or is chemically modified in order to include a functional amine group. Means and methods for such a chemical modification are well known in the art.
- the capture probe is a nucleic acid. In some embodiments, the capture probe is immobilized on a substrate or feature via its 5’ end. In some embodiments, the capture probe is immobilized on a substrate or feature via its 5’ end and includes from the 5’ to 3’ end: one or more barcodes (e.g., a spatial barcode and/or a UMI) and one or more capture domains. In some embodiments, the capture probe is immobilized on a substrate or feature via its 5’ end and includes from the 5’ to 3’ end: one barcode (e.g., a spatial barcode or a UMI) and one capture domain.
- one barcode e.g., a spatial barcode or a UMI
- the capture probe is immobilized on a substrate or feature via its 5’ end and includes from the 5’ to 3’ end: a cleavage domain, a functional domain, one or more barcodes (e.g., a spatial barcode and/or a UMI), and a capture domain.
- the capture probe is immobilized on a substrate or feature via its 5’ end and includes from the 5’ to 3’ end: a cleavage domain, a functional domain, one or more barcodes (e.g., a spatial barcode and/or a UMI), a second functional domain, and a capture domain.
- the capture probe is immobilized on a substrate or feature via its 5’ end and includes from the 5’ to 3’ end: a cleavage domain, a functional domain, a spatial barcode, a UMI, and a capture domain.
- the capture probe is immobilized on a substrate or feature via its 5’ end and does not include a spatial barcode.
- the capture probe is immobilized on a substrate or feature via its 5’ end and does not include a UMI.
- the capture probe includes a sequence for initiating a sequencing reaction.
- the capture probe is immobilized on a substrate or feature via its 3’ end. In some embodiments, the capture probe is immobilized on a substrate or feature via its 3’ end and includes from the 3’ to 5’ end: one or more barcodes (e.g., a spatial barcode and/or a UMI) and one or more capture domains. In some embodiments, the capture probe is immobilized on a substrate or feature via its 3’ end and includes from the 3’ to 5’ end: one barcode (e.g., a spatial barcode or a UMI) and one capture domain.
- one barcode e.g., a spatial barcode or a UMI
- the capture probe is immobilized on a substrate or feature via its 3’ end and includes from the 3’ to 5’ end: a cleavage domain, a functional domain, one or more barcodes (e.g., a spatial barcode and/or a UMI), and a capture domain.
- the capture probe is immobilized on a substrate or feature via its 3’ end and includes from the 3’ to 5’ end: a cleavage domain, a functional domain, a spatial barcode, a UMI, and a capture domain.
- a capture probe can further include a substrate.
- a typical substrate for a capture probe to be immobilized includes moieties which are capable of binding to such capture probes, e.g., to amine-functionalized nucleic acids. Examples of such substrates are carboxy, aldehyde, or epoxy substrates.
- the substrates on which capture probes can be immobilized can be chemically activated, e.g., by the activation of functional groups available on the substrate.
- the term“activated substrate” relates to a material in which interacting or reactive chemical functional groups are established or enabled by chemical modification procedures.
- a substrate including carboxyl groups can be activated before use.
- certain substrates contain functional groups that can react with specific moieties already present in the capture probes.
- a covalent linkage is used to directly couple a capture probe to a substrate.
- a capture probe is indirectly coupled to a substrate through a linker separating the“first” nucleotide of the capture probe from the substrate, e.g., a chemical linker.
- a capture probe does not bind directly to the substrate, but interacts indirectly, for example by binding to a molecule which itself binds directly or indirectly to the substrate.
- the capture probe is indirectly attached to a substrate (e.g., attached to a substrate via a solution including a polymer).
- the capture probe can further include an upstream sequence (5’ to the sequence that hybridizes to the nucleic acid, e.g., RNA of the tissue sample) that is capable of hybridizing to 5’ end of a surface probe.
- the capture domain of the capture probe can be seen as a capture domain oligonucleotide, which can be used in the synthesis of the capture probe in embodiments where the capture probe is immobilized on the array indirectly.
- a substrate is comprised of an inert material or matrix (e.g., glass slides) that has been functionalized by, for example, treating the substrate with a material comprising reactive groups which enable immobilization of capture probes.
- an inert material or matrix e.g., glass slides
- a material comprising reactive groups which enable immobilization of capture probes.
- Non-limiting examples include polyacrylamide hydrogels supported on an inert substrate (e.g., glass slide; see WO 2005/065814 and U.S. Patent Application No. 2008/0280773, the entire contents of which is incorporated herein by reference).
- functionalized biomolecules are immobilized on a functionalized substrate using covalent methods.
- Methods for covalent attachment include, for example, condensation of amines and activated carboxylic esters (e.g., N-hydroxysuccinimide esters); condensation of amine and aldehydes under reductive amination conditions; and cycloaddition reactions such as the Diels-Alder [4+2] reaction, 1,3-dipolar cycloaddition reactions, and [2+2] cycloaddition reactions.
- Methods for covalent attachment also include, for example, click chemistry reactions, including [3+2]
- cycloaddition reactions e.g., Huisgen 1,3-dipolar cycloaddition reaction and copper(I)- catalyzed azide-alkyne cycloaddition (CuAAC)
- thiol-ene reactions e.g., Huisgen 1,3-dipolar cycloaddition reaction and copper(I)- catalyzed azide-alkyne cycloaddition (CuAAC)
- thiol-ene reactions e.g., Huisgen 1,3-dipolar cycloaddition reaction and copper(I)- catalyzed azide-alkyne cycloaddition (CuAAC)
- thiol-ene reactions e.g., Huisgen 1,3-dipolar cycloaddition reaction and copper(I)- catalyzed azide-alkyne cycloaddition (CuAAC)
- thiol-ene reactions e.
- Methods for covalent attachment also include, for example, maleimides and thiols; and /?ara-nitrophenyl ester-functionalized oligonucleotides and polylysine-functionalized substrate.
- Methods for covalent attachment also include, for example, disulfide reactions; radical reactions (see, e.g., U.S. Patent No. 5,919,626, the entire contents of which are herein incorporated by reference); and hydrazide-functionalized substrate (e.g., wherein the hydrazide functional group is directly or indirectly attached to the substrate) and aldehyde-functionalized oligonucleotides (see, e.g., Yershov et al. (1996)
- functionalized biomolecules are immobilized on a functionalized substrate using photochemical covalent methods.
- Methods for photochemical covalent attachment include, for example, immobilization of antraquinone- conjugated oligonucleotides (see, e.g., Koch et al. (2000) Bioconjugate Chem. 11, 474-483, the entire contents of which is herein incorporated by reference).
- functionalized biomolecules are immobilized on a functionalized substrate using non-covalent methods.
- Methods for non- covalent attachment include, for example, biotin-functionalized oligonucleotides and streptavidin-treated substrates (see, e.g., Holmstrom et al. (1993) Analytical Biochemistry 209, 278-283 and Gilles et al. (1999) Nature Biotechnology 17, 365-370, the entire contents of which are herein incorporated by reference).
- an oligonucleotide e.g., a capture probe
- a substrate or feature according to the methods set forth in U.S. Patent Nos. 6,737,236, 7,259,258, 7,375,234, 7,427,678, 5,610,287, 5,807,522, 5,837,860, and 5,472,881; U.S.
- arrays can be prepared by a variety of methods.
- arrays are prepared through the synthesis (e.g., in situ synthesis) of oligonucleotides on the array, or by jet printing or lithography.
- synthesis e.g., in situ synthesis
- light-directed synthesis of high-density DNA oligonucleotides can be achieved by photolithography or solid-phase DNA synthesis.
- synthetic linkers modified with photochemical protecting groups can be attached to a substrate and the photochemical protecting groups can be modified using a photolithographic mask (applied to specific areas of the substrate) and light, thereby producing an array having localized photo-deprotection.
- oligonucleotides e.g., capture probes
- oligonucleotides can be“spotted” or “printed” onto a substrate to form an array.
- the oligonucleotides can be applied by either noncontact or contact printing.
- a noncontact printer can use the same method as computer printers (e.g., bubble jet or inkjet) to expel small droplets of probe solution onto the substrate.
- the specialized inkjet-like printer can expel nanoliter to picoliter volume droplets of oligonucleotide solution, instead of ink, onto the substrate.
- each print pin directly applies the oligonucleotide solution onto a specific location on the surface.
- the oligonucleotides can be attached to the substrate surface by the electrostatic interaction of the negative charge of the phosphate backbone of the DNA with a positively charged coating of the substrate surface or by UV-cross-linked covalent bonds between the thymidine bases in the DNA and amine groups on the treated substrate surface.
- the substrate is a glass slide.
- the oligonucleotides e.g., capture probes
- the oligonucleotides are attached to a substrate by a covalent bond to a chemical matrix, e.g., epoxy-silane, amino- silane, lysine, polyacrylamide, etc.
- Capture probes arrays can be prepared by in situ synthesis.
- capture probe arrays can be prepared using photolithography. Photolithography typically relies on UV masking and light-directed combinatorial chemical synthesis on a substrate to selectively synthesize probes directly on the surface of an array, one nucleotide at a time per spot, for many spots simultaneously.
- a substrate contains covalent linker molecules that have a protecting group on the free end that can be removed by light.
- UV light is directed through a photolithographic mask to deprotect and activate selected sites with hydroxyl groups that initiate coupling with incoming protected nucleotides that attach to the activated sites.
- the mask is designed in such a way that the exposure sites can be selected, and thus specify the coordinates on the array where each nucleotide can be attached.
- the process can be repeated, a new mask is applied activating different sets of sites and coupling different bases, allowing different oligonucleotides to be constructed at each site. This process can be used to synthesize hundreds of thousands of different oligonucleotides.
- maskless array synthesizer technology can be used.
- Programmable micromirrors can create digital masks that reflect the desired pattern of UV light to deprotect the features.
- the inkjet spotting process can also be used for in situ oligonucleotide synthesis.
- the different nucleotide precursors plus catalyst can be printed on the substrate, and are then combined with coupling and deprotection steps.
- This method relies on printing picoliter volumes of nucleotides on the array surface in repeated rounds of base- by-base printing that extends the length of the oligonucleotide probes on the array.
- Arrays can also be prepared by active hybridization via electric fields to control nucleic acid transport. Negatively charged nucleic acids can be transported to specific sites, or features, when a positive current is applied to one or more test sites on the array.
- the surface of the array can contain a binding molecule, e.g., streptavidin, which allows for the formation of bonds (e.g., streptavidin-biotin bonds) once electrically addressed biotinylated probes reach their targeted location.
- bonds e.g., streptavidin-biotin bonds
- an array comprising barcoded probes can be generated through ligation of a plurality of oligonucleotides.
- an oligonucleotide of the plurality contains a portion of a barcode, and the complete barcode is generated upon ligation of the plurality of oligonucleotides.
- a first oligonucleotide containing a first portion of a barcode can be attached to a substrate (e.g., using any of the methods of attaching an oligonucleotide to a substrate described herein), and a second oligonucleotide containing a second portion of the barcode can then be ligated onto the first oligonucleotide to generate a complete barcode.
- a substrate e.g., using any of the methods of attaching an oligonucleotide to a substrate described herein
- a second oligonucleotide containing a second portion of the barcode can then be ligated onto the first oligonucleotide to generate a complete barcode.
- Different combinations of the first, second and any additional portions of a barcode can be used to increase the diversity of the barcodes.
- the first and/or the second oligonucleotide can be attached to the substrate via a surface linker which contains a cleavage site.
- the ligated oligonucleotide can be linearized by cleaving at the cleavage site.
- a plurality of second oligonucleotides comprising two or more different barcode sequences can be ligated onto a plurality of first oligonucleotides that comprise the same barcode sequence, thereby generating two or more different species of barcodes.
- a first oligonucleotide attached to a substrate containing a first portion of a barcode can initially be protected with a protective group (e.g., a photocleavable protective group), and the protective group can be removed prior to ligation between the first and second oligonucleotide.
- a protective group e.g., a photocleavable protective group
- a concentration gradient of the oligonucleotides can be applied to a substrate such that different combinations of the oligonucleotides are incorporated into a barcoded probe depending on its location on the substrate.
- Probes can be generated by directly ligating additional oligonucleotides onto existing oligonucleotides via a splint oligonucleotide.
- oligonucleotides on an existing array can include a recognition sequence that can hybridize with a splint oligonucleotide.
- the recognition sequence can be at the free 5’ end or the free 3’ end of an oligonucleotide on the existing array.
- Recognition sequences useful for the methods of the present disclosure may not contain restriction enzyme recognition sites or secondary structures (e.g., hairpins), and may include high contents of Guanine and Cytosine nucleotides.
- Barcoded probes on an array can also be generated by adding single nucleotides to existing oligonucleotides on an array, for example, using polymerases that function in a template-independent manner.
- Single nucleotides can be added to existing oligonucleotides in a concentration gradient, thereby generating probes with varying length, depending on the location of the probes on the array.
- Arrays can also be prepared by modifying existing arrays, for example, by modifying oligonucleotides already attached to an arrays. For instance, capture probes can be generated on an array that already comprises oligonucleotides that are attached to the array (or features on the array) at the 3’ end and have a free 5’ end. In some instances, an array is any commercially available array (e.g., any of the arrays available commercially as described herein).
- the oligonucleotides can be in situ synthesized using any of the in situ synthesis methods described herein.
- the oligonucleotide can include a barcode and one or more constant sequences. In some instances, the constant sequences are cleavable sequences.
- the length of the oligonucleotides attached to the substrate can be less than 100 nucleotides (e.g., less than 90, 80, 75, 70, 60, 50, 45, 40, 35, 30, 25, 20, 15, or 10
- a primer complementary to a portion of an oligonucleotide can hybridize to the oligonucleotide and extend the oligonucleotide (using the oligonucleotide as a template) to form a duplex and to create a 3’ overhang.
- the 3’ overhang can be created by template-independent ligases (e.g., terminal deoxynucleotidyl transferase (TdT) or poly(A) polymerase).
- the 3’ overhang allows additional nucleotides or oligonucleotides to be added to the duplex, for example, by an enzyme.
- a capture probe can be generated by adding additional oligonucleotides to the end of the 3’ overhang (e.g., via splint
- oligonucleotide mediated ligation where the additional oligonucleotides can include a sequence or a portion of sequence of one or more capture domains, or a complement thereof.
- the additional oligonucleotide (e.g., a sequence or a portion of sequence of a capture domain) can include a degenerate sequence (e.g., any of the degenerate sequences as described herein).
- the additional oligonucleotide (e.g., a sequence or a portion of sequence of a capture domain) can include a sequence compatible for hybridizing or ligating with an analyte of interest in a biological sample.
- An analyte of interest can also be used as a splint oligonucleotide to ligate additional oligonucleotides onto a probe.
- an additional oligonucleotide can include a sequence that is complementary to the sequence of the splint oligonucleotide.
- Ligation of the oligonucleotides can involve the use of an enzyme, such as, but not limited to, a ligase.
- suitable ligases include Tth DNA ligase, Taq DNA ligase, Thermococcus sp.
- strain 9oN DNA ligase (9oNTM DNA ligase, New England Biolabs), AmpligaseTM (available from Lucigen, Middleton, WI), and SplintR (available from New England Biolabs, Ipswich, MA).
- An array generated as described above is useful for spatial analysis of a biological sample.
- the one or more capture domains can be used to hybridize with the poly(A) tail of an mRNA molecule.
- Reverse transcription can be carried out using a reverse transcriptase to generate cDNA
- sequence and location of the captured mRNA can then be determined (e.g., by sequencing the capture probe that contains the barcode as well as the complementary cDNA).
- An array for spatial analysis can be generated by various methods as described herein.
- the array has a plurality of capture probes comprising spatial barcodes. These spatial barcodes and their relationship to the locations on the array can be determined. In some cases, such information is readily available, because the
- the spatial barcode can be decoded by methods described herein, e.g., by in situ sequencing, by various labels associated with the spatial barcodes etc.
- an array can be used as a template to generate a daughter array.
- the spatial barcode can be transferred to the daughter array with a known pattern.
- features A“feature” is an entity that acts as a support or repository for various molecular entities used in sample analysis.
- some or all of the features in an array are functionalized for analyte capture.
- functionalized features include one or more capture probe(s). Examples of features include, but are not limited to, a bead, a spot of any two- or three-dimensional geometry (e.g., an inkjet spot, a masked spot, a square on a grid), a well, and a hydrogel pad.
- features are directly or indirectly attached or fixed to a substrate.
- the features are not directly or indirectly attached or fixed to a substrate, but instead, for example, are disposed within an enclosed or partially enclosed three dimensional space (e.g., wells or divots).
- features that are formed from polymers and/or biopolymers that are jet printed, screen printed, or electrostatically deposited on a substrate can be used to form arrays.
- Jet printing of biopolymers is described, for example, in PCT Patent Application Publication No. WO 2014/085725. Jet printing of polymers is described, for example, in de Gans et al., Adv Mater. 16(3): 203-213 (2004). Methods for electrostatic deposition of polymers and biopolymers are described, for example, in Hoyer et al., Anal. Chem. 68(21): 3840-3844 (1996). The entire contents of each of the foregoing references are incorporated herein by reference.
- features are formed by metallic micro- or nanoparticles. Suitable methods for depositing such particles to form arrays are described, for example, in Lee et al., Beilstein J. Nanotechnol. 8: 1049-1055 (2017), the entire contents of which are incorporated herein by reference.
- features are formed by magnetic particles that are assembled on a substrate. Examples of such particles and methods for assembling arrays are described in Ye et al, Scientific Reports 6: 23145 (2016), the entire contents of which are incorporated herein by reference.
- features correspond to regions of a substrate in which one or more optical labels have been incorporated, and/or which have been altered by a process such as permanent photobleaching.
- Suitable substrates to implement features in this manner include a wide variety of polymers, for example. Methods for forming such features are described, for example, in Moshrefzadeh et al. , Appl. Phys. Lett. 62: 16 (1993), the entire contents of which are incorporated herein by reference.
- features can correspond to colloidal particles assembled (e.g., via self-assembly) to form an array.
- colloidal particles are described for example in Sharma, Resonance 23(3): 263-275 (2016), the entire contents of which are incorporated herein by reference.
- features can be formed via spot-array photopolymerization of a monomer solution on a substrate.
- two-photon and three-photon polymerization can be used to fabricate features of relatively small (e.g., sub micron) dimensions. Suitable methods for preparing features on a substrate in this manner are described for example in Nguyen et al. , Materials Today 20(6): 314-322 (2017), the entire contents of which are incorporated herein by reference.
- features are directly or indirectly attached or fixed to a substrate that is liquid permeable. In some embodiments, features are directly or indirectly attached or fixed to a substrate that is biocompatible. In some embodiments, features are directly or indirectly attached or fixed to a substrate that is a hydrogel.
- FIG. 12 depicts an exemplary arrangement of barcoded features within an array.
- FIG. 12 shows (L) a slide including six spatially-barcoded arrays, (C) an enlarged schematic of one of the six spatially-barcoded arrays, showing a grid of barcoded features in relation to a biological sample, and (R) an enlarged schematic of one section of an array, showing the specific identification of multiple features within the array (labelled as ID578, ID579, ID560, etc ).
- A“bead” can be a particle.
- a bead can be porous, non-porous, solid, semi-solid, and/or a combination thereof.
- a bead can be dissolvable, disruptable, and/or degradable, whereas in certain embodiments, a bead is not degradable.
- a semi-solid bead can be a liposomal bead.
- Solid beads can include metals including, without limitation, iron oxide, gold, and silver.
- the bead can be a silica bead.
- the bead can be rigid.
- the bead can be flexible and/or compressible.
- the bead can be a macromolecule.
- the bead can be formed of nucleic acid molecules bound together.
- the bead can be formed via covalent or non-covalent assembly of molecules (e.g., macromolecules), such as monomers or polymers.
- Polymers or monomers can be natural or synthetic.
- Polymers or monomers can be or include, for example, nucleic acid molecules (e.g., DNA or RNA).
- a bead can be rigid, or flexible and/or compressible.
- a bead can include a coating including one or more polymers. Such a coating can be disruptable or dissolvable.
- a bead includes a spectral or optical label (e.g., dye) attached directly or indirectly (e.g., through a linker) to the bead.
- a bead can be prepared as a colored preparation (e.g., a bead exhibiting a distinct color within the visible spectrum) that can change color (e.g., colorimetric beads) upon application of a desired stimulus (e.g., heat and/or chemical reaction) to form differently colored beads (e.g., opaque and/or clear beads).
- a bead can include natural and/or synthetic materials.
- a bead can include a natural polymer, a synthetic polymer or both natural and synthetic polymers.
- natural polymers include, without limitation, proteins, sugars such as deoxyribonucleic acid, rubber, cellulose, starch (e.g., amylose, amylopectin), enzymes, polysaccharides, silks, polyhydroxyalkanoates, chitosan, dextran, collagen, carrageenan, ispaghula, acacia, agar, gelatin, shellac, sterculia gum, xanthan gum, com sugar gum, guar gum, gum karaya, agarose, alginic acid, alginate, or natural polymers thereof.
- proteins include, without limitation, proteins, sugars such as deoxyribonucleic acid, rubber, cellulose, starch (e.g., amylose, amylopectin), enzymes, polysaccharides, silks, polyhydroxyalkanoates, chitosan, dextran, collagen, carrageenan, ispaghula, acacia, agar, gelatin
- Examples of synthetic polymers include, without limitation, acrylics, nylons, silicones, spandex, viscose rayon, poly carboxylic acids, polyvinyl acetate, polyacrylamide, polyacrylate, polyethylene glycol, polyurethanes, polylactic acid, silica, polystyrene, polyacrylonitrile, polybutadiene, polycarbonate, polyethylene, polyethylene terephthalate, poly(chlorotrifluoroethylene), poly(ethylene oxide), poly(ethylene terephthalate), polyethylene, polyisobutylene, poly(methyl methacrylate), poly(oxymethylene), polyformaldehyde, polypropylene, polystyrene, poly(tetrafluoroethylene), poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl chloride), poly(vinylidene dichloride), poly(vinylidene difluoride), poly(vinyl fluoride) and/or combinations (e.g., co-polymers
- a bead is a degradable bead.
- a degradable bead can include one or more species (e.g., disulfide linkers, primers, other oligonucleotides, etc.) with a labile bond such that, when the bead/species is exposed to the appropriate stimuli, the labile bond is broken and the bead degrades.
- the labile bond can be a chemical bond (e.g., covalent bond, ionic bond) or can be another type of physical interaction (e.g., van der Waals interactions, dipole-dipole interactions, etc.).
- a cross-linker used to generate a bead can include a labile bond.
- the labile bond can be broken and the bead degraded.
- the disulfide bonds of the cystamine can be broken and the bead degraded.
- Degradation can refer to the disassociation of a bound or entrained species (e.g., disulfide linkers, primers, other oligonucleotides, etc.) from a bead, both with and without structurally degrading the physical bead itself.
- entrained species can be released from beads through osmotic pressure differences due to, for example, changing chemical environments.
- alteration of bead pore volumes due to osmotic pressure differences can generally occur without structural degradation of the bead itself.
- an increase in pore volume due to osmotic swelling of a bead can permit the release of entrained species within the bead.
- osmotic shrinking of a bead can cause a bead to better retain an entrained species due to pore volume contraction.
- any suitable agent that can degrade beads can be used.
- changes in temperature or pH can be used to degrade thermo-sensitive or pH-sensitive bonds within beads.
- chemical degrading agents can be used to degrade chemical bonds within beads by oxidation, reduction or other chemical changes.
- a chemical degrading agent can be a reducing agent, such as DTT, where DTT can degrade the disulfide bonds formed between a cross-linker and gel precursors, thus degrading the bead.
- a reducing agent can be added to degrade the bead, which can cause the bead to release its contents.
- Examples of reducing agents can include, without limitation, dithiothreitol (DTT), b-mercaptoethanol, (2S)-2-amino-l,4-dimercaptobutane (dithiobutylamine or DTBA), tris(2-carboxy ethyl) phosphine (TCEP), or combinations thereof.
- DTT dithiothreitol
- b-mercaptoethanol (2S)-2-amino-l,4-dimercaptobutane
- DTBA 2,ithiobutylamine
- TCEP tris(2-carboxy ethyl) phosphine
- any of a variety of chemical agents can be used to trigger the degradation of beads.
- chemical agents include, but are not limited to, pH-mediated changes to the integrity of a component within the bead, degradation of a component of a bead via cleavage of cross-linked bonds, and depolymerization of a component of a bead.
- a bead can be formed from materials that include degradable chemical cross-linkers, such as N,N’-bis-(acryloyl)cystamine (BAC) or cystamine.
- degradable chemical cross-linkers such as N,N’-bis-(acryloyl)cystamine (BAC) or cystamine.
- a bead can be contacted with a chemical degrading agent that can induce oxidation, reduction or other chemical changes.
- a chemical degrading agent can be a reducing agent, such as dithiothreitol (DTT).
- DTT dithiothreitol
- Additional examples of reducing agents can include b-mercaptoethanol, (2S)-2-amino-l,4-dimercaptobutane (dithiobutylamine or DTBA), tris(2-carboxy ethyl) phosphine (TCEP), or combinations thereof.
- aqueous solution such as water
- hydrolytic degradation can trigger hydrolytic degradation, and thus degradation of the bead.
- Beads can also be induced to release their contents upon the application of a thermal stimulus.
- a change in temperature can cause a variety of changes to a bead.
- heat can cause a solid bead to liquefy.
- a change in heat can cause melting of a bead such that a portion of the bead degrades.
- heat can increase the internal pressure of the bead components such that the bead ruptures or explodes. Heat can also act upon heat-sensitive polymers used as materials to construct beads.
- degradable beads it can be beneficial to avoid exposing such beads to the stimulus or stimuli that cause such degradation prior to a given time, in order to, for example, avoid premature bead degradation and issues that arise from such degradation, including for example poor flow characteristics and aggregation.
- beads include reducible cross-linking groups, such as disulfide groups
- reducing agents e.g., DTT or other disulfide cleaving reagents.
- treatment of the beads described herein will, in some embodiments be provided free of reducing agents, such as DTT. Because reducing agents are often provided in commercial enzyme preparations, it can be desirable to provide reducing agent free (or DTT free) enzyme preparations in treating the beads described herein.
- reducing agent free or“DTT free” preparations refer to a preparation having less than about 1/10th, less than about l/50th, or less than about 1/100th of the lower ranges for such materials used in degrading the beads.
- the reducing agent free preparation can have less than about 0.01 millimolar (mM), 0.005 mM, 0.001 mM DTT, 0.0005 mM DTT, or less than about 0.0001 mM DTT.
- the amount of DTT can be undetectable.
- a degradable bead can be useful to more quickly release an attached capture probe (e.g., a nucleic acid molecule, a spatial barcode sequence, and/or a primer) from the bead when the appropriate stimulus is applied to the bead as compared to a bead that does not degrade.
- an attached capture probe e.g., a nucleic acid molecule, a spatial barcode sequence, and/or a primer
- the species can have greater mobility and accessibility to other species in solution upon degradation of the bead.
- a species can also be attached to a degradable bead via a degradable linker (e.g., disulfide linker).
- the degradable linker can respond to the same stimuli as the degradable bead or the two degradable species can respond to different stimuli.
- a capture probe having one or more spatial barcodes can be attached, via a disulfide bond, to a polyacrylamide bead including cystamine.
- the bead Upon exposure of the spatially-barcoded bead to a reducing agent, the bead degrades and the capture probe having the one or more spatial barcode sequences is released upon breakage of both the disulfide linkage between the capture probe and the bead and the disulfide linkages of the cystamine in the bead.
- Each type of labile bond can be sensitive to an associated stimulus (e.g., chemical stimulus, light, temperature, pH, enzymes, etc.) such that release of reagents attached to a bead via each labile bond can be controlled by the application of the appropriate stimulus.
- an associated stimulus e.g., chemical stimulus, light, temperature, pH, enzymes, etc.
- ester linkage e.g., cle
- a bond can be cleavable via other nucleic acid molecule targeting enzymes, such as restriction enzymes (e.g., restriction endonucleases). Such functionality can be useful in controlled release of reagents from a bead.
- another reagent including a labile bond can be linked to a bead after gel bead formation via, for example, an activated functional group of the bead as described above.
- a gel bead including a labile bond is reversible.
- a gel bead with a reversible labile bond is used to capture one or more regions of interest of a biological sample.
- a head including a thermolabile bond can be heated by a light source (e.g., a laser) that causes a change in the gel bead that facilitates capture of a biological sample in contact with the gel bead.
- Capture probes having one or more spatial barcodes that are releasably, cleavably, or reversibly attached to the beads described herein include capture probes that are released or releasable through cleavage of a linkage between the capture probe and the bead, or that are released through degradation of the underlying bead itself, allowing the capture probes having the one or more spatial barcodes to be accessed or become accessible by other reagents, or both.
- Beads can have different physical properties. Physical properties of beads can be used to characterize the beads. Non-limiting examples of physical properties of beads that can differ include volume, shape, circularity, density, symmetry, and hardness. For example, beads can be of different volumes. Beads of different diameters can be obtained by using microfluidic channel networks configured to provide beads of a specific volume (e.g., based on channel sizes, flow rates, etc.). In some embodiments, beads have different hardness values that can be obtained by varying the concentration of polymer used to generate the beads. In some embodiments, a spatial barcode atached to a bead can be made optically detectable using a physical property of the capture probe.
- a nucleic acid origami such as a deoxyribonucleic acid (DNA) origami
- DNA deoxyribonucleic acid
- a nucleic acid molecule, or a plurality of nucleic acid molecules can be folded to create two-and/or three-dimensional geometric shapes. The different geometric shapes can be optically detected.
- nanoparticles with more than one distinct physical property can be used to make the beads physically distinguishable.
- Janus particles with both hydrophilic and hydrophobic surfaces can be used to provide unique physical properties.
- a bead can generally be of any suitable shape.
- bead shapes include, but are not limited to, spherical, non-spherical, oval, oblong, amorphous, circular, cylindrical, cuboidal, hexagonal, and variations thereof.
- non-spherical (e.g., hexagonal, cuboidal, shaped beads can assemble more closely (e.g., tighter) than spherical shaped beads.
- beads can self-assemble into a monolayer.
- a cross section (e.g., a first cross-section) can correspond to a diameter or maximum cross-sectional dimension of the bead.
- the bead can be approximately spherical.
- the first cross-section can correspond to the diameter of the bead.
- the bead can be approximately cylindrical.
- the first cross-section can correspond to a diameter, length, or width along the approximately cylindrical bead.
- Beads can be of uniform size or heterogeneous size.“Polydispersity” generally refers to heterogeneity of sizes of molecules or particles.
- beads can be provided as a population or plurality of beads having a relatively monodisperse size distribution. Where it can be desirable to provide relatively consistent amounts of reagents, maintaining relatively consistent bead characteristics, such as size, can contribute to the overall consistency.
- the beads provided herein can have size distributions that have a coefficient of variation in their cross-sectional dimensions of less than 50%, less than 40%, less than 30%, less than 20%, less than 15%, less than 10%, less than 5%, or lower.
- a plurality of beads provided herein has a polydispersity index of less than 50%, less than 45%, less than 40%, less than 35%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, less than 5%, or lower.
- the bead can have a diameter or maximum dimension no larger than 100 mih (e.g., no larger than 95 mhi. 90 mih, 85 mih, 80 mih, 75 mih, 70 mih, 65 mih, 60 mih, 55 mih, 50 mih, 45 mih, 40 mih, 35 mih, 30 mih, 25 mih, 20 mih, 15 mih, 14 mih, 13 mm, 12 mm, 11 mih, 10 mm, 9 mih, 8 mm, 7 mih, 6 mm, 5 mm, 4 mih, 3 mm, 2 mih, or 1 mm.)
- mih e.g., no larger than 95 mhi. 90 mih, 85 mih, 80 mih, 75 mih, 70 mih, 65 mih, 60 mih, 55 mih, 50 mih, 45 mih, 40 mih, 35 mih, 30 mih, 25 mih, 20 mih, 15 mih, 14 mih, 13 mm, 12 mm, 11 mih,
- a plurality of beads has an average diameter no larger than 100 mhi. In some embodiments, a plurality of beads has an average diameter or maximum dimension no larger than 95 pm, 90 pm, 85 pm, 80 pm, 75 pm, 70 pm, 65 pm, 60 pm, 55 pm, 50 pm, 45 pm, 40 pm, 35 pm, 30 pm, 25 pm, 20 pm, 15 pm, 14 pm, 13 pm, 12 pm, 11 pm,
- the volume of the bead can be at least about 1 pm 3 , e.g., at least 1 pm 3 , 2 pm 3 , 3 pm 3 , 4 pm 3 , 5 pm 3 , 6 pm 3 , 7 pm 3 , 8 pm 3 , 9 pm 3 , 10 pm 3 , 12 pm 3 , 14 pm 3 , 16 pm 3 , 18 pm 3 , 20 pm 3 , 25 pm 3 , 30 pm 3 , 35 pm 3 , 40 pm 3 , 45 pm 3 , 50 pm 3 , 55 pm 3 , 60 pm 3 , 65 pm 3 , 70 pm 3 , 75 pm 3 , 80 pm 3 , 85 pm 3 , 90 pm 3 , 95 pm 3 , 100 pm 3 , 125 pm 3 , 150 pm 3 , 175 pm 3 , 200 pm 3 , 250 pm 3 , 300 pm 3 , 350 pm 3 , 400 pm 3 , 450 pm 3 , pm 3 , 500 pm 3 , 550 pm 3 , 600 pm 3 , 650
- the bead can have a volume of between about 1 pm 3 and 100 pm 3 , such as between about 1 pm 3 and 10 pm 3 , between aboutlO pm 3 and 50 pm 3 , or between about 50 pm 3 and 100 pm 3 . In some embodiments, the bead can include a volume of between about 100 pm 3 and 1000 pm 3 , such as between about 100 pm 3 and 500 pm 3 or between about 500 pm 3 and 1000 pm 3 . In some embodiments, the bead can include a volume between about 1000 pm 3 and 3000 pm 3 , such as between about 1000 pm 3 and 2000 pm 3 or between about 2000 pm 3 and 3000 pm 3 .
- the bead can include a volume between about 1 pm 3 and 3000 pm 3 , such as between about 1 pm 3 and 2000 pm 3 , between about 1 pm 3 and 1000 pm 3 , between about 1 pm 3 and 500 pm 3 , or between about 1 pm 3 and 250 pm 3 .
- the bead can include one or more cross-sections that can be the same or different.
- the bead can have a first cross-section that is different from a second cross-section.
- the bead can have a first cross-section that is at least about 0.0001 micrometer, 0.001 micrometer, 0.01 micrometer, 0.1 micrometer, or 1 micrometer.
- the bead can include a cross-section (e.g., a first cross-section) of at least about 1 micrometer (mih), 2 mih, 3 mih, 4 mih, 5 mih, 6 mih, 7 mih, 8 mih, 9 mih, 10 mih, 11 mih, 12 mih, 13 mih, 14 mih, 15 mih, 16 mih, 17 mih, 18 mih, 19 mih, 20 mih, 25 mih, 30 mih, 35 mih, 40 mih, 45 mih, 50 mih, 55 mih, 60 mih, 65 mih, 70 mih, 75 mih, 80 mih, 85 mih, 90 mih, 100 mih, 120 mih, 140 mih, 160 mih, 180 mih, 200 mih, 250 mih, 300 mih, 350 mih, 400 mih, 450 mih, 500 mih, 550 mih, 600 mih, 650 mih, 700 mih, 750 mih, 800 mih, 850 mih,
- the bead can include a cross-section (e.g., a first cross-section) of between about 1 mhi and 500 mhi. such as between about 1 mhi and 100 pm. between about 100 mih and 200 pm. between about 200 mhi and 300 pm, between about 300 mhi and 400 pm. or between about 400 pm and 500 mhi.
- the bead can include a cross-section (e.g., a first cross-section) of between about 1 mih and 100 mhi.
- the bead can have a second cross-section that is at least about 1 mih.
- the bead can include a second cross-section of at least about 1 micrometer (pm), 2 pm, 3 pm, 4 pm, 5 pm,
- the bead can include a second cross-section of between about 1 pm and 500 pm, such as between about 1 pm and 100 pm, between about 100 pm and 200 pm, between about 200 pm and 300 pm, between about 300 pm and 400 pm, or between about 400 pm and 500 pm.
- the bead can include a second cross-section of between about 1 pm and 100 pm.
- beads can be of a nanometer scale (e.g., beads can have a diameter or maximum cross-sectional dimension of about 100 nanometers (nm) to about 900 nanometers (nm) (e.g., 850 nm or less, 800 nm or less, 750 nm or less, 700 nm or less, 650 nm or less, 600 nm or less, 550 nm or less, 500 nm or less, 450 nm or less, 400 nm or less,
- a plurality of beads can have an average diameter or average maximum cross-sectional dimension of about 100 nanometers (nm) to about 900 nanometers (nm) (e.g., 850 nm or less, 800 nm or less, 750 nm or less, 700 nm or less, 650 nm or less, 600 nm or less, 550 nm or less, 500 nm or less,
- a bead has a diameter or volume that is about the diameter of a single cell (e.g., a single cell under evaluation).
- a bead is able to identify multiple analytes (e.g., nucleic acids, proteins, chromatin, metabolites, drugs, gRNA, and lipids) from a single cell.
- a bead is able to identify a single analyte from a single cell (e.g., mRNA).
- a bead can have a tunable pore volume.
- the pore volume can be chosen to, for instance, retain denatured nucleic acids.
- the pore volume can be chosen to maintain diffusive permeability to exogenous chemicals such as sodium hydroxide (NaOH) and/or endogenous chemicals such as inhibitors.
- a bead can be formed of a biocompatible and/or biochemically compatible material, and/or a material that maintains or enhances cell viability.
- a bead can be formed from a material that can be depolymerized thermally, chemically, enzymatically, and/or optically.
- beads can be non-covalently loaded with one or more reagents.
- the beads can be non-covalently loaded by, for instance, subjecting the beads to conditions sufficient to swell the beads, allowing sufficient time for the reagents to diffuse into the interiors of the beads, and subjecting the beads to conditions sufficient to de-swell the beads.
- Swelling of the beads can be accomplished, for instance, by placing the beads in a thermodynamically favorable solvent, subjecting the beads to a higher or lower temperature, subjecting the beads to a higher or lower ion concentration, and/or subjecting the beads to an electric field.
- the swelling of the beads can be accomplished by various swelling methods.
- swelling is reversible (e.g., by subjecting beads to conditions that promote de- swelling).
- the de-swelling of the beads is accomplished, for instance, by transferring the beads in a thermodynamically unfavorable solvent, subjecting the beads to lower or higher temperatures, subjecting the beads to a lower or higher ion concentration, and/or adding or removing an electric field.
- the de-swelling of the beads can be
- de-swelling is reversible (e.g., subject beads to conditions that promote swelling).
- the de-swelling of beads can include transferring the beads to cause pores in the bead to shrink. The shrinking can then hinder reagents within the beads from diffusing out of the interiors of the beads. The hindrance created can be due to steric interactions between the reagents and the interiors of the beads. The transfer can be accomplished microfluidically.
- the transfer can be achieved by moving the beads from one co-flowing solvent stream to a different co-flowing solvent stream.
- the swellability and/or pore volume of the beads can be adjusted by changing the polymer composition of the bead.
- a bead can include a polymer that is responsive to temperature so that when the bead is heated or cooled, the characteristics or dimensions of the bead can change.
- a polymer can include poly(N-isopropylacrylamide).
- a gel bead can include poly(N- isopropylacrylamide) and when heated the gel bead can decrease in one or more dimensions (e.g., a cross-sectional diameter, multiple cross-sectional diameters).
- a temperature sufficient for changing one or more characteristics of the gel bead can be, for example, at least about 0 degrees Celsius (°C), 1°C, 2°C, 3°C, 4°C, 5°C, 10°C, or higher.
- the temperature can be about 4°C.
- a temperature sufficient for changing one or more characteristics of the gel bead can be, for example, at least about 25°C, 30°C, 35°C, 37°C, 40°C, 45°C, 50°C, or higher.
- the temperature can be about 37°C.
- Functionalization of beads for attachment of capture probes can be achieved through a wide range of different approaches, including, without limitation, activation of chemical groups within a polymer, incorporation of active or activatable functional groups in the polymer structure, or attachment at the pre-polymer or monomer stage in bead production.
- the bead can be functionalized to bind to targeted analytes, such as nucleic acids, proteins, carbohydrates, lipids, metabolites, peptides, or other analytes.
- targeted analytes such as nucleic acids, proteins, carbohydrates, lipids, metabolites, peptides, or other analytes.
- a bead can contain molecular precursors (e.g., monomers or polymers), which can form a polymer network via polymerization of the molecular precursors.
- a precursor can be an already polymerized species capable of undergoing further polymerization via, for example, a chemical cross-linkage.
- a precursor can include one or more of an acrylamide or a methacrylamide monomer, oligomer, or polymer.
- the bead can include prepolymers, which are oligomers capable of further polymerization. For example, polyurethane beads can be prepared using prepolymers.
- a bead can contain individual polymers that can be further polymerized together (e.g., to form a co-polymer).
- a bead can be generated via polymerization of different precursors, such that they include mixed polymers, co-polymers, and/or block co-polymers.
- a bead can include covalent or ionic bonds between polymeric precursors (e.g., monomers, oligomers, and linear polymers), nucleic acid molecules (e.g., oligonucleotides), primers, and other entities.
- covalent bonds can be carbon-carbon bonds or thioether bonds.
- Cross-linking of polymers can be permanent or reversible, depending upon the particular cross-linker used. Reversible cross-linking can allow the polymer to linearize or dissociate under appropriate conditions. In some embodiments, reversible cross-linking can also allow for reversible attachment of a material bound to the surface of a bead. In some embodiments, a cross-linker can form a disulfide linkage. In some embodiments, a chemical cross-linker forming a disulfide linkage can be cystamine or a modified cystamine.
- the activation agent can include a cross-linking agent, or a chemical that activates a cross-linking agent within formed droplets.
- the activation agent can include a polymerization initiator.
- the polymer precursor includes a mixture of acrylamide monomer with aN,N’-bis-(acryloyl)cystamine (BAC) comonomer, an agent such as
- TEMED tetraethylmethylenediamine
- the conditions sufficient to polymerize or gel the precursors can include exposure to heating, cooling, electromagnetic radiation, and/or light.
- a polymer or gel can be formed.
- the polymer or gel can be diffusively permeable to chemical or biochemical reagents.
- the polymer or gel can be diffusively impermeable to macromolecular constituents.
- the polymer or gel can include one or more of disulfide cross-linked polyacrylamide, agarose, alginate, polyvinyl alcohol, polyethylene glycol (PEG)-diacrylate, PEG-acrylate, PEG-thiol, PEG-azide, PEG-alkyne, other acrylates, chitosan, hyaluronic acid, collagen, fibrin, gelatin, or elastin.
- the polymer or gel can include any other polymer or gel.
- disulfide linkages can be formed between molecular precursor units (e.g., monomers, oligomers, or linear polymers) or precursors incorporated into a bead and nucleic acid molecules (e.g., oligonucleotides, capture probes).
- Cystamine is an organic agent including a disulfide bond that can be used as a cross-linker agent between individual monomeric or polymeric precursors of a bead.
- Polyacrylamide can be polymerized in the presence of cystamine or a species including cystamine (e.g., a modified cystamine) to generate polyacrylamide gel beads including disulfide linkages (e.g., chemically degradable beads including chemically -reducible cross- linkers).
- the disulfide linkages can permit the bead to be degraded (or dissolved) upon exposure of the bead to a reducing agent.
- chitosan a linear polysaccharide polymer
- cross-linked with glutaraldehyde via hydrophilic chains can be achieved by chemical reactions that are initiated by heat, pressure, change in pH, and/or radiation.
- a bead can include an acrydite moiety, which in certain aspects can be used to attach one or more capture probes to the bead.
- an acrydite moiety can refer to an acrydite analogue generated from the reaction of acrydite with one or more species (e.g., disulfide linkers, primers, other oligonucleotides, etc.), such as, without limitation, the reaction of acrydite with other monomers and cross-linkers during a polymerization reaction.
- species e.g., disulfide linkers, primers, other oligonucleotides, etc.
- Acrydite moieties can be modified to form chemical bonds with a species to be attached, such as a capture probe.
- Acrydite moieties can be modified with thiol groups capable of forming a disulfide bond or can be modified with groups already including a disulfide bond.
- the thiol or disulfide (via disulfide exchange) can be used as an anchor point for a species to be attached or another part of the acrydite moiety can be used for attachment.
- attachment can be reversible, such that when the disulfide bond is broken (e.g., in the presence of a reducing agent), the attached species is released from the bead.
- an acrydite moiety can include a reactive hydroxyl group that can be used for attachment of species.
- precursors that are polymerized to form a bead can include acrydite moieties, such that when a bead is generated, the bead also includes acrydite moieties.
- the acrydite moieties can be attached to a nucleic acid molecule (e.g., an oligonucleotide), which can include a priming sequence (e.g., a primer for amplifying target nucleic acids, random primer, primer sequence for messenger RNA) and/or one or more capture probes.
- the one or more capture probes can include sequences that are the same for all capture probes coupled to a given bead and/or sequences that are different across all capture probes coupled to the given bead.
- the capture probe can be incorporated into the bead. In some embodiments, the capture probe can be incorporated or attached to the bead such that the capture probe retains a free 3’ end. In some
- the capture probe can be incorporated or attached to the bead such that the capture probe retains a free 5’ end.
- beads can be functionalized such that each bead contains a plurality of different capture probes.
- a bead can include a plurality of capture probes e.g., Capture Probe 1, Capture Probe 2, and Capture Probe 3, and each of Capture Probes 1, Capture Probes 2, and Capture Probes 3 contain a distinct capture domain (e.g., capture domain of Capture Probe 1 includes a poly(dT) capture domain, capture domain of Capture Probe 2 includes a gene-specific capture domain, and capture domain of Capture Probe 3 includes a CRISPR-specific capture domain).
- capture domain of Capture Probe 1 includes a poly(dT) capture domain
- capture domain of Capture Probe 2 includes a gene-specific capture domain
- capture domain of Capture Probe 3 includes a CRISPR-specific capture domain
- precursors that are polymerized to form a bead can include a functional group that is reactive or capable of being activated such that when it becomes reactive it can be polymerized with other precursors to generate beads including the activated or activatable functional group.
- the functional group can then be used to attach additional species (e.g., disulfide linkers, primers, other oligonucleotides, etc.) to the beads.
- additional species e.g., disulfide linkers, primers, other oligonucleotides, etc.
- some precursors including a carboxylic acid (COOH) group can co-polymerize with other precursors to form a bead that also includes a COOH functional group.
- acrylic acid (a species including free COOH groups), acrylamide, and bis(acryloyl)cystamine can be co-polymerized together to generate a bead including free COOH groups.
- the COOH groups of the bead can be activated (e.g., via 1 -Ethyl-3 -(3 -dimethylaminopropyl)carbodiimide (EDC) and N-Hydroxysuccinimide (NHS) or 4-(4,6-Dimethoxy-l,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM)) such that they are reactive (e.g., reactive to amine functional groups where EDC/NHS or DMTMM are used for activation).
- EDC 1 -Ethyl-3 -(3 -dimethylaminopropyl)carbodiimide
- NHS N-Hydroxysuccinimide
- DTMM 4-(4,6-Dimeth
- the activated COOH groups can then react with an appropriate species (e.g., a species including an amine functional group where the carboxylic acid groups are activated to be reactive with an amine functional group) as a functional group on a moiety to be linked to the bead.
- an appropriate species e.g., a species including an amine functional group where the carboxylic acid groups are activated to be reactive with an amine functional group
- Beads including disulfide linkages in their polymeric network can be functionalized with additional species (e.g., disulfide linkers, primers, other oligonucleotides, etc.) via reduction of some of the disulfide linkages to free thiols.
- the disulfide linkages can be reduced via, for example, the action of a reducing agent (e.g., DTT, TCEP, etc.) to generate free thiol groups, without dissolution of the bead.
- a reducing agent e.g., DTT, TCEP, etc.
- Free thiols of the beads can then react with free thiols of a species or a species including another disulfide bond (e.g., via thiol-disulfide exchange) such that the species can be linked to the beads (e.g., via a generated disulfide bond).
- free thiols of the beads can react with any other suitable group.
- free thiols of the beads can react with species including an acrydite moiety.
- the free thiol groups of the beads can react with the acrydite via Michael addition chemistry, such that the species including the acrydite is linked to the bead.
- uncontrolled reactions can be prevented by inclusion of a thiol capping agent such as N- ethylmalieamide or iodoacetate.
- Activation of disulfide linkages within a bead can be controlled such that only a small number of disulfide linkages are activated. Control can be exerted, for example, by controlling the concentration of a reducing agent used to generate free thiol groups and/or concentration of reagents used to form disulfide bonds in bead polymerization.
- a low concentration of reducing agent e.g., molecules of reducing agentgel bead ratios
- reducing agent e.g., molecules of reducing agentgel bead ratios
- optically-active agents such as fluorescent dyes can be coupled to beads via free thiol groups of the beads and used to quantify the number of free thiols present in a bead and/or track a bead.
- addition of moieties to a bead after bead formation can be advantageous.
- addition of a capture probe after bead formation can avoid loss of the species (e.g., disulfide linkers, primers, other oligonucleotides, etc.) during chain transfer termination that can occur during polymerization.
- species e.g., disulfide linkers, primers, other oligonucleotides, etc.
- smaller precursors e.g., monomers or cross linkers that do not include side chain groups and linked moieties
- functionalization after bead synthesis can minimize exposure of species (e.g., oligonucleotides) to be loaded with potentially damaging agents (e.g., free radicals) and/or chemical environments.
- species e.g., oligonucleotides
- potentially damaging agents e.g., free radicals
- the generated hydrogel can possess an upper critical solution temperature (UCST) that can permit temperature driven swelling and collapse of a bead.
- UST upper critical solution temperature
- oligonucleotide e.g., a primer
- Post-production functionalization can also be useful in controlling loading ratios of species in beads, such that, for example, the variability in loading ratio is minimized.
- Species loading can also be performed in a batch process such that a plurality of beads can be functionalized with the species in a single batch.
- Reagents can be encapsulated in beads during bead generation (e.g., during polymerization of precursors). Such reagents can or cannot participate in polymerization.
- Such reagents can be entered into polymerization reaction mixtures such that generated beads include the reagents upon bead formation.
- such reagents can be added to the beads after formation.
- Such reagents can include, for example, capture probes (e.g., oligonucleotides), reagents for a nucleic acid amplification reaction (e.g., primers, polymerases, dNTPs, co-factors (e.g., ionic co-factors), buffers) including those described herein, reagents for enzymatic reactions (e.g., enzymes, co-factors, chemical substrates, buffers), reagents for nucleic acid modification reactions such as polymerization, ligation, or digestion, and/or reagents for template preparation (e.g., tagmentation) for one or more sequencing platforms (e.g., Nextera® for Illumina®).
- capture probes e.g., oligonucleotides
- Such reagents can include one or more enzymes described herein, including without limitation, polymerase, reverse transcriptase, restriction enzymes (e.g., endonuclease), transposase, ligase, proteinase K, DNAse, etc.
- Such reagents can also or alternatively include one or more reagents such as lysis agents, inhibitors, inactivating agents, chelating agents, stimulus agents. Trapping of such reagents can be controlled by the polymer network density generated during polymerization of precursors, control of ionic charge within the bead (e.g., via ionic species linked to polymerized species), or by the release of other species.
- Encapsulated reagents can be released from a bead upon bead degradation and/or by application of a stimulus capable of releasing the reagents from the bead.
- the beads or bead arrangements can be incubated in permeabilization reagents as described herein.
- the beads can also include (e.g., encapsulate or have attached thereto) a plurality of capture probes that include spatial barcodes, and the optical properties of the spatial barcodes can be used for optical detection of the beads.
- the absorbance of light by the spatial barcodes can be used to distinguish the beads from one another.
- a detectable label can directly or indirectly attach to a spatial barcode and provide optical detection of the bead.
- each bead in a group of one or more beads has a unique detectable label, and detection of the unique detectable label determines the location of the spatial barcode sequence associated with the bead.
- Optical properties giving rise to optical detection of beads can be due to optical properties of the bead surface (e.g., a detectable label attached to the bead), or optical properties from the bulk region of the bead (e.g., a detectable label incorporated during bead formation or an optical property of the bead itself).
- a detectable label can be associated with a bead or one or more moieties coupled to the bead.
- the beads include a plurality of detectable labels.
- a fluorescent dye can be attached to the surface of the beads and/or can be incorporated into the beads.
- Different intensities of the different fluorescent dyes can be used to increase the number of optical combinations that can be used to differentiate between beads. For example, if N is the number of fluorescent dyes (e.g., between 2 and 10 fluorescent dyes, such as 4 fluorescent dyes) and M is the possible intensities for the dyes (e.g., between 2 and 50 intensities, such as 20 intensities), then M N are the possible distinct optical combinations. In one example, 4 fluorescent dyes with 20 possible intensities can be used to generate 160,000 distinct optical combinations.
- One or more optical properties of the beads or biological contents can be used to distinguish the individual beads or biological contents from other beads or biological contents.
- the beads are made optically detectable by including a detectable label having optical properties to distinguish the beads from one another.
- optical properties of the beads can be used for optical detection of the beads.
- optical properties can include absorbance, birefringence, color, fluorescence, luminosity, photosensitivity, reflectivity, refractive index, scatering, or transmitance.
- beads can have different birefringence values based on degree of polymerization, chain length, or monomer chemistry.
- nanobeads such as quantum dots or Janus beads
- a quantum dot can be atached to a spatial barcode of a bead.
- Optical labels of beads can provide enhanced spectral resolution to distinguish (e.g., identify) between beads with unique spatial barcodes (e.g., beads including unique spatial barcode sequences). That is, the beads are manufactured in a way that the optical labels and the barcodes on the beads (e.g., spatial barcodes) are correlated with each other.
- the beads can be loaded into a flowcell such that beads are arrayed in a closely packed manner (e.g., single-cell resolution). Imaging can be performed, and the spatial location of the barcodes can be determined (e.g., based on information from a look-up table (LUT)).
- LUT look-up table
- the optical labels for spatial profiling allow for quick deconvolution of bead- barcode (e.g., spatial barcode) identify.
- a lookup table can be used to associate a property (e.g., an optical label, such as a color and/or intensity) of the bead with the barcode sequence.
- the property may derive from the particle (e.g., bead) or an optical label associated with the bead.
- the beads can be imaged to obtain optical information of the bead, including, for example, the property (e.g., color and/or intensity) of the bead or the optical label associated with the bead, and optical information of the biological sample.
- an image can include optical information in the visible spectrum, non-visible spectrum, or both. In some embodiments, multiple images can be obtained across various optical frequencies.
- a first bead includes a first optical label and spatial barcodes each having a first spatial barcode sequence.
- a second bead includes a second optical label and spatial barcodes each having a second spatial barcode sequence.
- the first optical label and second optical label can be different (e.g., provided by two different fluorescent dyes or the same fluorescent dye at two different intensities).
- the first and second spatial barcode sequences can be different nucleic acid sequences.
- the beads can be imaged to identify the first and second optical labels, and the first and second optical labels can then be used to associate the first and second optical labels with the first and second spatial barcode sequences, respectively.
- the nucleic acid containing the spatial barcode can further have a capture domain for analytes (e.g., mRNA).
- the nucleic acid e.g., nucleic acid containing the spatial barcode
- the optical label has a characteristic electromagnetic spectrum.
- the“electromagnetic spectrum” refers to the range of frequencies of electromagnetic radiation.
- the optical label has a characteristic absorption spectrum.
- the“absorption spectrum” refers to the range of frequencies of electromagnetic radiation that are absorbed. The“electromagnetic spectrum” or“absorption spectrum” can lead to different characteristic spectrum.
- the peak radiation or the peak absorption occurs at 380-450 nm (Violet), 450-485 nm (Blue), 485-500 nm (Cyan), 500-565 nm (Green), 565-590 nm (Yellow), 590-625 nm (Orange), or 625-740 nm (Red). In some embodiments, the peak radiation or the peak absorption occurs around 400 nm, 460 nm, or 520 nm.
- Optical labels included on the beads can identify the associated spatial barcode on the bead. Due to the relative limited diversity of optical labels it can be advantageous to limit the size of the spatial array for deconvolution.
- the substrate can be partitioned into two or more partitions (e.g., bins). In some embodiments, the substrate can be partitioned into three or more partitions. In some embodiments, the substrate can be partitioned into four or more partitions (e.g., bins). In some embodiments, a set of beads are deposited to the partition. Within each set of beads, one or more beads (e.g., equal to or more than 10, 20, 30,
- 2000, 3000, 4000, or 5000 beads can have an unique optical label.
- beads within the same partition can have different coordinates on the substrate. These coordinates can be determined e.g., by various imaging techniques, such as observation through microscope under an appropriate condition.
- the beads within the same partition can share the same spatial barcode.
- the beads e.g., beads having capture probes with barcodes, e.g., spatial barcodes or UMI
- the beads having capture probes with barcodes can have different barcodes.
- the capture probes on individual beads can have a unique barcode.
- individual beads can have capture probes with a unique barcode.
- the present disclosure provides a substrate.
- the substrate can have 1,
- partitions e.g., bins, or pre-defined area
- the partitions can have the same shape or different shapes.
- the substrate has only one partition (e.g., bin or pre-defined area).
- the first partition (e.g., the first pre-defined area, or the only bin on the substrate) can have a first set of beads.
- at least one bead from the first set of beads comprises an optical label, and a capture probe (e.g., an oligonucleotide capture probe) comprising a barcode and a capture domain.
- a capture probe e.g., an oligonucleotide capture probe
- At least one of the beads can have a unique optical label among the first set of beads. In some embodiments, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%,
- each bead in the first set of beads has a unique optical label.
- the substrate can have a second partition (e.g., the second pre defined area, or the second bin).
- the second partition can have a second set of beads.
- at least one bead from the second set of beads comprises an optical label, and a capture probe (e.g., an oligonucleotide capture probe) comprising a barcode and a capture domain.
- a capture probe e.g., an oligonucleotide capture probe
- At least one of the beads can have a unique optical label among the second set of beads.
- the substrate can have a third partition, a fourth partition, a fifth partition, a sixth partition, a seventh partition, an eighth partition, a ninth partition, or a tenth partition, etc.
- the substrate can have multiple partitions.
- each of these partitions has properties that are similar to the first or the second partitions described herein.
- at least one bead from each set of beads comprises an optical label, and a capture probe (e.g., an oligonucleotide capture probe) comprising a barcode and a capture domain. At least one of these beads can have a unique optical label among each set of beads.
- the beads are deposited on the substrate. In some embodiments, the beads are deposited on the substrate.
- the beads can be deposited directly on or into a biological sample.
- the biological sample can be fixed or attached on the substrate before beads are deposited onto the substrate.
- the beads are only deposited to areas of interest (e.g., specific locations on the substrate, specific cell types, and specific tissue structures). Thus, the deposited beads do not necessarily cover the entire biological sample.
- one or more regions of a substrate can be masked or modified (e.g., capped capture domains) such that the masked regions do not interact with a corresponding region of the biological sample.
- two or more than two sets of beads are deposited at two or more than two partitions (e.g., 2, 3, 4, 5, 6,
- a set of beads can have equal to or more than 1, 2, 3, 4, 5, 6, 7,
- a set 25 of beads can have less than 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, or 5000 beads.
- a set 25 of beads can have less than 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, or 5000 beads.
- Optical labels can be included while generating the beads.
- optical labels can be included in the polymer structure of a gel bead, or attached at the pre-polymer or monomer stage in bead production.
- the beads include moieties that attach to one or more optical labels (e.g., at a surface of a bead and/or within a bead).
- optical labels can be loaded into the beads with one or more reagents.
- reagents and optical labels can be loaded into the beads by diffusion of the reagents (e.g., a solution of reagents including the optical labels).
- optical labels can be included while preparing spatial barcodes.
- spatial barcodes can be prepared by synthesizing molecules including barcode sequences (e.g., using a split pool or combinatorial approach).
- Optical labels can be attached to spatial barcodes prior to attaching the spatial barcodes to a bead.
- optical labels can be included after attaching spatial barcodes to a bead.
- optical labels can be attached to spatial barcodes coupled to the bead.
- spatial barcodes or sequences thereof can be releasably or cleavably attached to the bead.
- Optical labels can be releasably or non- releasably attached to the bead.
- a first bead (e.g., a bead including a plurality of spatial barcodes) can be coupled to a second bead including one or more optical labels.
- the first bead can be covalently coupled to the second bead via a chemical bond.
- the first bead can be non-covalently associated with the second bead.
- the first and/or second bead can include a plurality of spatial barcodes.
- the plurality of spatial barcodes coupled to a given bead can include the same barcode sequences.
- the first and second beads can include spatial barcodes including the same barcode sequences or different barcode sequences.
- Bead arrays containing captured analytes can be processed in bulk or partitioned into droplet emulsions for preparing sequencing libraries.
- next generation sequencing reads are clustered and correlated to the spatial position of the spatial barcode on the bead array.
- the information can be computationally superimposed over a high-resolution image of the tissue section to identify the location(s), where the analytes were detected.
- de-cross linking can be performed to account for de crosslinking chemistries that may be incompatible with certain barcoding/library prep biochemistry (e.g., presence of proteases).
- a two-step process is possible. In the first step, beads can be provided in droplets such that DNA binds to the beads after the conventional de-crosslinking chemistry is performed. In the second step, the emulsion is broken and beads collected and then re-encapsulated after washing for further processing.
- beads can be affixed or attached to a substrate using photochemical methods.
- a bead can be functionalized with
- PFPA silane perfluorophenylazide silane
- the arrays can also be prepared by bead self-assembly.
- Each bead can be covered with hundreds of thousands of copies of a specific oligonucleotide. In some embodiments, each bead can be covered with about 1,000 to about 1,000,000 oligonucleotides. In some embodiments, each bead can be covered with about 1,000,000 to about 10,000,000 oligonucleotides. In some embodiments, each bead can covered with about 2,000,000 to about 3,000,000, about 3,000,000 to about 4,000,000, about 4,000,000 to about 5,000,000, about 5,000,000 to about 6,000,000, about 6,000,000 to about 7,000,000, about 7,000,000 to about 8,000,000, about 8,000,000 to about 9,000,000, or about 9,000,000 to about 10,000,000 oligonucleotides.
- each bead can be covered with about 10,000,000 to about 100,000,000 oligonucleotides. In some embodiments, each bead can be covered with about 100,000,000 to about 1,000,000,000 oligonucleotides. In some embodiments, each bead can be covered with about 1,000,000,000 to about 10,000,000,000 oligonucleotides.
- the beads can be irregularly distributed across etched substrates during the array production process. During this process, the beads can be self-assembled into arrays (e.g., on a fiber optic bundle substrate or a silica slide substrate). In some embodiments, the beads irregularly arrive at their final location on the array. Thus, the bead location may need to be mapped or the oligonucleotides may need to be synthesized based on a predetermined pattern.
- Beads can be affixed or attached to a substrate covalently, non-covalently, with adhesive, or a combination thereof.
- the attached beads can be, for example, layered in a monolayer, a bilayer, a trilayer, or as a cluster.
- a“monolayer” generally refers to an arrayed series of probes, beads, spots, dots, features, micro-locations, or islands that are affixed or attached to a substrate, such that the beads are arranged as one layer of single beads. In some embodiments, the beads are closely packed.
- the phrase“substantial monolayer” or“substantially form(s) a monolayer” generally refers to (the formation ol) an arrayed series of probes, beads, microspheres, spots, dots, features, micro-locations, or islands that are affixed or attached to a substrate, such that about 50% to about 99% (e.g., about 50% to about 98%) of the beads are arranged as one layer of single beads. This arrangement can be determined using a variety of methods, including microscopic imaging.
- the monolayer of beads is a located in a predefined area on the substrate.
- the predefined area can be partitioned with physical barriers, a photomask, divots in the substrate, or wells in the substrate.
- the term“reactive element” generally refers to a molecule or molecular moiety that can react with another molecule or molecular moiety to form a covalent bond.
- Reactive elements include, for example, amines, aldehydes, alkynes, azides, thiols, haloacetyls, pyridyl disulfides, hydrazides, carboxylic acids, alkoxyamines, sulfhydryls, maleimides, Michael acceptors, hydroxyls, and active esters.
- Some reactive elements can be treated with one or more activating agents (e.g., acylating agents, isourea-forming agents) to increase susceptibility of the reactive element to nucleophilic attack.
- activating agents include N- hydroxysuccinimide, /V-hydroxysulfosuccinimide, l-ethyl-3-(3- dimethylaminopropyl)carbodiimide, dicyclohexylcarbodiimide, diisopropylcarbodiiimide, 1- hy droxybenzotriazole, (benzotriazol- 1 -yloxy)tripyrrolidinophosphonium hexfluorophosphate, (benzotriazol- 1 -yO-iV.iV.iV ' .iV ' -tetramethyluronium hexafluorophosphate. 4-fiV, N- dimethylamino)pyridine,
- the reactive element is bound directly to a bead.
- hydrogel beads can be treated with an acrylic acid monomer to form acrylic acid- functionalized hydrogel beads.
- the reactive element is bound indirectly to the bead via one or more linkers.
- a“linker” generally refers to a multifunctional (e.g., bifunctional, trifunctional) reagent used for conjugating two or more chemical moieties.
- a linker can be a cleavable linker that can undergo induced dissociation.
- the dissociation can be induced by a solvent (e.g., hydrolysis and solvolysis); by irradiation (e.g., photolysis); by an enzyme (e.g., enzymolysis); or by treatment with a solution of specific pH (e.g., pH 4, 5, 6, 7, or 8).
- a solvent e.g., hydrolysis and solvolysis
- irradiation e.g., photolysis
- an enzyme e.g., enzymolysis
- a solution of specific pH e.g., pH 4, 5, 6, 7, or 8
- the reactive element is bound directly to a substrate.
- a glass slide can be coated with (3-aminopropyl)triethoxysilane.
- the reactive element is bound indirectly to a substrate via one or more linkers.
- the bead can be a gel bead.
- A“gel” is a semi-rigid material permeable to liquids and gases.
- Exemplary gels include, but are not limited to, those having a colloidal structure, such as agarose; polymer mesh structures, such as gelatin; hydrogels; and cross-linked polymer structures, such as polyacrylamide, SFA (see, for example, U.S. Patent Application Publication No. 2011/0059865, which is incorporated herein by reference in its entirety) and PAZAM (see, for example, U.S. Patent Application Publication No.
- a gel can be formulated into various shapes and dimensions depending on the context of intended use.
- a gel is prepared and formulated as a gel bead (e.g., a gel bead including capture probes attached or associated with the gel bead).
- a gel bead can be a hydrogel bead.
- a hydrogel bead can be formed from molecular precursors, such as a polymeric or monomeric species.
- a bead comprises a polymer or hydrogel.
- the polymer or hydrogel may determine one or more characteristics of the hydrogel bead, such as the volume, fluidity, porosity, rigidity, organization, or one or more other features of the hydrogel bead.
- a hydrogel bead can include a polymer matrix (e.g., a matrix formed by polymerization or cross-linking).
- a polymer matrix can include one or more polymers (e.g., polymers having different functional groups or repeat units).
- Cross-linking can be via covalent, ionic, and/or inductive interactions, and/or physical entanglement.
- a polymer or hydrogel may be formed, for example, upon cross-linking one or more cross-linkable molecules within the hydrogel bead.
- a hydrogel may be formed upon cross-linking one or more molecules within the hydrogel bead.
- the hydrogel may be formed upon polymerizing a plurality of monomers within the hydrogel bead.
- the hydrogel may be formed upon polymerizing a plurality of polymers within the hydrogel bead.
- Polymeric or hydrogel precursors may be provided to the hydrogel bead and may not form a polymer or hydrogel without application of a stimulus (e.g., as described herein).
- the hydrogel bead may be encapsulated within the polymer or hydrogel. Formation of a hydrogel bead may take place following one or more other changes to the cell that may be brought about by one or more other conditions.
- a method of processing a plurality of hydrogel beads may comprise providing the plurality of hydrogel beads within a vessel and subjecting the plurality of hydrogel beads to conditions sufficient to change one or more characteristics of the hydrogel bead.
- plurality of hydrogel beads may be subjected to a first condition or set of conditions comprising a chemical species, and a cross-section of the hydrogel beads of the plurality of hydrogel beads may change from a first cross-section to a second cross-section, which second cross-section is less than the first cross-section.
- the chemical species may comprise, for example, an organic solvent such as ethanol, methanol, or acetone.
- the plurality of hydrogel beads may then be subjected to a second condition or set of conditions comprising a chemical species, and crosslinks may form within each of the hydrogel beads.
- the chemical species may comprise, for example, a cross-linking agent.
- the plurality of processed hydrogel beads may be provided in an aqueous fluid. In some instances, the second cross-section of the plurality of hydrogel beads is substantially maintained in the aqueous fluid.
- the plurality of processed hydrogel beads may be partitioned within a plurality of partitions.
- the partitions may be, for example, aqueous droplets included in a water-in-oil emulsion.
- the partitions may be, for example, a plurality of wells.
- the plurality of fixed hydrogel beads may be co-partitioned with one or more reagents. In some cases, the plurality of fixed hydrogel beads may be co-partitioned with one or more beads, where each bead comprises a plurality of nucleic acid barcode molecules attached thereto.
- the nucleic acid barcode molecules attached to a given bead may comprise a common barcode sequence, and the nucleic acid barcode molecules attached to each different bead may comprise a sequence comprising a different common barcode sequence.
- the nucleic acid barcode molecules, or portions thereof, may then be used in reactions with target molecules associated with hydrogel beads of the plurality of hydrogel beads.
- the bead is a core/shell bead that comprises an inner core (e.g., a nanosphere or microsphere) and an outer shell (e.g., a hydrogel coating the nanosphere or microsphere).
- the inner core can be a solid nanoparticle or solid microparticle.
- the inner core can be a silica inner core (e.g., a silica nanoparticle or silica microparticle).
- the inner core of the core/shell bead can have an average diameter of about 1 micron. In some embodiments, the inner core can have an average diameter of about 2 microns. In some embodiments, the inner core can have an average diameter of about 3 microns.
- the inner core can have an average diameter of about 4 microns. In some embodiments, the inner core can have an average diameter of about 5 microns. In some embodiments, the inner core can have an average diameter of about 6 microns. In some embodiments, the inner core can have an average diameter of about 7 microns. In some embodiments, the inner core can have an average diameter of about 8 microns. In some embodiments, the inner core can have an average diameter of about 9 microns. In some embodiments, the inner core can have an average diameter of about 10 microns. In some embodiments, the inner core can have an average diameter of about 100 nanometers to about 10 microns.
- the core/shell bead can decrease its outer shell volume by removing solvents, salts, or water (e.g., dehydrated, desiccated, dried, exsiccated) from the outer shell to form a shrunken core/shell bead.
- the core/shell bead can decrease its outer shell volume by adjusting temperature or pH, as described above.
- the core/shell bead can expand its outer shell volume, for example by the addition of solvents, salts, or water (e.g., rehydration) to form an expanded core/shell bead.
- the outer shell e.g., coating the inner core
- the outer shell can have an average thickness of about 2 microns. In some embodiments, the outer shell can have an average thickness of about 3 microns. In some embodiments, the outer shell can have an average thickness of about 4 microns. In some embodiments, the outer shell can have an average thickness of about 5 microns.
- the core/shell bead can have an average diameter of about 1 micron to about 10 microns. In some embodiments, the core/shell bead can have an average diameter of about 1 micron. In some embodiments, the core/shell bead can have an average diameter of about 2 microns. In some embodiments, the core/shell bead can have an average diameter of about 3 microns. In some embodiments, the core/shell bead can have an average diameter of about 4 microns. In some embodiments, the core/shell bead can have an average diameter of about 5 microns. In some embodiments, the core/shell bead can have an average diameter of about 6 microns.
- the core/shell bead can have an average diameter of about 7 microns. In some embodiments, the core/shell bead can have an average diameter of about 8 microns. In some embodiments, the core/shell bead can have an average diameter of about 9 microns. In some embodiments, the core/shell bead can have an average diameter of about 10 microns.
- features e.g., optically labeled beads, hydrogel beads, microsphere beads
- the features are coupled to a substrate via a covalent bond between a first reactive element and a second reactive element.
- the covalently-bound beads substantially form a monolayer of features (e.g., hydrogel beads, microsphere beads) on the substrate.
- the features are functionalized with a first reactive element, which is directly bound to the features.
- the features are functionalized with a first reactive element, which is indirectly bound to the beads via a linker.
- the linker is a benzophenone.
- the linker is an amino methacrylamide.
- the linker can be 3-aminopropyl methacrylamide.
- the linker is a PEG linker.
- the linker is a cleavable linker.
- the substrate is functionalized with a second reactive element, which is directly bound to the substrate. In some embodiments, the substrate is functionalized with a second reactive element, which is indirectly bound to the beads via a linker.
- the linker is a benzophenone.
- the linker can be benzophenone.
- the linker is an amino methacrylamide.
- the linker can be 3- aminopropyl methacrylamide.
- the linker is a PEG linker. In some embodiments, the linker is a cleavable linker.
- the substrate is a glass slide. In some embodiments, the substrate is a pre-functionalized glass slide.
- about 99% of the covalently-bound beads form a monolayer of beads on the substrate.
- about 50% to about 98% form a monolayer of beads on the substrate.
- about 50% to about 95%, about 50% to about 90%, about 50% to about 85%, about 50% to about 80%, about 50% to about 75%, about 50% to about 70%, about 50% to about 65%, about 50% to about 60%, or about 50% to about 55% of the covalently -bound beads form a monolayer of beads on the substrate.
- about 55% to about 98%, about 60% to about 98%, about 65% to about 98%, about 70% to about 98%, about 75% to about 98%, about 80% to about 98%, about 85% to about 98%, about 90% to about 95%, or about 95% to about 98% of the covalently-bound beads form a monolayer of beads on the substrate.
- about 55% to about 95%, about 60% to about 90%, about 65% to about 95%, about 70% to about 95%, about 75% to about 90%, about 75% to about 95%, about 80% to about 90%, about 80% to about 95%, about 85% to about 90%, or about 85% to about 95% of the covalently-bound beads for a monolayer of beads on the substrate.
- At least one of the first reactive element and the second reactive element is selected from the group consisting of:
- R 1 is selected from H, C1-C6 alkyl, or -SO3;
- R 2 is C1-C6 alkyl
- X is a halo moiety
- the indicates the point of attachment of the first reactive element or the second reactive element to the bead (e.g., hydrogel bead or microsphere bead) or to the substrate.
- the bead e.g., hydrogel bead or microsphere bead
- At least one of the first reactive element or the second reactive element is selected from the group consisting of:
- R 1 is selected from H, C1-C6 alkyl, or -SO3;
- R 2 is C1-C6 alkyl
- X is a halo moiety.
- R 1 is selected from H, C1-C6 alkyl, or -SO3.
- R 1 is H.
- R 1 is C1-C6 alkyl.
- R 1 is -SO3.
- R 2 is C1-C6 alkyl. In some embodiments, R 2 is methyl.
- ⁇ A 0H can be reacted with an activating agent to form an active ester.
- the active ester is
- the activating agent is an acylating agent (e.g., N- hydroxysuccinimide and /V-hydroxysulfosuccinimide).
- the activating agent is an 0-acylisourea-forming agent (e.g., l-ethyl-3-(3- dimethylaminopropyl)carbodiimide (EDC), dicyclohexylcarbodiimide, and
- the activating agent is a combination of at least one acylating agent and at least one 0-isourea-forming agents (e.g., N- hydroxysuccinimide (NHS), l-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), N- hydroxysulfosuccinimide (sulfo-NHS), and a combination thereof).
- at least one acylating agent e.g., N- hydroxysuccinimide (NHS), l-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), N- hydroxysulfosuccinimide (sulfo-NHS), and a combination thereof).
- 0-isourea-forming agents e.g., N- hydroxysuccinimide (NHS), l-ethyl-3-(3-dimethylaminopropyl)carbodiimide (
- element comprises In some embodiments, at least one of the first reactive element or the second reactive
- element comprises Y O X , wherein X is a halo moiety.
- X is chloro, bromo, or iodo.
- At least one of the first reactive element or the second reactive element comprises
- O element comprises Y H nh *
- At least one of the first reactive element or the second reactive element comprises
- At least one of the first reactive element or the second reactive element is selected from the group consisting of:
- R 3 is H or Ci-Ce alkyl
- R 4 is H or trimethylsilyl.
- R 4 is H or trimethylsilyl. In some embodiments, R 4 is
- At least one of the first reactive element or the second reactive element is selected from the group consisting of:
- R 3 is H or C1-C6 alkyl. In some embodiments, R 3 is H. In some embodiments, R 3 is Ci-Ce alkyl. In some embodiments, at least one of the first reactive element or the second reactive
- element comprises ⁇ , wherein R 3 is H or C1-C6 alkyl. In some embodiments, R 3 is H. In some embodiments, R 3 is C1-C6 alkyl.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Applications Claiming Priority (60)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962819439P | 2019-03-15 | 2019-03-15 | |
US201962819453P | 2019-03-15 | 2019-03-15 | |
US201962819449P | 2019-03-15 | 2019-03-15 | |
US201962819470P | 2019-03-15 | 2019-03-15 | |
US201962819477P | 2019-03-15 | 2019-03-15 | |
US201962819456P | 2019-03-15 | 2019-03-15 | |
US201962819468P | 2019-03-15 | 2019-03-15 | |
US201962819444P | 2019-03-15 | 2019-03-15 | |
US201962819467P | 2019-03-15 | 2019-03-15 | |
US201962819458P | 2019-03-15 | 2019-03-15 | |
US201962819486P | 2019-03-15 | 2019-03-15 | |
US201962819496P | 2019-03-15 | 2019-03-15 | |
US201962819478P | 2019-03-15 | 2019-03-15 | |
US201962819448P | 2019-03-15 | 2019-03-15 | |
US201962819495P | 2019-03-15 | 2019-03-15 | |
US201962822575P | 2019-03-22 | 2019-03-22 | |
US201962822680P | 2019-03-22 | 2019-03-22 | |
US201962822565P | 2019-03-22 | 2019-03-22 | |
US201962822632P | 2019-03-22 | 2019-03-22 | |
US201962822610P | 2019-03-22 | 2019-03-22 | |
US201962822622P | 2019-03-22 | 2019-03-22 | |
US201962822618P | 2019-03-22 | 2019-03-22 | |
US201962822722P | 2019-03-22 | 2019-03-22 | |
US201962822627P | 2019-03-22 | 2019-03-22 | |
US201962822554P | 2019-03-22 | 2019-03-22 | |
US201962822649P | 2019-03-22 | 2019-03-22 | |
US201962822605P | 2019-03-22 | 2019-03-22 | |
US201962822592P | 2019-03-22 | 2019-03-22 | |
US201962822566P | 2019-03-22 | 2019-03-22 | |
US201962822606P | 2019-03-22 | 2019-03-22 | |
US201962839212P | 2019-04-26 | 2019-04-26 | |
US201962839264P | 2019-04-26 | 2019-04-26 | |
US201962839219P | 2019-04-26 | 2019-04-26 | |
US201962839294P | 2019-04-26 | 2019-04-26 | |
US201962839526P | 2019-04-26 | 2019-04-26 | |
US201962839346P | 2019-04-26 | 2019-04-26 | |
US201962839575P | 2019-04-26 | 2019-04-26 | |
US201962839320P | 2019-04-26 | 2019-04-26 | |
US201962839223P | 2019-04-26 | 2019-04-26 | |
US201962842463P | 2019-05-02 | 2019-05-02 | |
US201962854959P | 2019-05-30 | 2019-05-30 | |
US201962858331P | 2019-06-07 | 2019-06-07 | |
US201962860993P | 2019-06-13 | 2019-06-13 | |
US201962924241P | 2019-10-22 | 2019-10-22 | |
US201962925578P | 2019-10-24 | 2019-10-24 | |
US201962925550P | 2019-10-24 | 2019-10-24 | |
US201962931779P | 2019-11-06 | 2019-11-06 | |
US201962931587P | 2019-11-06 | 2019-11-06 | |
US201962933299P | 2019-11-08 | 2019-11-08 | |
US201962933318P | 2019-11-08 | 2019-11-08 | |
US201962933878P | 2019-11-11 | 2019-11-11 | |
US201962934356P | 2019-11-12 | 2019-11-12 | |
US201962934883P | 2019-11-13 | 2019-11-13 | |
US201962935043P | 2019-11-13 | 2019-11-13 | |
US201962934766P | 2019-11-13 | 2019-11-13 | |
US201962937668P | 2019-11-19 | 2019-11-19 | |
US201962939488P | 2019-11-22 | 2019-11-22 | |
US201962941581P | 2019-11-27 | 2019-11-27 | |
US202062959526P | 2020-01-10 | 2020-01-10 | |
PCT/US2020/021002 WO2020190509A1 (fr) | 2019-03-15 | 2020-03-04 | Méthodes d'utilisation de matrices spatiales pour le séquençage d'organismes unicellulaires |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3938538A1 true EP3938538A1 (fr) | 2022-01-19 |
Family
ID=72520373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20716618.2A Pending EP3938538A1 (fr) | 2019-03-15 | 2020-03-04 | Méthodes d'utilisation de matrices spatiales pour le séquençage d'organismes unicellulaires |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3938538A1 (fr) |
CN (1) | CN114127309A (fr) |
WO (1) | WO2020190509A1 (fr) |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10787701B2 (en) | 2010-04-05 | 2020-09-29 | Prognosys Biosciences, Inc. | Spatially encoded biological assays |
US20190300945A1 (en) | 2010-04-05 | 2019-10-03 | Prognosys Biosciences, Inc. | Spatially Encoded Biological Assays |
GB201106254D0 (en) | 2011-04-13 | 2011-05-25 | Frisen Jonas | Method and product |
EP2909337B1 (fr) | 2012-10-17 | 2019-01-09 | Spatial Transcriptomics AB | Procédés et produit d'optimisation de la détection localisée ou spatiale de l'expression génique dans un échantillon de tissu |
CN111500680B (zh) | 2013-06-25 | 2024-04-16 | 普罗格诺西斯生物科学公司 | 检测样品中生物靶标的空间分布的方法和系统 |
EP4321627A3 (fr) | 2015-04-10 | 2024-04-17 | 10x Genomics Sweden AB | Analyse de plusieurs acides nucléiques spatialement différenciés de spécimens biologiques |
US11519033B2 (en) | 2018-08-28 | 2022-12-06 | 10X Genomics, Inc. | Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample |
US20220049294A1 (en) | 2018-12-10 | 2022-02-17 | 10X Genomics, Inc. | Imaging system hardware |
US11649485B2 (en) | 2019-01-06 | 2023-05-16 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
US11926867B2 (en) | 2019-01-06 | 2024-03-12 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
EP3976820A1 (fr) | 2019-05-30 | 2022-04-06 | 10X Genomics, Inc. | Procédés de détection de l'hétérogénéité spatiale d'un échantillon biologique |
WO2021091611A1 (fr) | 2019-11-08 | 2021-05-14 | 10X Genomics, Inc. | Agents de capture d'analytes marqués spatialement pour le multiplexage d'analytes |
EP4025711A2 (fr) | 2019-11-08 | 2022-07-13 | 10X Genomics, Inc. | Amélioration de la spécificité de la liaison d'un analyte |
EP3891300B1 (fr) | 2019-12-23 | 2023-03-29 | 10X Genomics, Inc. | Procédés d'analyse spatiale utilisant une ligature à matrice d'arn |
WO2021133842A1 (fr) | 2019-12-23 | 2021-07-01 | 10X Genomics, Inc. | Compositions et méthodes d'utilisation d'échantillons biologiques fixés dans des dosages basés sur des compartiments |
US11702693B2 (en) | 2020-01-21 | 2023-07-18 | 10X Genomics, Inc. | Methods for printing cells and generating arrays of barcoded cells |
US11732299B2 (en) | 2020-01-21 | 2023-08-22 | 10X Genomics, Inc. | Spatial assays with perturbed cells |
US11821035B1 (en) | 2020-01-29 | 2023-11-21 | 10X Genomics, Inc. | Compositions and methods of making gene expression libraries |
US12076701B2 (en) | 2020-01-31 | 2024-09-03 | 10X Genomics, Inc. | Capturing oligonucleotides in spatial transcriptomics |
US11898205B2 (en) | 2020-02-03 | 2024-02-13 | 10X Genomics, Inc. | Increasing capture efficiency of spatial assays |
US12110541B2 (en) | 2020-02-03 | 2024-10-08 | 10X Genomics, Inc. | Methods for preparing high-resolution spatial arrays |
US11732300B2 (en) | 2020-02-05 | 2023-08-22 | 10X Genomics, Inc. | Increasing efficiency of spatial analysis in a biological sample |
US12129516B2 (en) | 2020-02-07 | 2024-10-29 | 10X Genomics, Inc. | Quantitative and automated permeabilization performance evaluation for spatial transcriptomics |
US11835462B2 (en) | 2020-02-11 | 2023-12-05 | 10X Genomics, Inc. | Methods and compositions for partitioning a biological sample |
US11891654B2 (en) | 2020-02-24 | 2024-02-06 | 10X Genomics, Inc. | Methods of making gene expression libraries |
US11926863B1 (en) | 2020-02-27 | 2024-03-12 | 10X Genomics, Inc. | Solid state single cell method for analyzing fixed biological cells |
US11768175B1 (en) | 2020-03-04 | 2023-09-26 | 10X Genomics, Inc. | Electrophoretic methods for spatial analysis |
EP4139485B1 (fr) * | 2020-04-22 | 2023-09-06 | 10X Genomics, Inc. | Procédés d'analyse spatiale utilisant un appauvrissement d'arn ciblée |
AU2021275906A1 (en) | 2020-05-22 | 2022-12-22 | 10X Genomics, Inc. | Spatial analysis to detect sequence variants |
WO2021236929A1 (fr) | 2020-05-22 | 2021-11-25 | 10X Genomics, Inc. | Mesure spatio-temporelle simultanée de l'expression génique et de l'activité cellulaire |
WO2021242834A1 (fr) | 2020-05-26 | 2021-12-02 | 10X Genomics, Inc. | Procédé de réinitialisation d'un réseau |
EP4025692A2 (fr) | 2020-06-02 | 2022-07-13 | 10X Genomics, Inc. | Procédés de banques d'acides nucléiques |
WO2021247568A1 (fr) | 2020-06-02 | 2021-12-09 | 10X Genomics, Inc. | Trancriptomique spatiale pour les récepteurs d'antigènes |
US12031177B1 (en) | 2020-06-04 | 2024-07-09 | 10X Genomics, Inc. | Methods of enhancing spatial resolution of transcripts |
ES2981265T3 (es) | 2020-06-08 | 2024-10-08 | 10X Genomics Inc | Métodos para determinar un margen quirúrgico y métodos de uso del mismo |
EP4446430A2 (fr) | 2020-06-10 | 2024-10-16 | 10X Genomics, Inc. | Procédés de détermination d'un emplacement d'un analyte dans un échantillon biologique |
AU2021294334A1 (en) | 2020-06-25 | 2023-02-02 | 10X Genomics, Inc. | Spatial analysis of DNA methylation |
US11981960B1 (en) | 2020-07-06 | 2024-05-14 | 10X Genomics, Inc. | Spatial analysis utilizing degradable hydrogels |
US11761038B1 (en) | 2020-07-06 | 2023-09-19 | 10X Genomics, Inc. | Methods for identifying a location of an RNA in a biological sample |
US11981958B1 (en) | 2020-08-20 | 2024-05-14 | 10X Genomics, Inc. | Methods for spatial analysis using DNA capture |
US11926822B1 (en) | 2020-09-23 | 2024-03-12 | 10X Genomics, Inc. | Three-dimensional spatial analysis |
US11827935B1 (en) | 2020-11-19 | 2023-11-28 | 10X Genomics, Inc. | Methods for spatial analysis using rolling circle amplification and detection probes |
EP4121555A1 (fr) | 2020-12-21 | 2023-01-25 | 10X Genomics, Inc. | Procédés, compositions et systèmes pour capturer des sondes et/ou des codes à barres |
US20240076723A1 (en) | 2020-12-30 | 2024-03-07 | 10X Genomics, Inc. | Cleavage of capture probes for spatial analysis |
WO2022178267A2 (fr) | 2021-02-19 | 2022-08-25 | 10X Genomics, Inc. | Dispositifs de support de dosage modulaires |
WO2022198068A1 (fr) | 2021-03-18 | 2022-09-22 | 10X Genomics, Inc. | Capture multiplex de gène et expression de protéines à partir d'un échantillon biologique |
WO2022223561A1 (fr) * | 2021-04-20 | 2022-10-27 | Simsen Diagnostics Ab | Compositions et méthodes d'isolement d'acides nucléiques sans cellules |
WO2022256503A1 (fr) | 2021-06-03 | 2022-12-08 | 10X Genomics, Inc. | Procédés, compositions, kits et systèmes pour améliorer la capture d'analytes pour une analyse spatiale |
WO2022271820A1 (fr) * | 2021-06-22 | 2022-12-29 | 10X Genomics, Inc. | Détection spatiale de sars-cov-2 à l'aide d'une ligature à matrice |
EP4196605A1 (fr) | 2021-09-01 | 2023-06-21 | 10X Genomics, Inc. | Procédés, compositions et kits pour bloquer une sonde de capture sur un réseau spatial |
WO2023192917A1 (fr) | 2022-03-29 | 2023-10-05 | Nautilus Subsidiary, Inc. | Réseaux intégrés pour processus à analyte unique |
CN115035947B (zh) * | 2022-06-10 | 2023-03-10 | 水木未来(北京)科技有限公司 | 蛋白质结构建模方法及装置、电子设备和存储介质 |
WO2024020398A1 (fr) * | 2022-07-19 | 2024-01-25 | Cellanome, Inc. | Protéomique de cellule unique faisant intervenir des hydrogels dégradables |
WO2024062237A1 (fr) * | 2022-09-20 | 2024-03-28 | Ttp Plc | Profilage cellulaire à résolution spatiale |
WO2024124044A1 (fr) | 2022-12-07 | 2024-06-13 | The Brigham And Women’S Hospital, Inc. | Compositions et procédés ciblant sat1 pour améliorer l'immunité antitumorale pendant la progression d'une tumeur |
CN116024307B (zh) * | 2023-02-20 | 2023-08-11 | 北京寻因生物科技有限公司 | 一种含组织位置信息的单细胞文库构建方法及测序方法 |
WO2024192141A1 (fr) | 2023-03-13 | 2024-09-19 | Dana-Farber Cancer Institute, Inc. | Traitement de cancers présentant un état de cellule mésenchymateuse résistant aux médicaments |
Family Cites Families (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4965188A (en) | 1986-08-22 | 1990-10-23 | Cetus Corporation | Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4800159A (en) | 1986-02-07 | 1989-01-24 | Cetus Corporation | Process for amplifying, detecting, and/or cloning nucleic acid sequences |
US5472881A (en) | 1992-11-12 | 1995-12-05 | University Of Utah Research Foundation | Thiol labeling of DNA for attachment to gold surfaces |
WO1995004069A1 (fr) | 1993-07-30 | 1995-02-09 | Affymax Technologies N.V. | Biotinylation de proteines |
US5610287A (en) | 1993-12-06 | 1997-03-11 | Molecular Tool, Inc. | Method for immobilizing nucleic acid molecules |
US5512462A (en) | 1994-02-25 | 1996-04-30 | Hoffmann-La Roche Inc. | Methods and reagents for the polymerase chain reaction amplification of long DNA sequences |
US5552278A (en) | 1994-04-04 | 1996-09-03 | Spectragen, Inc. | DNA sequencing by stepwise ligation and cleavage |
US5807522A (en) | 1994-06-17 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for fabricating microarrays of biological samples |
US5846719A (en) | 1994-10-13 | 1998-12-08 | Lynx Therapeutics, Inc. | Oligonucleotide tags for sorting and identification |
US5750341A (en) | 1995-04-17 | 1998-05-12 | Lynx Therapeutics, Inc. | DNA sequencing by parallel oligonucleotide extensions |
GB9620209D0 (en) | 1996-09-27 | 1996-11-13 | Cemu Bioteknik Ab | Method of sequencing DNA |
GB9626815D0 (en) | 1996-12-23 | 1997-02-12 | Cemu Bioteknik Ab | Method of sequencing DNA |
EP2319855B1 (fr) | 1997-01-08 | 2016-04-06 | Sigma-Aldrich Co. LLC | Bio-conjugaison de macromolécules |
US5837860A (en) | 1997-03-05 | 1998-11-17 | Molecular Tool, Inc. | Covalent attachment of nucleic acid molecules onto solid-phases via disulfide bonds |
US6023540A (en) | 1997-03-14 | 2000-02-08 | Trustees Of Tufts College | Fiber optic sensor with encoded microspheres |
US6327410B1 (en) | 1997-03-14 | 2001-12-04 | The Trustees Of Tufts College | Target analyte sensors utilizing Microspheres |
ES2563643T3 (es) | 1997-04-01 | 2016-03-15 | Illumina Cambridge Limited | Método de secuenciación de ácido nucleico |
US6969488B2 (en) | 1998-05-22 | 2005-11-29 | Solexa, Inc. | System and apparatus for sequential processing of analytes |
US5919626A (en) | 1997-06-06 | 1999-07-06 | Orchid Bio Computer, Inc. | Attachment of unmodified nucleic acids to silanized solid phase surfaces |
US7427678B2 (en) | 1998-01-08 | 2008-09-23 | Sigma-Aldrich Co. | Method for immobilizing oligonucleotides employing the cycloaddition bioconjugation method |
US7060431B2 (en) | 1998-06-24 | 2006-06-13 | Illumina, Inc. | Method of making and decoding of array sensors with microspheres |
US6391937B1 (en) | 1998-11-25 | 2002-05-21 | Motorola, Inc. | Polyacrylamide hydrogels and hydrogel arrays made from polyacrylamide reactive prepolymers |
US6355431B1 (en) | 1999-04-20 | 2002-03-12 | Illumina, Inc. | Detection of nucleic acid amplification reactions using bead arrays |
EP1196630B2 (fr) | 1999-04-20 | 2018-10-17 | Illumina, Inc. | Detection de reactions d'acide nucleique sur microsupports de billes en reseau |
US7244559B2 (en) | 1999-09-16 | 2007-07-17 | 454 Life Sciences Corporation | Method of sequencing a nucleic acid |
US6274320B1 (en) | 1999-09-16 | 2001-08-14 | Curagen Corporation | Method of sequencing a nucleic acid |
US6770441B2 (en) | 2000-02-10 | 2004-08-03 | Illumina, Inc. | Array compositions and methods of making same |
US7001792B2 (en) | 2000-04-24 | 2006-02-21 | Eagle Research & Development, Llc | Ultra-fast nucleic acid sequencing device and a method for making and using the same |
GB0018120D0 (en) | 2000-07-24 | 2000-09-13 | Fermentas Ab | Nuclease |
US7057026B2 (en) | 2001-12-04 | 2006-06-06 | Solexa Limited | Labelled nucleotides |
WO2003101972A1 (fr) | 2002-05-30 | 2003-12-11 | The Scripps Research Institute | Ligation d'azides et d'acetylenes catalysee par le cuivre |
DK3587433T3 (da) | 2002-08-23 | 2020-05-18 | Illumina Cambridge Ltd | Modificerede nukleotider |
CA2498764C (fr) | 2002-09-20 | 2015-11-10 | New England Biolabs, Inc. | Amplification dependant de l'helicase des acides nucleiques |
GB0321306D0 (en) | 2003-09-11 | 2003-10-15 | Solexa Ltd | Modified polymerases for improved incorporation of nucleotide analogues |
US7541166B2 (en) | 2003-09-19 | 2009-06-02 | Microfluidic Systems, Inc. | Sonication to selectively lyse different cell types |
US7259258B2 (en) | 2003-12-17 | 2007-08-21 | Illumina, Inc. | Methods of attaching biological compounds to solid supports using triazine |
EP3673986A1 (fr) | 2004-01-07 | 2020-07-01 | Illumina Cambridge Limited | Améliorations de ou associées à des réseaux moléculaires |
WO2006064199A1 (fr) | 2004-12-13 | 2006-06-22 | Solexa Limited | Procede ameliore de detection de nucleotides |
GB0427236D0 (en) | 2004-12-13 | 2005-01-12 | Solexa Ltd | Improved method of nucleotide detection |
US8623628B2 (en) | 2005-05-10 | 2014-01-07 | Illumina, Inc. | Polymerases |
EP3042963A1 (fr) | 2005-06-20 | 2016-07-13 | Advanced Cell Diagnostics, Inc. | Procédés de détection d'acides nucléiques dans des cellules individuelles et d'identification de cellules rares dans de grandes populations cellulaires hétérogènes |
GB0514936D0 (en) | 2005-07-20 | 2005-08-24 | Solexa Ltd | Preparation of templates for nucleic acid sequencing |
US20080132429A1 (en) | 2006-05-23 | 2008-06-05 | Uchicago Argonne | Biological microarrays with enhanced signal yield |
EP2077912B1 (fr) | 2006-08-07 | 2019-03-27 | The President and Fellows of Harvard College | Tensioactifs fluorocarbonés stabilisateurs d'émulsions |
US8262900B2 (en) | 2006-12-14 | 2012-09-11 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US7948015B2 (en) | 2006-12-14 | 2011-05-24 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8349167B2 (en) | 2006-12-14 | 2013-01-08 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US20100055733A1 (en) | 2008-09-04 | 2010-03-04 | Lutolf Matthias P | Manufacture and uses of reactive microcontact printing of biomolecules on soft hydrogels |
US20100137143A1 (en) | 2008-10-22 | 2010-06-03 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
US20130171621A1 (en) | 2010-01-29 | 2013-07-04 | Advanced Cell Diagnostics Inc. | Methods of in situ detection of nucleic acids |
CA2794522C (fr) | 2010-04-05 | 2019-11-26 | Prognosys Biosciences, Inc. | Tests biologiques a codage spatial |
US8951781B2 (en) | 2011-01-10 | 2015-02-10 | Illumina, Inc. | Systems, methods, and apparatuses to image a sample for biological or chemical analysis |
GB201106254D0 (en) * | 2011-04-13 | 2011-05-25 | Frisen Jonas | Method and product |
CA2831969A1 (fr) | 2011-06-06 | 2012-12-30 | Biocartis S.A. | Lyse selective des cellules par des tensioactifs ioniques selective lysis of cells by ionic surfactants |
SI3623481T1 (sl) | 2011-09-23 | 2022-01-31 | Illumina, Inc. | Sestavki za sekvenciranje nukleinske kisline |
JP6159391B2 (ja) | 2012-04-03 | 2017-07-05 | イラミーナ インコーポレーテッド | 核酸シークエンシングに有用な統合化した読取りヘッド及び流体カートリッジ |
US9012022B2 (en) | 2012-06-08 | 2015-04-21 | Illumina, Inc. | Polymer coatings |
US20140378345A1 (en) | 2012-08-14 | 2014-12-25 | 10X Technologies, Inc. | Compositions and methods for sample processing |
IN2015DN01126A (fr) | 2012-08-14 | 2015-06-26 | 10X Genomics Inc | |
US9783841B2 (en) | 2012-10-04 | 2017-10-10 | The Board Of Trustees Of The Leland Stanford Junior University | Detection of target nucleic acids in a cellular sample |
EP2909337B1 (fr) | 2012-10-17 | 2019-01-09 | Spatial Transcriptomics AB | Procédés et produit d'optimisation de la détection localisée ou spatiale de l'expression génique dans un échantillon de tissu |
US10035920B2 (en) | 2012-11-27 | 2018-07-31 | Tufts University | Biopolymer-based inks and use thereof |
US9512422B2 (en) | 2013-02-26 | 2016-12-06 | Illumina, Inc. | Gel patterned surfaces |
EP3578666A1 (fr) | 2013-03-12 | 2019-12-11 | President and Fellows of Harvard College | Procédé de génération d'une matrice contenant un acide nucléique tridimensionnel |
EP3008201B1 (fr) | 2013-06-12 | 2019-08-07 | The General Hospital Corporation | Procédés pour détection multiplexe de molécules cibles et leurs utilisations |
CN111500680B (zh) | 2013-06-25 | 2024-04-16 | 普罗格诺西斯生物科学公司 | 检测样品中生物靶标的空间分布的方法和系统 |
US20150000854A1 (en) | 2013-06-27 | 2015-01-01 | The Procter & Gamble Company | Sheet products bearing designs that vary among successive sheets, and apparatus and methods for producing the same |
EP3043891B1 (fr) | 2013-09-13 | 2019-01-16 | The Board of Trustees of The Leland Stanford Junior University | Imagerie multiplexée de tissus mettant en oeuvre des marqueurs de masse et une spectrométrie de masse d'ions secondaires |
CN106460069B (zh) | 2014-04-18 | 2021-02-12 | 威廉马歇莱思大学 | 用于富集含稀有等位基因的物质的核酸分子的竞争性组合物 |
SG11201610177UA (en) | 2014-06-06 | 2017-01-27 | Herlev Hospital | Determining antigen recognition through barcoding of mhc multimers |
US11585806B2 (en) | 2014-06-13 | 2023-02-21 | Immudex Aps | General detection and isolation of specific cells by binding of labeled molecules |
WO2015200893A2 (fr) | 2014-06-26 | 2015-12-30 | 10X Genomics, Inc. | Procédés d'analyse d'acides nucléiques provenant de cellules individuelles ou de populations de cellules |
US10179932B2 (en) | 2014-07-11 | 2019-01-15 | President And Fellows Of Harvard College | Methods for high-throughput labelling and detection of biological features in situ using microscopy |
US20160108458A1 (en) | 2014-10-06 | 2016-04-21 | The Board Of Trustees Of The Leland Stanford Junior University | Multiplexed detection and quantification of nucleic acids in single-cells |
ES2836802T3 (es) | 2015-02-27 | 2021-06-28 | Becton Dickinson Co | Códigos de barras moleculares espacialmente direccionables |
EP4321627A3 (fr) | 2015-04-10 | 2024-04-17 | 10x Genomics Sweden AB | Analyse de plusieurs acides nucléiques spatialement différenciés de spécimens biologiques |
US10059990B2 (en) | 2015-04-14 | 2018-08-28 | Massachusetts Institute Of Technology | In situ nucleic acid sequencing of expanded biological samples |
US10724078B2 (en) | 2015-04-14 | 2020-07-28 | Koninklijke Philips N.V. | Spatial mapping of molecular profiles of biological tissue samples |
CN107636169A (zh) * | 2015-04-17 | 2018-01-26 | 生捷科技控股公司 | 对生物分子进行空间概况分析的方法 |
SG10202107053QA (en) | 2015-07-17 | 2021-08-30 | Nanostring Technologies Inc | Simultaneous quantification of gene expression in a user-defined region of a cross-sectioned tissue |
CA3242290A1 (fr) | 2015-07-27 | 2017-02-02 | Illumina, Inc. | Cartographie spatiale d'informations de sequence d'acide nucleique |
WO2017027368A1 (fr) | 2015-08-07 | 2017-02-16 | Massachusetts Institute Of Technology | Microscopie d'expansion de rétention de protéine |
EP3332029B1 (fr) | 2015-08-07 | 2021-10-06 | Massachusetts Institute of Technology | Imagerie à l'échelle nanométrique de protéines et d'acides nucléiques par microscopie d'expansion |
US20170241911A1 (en) | 2016-02-22 | 2017-08-24 | Miltenyi Biotec Gmbh | Automated analysis tool for biological specimens |
DK4015647T3 (da) | 2016-02-26 | 2023-12-04 | Univ Leland Stanford Junior | Multiplexeret enkeltmolekyle-RNA-visualisering med et to-sonde-proximetetsligationssystem |
US20170253918A1 (en) | 2016-03-01 | 2017-09-07 | Expansion Technologies | Combining protein barcoding with expansion microscopy for in-situ, spatially-resolved proteomics |
WO2017161251A1 (fr) | 2016-03-17 | 2017-09-21 | President And Fellows Of Harvard College | Procédés de détection et d'identification d'acides nucléiques génomiques |
US20180052081A1 (en) | 2016-05-11 | 2018-02-22 | Expansion Technologies | Combining modified antibodies with expansion microscopy for in-situ, spatially-resolved proteomics |
EP3472359B1 (fr) | 2016-06-21 | 2022-03-16 | 10X Genomics, Inc. | Séquençage d'acide nucléique |
AU2017302300B2 (en) | 2016-07-27 | 2023-08-17 | The Board Of Trustees Of The Leland Stanford Junior University | Highly-multiplexed fluorescent imaging |
EP3507364A4 (fr) | 2016-08-31 | 2020-05-20 | President and Fellows of Harvard College | Procédés de génération de bibliothèques de séquences d'acides nucléiques pour la détection par séquençage fluorescent in situ |
EP4428536A2 (fr) | 2016-08-31 | 2024-09-11 | President and Fellows of Harvard College | Procédés de combinaison de la détection de biomolécules en un seul dosage à l'aide d'un séquençage fluorescent in situ |
US11505819B2 (en) | 2016-09-22 | 2022-11-22 | William Marsh Rice University | Molecular hybridization probes for complex sequence capture and analysis |
GB201619458D0 (en) | 2016-11-17 | 2017-01-04 | Spatial Transcriptomics Ab | Method for spatial tagging and analysing nucleic acids in a biological specimen |
US10656144B2 (en) | 2016-12-02 | 2020-05-19 | The Charlotte Mecklenburg Hospital Authority | Immune profiling and minimal residue disease following stem cell transplantation in multiple myeloma |
US20180164308A1 (en) | 2016-12-09 | 2018-06-14 | Ultivue, Inc. | Methods for multiplex imaging using labeled nucleic acid imaging agents |
US10995361B2 (en) | 2017-01-23 | 2021-05-04 | Massachusetts Institute Of Technology | Multiplexed signal amplified FISH via splinted ligation amplification and sequencing |
US20180312822A1 (en) | 2017-04-26 | 2018-11-01 | 10X Genomics, Inc. | Mmlv reverse transcriptase variants |
EP3662083B1 (fr) * | 2017-08-01 | 2024-08-28 | Illumina, Inc. | Indexation spatiale de matériel génétique et préparation de pharmacothèque à l'aide de billes d'hydrogel et de cellules d'écoulement |
CA3078158A1 (fr) | 2017-10-06 | 2019-04-11 | Cartana Ab | Ligature a matrice d'arn |
US11753676B2 (en) | 2017-10-11 | 2023-09-12 | Expansion Technologies | Multiplexed in situ hybridization of tissue sections for spatially resolved transcriptomics with expansion microscopy |
EP3717661A1 (fr) | 2017-11-27 | 2020-10-07 | The Trustees of Columbia University in the City of New York | Dispositifs, méthodes et systèmes d'impression et de sequençage d'arn |
EP3919626B1 (fr) | 2017-12-08 | 2024-07-10 | 10X Genomics, Inc. | Procédés et compositions pour le marquage de cellules |
-
2020
- 2020-03-04 WO PCT/US2020/021002 patent/WO2020190509A1/fr active Application Filing
- 2020-03-04 EP EP20716618.2A patent/EP3938538A1/fr active Pending
- 2020-03-04 CN CN202080036157.3A patent/CN114127309A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2020190509A9 (fr) | 2020-10-22 |
WO2020190509A1 (fr) | 2020-09-24 |
CN114127309A (zh) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11753675B2 (en) | Generating capture probes for spatial analysis | |
US20220267844A1 (en) | Methods for determining a location of a biological analyte in a biological sample | |
US11926867B2 (en) | Generating capture probes for spatial analysis | |
US11933957B1 (en) | Imaging system hardware | |
US20220010367A1 (en) | Profiling of biological analytes with spatially barcoded oligonucleotide arrays | |
US20210189475A1 (en) | Imaging system hardware | |
US20220145361A1 (en) | Methods for using spatial arrays for single cell sequencing | |
US20220017951A1 (en) | Three-dimensional spatial analysis | |
US20240287600A1 (en) | Methods for determining a location of a biological analyte in a biological sample | |
US20220049293A1 (en) | Methods for determining a location of a biological analyte in a biological sample | |
EP3938538A1 (fr) | Méthodes d'utilisation de matrices spatiales pour le séquençage d'organismes unicellulaires | |
EP3887542A1 (fr) | Analyse spatiale tridimensionnelle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210915 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230725 |