EP3935624B1 - Sound absorber, structure and use of a sound absorber - Google Patents
Sound absorber, structure and use of a sound absorber Download PDFInfo
- Publication number
- EP3935624B1 EP3935624B1 EP20709569.6A EP20709569A EP3935624B1 EP 3935624 B1 EP3935624 B1 EP 3935624B1 EP 20709569 A EP20709569 A EP 20709569A EP 3935624 B1 EP3935624 B1 EP 3935624B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- material layer
- base plate
- sound absorber
- microperforated
- absorber according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000006096 absorbing agent Substances 0.000 title claims description 87
- 239000000463 material Substances 0.000 claims description 124
- 230000002787 reinforcement Effects 0.000 claims description 15
- 239000006260 foam Substances 0.000 claims description 12
- 239000002023 wood Substances 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000004640 Melamine resin Substances 0.000 claims description 7
- 229920000877 Melamine resin Polymers 0.000 claims description 7
- 239000011490 mineral wool Substances 0.000 claims description 6
- -1 polyethylene Polymers 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 239000004927 clay Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 229920001187 thermosetting polymer Polymers 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 claims description 2
- 239000002657 fibrous material Substances 0.000 claims description 2
- 239000006262 metallic foam Substances 0.000 claims description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 2
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 2
- 229920001169 thermoplastic Polymers 0.000 claims description 2
- 239000004416 thermosoftening plastic Substances 0.000 claims description 2
- 102100040287 GTP cyclohydrolase 1 feedback regulatory protein Human genes 0.000 claims 1
- 101710185324 GTP cyclohydrolase 1 feedback regulatory protein Proteins 0.000 claims 1
- 239000004568 cement Substances 0.000 claims 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 description 43
- 230000000052 comparative effect Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 230000001976 improved effect Effects 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- 238000010276 construction Methods 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 241001295925 Gegenes Species 0.000 description 5
- 238000004026 adhesive bonding Methods 0.000 description 5
- 238000005253 cladding Methods 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 210000002837 heart atrium Anatomy 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 229920000965 Duroplast Polymers 0.000 description 1
- 239000004638 Duroplast Substances 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/172—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
- E04B1/86—Sound-absorbing elements slab-shaped
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/162—Selection of materials
- G10K11/168—Plural layers of different materials, e.g. sandwiches
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
- E04B2001/8423—Tray or frame type panels or blocks, with or without acoustical filling
- E04B2001/8433—Tray or frame type panels or blocks, with or without acoustical filling with holes in their face
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
- E04B2001/8457—Solid slabs or blocks
- E04B2001/8461—Solid slabs or blocks layered
Definitions
- the invention relates to a sound absorber with an open-pored base plate according to claim 1.
- Sound absorbers of this type are used, for example, to optimize room acoustics in buildings, vehicles or aircraft. Furthermore, the invention relates to a use of such a sound absorber according to claim 13.
- Sound absorbers are known from practice which contain or consist of a porous material.
- the porous material can be provided in the form of a fleece, a foam or a fiber layer and can be introduced into a room, for example.
- Known examples are wall or ceiling elements which absorb sound at least in a definable frequency range and can thereby reduce the reverberation. This can improve the intelligibility of speech or the perception of musical performances.
- EP0046559 A2 discloses resonator sound absorption elements consisting of a hollow body with at least one resonator surface structure dividing the cavity space, as well as those consisting of a hollow body on whose peripheral edge a resonator surface structure covering the cavity mouth is fastened.
- a sound absorber with an open-pored base plate is proposed.
- the porosity is a dimensionless parameter that indicates the ratio of the cavity volume to the total volume of the base plate.
- the base plate should be regarded as open-pored if it has cavities which are connected to one another and to the environment. The open porosity thus allows hydraulic transport of fluids in the base plate.
- the open-pored base plate should have a flow resistance of about 500 Ns/m 3 to about 6000 Ns/m 3 according to DIN EN 29053:1993-05.
- This flow resistance means that sound waves can penetrate the base plate and are converted into heat there through dissipation.
- the base plate thus has a sound-absorbing effect in at least part of the acoustic frequency range.
- the partial surface is a surface of the base plate that faces the outside during later use.
- the base plate can be completely provided with the microperforated material layer. This primarily means that the entire surface of the base plate is covered by the micro-perforated layer of material. However, the microperforated material layer is not bonded to the entire surface. Rather, this is only connected in the form of strips, lines or points in order to enable surface vibrations of the micro-perforated material layer.
- the microperforated material layer has a plurality of bores which, on the one hand, allow a sound wave to penetrate into the open-pored base plate lying behind the microperforated material layer.
- the holes in the micro-perforated material layer themselves act like a damped resonator, ie the micro-perforated material layer has higher sound absorption than the open-pored base plate without a micro-perforated material layer, depending on the diameter of the holes or holes and depending on the thickness at a specific frequency or frequency band .
- the inventive combination of the two layers, ie the open-pored base plate and the micro-perforated material layer, results in a new acoustic behavior, so that the absorption of the base plate is retained in principle, but the absorption is generally improved at low frequencies.
- the acoustic behavior of the structure can also be specifically influenced.
- the holes in the micro-perforated material layer can be so small be chosen so that they can no longer be resolved by the eye of an observer from a normal viewing distance of, for example, more than approximately 1 m to more than approximately 3 m and appear optically smooth.
- wall coverings or facade elements or partitions or furniture surfaces can appear optically smooth and closed in a manner known per se, although they have a completely different acoustic behavior than a smooth surface.
- the base plate of the sound absorber can have a flow resistance of more than approximately 2000 Ns/m 3 according to DIN EN 29053:1993-05. As a result, the sound absorption can be improved. In some embodiments of the invention, the base plate can have a flow resistance of approximately 2000 Ns/m 3 according to DIN EN 29053:1993-05.
- the baseplate may have an open porosity of from about 30% to about 99%, or from about 40% to about 80%, or from about 45% to about 60%. This open porosity allows reliable sound absorption, so that the sound absorber according to the invention can have high degrees of absorption and only a small proportion of sound is reflected.
- the base plate can have a thickness of from about 6 mm to about 100 mm, or from about 50 mm to about 200 mm, or from about 7 mm to about 80 mm, or from about 8 mm to about 40 mm, or from about 10 mm to about have 30 mm. In this way, the conflicting goals between low weight and low space requirements, mechanical stability and good sound absorption can be optimized.
- the microperforated material layer is integrally connected to the base plate, in particular the microperforated material layer with the Base plate glued, soldered or welded.
- the microperforated material layer can be joined to the base plate over its entire surface. As a result, the mechanical stability of the sound absorber can be increased.
- the microperforated material layer is only joined to the base plate in the form of strips or lines or only at certain points, for example by gluing, soldering or welding.
- the microperforated material layer can execute bending vibrations or surface vibrations, with the base plate being able to act as an additional spring element of a mass/spring system formed in this way, in addition to the inherent rigidity of the microperforated material layer.
- the natural frequencies of the vibrations of the microperforated material layer can be influenced by the number, size and/or position of the joints.
- Additional energy can be withdrawn from the sound field by the vibrations of the microperforated material layer, in particular also in frequency ranges in which the absorption of the base plate and/or the effect of the microperforation is only low.
- the vibration of the microperforated sheet of material as a whole can complement the effect of the absorber in some embodiments.
- the microperforated sheet of material may be spaced apart from the base plate.
- the distance can be between about 1 mm and about 10 mm or between about 3 mm and about 8 mm in some embodiments of the invention.
- the natural vibration of the microperforated material layer can be less damped by the base plate, so that the effect of the absorber can be increased.
- the microperforated sheet of material can have a thickness of from about 0.1 mm to about 0.1 mm 2 mm, or from about 0.5 mm to about 1.8 mm, or from about 0.8 mm to about 1.5 mm, or from about 1 mm to about 4 mm, or from about 1 mm to about 2 mm.
- a microperforated material layer can on the one hand optimize the sound absorption and/or on the other hand give the sound absorber high stability with low weight.
- the microperforated material layer has a plurality of bores, the diameter of which is between about 0.1 mm and about 2 mm, or between about 0.3 mm and about 1.2 mm, or between about 0.4 mm and about 0.8 mm or between about 0.8 mm to about 2.0 mm.
- all of the holes in the microperforated material layer can have a uniform diameter.
- the bores in the microperforated material layer can have different diameters or a distribution function of the diameters.
- the area proportion of the bores of the microperforated material layer can be between 0.1% and about 10% or between about 1% and about 9% or between about 5% and about 8% of the total area. On the one hand, this enables the optical impression of a closed or largely closed surface and, on the other hand, sufficient sound absorption, so that the sound absorber according to the invention can be used to optimize the room acoustics or to optimize the acoustic properties of a facade.
- the area percentage of the bores of the microperforated material layer can be between about 0.005% and about 2% or between about 0.01% and about 1% of the total area. This enables the microperforation to be used as a broadband low-frequency absorber. In some embodiments of the invention, this can have a resonant frequency of less than 120 Hz or less than 80 Hz. In some embodiments of the invention, the resonant frequency of the microperforation can be chosen so that it is above the natural frequency of the surface vibration of the microperforated material layer and below the absorption maximum of the base plate.
- the distance between adjacent bores in the microperforated material layer can be chosen to be between about 15 mm and about 100 mm or between about 20 mm and about 60 mm.
- the microperforated sheet of material may include or consist of a melamine resin and/or a thermoset and/or a thermoplastic and/or a wood veneer and/or polyethylene and/or polyethylene terephthalate and/or ethyltetrafluoroethylene copolymer and/or a metal or alloy .
- a metal or alloy may contain or consist of aluminum or steel.
- Such layers of material enable, on the one hand, a decorative design of wall or ceiling surfaces or also furniture surfaces or facades and, on the other hand, are sufficiently mechanically stable to enable the sound absorber to have a long service life.
- layers of material with low internal friction, such as metals can supplement the effect of the absorber in some embodiments by vibrating the microperforated layer of material as a whole.
- the sound absorber can contain multiple base plates. These can have different properties, for example contain different materials and/or have different thicknesses and/or different ones have porosities.
- the sound absorber can contain at least two base plates, with at least one base plate being arranged on each side of the microperforated material layer. In some embodiments, this may be spaced on one or both sides.
- the baseplate may be self-supporting. This makes assembly and transport of the base plate easier.
- self-supporting means that the panel does not require any additional mechanical substructure or support or bracing for the desired application.
- the panel is therefore so rigid and stable that it can only be attached to individual attachment points and yet its shape does not change significantly over time, e.g. on the ceiling as ceiling cladding or on the wall as wall cladding.
- a cladding panel In the case of wall cladding in the movement area of students in schools or in sports halls, a cladding panel must also withstand mechanical forces such as impact by people.
- a non-self-supporting slab on the other hand, always requires a substructure that absorbs the forces that occur in order to keep the slab in shape permanently in a certain position.
- the base plate can be a pressed polyester fleece and/or a wood material and/or pressed mineral wool and/or sintered glass foam and/or cement-bonded expanded clay and/or a duroplastic foam and/or a melamine resin and/or a natural fiber material and/or contain or consist of a metal foam.
- the base plates are therefore open-pored in order to have good acoustic properties.
- such base plates can also be mechanically stable so that they are not damaged during handling and assembly.
- the material of the base plate can be selected in such a way that it complies with the usual fire resistance classes and allows use in or on buildings without complex approval in individual cases.
- the sound absorber can contain at least one mechanical reinforcement element, which contains or consists of, for example, GRP and/or CFRP and/or polyethylene and/or polyester and/or wood or a wood-based material.
- the reinforcement element can also contain or consist of a metal or an alloy.
- Such a reinforcement member can improve the mechanical strength of the sound absorber, thereby facilitating assembly and transportation.
- the reinforcement element can be applied as a grid or fabric layer to the outer surface of a sound absorber, in some cases above the microperforated material layer or also between the microperforated material layer and the base plate. In other embodiments of the invention, the reinforcement element can be embedded in the base plate.
- the sound absorber can be fixed in a basket on a building wall or a building ceiling.
- a basket can contain or consist of a perforated plate.
- the basket can be closed at the side.
- the sound absorber can be introduced into at least one room of a building. This can be done as a wall or ceiling element, which can absorb sound at least in a definable frequency range and thereby reduce the reverberation.
- the intelligibility of speech or the perception of musical performances in the building can be improved by using the sound absorber.
- the sound absorber can be attached to at least one partial surface of at least one outer facade of a building. As a result, sound of at least one predefinable frequency range can be absorbed and the reverberation can thereby be reduced.
- the use on a facade is particularly advantageous in inner courtyards or atriums or on streets with heavy traffic, in order to reduce acoustic disturbances in the adjacent interior rooms or to expand the possible uses of the inner courtyard or atrium, for example as a meeting place.
- a building part 5 for example a wall or ceiling surface, which can be made of masonry or concrete, for example.
- the building part 5 delimits an interior space of a building. Due to the smooth surface of building part 5, disturbing sound reflections and long reverberation times can occur in this interior.
- a sound absorber not according to the invention is used to improve the acoustic comfort.
- This contains a base plate 1, which for example has a thickness of about 6 mm to about 100 mm and which in some embodiments contains or consists of a pressed polyester fleece, a wood material, pressed mineral wool, sintered glass foam, cement-bonded expanded clay or a duroplastic foam.
- the base plate is at least partially open-pored and has a flow resistance of approximately 2000 Ns/m 3 .
- the base plate 1 can be flat or curved. This allows the base plate to be shaped to complement the area of the building to which it is to be applied.
- the base plate 1 can be applied directly to the surface of the building part 5, for example by gluing or by mechanical fasteners, such as screws and dowels. In other embodiments, the base plate 1 can be arranged at a distance from the building part 5, resulting in an optional intermediate space 4 which has a height of about 2 cm to about 20 cm or from about 2 cm to about 40 cm or from about 5 cm to about 10 cm.
- the reinforcement element 15 can, for example, be embedded in the base plate 1 in the form of an elongate stiffener or a lattice.
- the reinforcement element 15 can be used as a holder in order to reliably fasten the sound absorber to the building part 5 .
- the base plate itself can have sufficient mechanical stability, so that reinforcement elements 15 can also be omitted.
- the intermediate space 4 can optionally be completely or partially filled with sound-absorbing material.
- At least the partial area of the base plate 1 that is visible when used as intended is provided with a micro-perforated material layer 2 .
- the layer of material 2 contains a plurality of bores or holes 20, which can be arranged in a regular or irregular pattern and which can each have a diameter of about 0.1 mm to about 2 mm.
- the total area of the bores 20 can be about 0.1% to about 10% of the total intended use correspond to the visible surface of the sound absorber.
- the microperforated material layer 2 is connected to the base plate 1 over its entire surface, for example by gluing.
- the micro-perforated material layer can consist of plastic, wood or metal and thus enable the desired surface design of the sound absorber.
- the back of the base plate 1 facing the building part 5 or the intermediate space 4 is not provided with a microperforated material layer 2 .
- the microperforated material layer 2 is not capable of vibrating itself due to its connection to the base plate 1, i.e. the sound absorber is based on the following mechanisms of action:
- sound waves can penetrate through the microperforated material layer 2 into the base plate 1 and be dissipated there. This mechanism of action dominates at higher frequencies.
- the air enclosed in the bores 20 of the microperforated material layer 2 can be excited to vibrate by impinging sound waves and thereby dissipate energy from the sound field. This mechanism of action dominates at lower frequencies. In some embodiments, it can also be omitted or only slightly pronounced. Both mechanisms of action can therefore have different absorption spectra and thus complement each other.
- the sound absorber shown ie the base plate 1 with optional reinforcement elements 15 and the microperforated material layer 2 applied over the entire surface
- the ceiling panel shown for example as wall cladding or as the interior paneling of a vehicle or aircraft, as a mobile partition wall or in furniture construction or as a facade element of a building.
- figure 2 shows a second embodiment of a sound absorber. Identical components are provided with the same reference symbols, so that the following description is limited to the essential differences.
- figure 2 shows a section of the cross section through a base plate 1. This is provided not only partially, but over the entire surface with a micro-perforated material layer 2. The microperforated material layer 2 thus also covers the side edges and the side of the base plate 1 facing the building part 5.
- the optional reinforcement elements 15 are not embedded in the base plate, but are introduced as a grid between the micro-perforated material layer 2 and the base plate 1.
- the reinforcement element 15 can thus also be connected to the base plate by gluing or welding.
- the microperforated material layer 2 is not itself capable of vibrating due to its connection to the base plate 1 or the reinforcing element 15, i.e. the sound absorber is based, like the first embodiment, on the following mechanisms of action:
- sound waves can pass through the microperforated material layer 2 into the base plate 1 penetrate and be dissipated there.
- the air enclosed in the bores 20 of the microperforated material layer 2 can also be excited to vibrate by impinging sound waves and thereby dissipate energy from the sound field. Both Mechanisms of action can have different absorption spectra and thus complement each other.
- the in the Figures 1 and 2 The first and second embodiments shown are collectively referred to as sound absorbers of the first type because of their identical mechanisms of action. Based on the below Figures 3 - 6 Comparative examples between different sound absorbers of the first type against known sound absorbers are explained.
- the sound absorber shown ie the base plate 1 with optional reinforcement elements 15 and the micro-perforated material layer 2 applied over the entire surface can be used as a wall or ceiling panel of a building, as an interior paneling of a vehicle or aircraft, as a mobile partition wall or partition or in furniture construction or as a facade element.
- figure 3 shows a first comparative example of a sound absorber.
- the degree of absorption is shown on the ordinate and the frequency of incoming sound on the abscissa.
- curve A shows the degree of absorption of a sheet known per se made of a melamine resin foam with a thickness of 10 cm.
- Curve B shows the same base plate made of melamine resin foam with a thickness of 10 cm, which, however, was additionally provided with a micro-perforated material layer glued over the entire surface on the entry side of the sound.
- figure 4 shows a second comparative example.
- Figures 5 and 6 is again the degree of absorption of a pressed mineral wool panel on the ordinate and the frequency on the abscissa.
- Curve A shows the degree of absorption of a mineral wool panel with a thickness of 2 cm, which was mounted in front of a building part 5 with a gap 4 of 10 cm.
- Curve B again shows the degree of absorption after the mineral wool board has been provided with a micro-perforated material layer over its entire surface.
- the absorption behavior of the sound absorber does not deteriorate, with improved optical and aesthetic properties at the same time.
- curve A shows absorbance versus frequency for a pressed polyethersulfone (PES) web.
- the fleece has a thickness of 5 cm and is mounted at a distance or gap 4 of 5 cm from the building part 5 .
- curve B shows the degree of absorption versus frequency for the nonwoven after it has been provided with a microperforated material layer that has been bonded over its entire surface.
- figure 7 shows a sound absorber according to the present invention in a third embodiment. Identical components are provided with the same reference symbols, so that the following description is limited to the essential differences.
- the third embodiment also has a base plate 1 which contains or consists of, for example, an open-pore foam, a fiber layer, a knitted fabric, a knitted fabric or another sound-absorbing material known per se.
- the base plate 1 is designed with open pores so that sound waves can penetrate and their energy is dissipated in the base plate.
- the base plate 1 is attached to a building part 5, for example a ceiling or an inner wall or an outer wall.
- the side of the base plate 1 opposite the part of the building is provided with a micro-perforated material layer 2 .
- the microperforated material layer 2 according to the third, fourth, fifth and sixth embodiment is not connected to the base plate 1 over its entire surface. Rather, the microperforated material layer is connected to the base plate in the form of strips, lines or points. In some embodiments, which are not part of the invention, J the connection can only take place via the edges, so that the surface of the micro-perforated material layer 2 has no connection to the base plate 1.
- the third, fourth, fifth and sixth embodiments can also dissipate sound energy in that the microperforated material layer as a whole is excited to surface vibrations and thus dissipates energy from the sound field.
- the microperforated material layer in the third embodiment can have a thickness of approximately 1 mm to approximately 4 mm or of approximately 1 mm to approximately 2 mm.
- the microperforated material layer preferably has low internal damping and is made, for example, from a metal, an alloy or a duroplast.
- the micro-perforated material layer 2 can be a sandwich construction made of several material layers in order to adapt the vibration behavior to desired target values.
- the microperforated material layer 2 has holes 20 which have a diameter of about 0.8 mm to about 2 mm and a distance between adjacent holes of about 15 mm to about 100 mm.
- the microperforation can be tuned as a broadband low-frequency absorber with a resonant frequency of less than approximately 150 Hz or less than approximately 80 Hz.
- the broadband effective low-frequency absorber is therefore mainly effective in the low-frequency range. This is followed by the resonance of the surface vibration of the microperforated material layer 2 .
- the absorption of the base plate 1 is decisive for the absorption behavior. Since the figure 7 Third embodiment shown thus combines three mechanisms of action in a single sound absorber, this is in contrast to the basis of Figures 1 and 2 described embodiments hereinafter referred to as sound absorbers of a second type.
- the base plate 1 and/or the microperforated material layer 2 can be attached to the building part 5 in a basket 6 .
- the basket 6 can, for example, from a wire mesh or be made of perforated sheet metal and be open or closed at the edges.
- the basket 6 can optionally contain a trickle guard, which can be designed as a flow layer. Since the basket 6 provides the sound absorber with mechanical stability, there is greater freedom in the selection of the base plate 1 in an embodiment with such a basket 6. This does not necessarily have to be designed to be self-supporting. However, it should be noted that the basket 6 is optional and may be omitted in other embodiments of the invention.
- the sound absorber shown i.e. the base plate 1 with optional reinforcement elements 15 and the micro-perforated material layer 2 connected to the base plate in the form of strips, lines or points
- the sound absorber shown can also be used for applications other than the ceiling panel shown in or on a building, for example as a Interior paneling of a vehicle or aircraft, as a mobile partition or partition or in furniture construction.
- the microperforated material layer 2 does not lie on the base plate 1. Rather, there is a distance 7 between the base plate 1 and the microperforated material layer 2. In some embodiments, this distance can be between approximately 1 mm and approximately 10 mm or between approximately 3 mm and approximately 8 mm. This feature has the effect that the natural vibration of the micro-perforated sheet of material is less influenced by the base plate, so that the effect of the absorber can be increased.
- the air volume enclosed between the microperforated material layer 2 and the building part 5 in the base plate 1 still acts as a restoring force on the vibration of the microperforated material layer 2, so that the selection of the distance 7 also affects the natural frequency of the material layer 2 and thus the absorption behavior of the sound absorber can be optimized or adjusted.
- the fifth embodiment differs from the third embodiment in that the basket 6 is enlarged so that a porous foam, a knitted fabric, a knitted fabric or a fiber layer can be arranged on both sides of the microperforated material layer 2 .
- the base plate 1 is thus initially arranged directly on the surface of the building part 5.
- the microperforated material layer is applied to the side of the base plate 1 opposite the building part 5, as described above.
- a first additional board 11 comes to rest on the side of the microperforated material layer 2 opposite the base board 1 .
- An optional second additional plate 12 is applied to the first additional plate 11 .
- Impinging sound energy is thus initially absorbed by the first and second supplementary panels 11 and 12 .
- Low frequencies which can pass through the additional panels 11 and 12, excite the microperforated material layer 2 to surface vibrations, which absorb further sound energy in the medium frequency range.
- Low frequencies below about 80 Hz can be absorbed by the air volume enclosed in the bores 20 of the micro-perforated material layer 2. If high-frequency vibrations still reach the base plate 1, they are absorbed there. Essentially, however, the base plate 1 serves to dampen the vibrations of the microperforated material layer 2 and to dissipate energy.
- microperforated material layer 2 Since the microperforated material layer 2 is in contact both with the first additional plate 11 and with the base plate 1, an additional mechanical or cohesive attachment by gluing, soldering or welding can be omitted.
- the four in figure 9 Material layers shown can be held in the basket 6 solely by its own weight and attached to the building part 5 with it.
- figure 10 shows a cross section through a sound absorber.
- the sixth embodiment is a combination of the fifth embodiment described above with the fourth embodiment.
- the sixth embodiment also includes at least a first additional plate 11 and an optional second additional plate 12, which can be made of a different material and/or have a different thickness, so that the additional plates 11 and 12 have an absorption maximum at different frequencies. Also in the fifth embodiment described above, the material properties of the first and second auxiliary plates 11 and 12 can be appropriately selected.
- the main difference between the sixth embodiment and the fifth embodiment is that there is a distance 7 between the base plate 1 and the microperforated material layer 2 and/or between the microperforated material layer 2 and the first additional plate 11 .
- the distance 7 can be between about 1 mm and about 10 mm, for example.
- the microperforated material layer 2 is connected to the basket 6 by holding elements 25 .
- the microperforated material layer 2 can oscillate freely and thus with a larger amplitude and/or less damping and thus dissipate a higher proportion of the incoming sound energy.
- Curve A shows an absorber according to the prior art, which has a structure similar to that in figure 9 shown sound absorbers.
- the sound absorber according to figure 9 has a base plate 1, in front of which an oscillatable material layer 2 is arranged.
- a further base plate 11 and/or base plate 12 is arranged in front of the material layer 2 .
- the material layer 2 does not have any microperforations or bores 20 .
- this sound absorber has a first resonant frequency at about 125 Hz. At about 150 Hz, an undesired minimum of the absorption behavior is formed.
- the absorption of the base plate 11 and/or 12 only takes effect at significantly higher frequencies from about 200 Hz.
- the microperforation according to the invention in the material layer 2, the absorption behavior changes as shown in curve B with an otherwise unchanged structure.
- the resonance shifts to lower frequencies, in the present example to around 80 Hz. The resonance becomes broader and less pronounced.
- the minimum of the absorption behavior visible in curve A is largely smoothed out by the microperforation according to the invention.
- Curve C again shows the absorption behavior a sound absorber, which is approximately according to the structure figure 7 with a basket closed at the side, but has no bores 20 or no microperforations in the material layer 2 .
- the material layer 2 consists of a sheet steel with a thickness of 1.25 mm.
- the base plate 1 contains a melamine resin foam and has a thickness of 100 mm.
- FIG. 12 As can be seen, such a known sound absorber exhibits a strong increase in the absorption behavior at a resonance frequency of approximately 100 Hz. The absorption behavior drops sharply on both sides of the resonance frequency.
- Curves D and E show the absorption behavior of a nominally identical sound absorber, which, however, has been provided with the microperforation according to the invention.
- the sound absorbers according to curves D and E thus have all three mechanisms of action which characterize the second type of sound absorber.
- the resonant frequency of the microperforated material layer 2 can be shifted to higher or lower frequencies.
- the resonant frequency can also be broadened, so that the absorption behavior is sustainably improved up to comparatively high frequencies of 500 Hz.
- the absorption behavior shown in curve D was obtained with a material layer 2 which is made of sheet steel, has a thickness of 1.25 mm and a wall spacing of 100 mm. Holes with a diameter of 1 mm were introduced into the material layer 2, which are each spaced 22 mm apart. The percentage of perforated area is therefore 0.16%.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Architecture (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Building Environments (AREA)
Description
Die Erfindung betrifft einen Schallabsorber mit einer offenporigen Grundplatte gemäß Anspruch 1.The invention relates to a sound absorber with an open-pored base plate according to
Schallabsorber dieser Art werden beispielsweise zur raumakustischen Optimierung in Gebäuden, Fahr- oder Flugzeugen eingesetzt. Weiterhin betrifft die Erfindung eine Verwendung eines solchen Schallabsorbers gemäß Anspruch 13.Sound absorbers of this type are used, for example, to optimize room acoustics in buildings, vehicles or aircraft. Furthermore, the invention relates to a use of such a sound absorber according to claim 13.
Aus der Praxis sind Schallabsorber bekannt, welche ein poröses Material enthalten oder daraus bestehen. Das poröse Material kann in Form eines Vlieses, eines Schaumes oder einer Faserlage bereitgestellt und beispielsweise in einen Raum eingebracht werden. Bekannte Beispiele sind Wand- oder Deckenelemente, welche Schall zumindest eines vorgebbaren Frequenzbereiches absorbieren und dadurch den Hall reduzieren können. Die Verständlichkeit vom Sprache oder die Wahrnehmung von Musikdarbietungen kann dadurch verbessert werden.Sound absorbers are known from practice which contain or consist of a porous material. The porous material can be provided in the form of a fleece, a foam or a fiber layer and can be introduced into a room, for example. Known examples are wall or ceiling elements which absorb sound at least in a definable frequency range and can thereby reduce the reverberation. This can improve the intelligibility of speech or the perception of musical performances.
Andere bekannte schallabsorbierende Konstruktionen weisen an der Oberfläche eine mikroperforierte und gestaltbare Schicht auf, die mit einer gelochten Platte kombiniert ist. Dabei weist die gelochte Platte lediglich die notwendige mechanische Stabilität auf und ist gelocht, so dass der Schall durch die Lochung hindurch dringen kann, um an einer hinter der Platte liegenden absorbierenden Schicht absorbiert zu werden. Damit ist die Konstruktion dicker und mit drei Schichten aufwändig in der Herstellung.
Diese bekannten Schallabsorber weisen jedoch den Nachteil auf, dass die Möglichkeiten zur optischen Gestaltung begrenzt sind und hierdurch für die akustische Optimierung oftmals ästhetische Abstriche zu machen sind. Ausgehend vom Stand der Technik liegt der Erfindung somit die Aufgabe zugrunde, einen Schallabsorber bereitzustellen, welcher auch hohe gestalterische Anforderungen erfüllt.However, these known sound absorbers have the disadvantage that the possibilities for optical design are limited and as a result aesthetic compromises often have to be made for acoustic optimization. Proceeding from the state of the art, the invention is therefore based on the object of providing a sound absorber which also meets high design requirements.
Die Aufgabe wird erfindungsgemäß durch eine Verwendung gemäß Anspruch 13 und eine Vorrichtung gemäß Anspruch 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung finden sich in den Unteransprüchen.The object is achieved according to the invention by a use according to claim 13 and a device according to
Erfindungsgemäß wird ein Schallabsorber mit einer offenporigen Grundplatte vorgeschlagen. Die Porosität stellt dabei eine dimensionslose Messgröße dar, welche das Verhältnis von Hohlraumvolumen zum Gesamtvolumen der Grundplatte angibt. Die Grundplatte soll als offenporig angesehen werden, wenn diese Hohlräume aufweist, welche untereinander und mit der Umgebung in Verbindung stehen. Die offene Porosität lässt somit einen hydraulischen Transport von Fluiden in der Grundplatte zu.According to the invention, a sound absorber with an open-pored base plate is proposed. The porosity is a dimensionless parameter that indicates the ratio of the cavity volume to the total volume of the base plate. The base plate should be regarded as open-pored if it has cavities which are connected to one another and to the environment. The open porosity thus allows hydraulic transport of fluids in the base plate.
Die offenporige Grundplatte soll erfindungsgemäß einen Strömungswiderstand von etwa 500 Ns/m3 bis etwa 6000 Ns/m3 nach DIN EN 29053:1993-05 aufweisen. Dieser Strömungswiderstand führt dazu, dass Schallwellen in die Grundplatte eindringen können und dort durch Dissipation in Wärme umgewandelt werden. Die Grundplatte wirkt somit in zumindest einem Teil des akustischen Frequenzbereiches schallabsorbierend.According to the invention, the open-pored base plate should have a flow resistance of about 500 Ns/m 3 to about 6000 Ns/m 3 according to DIN EN 29053:1993-05. This flow resistance means that sound waves can penetrate the base plate and are converted into heat there through dissipation. The base plate thus has a sound-absorbing effect in at least part of the acoustic frequency range.
Erfindungsgemäß wird nun vorgeschlagen, dass zumindest eine Teilfläche der Grundplatte mit einer mikroperforierten Materiallage versehen ist. In Ausführungsformen der Erfindung ist die Teilfläche eine bei der späteren Verwendung der Außenseite zugewandte Fläche der Grundplatte.According to the invention it is now proposed that at least a partial area of the base plate with a micro-perforated Material layer is provided. In embodiments of the invention, the partial surface is a surface of the base plate that faces the outside during later use.
Unter der Außenseite wird eine Fläche verstanden, welche bei der bestimmungsgemäßen Verwendung sichtbar ist. In anderen Ausführungsformen der Erfindung kann die Grundplatte vollständig mit der mikroperforierten Materiallage versehen sein. Dies bedeutet primär, dass die gesamte Oberfläche der Grundplatte von der mikroperforierten Materiallage bedeckt ist. Die mikroperforierte Materiallage ist jedoch nicht mit der gesamten Fläche stoffschlüssig gefügt. Vielmehr wird diese nur streifen- oder linienförmig oder punktförmig verbunden, um Flächenschwingungen der mikroperforierten Materiallage zu ermöglichen.The outside is understood to be a surface that is visible when used as intended. In other embodiments of the invention, the base plate can be completely provided with the microperforated material layer. This primarily means that the entire surface of the base plate is covered by the micro-perforated layer of material. However, the microperforated material layer is not bonded to the entire surface. Rather, this is only connected in the form of strips, lines or points in order to enable surface vibrations of the micro-perforated material layer.
Die mikroperforierte Materiallage weist eine Mehrzahl von Bohrungen auf, welche einerseits das Eindringen einer Schallwelle in die hinter der mikroperforierten Materiallage liegende, offenporige Grundplatte erlauben. Andererseits wirken die Bohrungen der mikroperforierten Materiallage selbst wie ein bedämpfter Resonator, d. h. die mikroperforierte Materiallage hat in Abhängigkeit des Durchmessers der Bohrungen bzw. Löcher und in Abhängigkeit der Dicke bei einer bestimmten Frequenz bzw. einem Frequenzband eine höhere Schallabsorption als die offenporige Grundplatte ohne mikroperforierte Materiallage. Durch die erfindungsgemäße Kombination der beiden Schichten, d.h. der offenporigen Grundplatte und der mikroperforierten Materiallage, ergibt sich ein neues akustisches Verhalten, so dass die Absorption der Grundplatte prinzipiell erhalten bleibt, die Absorption jedoch in der Regel bei tiefen Frequenzen verbessert wird. Durch die Ausgestaltung der mikroperforierten Materiallage kann das akustische Verhalten der Struktur zusätzlich gezielt beeinflusst werden. Darüber hinaus können die Bohrungen der mikroperforierten Materiallage so klein gewählt werden, dass diese aus einem üblichen Betrachtungsabstand von beispielsweise mehr als etwa 1 m bis mehr als etwa 3 m nicht mehr vom Auge eines Betrachters aufgelöst werden können und optisch glatt erscheinen. Dadurch können Wandverkleidungen oder Fassadenelemente oder Stellwände oder Möbeloberflächen in an sich bekannter Weise optisch glattflächig und geschlossen erscheinen, obgleich diese ein akustisch völlig anderes Verhalten aufweisen als eine glatte Fläche.The microperforated material layer has a plurality of bores which, on the one hand, allow a sound wave to penetrate into the open-pored base plate lying behind the microperforated material layer. On the other hand, the holes in the micro-perforated material layer themselves act like a damped resonator, ie the micro-perforated material layer has higher sound absorption than the open-pored base plate without a micro-perforated material layer, depending on the diameter of the holes or holes and depending on the thickness at a specific frequency or frequency band . The inventive combination of the two layers, ie the open-pored base plate and the micro-perforated material layer, results in a new acoustic behavior, so that the absorption of the base plate is retained in principle, but the absorption is generally improved at low frequencies. Through the design of the micro-perforated material layer the acoustic behavior of the structure can also be specifically influenced. In addition, the holes in the micro-perforated material layer can be so small be chosen so that they can no longer be resolved by the eye of an observer from a normal viewing distance of, for example, more than approximately 1 m to more than approximately 3 m and appear optically smooth. As a result, wall coverings or facade elements or partitions or furniture surfaces can appear optically smooth and closed in a manner known per se, although they have a completely different acoustic behavior than a smooth surface.
In einigen Ausführungsformen der Erfindung kann die Grundplatte des Schallabsorbers einen Strömungswiderstand von mehr als etwa 2000 Ns/m3 nach DIN EN 29053:1993-05 aufweisen. Hierdurch kann die Schallabsorption verbessert sein. In einigen Ausführungsformen der Erfindung kann die Grundplatte einen Strömungswiderstand von etwa 2000 Ns/m3 nach DIN EN 29053:1993-05 aufweisen.In some embodiments of the invention, the base plate of the sound absorber can have a flow resistance of more than approximately 2000 Ns/m 3 according to DIN EN 29053:1993-05. As a result, the sound absorption can be improved. In some embodiments of the invention, the base plate can have a flow resistance of approximately 2000 Ns/m 3 according to DIN EN 29053:1993-05.
In einigen Ausführungsformen der Erfindung kann die Grundplatte eine offene Porosität von etwa 30 % bis etwa 99 % oder von etwa 40 % bis etwa 80 % oder von etwa 45 % bis etwa 60 % aufweisen. Diese offene Porosität erlaubt eine zuverlässige Schallabsorption, sodass der erfindungsgemäße Schallabsorber hohe Absorptionsgrade aufweisen kann und Schall nur zu geringem Anteil reflektiert wird.In some embodiments of the invention, the baseplate may have an open porosity of from about 30% to about 99%, or from about 40% to about 80%, or from about 45% to about 60%. This open porosity allows reliable sound absorption, so that the sound absorber according to the invention can have high degrees of absorption and only a small proportion of sound is reflected.
In einigen Ausführungsformen der Erfindung kann die Grundplatte eine Dicke von etwa 6 mm bis etwa 100 mm oder etwa 50 mm bis etwa 200 mm oder etwa 7 mm bis etwa 80 mm oder von etwa 8 mm bis etwa 40 mm oder von etwa 10 mm bis etwa 30 mm aufweisen. Hierdurch kann der Zielkonflikt zwischen niedrigem Gewicht und niedrigem Raumbedarf, mechanischer Stabilität und guter Schallabsorption optimiert werden.In some embodiments of the invention, the base plate can have a thickness of from about 6 mm to about 100 mm, or from about 50 mm to about 200 mm, or from about 7 mm to about 80 mm, or from about 8 mm to about 40 mm, or from about 10 mm to about have 30 mm. In this way, the conflicting goals between low weight and low space requirements, mechanical stability and good sound absorption can be optimized.
In Ausführungsformen der Erfindung ist die mikroperforierte Materiallage mit der Grundplatte stoffschlüssig verbunden, insbesondere kann die mikroperforierte Materiallage mit der Grundplatte verklebt, verlötet oder verschweißt sein. In einigen Ausführungsformen, welche nicht Teil der Erfindung sind, kann die mikroperforierte Materiallage vollflächig mit der Grundplatte gefügt sein. Hierdurch kann die mechanische Stabilität des Schallabsorbers erhöht sein.In embodiments of the invention, the microperforated material layer is integrally connected to the base plate, in particular the microperforated material layer with the Base plate glued, soldered or welded. In some embodiments, which are not part of the invention, the microperforated material layer can be joined to the base plate over its entire surface. As a result, the mechanical stability of the sound absorber can be increased.
In Ausführungsformen der Erfindung ist die mikroperforierte Materiallage mit der Grundplatte nur streifen- oder linienförmig oder nur punktuell gefügt, beispielsweise durch Verklebung, Verlötung oder Verschweißung. Hierdurch kann die mikroperforierte Materiallage Biegeschwingungen oder Flächenschwingungen ausführen, wobei die Grundplatte als zusätzliches Federelement eines solchermaßen gebildeten Masse-/Federsystems wirken kann, neben der Eigensteifigkeit der mikroperforierten Materiallage. Die Eigenfrequenzen der Schwingungen der mikroperforierten Materiallage können durch Zahl, Größe und/oder Lage der Fügestellen beeinflusst werden. Durch die Schwingungen der mikroperforierten Materiallage kann dem Schallfeld zusätzlich Energie entzogen werden, insbesondere auch in Frequenzbereichen, in welchen die Absorption der Grundplatte und/oder die Wirkung der Mikroperforation nur gering ist. Dadurch kann die Schwingung der mikroperforierten Materiallage als Ganzes die Wirkung des Absorbers in einigen Ausführungsformen ergänzen.In embodiments of the invention, the microperforated material layer is only joined to the base plate in the form of strips or lines or only at certain points, for example by gluing, soldering or welding. As a result, the microperforated material layer can execute bending vibrations or surface vibrations, with the base plate being able to act as an additional spring element of a mass/spring system formed in this way, in addition to the inherent rigidity of the microperforated material layer. The natural frequencies of the vibrations of the microperforated material layer can be influenced by the number, size and/or position of the joints. Additional energy can be withdrawn from the sound field by the vibrations of the microperforated material layer, in particular also in frequency ranges in which the absorption of the base plate and/or the effect of the microperforation is only low. As a result, the vibration of the microperforated sheet of material as a whole can complement the effect of the absorber in some embodiments.
In einigen Ausführungsformen, welche nicht Teil der Erfindung sind, kann die mikroperforierte Materiallage beabstandet zur Grundplatte angeordnet sein. Der Abstand kann in einigen Ausführungsformen der Erfindung zwischen etwa 1 mm und etwa 10 mm oder zwischen etwa 3 mm und etwa 8 mm betragen. In dieser Ausführungsform kann die Eigenschwingung der mikroperforierten Materiallage weniger durch die Grundplatte bedämpft sein, so dass die Wirkung des Absorbers erhöht sein kann.In some embodiments not forming part of the invention, the microperforated sheet of material may be spaced apart from the base plate. The distance can be between about 1 mm and about 10 mm or between about 3 mm and about 8 mm in some embodiments of the invention. In this embodiment, the natural vibration of the microperforated material layer can be less damped by the base plate, so that the effect of the absorber can be increased.
In einigen Ausführungsformen der Erfindung kann die mikroperforierte Materiallage eine Dicke von etwa 0,1 mm bis etwa 2 mm oder von etwa 0,5 mm bis etwa 1,8 mm oder von etwa 0,8 mm bis etwa 1,5 mm oder von etwa 1 mm bis etwa 4 mm oder von etwa 1 mm bis etwa 2 mm aufweisen. Eine solche mikroperforierte Materiallage kann einerseits die Schallabsorption optimieren und/oder andererseits dem Schallabsorber hohe Stabilität bei geringem Gewicht verleihen.In some embodiments of the invention, the microperforated sheet of material can have a thickness of from about 0.1 mm to about 0.1
In einigen Ausführungsformen der Erfindung weist die mikroperforierte Materiallage eine Mehrzahl von Bohrungen auf, deren Durchmesser jeweils zwischen etwa 0,1 mm bis etwa 2 mm oder zwischen etwa 0,3 mm bis etwa 1,2 mm oder zwischen etwa 0,4 mm bis etwa 0,8 mm oder zwischen etwa 0,8 mm bis etwa 2,0 mm beträgt. In einigen Ausführungsformen der Erfindung können sämtliche Bohrungen der mikroperforierten Materiallage einen einheitlichen Durchmesser aufweisen. In anderen Ausführungsformen der Erfindung können die Bohrungen der mikroperforierten Materiallage unterschiedliche Durchmesser bzw. eine Verteilungsfunktion der Durchmesser aufweisen. Hierdurch kann das Absorptionsmaximum auf eine vorgebbare Frequenz bzw. einen vorgebbaren Frequenzbereich optimiert werden, sodass der Schallabsorber beispielsweise selektiv Raumresonanzen bedämpfen kann.In some embodiments of the invention, the microperforated material layer has a plurality of bores, the diameter of which is between about 0.1 mm and about 2 mm, or between about 0.3 mm and about 1.2 mm, or between about 0.4 mm and about 0.8 mm or between about 0.8 mm to about 2.0 mm. In some embodiments of the invention, all of the holes in the microperforated material layer can have a uniform diameter. In other embodiments of the invention, the bores in the microperforated material layer can have different diameters or a distribution function of the diameters. As a result, the absorption maximum can be optimized to a predeterminable frequency or a predeterminable frequency range, so that the sound absorber can, for example, selectively dampen room resonances.
In einigen Ausführungsformen der Erfindung kann der Flächenanteil der Bohrungen der mikroperforierten Materiallage zwischen 0,1 % und etwa 10 % oder zwischen etwa 1 % und etwa 9 % oder zwischen etwa 5 % und etwa 8 % der Gesamtfläche betragen. Dies ermöglicht einerseits den optischen Eindruck einer geschlossenen oder weitgehend geschlossenen Oberfläche und andererseits eine hinreichende Schallabsorption, sodass der erfindungsgemäße Schallabsorber zur Optimierung der Raumakustik oder zur Optimierung der akustischen Eigenschaften einer Fassade einsetzbar ist.In some embodiments of the invention, the area proportion of the bores of the microperforated material layer can be between 0.1% and about 10% or between about 1% and about 9% or between about 5% and about 8% of the total area. On the one hand, this enables the optical impression of a closed or largely closed surface and, on the other hand, sufficient sound absorption, so that the sound absorber according to the invention can be used to optimize the room acoustics or to optimize the acoustic properties of a facade.
In anderen Ausführungsformen der Erfindung kann der Flächenanteil der Bohrungen der mikroperforierten Materiallage zwischen etwa 0,005 % und etwa 2 % oder zwischen etwa 0,01 % und etwa 1 % der Gesamtfläche betragen. Dies ermöglicht die Verwendung der Mikroperforation als breitbandig wirkender Tiefenabsorber. Dieser kann in einigen Ausführungsformen der Erfindung eine Resonanzfrequenz von weniger als 120 Hz oder weniger als 80 Hz aufweisen. In einigen Ausführungsformen der Erfindung kann die Resonanzfrequenz der Mikroperforation so gewählt sein, dass diese oberhalb der Eigenfrequenz der Flächenschwingung der mikroperforierten Materiallage und unterhalb des Absorbtionsmaximums der Grundplatte liegt.In other embodiments of the invention, the area percentage of the bores of the microperforated material layer can be between about 0.005% and about 2% or between about 0.01% and about 1% of the total area. This enables the microperforation to be used as a broadband low-frequency absorber. In some embodiments of the invention, this can have a resonant frequency of less than 120 Hz or less than 80 Hz. In some embodiments of the invention, the resonant frequency of the microperforation can be chosen so that it is above the natural frequency of the surface vibration of the microperforated material layer and below the absorption maximum of the base plate.
In einigen Ausführungsformen der Erfindung kann der Abstand benachbarter Bohrungen der mikroperforierten Materiallage zwischen etwa 15 mm und etwa 100 mm oder zwischen etwa 20 mm und etwa 60 mm gewählt sein.In some embodiments of the invention, the distance between adjacent bores in the microperforated material layer can be chosen to be between about 15 mm and about 100 mm or between about 20 mm and about 60 mm.
In einigen Ausführungsformen der Erfindung kann die mikroperforierte Materiallage ein Melaminharz und/oder ein Duroplast und/oder ein Thermoplast und/oder ein Holzfurnier und/oder Polyethylen und/oder Polyethylenterephthalat und/oder Ethyltetrafluorethylencopolymer und/oder ein Metall oder eine Legierung enthalten oder daraus bestehen.Ein Metall oder eine Legierung kann Aluminium oder Stahl enthalten oder daraus bestehen. Solche Materiallagen ermöglichen einerseits eine dekorative Gestaltung von Wand- oder Deckenflächen oder auch Möbeloberflächen oder Fassaden und sind andererseits mechanisch hinreichend stabil, um eine lange Gebrauchsdauer des Schallabsorbers zu ermöglichen. Darüber hinaus können Materiallagen mit niedriger innerer Reibung, wie z.B. Metalle, durch Schwingung der mikroperforierten Materiallage als Ganzes die Wirkung des Absorbers in einigen Ausführungsformen ergänzen.In some embodiments of the invention, the microperforated sheet of material may include or consist of a melamine resin and/or a thermoset and/or a thermoplastic and/or a wood veneer and/or polyethylene and/or polyethylene terephthalate and/or ethyltetrafluoroethylene copolymer and/or a metal or alloy .A metal or alloy may contain or consist of aluminum or steel. Such layers of material enable, on the one hand, a decorative design of wall or ceiling surfaces or also furniture surfaces or facades and, on the other hand, are sufficiently mechanically stable to enable the sound absorber to have a long service life. In addition, layers of material with low internal friction, such as metals, can supplement the effect of the absorber in some embodiments by vibrating the microperforated layer of material as a whole.
In einigen Ausführungsformen der Erfindung kann der Schallabsorber mehrere Grundplatten enthalten. Diese können unterschiedliche Eigenschaften aufweisen, beispielsweise unterschiedliche Materialien enthalten und/oder unterschiedliche Dicke aufweisen und/oder unterschiedliche Porositäten aufweisen. In einigen Ausführungsformen der Erfindung kann der Schallabsorber zumindest zwei Grundplatten enthalten, wobei auf jeder Seite der mikroperforierten Materiallage zumindest eine Grundplatte angeordnet ist. In einigen Ausführungsformen kann diese auf einer oder beiden Seiten beabstandet sein.In some embodiments of the invention, the sound absorber can contain multiple base plates. These can have different properties, for example contain different materials and/or have different thicknesses and/or different ones have porosities. In some embodiments of the invention, the sound absorber can contain at least two base plates, with at least one base plate being arranged on each side of the microperforated material layer. In some embodiments, this may be spaced on one or both sides.
In einigen Ausführungsformen der Erfindung kann die Grundplatte selbsttragend sein. Hierdurch wird die Montage so wie der Transport der Grundplatte erleichtert. Für die Zwecke der vorliegenden Beschreibung bedeutet "selbsttragend" , dass die Platte, für die gewünschte Anwendung keine zusätzliche mechanische Unterkonstruktion oder Unterstützung oder Aussteifung benötigt. Die Platte ist somit so steif und stabil, dass sie nur an einzelnen Befestigungsstellen befestigt werden kann und gleichwohl über der Zeit ihre Form nicht nennenswert verändert, z.B. an der Decke als Deckenverkleidung oder an der Wand als Wandverkleidung. Bei Wandverkleidungen im Bewegungsbereich von Schülern in Schulen oder in Sporthallen muss eine Verkleidungsplatte zusätzlich mechanischen Kräften wie dem Anprall von Personen standhalten. Eine nicht-selbsttragende Platte dagegen benötigt immer eine Unterkonstruktion, die die auftretenden Kräfte aufnimmt, um die Platte dauerhaft an einer bestimmten Position in Form zu halten.In some embodiments of the invention, the baseplate may be self-supporting. This makes assembly and transport of the base plate easier. For purposes of this specification, "self-supporting" means that the panel does not require any additional mechanical substructure or support or bracing for the desired application. The panel is therefore so rigid and stable that it can only be attached to individual attachment points and yet its shape does not change significantly over time, e.g. on the ceiling as ceiling cladding or on the wall as wall cladding. In the case of wall cladding in the movement area of students in schools or in sports halls, a cladding panel must also withstand mechanical forces such as impact by people. A non-self-supporting slab, on the other hand, always requires a substructure that absorbs the forces that occur in order to keep the slab in shape permanently in a certain position.
In einigen Ausführungsformen der Erfindung kann die Grundplatte ein gepresstes Polyestervlies und/oder ein Holzwerkstoff und/oder gepresste Mineralwolle und/oder gesinterten Glasschaum und/oder zementgebundenen Blähton und/oder einen duroplastischen Schaum und/oder ein Melaminharz und/oder einen Naturfaserstoff und/oder einem Metallschaum enthalten oder daraus bestehen. Die Grundplatten sind somit offenporig, um gute akustische Eigenschaften aufzuweisen. Darüber hinaus können solche Grundplatten auch mechanisch stabil sein, um bei Handhabung und Montage nicht beschädigt zu werden. In einigen Ausführungsformen der Erfindung kann das Material der Grundplatte so gewählt werden, dass diese übliche Feuerwiderstandsklassen einhält und eine Anwendung in oder an Bauwerken ohne aufwendige Zulassung im Einzelfall ermöglicht.In some embodiments of the invention, the base plate can be a pressed polyester fleece and/or a wood material and/or pressed mineral wool and/or sintered glass foam and/or cement-bonded expanded clay and/or a duroplastic foam and/or a melamine resin and/or a natural fiber material and/or contain or consist of a metal foam. The base plates are therefore open-pored in order to have good acoustic properties. In addition, such base plates can also be mechanically stable so that they are not damaged during handling and assembly. In some embodiments According to the invention, the material of the base plate can be selected in such a way that it complies with the usual fire resistance classes and allows use in or on buildings without complex approval in individual cases.
In einigen Ausführungsformen der Erfindung kann der Schallabsorber zumindest ein mechanisches Verstärkungselement enthalten, welches beispielsweise GFK und/oder CFK und/oder Polyethylen und/oder Polyester und/oder Holz oder einen Holzwerkstoff enthält oder daraus besteht. In einigen Ausführungsformen der Erfindung kann das Verstärkungselement auch ein Metall oder eine Legierung enthalten oder daraus bestehen. Ein solches Verstärkungselement kann die mechanische Festigkeit des Schallabsorbers verbessern, sodass Montage und Transport erleichtert werden. Hierzu kann das Verstärkungselement als Gitter bzw. Gewebeschicht auf die Außenfläche eines Schallabsorbers aufgebracht werden, fallweise oberhalb der mikroperforierten Materiallage oder auch zwischen der mikroperforierten Materiallage und der Grundplatte. In anderen Ausführungsformen der Erfindung kann das Verstärkungselement in die Grundplatte eingebettet sein.In some embodiments of the invention, the sound absorber can contain at least one mechanical reinforcement element, which contains or consists of, for example, GRP and/or CFRP and/or polyethylene and/or polyester and/or wood or a wood-based material. In some embodiments of the invention, the reinforcement element can also contain or consist of a metal or an alloy. Such a reinforcement member can improve the mechanical strength of the sound absorber, thereby facilitating assembly and transportation. For this purpose, the reinforcement element can be applied as a grid or fabric layer to the outer surface of a sound absorber, in some cases above the microperforated material layer or also between the microperforated material layer and the base plate. In other embodiments of the invention, the reinforcement element can be embedded in the base plate.
In einigen Ausführungsformen der Erfindung kann der Schallabsorber in einem Korb an einer Gebäudewand oder einer Gebäudedecke befestigt sein. Ein solcher Korb kann ein Lochblech enthalten oder daraus bestehen. Optional kann der Korb seitlich geschlossen sein.In some embodiments of the invention, the sound absorber can be fixed in a basket on a building wall or a building ceiling. Such a basket can contain or consist of a perforated plate. Optionally, the basket can be closed at the side.
In einigen Ausführungsformen der Erfindung kann der Schallabsorber in zumindest einen Raum eines Bauwerks eingebracht werden. Dies kann als Wand- oder Deckenelement erfolgen, welche Schall zumindest eines vorgebbaren Frequenzbereiches absorbieren und dadurch den Hall reduzieren können. Die Verständlichkeit vom Sprache oder die Wahrnehmung von Musikdarbietungen im Raum des Bauwerks kann durch die Verwendung des Schallabsorbers verbessert werden. In einigen Ausführungsformen der Erfindung kann der Schallabsorber an zumindest einer Außenfassade eines Bauwerks zumindest an einer Teilfläche angebracht werden. Dadurch kann Schall zumindest eines vorgebbaren Frequenzbereiches absorbiert werden und dadurch der Hall reduziert werden. Der Einsatz an einer Fassade ist insbesondere in Innenhöfen oder Atrien oder an stzark befahrenen Straßen vorteilhaft, um so akustische Störungen in den angrenzenden Innenräumen zu reduzieren oder die Nutzungsmöglichkeiten des Innenhofes oder des Atriums zu erweitern, beispielsweise als Versammlungsstätte.In some embodiments of the invention, the sound absorber can be introduced into at least one room of a building. This can be done as a wall or ceiling element, which can absorb sound at least in a definable frequency range and thereby reduce the reverberation. The intelligibility of speech or the perception of musical performances in the building can be improved by using the sound absorber. In some embodiments of the invention, the sound absorber can be attached to at least one partial surface of at least one outer facade of a building. As a result, sound of at least one predefinable frequency range can be absorbed and the reverberation can thereby be reduced. The use on a facade is particularly advantageous in inner courtyards or atriums or on streets with heavy traffic, in order to reduce acoustic disturbances in the adjacent interior rooms or to expand the possible uses of the inner courtyard or atrium, for example as a meeting place.
Nachfolgend soll die Erfindung anhand von Figuren ohne Beschränkung des allgemeinen Erfindungsgedankens näher erläutert werden. Die erste, zweite, vierte, fünfte und sechste Ausführungsform des Schallabsorbers sind nicht Teil der Erfindung. Dabei zeigt:
-
einen Schallabsorber in einer ersten Ausführungsform, welche nicht Teil der Erfindung ist.Figur 1 -
zeigt einen Schallabsorber in einer zweiten Ausführungsform.Figur 2 -
Figur 3 zeigt in einem ersten Vergleichsbeispiel den Absorptionsgrad gegen die Frequenz. -
Figur 4 zeigt in einem zweiten Vergleichsbeispiel den Absorptionsgrad gegen die Frequenz. -
zeigt in einem dritten Vergleichsbeispiel den Absorptionsgrad gegen die Frequenz.Figur 5 -
zeigt in einem vierten Vergleichsbeispiel den Absorptionsgrad gegen die Frequenz.Figur 6 -
zeigt einen Schallabsorber gemäß der vorliegenden Erfindung in einer dritten Ausführungsform.Figur 7 -
Figur 8 zeigt einen Schallabsorber in einer vierten Ausführungsform. -
Figur 9 zeigt einen Schallabsorber in einer fünften Ausführungsform. -
Figur 10 zeigt einen Schallabsorber in einer sechsten Ausführungsform. -
zeigt in einem fünften Vergleichsbeispiel den Absorptionsgrad gegen die Frequenz.Figur 11 -
zeigt den Einfluss der Mikroperforation auf den Absorptionsgrad.Figur 12
-
figure 1 a sound absorber in a first embodiment which is not part of the invention. -
figure 2 shows a sound absorber in a second embodiment. -
figure 3 shows the degree of absorption versus frequency in a first comparative example. -
figure 4 shows the degree of absorption versus frequency in a second comparative example. -
figure 5 FIG. 12 shows the degree of absorption versus frequency in a third comparative example. -
figure 6 Figure 12 shows absorptivity versus frequency in a fourth comparative example. -
figure 7 shows a sound absorber according to the present invention in a third embodiment. -
figure 8 shows a sound absorber in a fourth embodiment. -
figure 9 shows a sound absorber in a fifth embodiment. -
figure 10 shows a sound absorber in a sixth embodiment. -
figure 11 Figure 12 shows absorptivity versus frequency in a fifth comparative example. -
figure 12 shows the influence of microperforation on the degree of absorption.
Anhand der
Zur Verbesserung der akustischen Behaglichkeit wird ein nicht erfindungsgemäßer Schallabsorber eingesetzt. Dieser enthält eine Grundplatte 1, welche beispielsweise eine Dicke von etwa 6 mm bis etwa 100 mm aufweist und welche in einigen Ausführungsformen ein gepresstes Polyestervlies, einen Holzwerkstoff, gepresste Mineralwolle, gesinterten Glasschaum, zementgebundenen Blähton oder einen duroplastischen Schaum enthält oder daraus besteht. Hierdurch ist die Grundplatte zumindest teilweise offenporig und weist einen Strömungswiderstand von etwa 2000 Ns/m3 auf.A sound absorber not according to the invention is used to improve the acoustic comfort. This contains a
Die Grundplatte 1 kann eben oder gekrümmt sein. Hierdurch kann die Grundplatte komplementär zur Fläche des Gebäudes geformt sein, auf welche sie aufgebracht werden soll.The
Die Grundplatte 1 kann unmittelbar auf die Oberfläche des Gebäudeteils 5 aufgebracht werden, beispielsweise durch eine Klebung oder durch mechanische Befestigungsmittel, beispielsweise Schrauben und Dübel. In anderen Ausführungsformen kann die Grundplatte 1 beabstandet zum Gebäudeteil 5 angeordnet sein, sodass sich ein optionaler Zwischenraum 4 ergibt, welcher eine Höhe von etwa 2 cm bis etwa 20 cm oder von etwa 2 cm bis etwa 40 cm oder von etwa 5 cm bis etwa 10 cm aufweisen kann.The
Um die mechanische Stabilität der Grundplatte 1 sicherzustellen, kann diese optionale Verstärkungselemente 15 aufweisen. Das Verstärkungselement 15 kann beispielsweise in Form einer länglichen Aussteifung oder auch eines Gitters in die Grundplatte 1 eingebettet sein. Das Verstärkungselement 15 kann darüber hinaus als Halterung verwendet werden, um den Schallabsorber zuverlässig am Gebäudeteil 5 zu befestigen. In anderen Ausführungsformen der Erfindung kann die Grundplatte selbst eine hinreichende mechanische Stabilität aufweisen, so dass Verstärkungselemente 15 auch entfallen können.In order to ensure the mechanical stability of the
Der Zwischenraum 4 kann optional ganz oder teilweise mit schallabsorbierendem Material gefüllt sein.The intermediate space 4 can optionally be completely or partially filled with sound-absorbing material.
Zumindest die bei bestimmungsgemäßer Verwendung sichtbare Teilfläche der Grundplatte 1 ist mit einer mikroperforierten Materiallage 2 versehen. Die Materiallage 2 enthält eine Mehrzahl von Bohrungen bzw. Löchern 20, welche in einem gleichmäßigen oder ungleichmäßigen Muster angeordnet sein können und welche jeweils einen Durchmesser von etwa 0,1 mm bis etwa 2 mm aufweisen können. Die Gesamtfläche der Bohrungen 20 kann etwa 0,1 % bis etwa 10 % der gesamten, bei bestimmungsgemäßer Verwendung sichtbaren Oberfläche des Schallabsorbers entsprechen.At least the partial area of the
Die mikroperforierte Materiallage 2 ist in der ersten Ausführungsform vollflächig mit der Grundplatte 1 verbunden, beispielsweise durch eine Verklebung. Die mikroperforierte Materiallage kann aus Kunststoff oder Holz oder Metall bestehen und so eine gewünschte Oberflächengestaltung des Schallabsorbers ermöglichen.In the first embodiment, the
Die dem Gebäudeteil 5 bzw. dem Zwischenraum 4 zugewandte Rückseite der Grundplatte 1 ist nicht mit einer mikroperforierten Materiallage 2 versehen.The back of the
Die mikroperforierte Materiallage 2 ist in dieser Ausführungsform aufgrund ihrer Verbindung mit der Grundplatte 1 selbst nicht schwingungsfähig, d.h. der Schallabsorber basiert auf folgenden Wirkmechanismen: Zum einen können Schallwellen durch die mikroperforierte Materiallage 2 in die Grundplatte 1 eindringen und dort dissipiert werden. Dieser Wirkmechanismus dominiert bei höheren Frequenzen. Zum anderen kann die in den Bohrungen 20 der mikroperforierten Materiallage 2 eingeschlossene Luft durch auftreffende Schallwellen zu Schwingungen angeregt werden und dadurch Energie aus dem Schallfeld dissipieren. Dieser Wirkmechanismus dominiert bei niedrigeren Frequenzen. In einigen Ausführungsformen kann er auch entfallen oder nur schwach ausgeprägt sein. Beide Wirkmechanismen können somit unterschiedliche Absorptionsspektren aufweisen und sich dadurch ergänzen.In this embodiment, the
In anderen Ausführungsformen kann der dargestellte Schallabsorber, d.h. die Grundplatte 1 mit optionalen Verstärkungselementen 15 und der vollflächig aufgebrachten mikroperforierte Materiallage 2 auch für andere Anwendungen als das dargestellte Deckenpaneel verwendet werden, beispielsweise als Wandverkleidung oder als Innenverkleidung eines Fahr- oder Flugzeuges, als mobile Stell- oder Trennwand oder im Möbelbau oder als Fassadenelement eines Gebäudes.In other embodiments, the sound absorber shown, ie the
Weiterhin ist aus
Die mikroperforierte Materiallage 2 ist auch in dieser Ausführungsform aufgrund ihrer Verbindung mit der Grundplatte 1 bzw. dem Verstärkungselement 15 selbst nicht schwingungsfähig, d.h. der Schallabsorber basiert wie die erste Ausführungsform auf folgenden Wirkmechanismen: Zum einen können Schallwellen durch die mikroperforierte Materiallage 2 in die Grundplatte 1 eindringen und dort dissipiert werden. Zum anderen kann in einigen Ausführungsformen zusätzlich die in den Bohrungen 20 der mikroperforierten Materiallage 2 eingeschlossene Luft durch auftreffende Schallwellen zu Schwingungen angeregt werden und dadurch Energie aus dem Schallfeld dissipieren. Beide Wirkmechanismen können unterschiedliche Absorptionsspektren aufweisen und sich dadurch ergänzen.In this embodiment, too, the
Die in den
Auch der in
Wie aus
Anhand der
Auch in diesem Fall zeigt die Kurve B den Absorptionsgrad gegen die Frequenz für das Vlies, nachdem dieses mit einer vollflächig verklebten mikroperforierten Materiallage versehen wurde. Auch in diesem Fall zeigt sich eine höhere Absorption im Bereich von etwa 150 bis etwa 250 Hz, sodass der Schallabsorber nicht nur verbesserte optische, sondern auch verbesserte akustische Eigenschaften im tiefen Frequenzbereich aufweist.In this case, too, curve B shows the degree of absorption versus frequency for the nonwoven after it has been provided with a microperforated material layer that has been bonded over its entire surface. In this case, too, there is higher absorption in the range from about 150 to about 250 Hz, so that the sound absorber not only has improved optical properties, but also improved acoustic properties in the low-frequency range.
Im vierten Vergleichsbeispiel gemäß
Auch die dritte Ausführungsform weist eine Grundplatte 1 auf, welche beispielsweise einen offenporigen Schaum, eine Faserlage, ein Gewirk, ein Gestrick oder ein anderes, an sich bekanntes schallabsorbierendes Material enthält oder daraus besteht. Die Grundplatte 1 ist offenporig ausgestaltet, so dass Schallwellen eindringen können und deren Energie in der Grundplatte dissipiert wird.The third embodiment also has a
Die Grundplatte 1 ist an einem Gebäudeteil 5 befestigt, beispielsweise einer Decke oder einer Innenwand oder einer Außenwand. Die dem Gebäudeteil gegenüberliegende Seite der Grundplatte 1 ist mit einer mikroperforierten Materiallage 2 versehen. Im Unterschied zu den vorstehend beschriebenen ersten und zweiten Ausführungsformen ist die mikroperforierte Materiallage 2 gemäß der dritten, vierten, fünften und sechsten Ausführungsform nicht vollflächig mit der Grundplatte 1 verbunden. Vielmehr ist die mikroperforierte Materiallage streifenförmig, linienförmig oder punktuell mit der Grundplatte verbunden. In einigen Ausführungsformen, welche nicht Teil der Erfindung sind, J kann die Verbindung nur über die Kanten erfolgen, sodass die Fläche der mikroperforierten Materiallage 2 keine Verbindung zur Grundplatte 1 aufweist.The
In wieder anderen Ausführungsformen, welche nicht Teil der Erfindung sind, kann keine mechanische oder stoffschlüssige Verbindung zwischen der mikroperforierten Materiallage 2 und der Grundplatte 1 vorhanden sein. Dieses Merkmal ermöglicht Flächenschwingungen der mikroperforierten Materiallage 2. Zusätzlich zu den beiden vorstehend in Zusammenhang mit der ersten und zweiten Ausführungsform beschriebenen Wirkmechanismen können die dritten, vierten, fünften und sechsten Ausführungsformen zusätzlich auch Schallenergie dissipieren, indem die mikroperforierte Materiallage als Ganzes zu Flächenschwingungen angeregt wird und somit Energie aus dem Schallfeld dissipiert. Hierzu kann die mikroperforierte Materiallage in der dritten Ausführungsform eine Dicke von etwa 1 mm bis etwa 4 mm oder von etwa 1 mm bis etwa 2 mm aufweisen. Die mikroperforierte Materiallage weist bevorzugt eine geringe innere Dämpfung auf und ist beispielsweise aus einem Metall, einer Legierung oder einem Duroplast gefertigt. In einigen Ausführungsformen der Erfindung kann die mikroperforierte Materiallage 2 eine Sandwichkonstruktion aus mehreren Materiallagen sein, um das Schwingungsverhalten an gewünschte Sollwerte anzupassen.In still other embodiments, which are not part of the invention, there can be no mechanical or material connection between the
Die mikroperforierte Materiallage 2 weist Bohrungen 20 auf, welche einen Durchmesser von etwa 0,8 mm bis etwa 2 mm sowie einen Abstand benachbarter Löcher von etwa 15 mm bis etwa 100 mm aufweisen. Hierdurch kann die Mikroperforation als breitbandig wirkender Tiefenabsorber mit einer Resonanzfrequenz von weniger als etwa 150 Hz oder weniger als etwa 80 Hz abgestimmt sein. Der breitbandig wirkende Tiefenabsorber ist somit überwiegend im Tieftonbereich wirksam. Daran schließt sich die Resonanz der Flächenschwingung der mikroperforierten Materiallage 2 an. Im Hochtonbereich ist schließlich die Absorption der Grundplatte 1 für das Absorptionsverhalten bestimmend. Da die
Die Grundplatte 1 und/oder die mikroperforierte Materiallage 2 können in einem Korb 6 am Gebäudeteil 5 befestigt sein. Der Korb 6 kann beispielsweise aus einem Drahtgeflecht oder einem Lochblech gefertigt sein und an den Rändern offen oder geschlossen sein. Der Korb 6 kann optional einen Rieselschutz enthalten, welcher als Fließlage ausgestaltet sein kann. Da der Korb 6 dem Schallabsorber mechanische Stabilität verschafft, besteht bei einer Ausführungsform mit einem solchen Korb 6 eine größere Freiheit bei der Auswahl der Grundplatte 1. Diese muss nicht zwingend selbsttragend ausgeführt sein. Es ist jedoch darauf hinzuweisen, dass der Korb 6 optional ist und in anderen Ausführungsformen der Erfindung auch entfallen kann.The
In anderen Ausführungsformen der Erfindung kann der dargestellte Schallabsorber, d.h. die Grundplatte 1 mit optionalen Verstärkungselementen 15 und der streifenförmig, linienförmig oder punktuell mit der Grundplatte verbunden mikroperforierte Materiallage 2 auch für andere Anwendungen als das dargestellte Deckenpaneel in oder an einem Bauwerk verwendet werden, beispielsweise als Innenverkleidung eines Fahr- oder Flugzeuges, als mobile Stell- oder Trennwand oder im Möbelbau.In other embodiments of the invention, the sound absorber shown, i.e. the
Anhand der
Wie aus
Anhand der
Da die mikroperforierte Materiallage 2 sowohl mit der ersten Zusatzplatte 11 als auch mit der Grundplatte 1 in Kontakt steht, kann eine zusätzliche mechanische oder stoffschlüssige Befestigung durch Kleben, Löten oder Schweißen unterbleiben. Die vier in
Anhand der
Wie aus
Der wesentliche Unterschied der sechsten Ausführungsform zur fünften Ausführungsform besteht darin, dass zwischen der Grundplatte 1 und der mikroperforierten Materiallage 2 und/oder zwischen der mikroperforierten Materiallage 2 und der ersten Zusatzplatte 11 ein Abstand 7 vorhanden ist. Der Abstand 7 kann beispielsweise zwischen etwa 1 mm und etwa 10 mm betragen. Hierzu wird die mikroperforierte Materiallage 2 durch Halteelemente 25 mit dem Korb 6 verbunden. Hierdurch kann die mikroperforierte Materiallage 2 frei und damit mit größerer Amplitude und/oder geringerer Dämpfung schwingen und somit einen höheren Anteil der eintreffenden Schallenergie dissipieren.The main difference between the sixth embodiment and the fifth embodiment is that there is a
Anhand der
Anhand der
In den Kurven D und E ist das Absorptionsverhalten eines nominell identischen Schallabsorbers gezeigt, welcher jedoch mit der erfindungsgemäßen Mikroperforation versehen wurde. Die Schallabsorber gemäß Kurve D und E weisen somit alle drei Wirkmechanismen auf, welche den zweiten Typ des Schallabsorbers kennzeichnen. In Abhängigkeit der Anzahl bzw. des Abstandes der Bohrungen kann die Resonanzfrequenz der mikroperforierten Materiallage 2 zu höheren oder zu niedrigeren Frequenzen verschoben werden. Wie insbesondere Kurve D zeigt, kann die Resonanzfrequenz auch verbreitert sein, sodass das Absorptionsverhalten bis zu vergleichsweise hohen Frequenzen von 500 Hz nachhaltig verbessert wird.Curves D and E show the absorption behavior of a nominally identical sound absorber, which, however, has been provided with the microperforation according to the invention. The sound absorbers according to curves D and E thus have all three mechanisms of action which characterize the second type of sound absorber. Depending on the number or the spacing of the holes, the resonant frequency of the
Das in Kurve D gezeigte Absorptionsverhalten wurde mit einer Materiallage 2 erhalten, welche aus Stahlblech gefertigt ist, eine Dicke von 1,25 mm und einen Wandabstand von 100 mm aufweist. In die Materiallage 2 wurden Löcher mit 1 mm Durchmesser eingebracht, welche jeweils 22 mm von einander beabstandet sind. Der Lochflächenanteil beträgt daher 0,16 %.The absorption behavior shown in curve D was obtained with a
Das in Kurve E gezeigte Absorptionsverhalten wurde mit einer Materiallage 2 erhalten, welche aus Stahlblech gefertigt ist, eine Dicke von 1,25 mm und einen Wandabstand von 100 mm aufweist. In die Materiallage 2 wurden Löcher mit 1 mm Durchmesser eingebracht, welche jeweils 35 mm von einander beabstandet sind. Der Lochflächenanteil beträgt daher 0,064 %.The absorption behavior shown in curve E was obtained with a
Selbstverständlich ist die Erfindung nicht auf die dargestellten Ausführungsformen beschränkt. Die vorstehende Beschreibung ist daher nicht als beschränkend, sondern als erläuternd anzusehen. Dies schließt die Anwesenheit weiterer Merkmale nicht aus. Sofern die Ansprüche und die vorstehende Beschreibung "erste" und "zweite" Ausführungsformen definieren, so dient diese Bezeichnung der Unterscheidung zweier gleichartiger Ausführungsformen, ohne eine Rangfolge festzulegen.Of course, the invention is not limited to the illustrated embodiments. The foregoing description is therefore not to be considered as limiting but as illustrative. This does not exclude the presence of other features. Insofar as the claims and the above description define "first" and "second" embodiments, this designation serves to distinguish between two similar embodiments without establishing a ranking.
Claims (13)
- Sound absorber with at least one open-pored base plate (1), which has no bores and has a flow resistance of about 500 Ns/m3 to about 6000 Ns/m3 according to DIN EN 29053:1993-05, at least a partial surface of the base plate (1) that is visible when used as intended being provided with a microperforated material layer (2), and the microperforated material layer (2) having a plurality of bores (20), the diameter of which is in each case between about 0.1 mm and about 2 mm, characterized in that the microperforated material layer (2) is integrally bonded to the base plate (1) only in a strip-like or linear or punctiform manner.
- Sound absorber according to claim 1, characterized in that the base plate (1) has a flow resistance of more than about 2000 Ns/m3 according to DIN EN 29053:1993-05 or
in that the base plate (1) has a flow resistance of about 2000 Ns/m3 according to DIN EN 29053:1993-05. - Sound absorber according to claim 1 or 2, characterized in that the base plate (1) has an open porosity of from about 30% to about 99% or from about 40% to about 80% or from about 45% to about 60%.
- Sound absorber according to any one of claims 1 to 3, characterized in that the base plate (1) has a thickness of from about 6 mm to about 100 mm, or from about 50 mm to about 200 mm, or from about 7 mm to about 80 mm, or from about 8 mm to about 40 mm, or from about 10 mm to about 30 mm.
- Sound absorber according to any one of claims 1 to 4, characterized in that the microperforated material layer (2) is adhered and/or welded and/or soldered to the base plate (1).
- Sound absorber according to any one of claims 1 to 5, characterized in that the microperforated material layer (2) has a thickness of from about 0.5 mm to about 1.8 mm or from about 0.8 mm to about 1.5 mm or from about 1 mm to about 4 mm or from about 1 mm to about 2 mm.
- Sound absorber according to any one of claims 1 to 6, characterized in that the microperforated material layer (2) has a plurality of bores (20), the diameter of which is in each case between about 0.3 mm and about 1.2 mm, or between about 0.4 mm and about 0.8 mm, or between about 0.8 mm and about 2.0 mm.
- Sound absorber according to any one of claims 1 to 7, characterized in that the area ratio of the bores (20) of the microperforated material layer (2) is between about 5% and about 10%, or between about 6% and about 8%, orbetween about 0.1% and about 10%, orbetween about 1% and about 9% orbetween about 5% and about 8% orbetween about 0.005% and about 2% orbetween about 0.01% and about 1%of the total area.
- Sound absorber according to any one of claims 1 to 8, characterized in that the distance between adjacent bores of the microperforated material layer is chosen between about 15 mm and about 100 mm or between about 20 mm and about 60 mm.
- Sound absorber according to any one of claims 1 to 9, characterized in that the microperforated material layer (2) contains or consists of a melamine resin and/or a thermoset and/or a thermoplastic and/or a wood veneer and/or polyethylene and/or polyethylene terephthalate and/or ethylene tetrafluoroethylene copolymer and/or a metal or an alloy and/or steel and/or aluminum.
- Sound absorber according to any one of claims 1 to 10, characterized in that the base plate (1) contains or consists of a pressed polyester fleece and/or a wood-based material and/or pressed mineral wool and/or sintered glass foam and/or cement-bound expanded clay and/or a thermosetting foam and/or a melamine resin and/or a natural fiber material and/or a metal foam.
- Sound absorber according to any one of claims 1 to 11, further containing at least one mechanical reinforcement element (15) containing or consisting of, for example, GFRP and/or CFRP and/or polyethylene and/or polyester and/or wood or a wood-based material.
- Use of a sound absorber according to any one of claims 1 to 12 in or on a building.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019203112.9A DE102019203112A1 (en) | 2019-03-07 | 2019-03-07 | Sound absorber |
DE102019208743.4A DE102019208743A1 (en) | 2019-06-17 | 2019-06-17 | Sound absorber |
PCT/EP2020/056017 WO2020178427A1 (en) | 2019-03-07 | 2020-03-06 | Sound absorber, structure and use of a sound absorber |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3935624A1 EP3935624A1 (en) | 2022-01-12 |
EP3935624B1 true EP3935624B1 (en) | 2023-08-02 |
EP3935624C0 EP3935624C0 (en) | 2023-08-02 |
Family
ID=69770914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20709569.6A Active EP3935624B1 (en) | 2019-03-07 | 2020-03-06 | Sound absorber, structure and use of a sound absorber |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3935624B1 (en) |
WO (1) | WO2020178427A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022108318A1 (en) * | 2022-04-06 | 2023-10-12 | Stadler LUFTKLIMA GmbH | Sound-absorbing absorber unit and arrangement with such a sound-absorbing absorber unit |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0046559A2 (en) | 1980-08-27 | 1982-03-03 | Hoechst Aktiengesellschaft | Resonant sound-absorbing element |
EP0246464A1 (en) | 1986-05-14 | 1987-11-25 | Pape, Hans | Sound-absorbing layer for a wall or covering |
WO2006114090A2 (en) | 2005-04-25 | 2006-11-02 | Richter Furniertechnik Gmbh & Co. Kg | Light building board comprising a honeycomb core |
EP2374940A2 (en) | 2010-04-06 | 2011-10-12 | Akustik & Raum AG | Absorbent noise barriers |
EP2540926A1 (en) | 2011-07-01 | 2013-01-02 | Akusik & Innovation GmbH | Acoustic dampening element and method for manufacturing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012216500A1 (en) * | 2012-09-17 | 2014-03-20 | Hp Pelzer Holding Gmbh | Multilayer perforated sound absorber |
-
2020
- 2020-03-06 WO PCT/EP2020/056017 patent/WO2020178427A1/en active Application Filing
- 2020-03-06 EP EP20709569.6A patent/EP3935624B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0046559A2 (en) | 1980-08-27 | 1982-03-03 | Hoechst Aktiengesellschaft | Resonant sound-absorbing element |
EP0246464A1 (en) | 1986-05-14 | 1987-11-25 | Pape, Hans | Sound-absorbing layer for a wall or covering |
WO2006114090A2 (en) | 2005-04-25 | 2006-11-02 | Richter Furniertechnik Gmbh & Co. Kg | Light building board comprising a honeycomb core |
EP2374940A2 (en) | 2010-04-06 | 2011-10-12 | Akustik & Raum AG | Absorbent noise barriers |
EP2540926A1 (en) | 2011-07-01 | 2013-01-02 | Akusik & Innovation GmbH | Acoustic dampening element and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
EP3935624C0 (en) | 2023-08-02 |
WO2020178427A1 (en) | 2020-09-10 |
EP3935624A1 (en) | 2022-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0811097B1 (en) | Plate resonator | |
EP2394265B1 (en) | Acoustic absorber, acoustic transducer, and method for producing an acoustic absorber or an acoustic transducer | |
DE10347084B4 (en) | Tunable sound absorbing and air filtering damper and manufacturing method | |
WO2000014353A1 (en) | Plate-shaped component | |
EP0531761A1 (en) | Absorber | |
DE2408028B2 (en) | Sound absorbing plate | |
DE19861016C2 (en) | Structured molded bodies for sound absorption | |
DE102014207852A1 (en) | Acoustic absorber device | |
EP3455427B1 (en) | Sound absorber arrangement and sound-damped room | |
EP2655744B1 (en) | Sound protection element | |
EP3935624B1 (en) | Sound absorber, structure and use of a sound absorber | |
EP3418461B1 (en) | Acoustic absorption element | |
WO2007073732A2 (en) | Multi-layered porous sound-absorber | |
EP0605784B1 (en) | Acoustic panel | |
EP2918745B1 (en) | Composite coating layer for a noise absorbing element | |
DE102005022807B3 (en) | Sound absorbing component and use | |
EP3310965B1 (en) | Noise-absorbing component, and noise-protection wall comprising such a component | |
DE202013104545U1 (en) | Device for active and / or passive influencing of room acoustics | |
DE102019208743A1 (en) | Sound absorber | |
DE102005002621B3 (en) | Hermatically sealed sound insulation module has pair or pairs of interconnected curved metal plates forming hollow spaces to provide sound absorbency | |
DE102019203112A1 (en) | Sound absorber | |
DE20112669U1 (en) | Sound absorbing panel | |
EP3707318B1 (en) | Sound-absorbing roof construction of a hall having reduced reverberation time | |
EP3555370B1 (en) | Sound-absorbing construction component having extinguishing profiles and sound protection wall | |
DE19822840A1 (en) | Sandwich construction building panel with acoustic insulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211006 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V. |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220824 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E04B 1/86 20060101ALI20230310BHEP Ipc: G10K 11/168 20060101ALI20230310BHEP Ipc: G10K 11/172 20060101AFI20230310BHEP |
|
INTG | Intention to grant announced |
Effective date: 20230328 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020004490 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20230828 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20230904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231102 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231202 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240322 Year of fee payment: 5 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 5 Effective date: 20240325 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502020004490 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: SANDLER AG Effective date: 20240503 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240401 Year of fee payment: 5 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |