EP3934612A1 - Procédé pour la production et l'utilisation de produits de traitement capillaire comprenant des (alcoxy en c1-c6 )silanes organiques - Google Patents

Procédé pour la production et l'utilisation de produits de traitement capillaire comprenant des (alcoxy en c1-c6 )silanes organiques

Info

Publication number
EP3934612A1
EP3934612A1 EP20702755.8A EP20702755A EP3934612A1 EP 3934612 A1 EP3934612 A1 EP 3934612A1 EP 20702755 A EP20702755 A EP 20702755A EP 3934612 A1 EP3934612 A1 EP 3934612A1
Authority
EP
European Patent Office
Prior art keywords
preparation
stands
alkoxy
water
silanes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20702755.8A
Other languages
German (de)
English (en)
Inventor
Torsten LECHNER
Christoph Lohr
Claus-Peter Thiessies
Andreas Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP3934612A1 publication Critical patent/EP3934612A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/58Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing atoms other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur or phosphorus
    • A61K8/585Organosilicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/10Preparations for permanently dyeing the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes
    • A61K2800/432Direct dyes
    • A61K2800/4324Direct dyes in preparations for permanently dyeing the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/88Two- or multipart kits

Definitions

  • the present application is in the field of cosmetics and relates to a process for the production and application of hair treatment compositions.
  • one or more organic Ci-C6-alkoxy-silanes are reacted with water, and the Ci-C6-alcohols released in this reaction are optionally removed from the reaction mixture.
  • the method according to the invention optionally comprises the addition of one or more cosmetic ingredients and the filling of the preparation (s) into a packaging unit. The filled preparations are then stored for a certain period of time and finally applied to the keratin material.
  • a second subject of the present invention is a multicomponent packaging unit (kit-of-parts) for coloring keratinic material, which, separately packaged in two packaging units, comprises the cosmetic preparations (A) and (B), the preparation (A ) is a preparation of the first subject matter of the invention and preparation (B) contains at least one coloring compound.
  • kit-of-parts for coloring keratinic material
  • Oxidation dyes are usually used for permanent, intense dyeings with good fastness properties and good gray coverage. Such colorants usually contain oxidation dye precursors, so-called developer components and coupler components, which, under the influence of oxidizing agents such as hydrogen peroxide, form the actual dyes with one another. Oxidation dyes are characterized by very long-lasting coloring results.
  • Color pigments are generally insoluble, coloring pigments Understood substances. These are present undissolved in the form of small particles in the coloring formulation and are only deposited on the outside of the hair fibers and / or the skin surface. Therefore, they can usually be removed without residue by a few washes with detergents containing surfactants. Various products of this type are available on the market under the name of hair mascara.
  • oxidative coloring agents have so far been his only option.
  • an unpleasant smell of ammonia or amine cannot be completely avoided with oxidative hair coloring.
  • the hair damage still associated with the use of oxidative coloring agents also has an adverse effect on the user's hair.
  • EP 2168633 B1 deals with the problem of producing long-lasting hair colorations using pigments.
  • the document teaches that when a combination of pigment, organic silicon compound, hydrophobic polymer and a solvent is used, hair colors can be produced which are particularly resistant to shampooing.
  • the organic silicon compounds used in EP 2168633 B1 are reactive compounds from the alkoxy-silane class. These alkoxy-silanes hydrolyze in the presence of water at high speed and - depending on the particular amounts of alkoxy-silane and water used - form hydrolysis products and / or condensation products. The influence of the amount of water used in this reaction on the properties of the hydrolysis or condensation product is described, for example, in WO 2013068979 A2.
  • a film or also a coating forms on the keratin material, which completely envelops the keratin material and in this way strongly influences the properties of the keratin material.
  • Possible areas of application are, for example, permanent styling or the permanent change in shape of keratin fibers.
  • the keratin fibers are mechanically brought into the desired shape and then fixed in this shape by forming the above-described coating.
  • Another very particularly suitable application is the coloring of keratin material;
  • the coating or the film is produced in the presence of a coloring compound, for example a pigment.
  • the film colored by the pigment remains on the keratin material or the keratin fibers and results in surprisingly wash-resistant colorations.
  • the great advantage of the alkoxy-silane-based coloring principle is that the high reactivity of this class of compounds enables very fast coating. In this way, extremely good staining results can be achieved after a very short application period of just a few minutes.
  • the high reactivity of the alkoxy silanes also has some disadvantages. Even minor changes in production and application conditions, such as changes in humidity and / or temperature, can lead to strong fluctuations in product performance. Above all, the work leading to this invention has shown that the alkoxy silanes are extremely sensitive to the conditions that prevail during the production and storage of the keratin treatment agents.
  • the alkoxy-silanes used in this process should be manufactured and stored in a targeted manner in such a way that the optimal application properties could be achieved in subsequent use.
  • the agents produced in this way should have improved dyeing performance, i. E. When they are used in a dyeing process, dyeings with higher color intensity and improved fastness properties, in particular with improved wash fastness and improved rub fastness, should be achieved.
  • a first object of the present invention is a method for producing and using an agent for treating keratinous material, in particular human hair, comprising the following steps:
  • hair treatment agents which have been produced by this method according to the invention, when used in a dyeing process, lead to very intense and uniform dyeings with very good covering power, rubbing fastness and washing fastness.
  • Keratinic material is understood to mean hair, skin, and nails (such as fingernails and / or toenails, for example). Furthermore, wool, furs and feathers also fall under the definition of keratinic material.
  • Keratinic material is preferably understood to mean human hair, human skin and human nails, in particular fingernails and toenails. Keratinic material is very particularly preferably understood to mean human hair.
  • Agents for treating keratinous material are understood to mean, for example, means for coloring the keratin material, means for reshaping or shaping keratinic material, in particular keratinic fibers, or also means for conditioning or maintaining the keratinic material.
  • the agents produced by the process according to the invention are particularly suitable for coloring keratinic material, in particular for coloring keratinic fibers, which are particularly preferably human hair.
  • coloring is used in the context of this invention for a coloring of the keratin material, especially the hair, caused by the use of coloring compounds, such as thermochromic and photochromic dyes, pigments, mica, substantive dyes and / or oxidation dyes.
  • coloring compounds such as thermochromic and photochromic dyes, pigments, mica, substantive dyes and / or oxidation dyes.
  • the aforementioned coloring compounds are deposited in a particularly homogeneous and smooth film on the surface of the keratin material or diffuse into the keratin fiber.
  • the film is formed in situ by oligomerization or polymerization of the organic silicon compound (s), and by the interaction of the coloring compound and the organic silicon compound and optionally other components, such as a film-forming, hydrophilic polymer.
  • Step (1) of the process according to the invention involves the reaction or conversion of one or more organic Ci-C6-alkoxy-silanes with water.
  • the Ci-C6-alkoxy-silane (s) are mixed with water.
  • the one or more organic Ci-C6-alkoxy-silanes are organic, non-polymeric silicon compounds, which are preferably selected from the group of silanes with one, two or three silicon atoms.
  • Organic silicon compounds which are alternatively referred to as organosilicon compounds, are compounds that either have a direct silicon-carbon bond (Si-C) or in which the carbon is attached to the silicon via an oxygen, nitrogen or sulfur atom. Atom is linked.
  • the organic silicon compounds according to the invention are preferably compounds which contain one to three silicon atoms.
  • the organic silicon compounds particularly preferably contain one or two silicon atoms.
  • silane stands for a group of chemical compounds based on a silicon backbone and hydrogen.
  • the hydrogen atoms have been completely or partially replaced by organic groups such as, for example, (substituted) alkyl groups and / or alkoxy groups.
  • Ci-C6-alkoxy-silanes according to the invention It is characteristic of the Ci-C6-alkoxy-silanes according to the invention that at least one C1-C6-alkoxy group is bonded directly to a silicon atom.
  • the Ci-C6-alkoxy-silanes according to the invention thus comprise at least one structural unit R'R "R” 'Si-0- (Ci-C6-alkyl) where the radicals R', R "and R” 'represent the three other bond valences of the Silicon atom.
  • the Ci-C6-alkoxy group or groups bonded to the silicon atom are very reactive and are hydrolyzed at high speed in the presence of water, the reaction rate also depending, among other things, on the number of hydrolyzable groups per molecule.
  • the organic silicon compound preferably contains a structural unit R’R “R“ ‘Si-0-CH2-CH3.
  • the radicals R ‘, R“ and R “‘ again represent the three remaining free valences of the silicon atom.
  • a method according to the invention is characterized in that in step (1) one or more organic Ci-C6-alkoxy-silanes are reacted with water, which are selected from silanes with one, two or three silicon atoms, wherein the organic silicon compound also includes one or more basic chemical functions.
  • This basic group can be, for example, an amino group, an alkylamino group or a dialkylamino group, which is preferably connected to a silicon atom via a linker.
  • the basic group is preferably an amino group, a Ci-C6-alkylamino group or a di (Ci-C6) alkylamino group.
  • organic Ci-C6-alkoxy-silanes are selected from the group of the silanes with one, two or three silicon atoms, and wherein the Ci-C6-alkoxy-silanes further comprise one or more basic chemical functions.
  • Ci-C6-alkoxy-silanes of the formula (I) and / or (II) were used in the process according to the invention.
  • a method according to the invention is characterized by
  • Ri, R2 independently represent a hydrogen atom or a Ci-C6-alkyl group
  • L stands for a linear or branched, divalent Ci-C2o-alkylene group
  • R3, R4 independently represent a Ci-C6-alkyl group
  • a stands for an integer from 1 to 3
  • R5, R5 ‘, R5”, R6, R6 ‘and R6“ independently of one another represent a Ci-C6-alkyl group
  • A, A ‘, A”, A “‘ and A ““ independently of one another represent a linear or branched, divalent Ci-C2o-alkylene group
  • R7 and Re independently of one another for a hydrogen atom, a Ci-C6-alkyl group, a hydroxy-Ci-C6-alkyl group, a C2-C6-alkenyl group, an amino-Ci-C6-alkyl group or a grouping of the formula (III) stand,
  • - c stands for an integer from 1 to 3
  • - d stands for the whole number 3 - c
  • Ci-C6-alkyl group examples are the groups methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl and t-butyl, n-pentyl and n-hexyl.
  • Propyl, ethyl and methyl are preferred alkyl radicals.
  • Examples of a C2-C6 alkenyl group are vinyl, allyl, but-2-enyl, but-3-enyl and isobutenyl; preferred C2-C6 alkenyl radicals are vinyl and allyl.
  • a hydroxy-Ci-C6-alkyl group are a hydroxymethyl, a 2-hydroxyethyl, a 2-hydroxypropyl, a 3-hydroxypropyl, a 4-hydroxybutyl group, a 5-hydroxypentyl and a 6-hydroxyhexyl group ; a 2-hydroxyethyl group is particularly preferred.
  • Examples of an amino-Ci-C6-alkyl group are the aminomethyl group, the 2-aminoethyl group and the 3-aminopropyl group. The 2-aminoethyl group is particularly preferred.
  • Examples of a linear divalent Ci-C2o-alkylene group are, for example, the methylene group (-CH2-), the ethylene group (-CH2-CH2-), the propylene group (- CH2-CH2-CH2-) and the butylene group (-CH2- CH2-CH2-CH2-).
  • the propylene group (-CH2-CH2-CH2-) is particularly preferred.
  • divalent alkylene groups can also be branched. Examples of branched, divalent C3-C 2 o -alkylene groups are (-CH2-CH (CH 3 ) -) and (-CH 2 -CH (CH3) -CH 2 -).
  • Ri R2N-L-Si OR3) a (R4) b (l)
  • the radicals Ri and R2 independently of one another represent a hydrogen atom or a C1-C6-alkyl group.
  • the radicals Ri and R2 are very particularly preferably both a hydrogen atom.
  • the organic silicon compound In the middle part of the organic silicon compound is the structural unit or the linker -L- which stands for a linear or branched, divalent Ci-C2o-alkylene group.
  • the two-valued C1- C 2 o -alkylene group can alternatively also be referred to as a divalent or double-bonded Ci-C 2 o-alkylene group, which means that each group -L- can form two bonds.
  • -L- is preferably a linear, divalent Ci-C 2 o-alkylene group. More preferably -L- stands for a linear divalent Ci-C6-alkylene group. -L- is particularly preferably a methylene group (-CH2-), an ethylene group (-CH2-CH2-), a propylene group (-CH2-CH2-CH2-) or a butylene group (-CH 2 -CH 2 -CH 2 - CH 2 -). L very particularly preferably represents a propylene group (-CH2-CH2-CH2-).
  • the radicals R3 and R4 independently of one another represent a Ci-C6-alkyl group, particularly preferably R3 and R 4 independently of one another represent a methyl group or an ethyl group.
  • a stands for an integer from 1 to 3, and b stands for the integer 3 - a. If a is 3, then b is 0. If a is 2, then b is 1. If a is 1, then b is 2.
  • Keratin treatment agents with particularly good properties could be produced if in step (1) at least one organic Ci-C6-alkoxy-silane of the formula (I) was mixed or reacted with water, in which the radicals R3, R 4 were independent of one another represent a methyl group or an ethyl group.
  • a method according to the invention is characterized in that in step (1) one or more organic Ci-C6-alkoxy-silanes of the formula (I) are mixed with water,
  • R3, R4 independently of one another represent a methyl group or an ethyl group
  • a method according to the invention is characterized in that in step (1) one or more organic Ci-C6-alkoxy-silanes of the formula (I) and / or (II) are mixed or reacted with water,
  • R2 both stand for a hydrogen atom
  • - L stands for a linear, divalent Ci-C6-alkylene group, preferably for a propylene group (- CH2-CH2-CH2-) or for an ethylene group (-CH2-CH2-),
  • R3 stands for an ethyl group or a methyl group
  • R4 stands for a methyl group or for an ethyl group
  • a method according to the invention is characterized in that in step (1) one or more organic Ci-C6-alkoxy-silanes is selected from the group consisting of
  • (3-Aminopropyl) trimethoxysilane can be purchased from Sigma-Aldrich, for example. (3-Aminopropyl) triethoxysilane is also commercially available from Sigma-Aldrich.
  • one or more organic Ci-C6-alkoxy-silanes of the formula (II) can also be mixed or reacted with water in step (1),
  • organosilicon compounds of the formula (II) according to the invention each have the silicon-containing groups (R50) c (R6) dSi and -Si (R6 ') d' (OR5 ') c at their two ends
  • each of the radicals e, f, g and h can independently represent the number 0 or 1, with the proviso consists that at least one of the radicals e, f, g and h is different from 0.
  • an organic silicon compound of the formula (II) according to the invention contains at least one group from the group consisting of - (A) - and - [NR 7 - (A ')] - and - [0- (A ”) j- and - [NR 8 - (A '”)] -
  • the radicals R5, R5', R5 "independently of one another represent a Ci-C6-alkyl group.
  • the radicals R6, R6 'and R6 ′′ stand independently of one another for a Ci-C6-alkyl group.
  • c stands for an integer from 1 to 3, and d stands for the integer 3 - c. If c is 3, then d is 0. If c is 2, d is 1. If c is 1, then d is 2.
  • d‘ stands for the integer 3 - c ‘. If c ‘stands for the number 3, then d‘ equals 0. If c clergy stands for the number 2, then d ‘equals 1. If c ‘stands for the number 1, then d‘ is 2.
  • a method according to the invention is characterized in that in step (1) one or more organic Ci-C6-alkoxy-silanes of the formula (II) are mixed or reacted with water,
  • R5 and R5 ‘independently represent a methyl group or an ethyl group
  • radicals e, f, g and h can independently represent the number 0 or 1, at least one radical from e, f, g and h being different from zero.
  • abbreviations e, f, g and h therefore define which of the groupings - (A) e - and - [NR7- (A ')] f - and - [0- (A ”)] g - and - [ NR8- (A ”')] h - are located in the central part of the organic silicon compound of the formula (II).
  • the radicals A, A ', A “, A”' and A “” stand independently of one another for a linear or branched, divalent Ci-C 2 o-alkylene group.
  • the radicals A, A ', A “, A”' and A “” are preferably, independently of one another, a linear, divalent Ci-C 2 o-alkylene group.
  • the radicals A, A ', A ", A"' and A "" are more preferably, independently of one another, a linear divalent Ci-C6-alkylene group.
  • the divalent Ci-C 2 o -alkylene group can alternatively also be referred to as a divalent or divalent Ci- C 2 o-alkylene group, which means that each grouping A, A ', A “, A“' and A ““ two Can form bonds.
  • the radicals A, A ', A “, A”' and A “” are particularly preferably, independently of one another, a methylene group (-CH2-), an ethylene group (-CH2-CH2-), a propylene group (-CH2-CH2-CH2) -) or a butylene group (-CH 2 -CH 2 -CH 2 -CH 2 -).
  • the radicals A, A ', A ", A"' and A "" are very particularly preferably a propylene group (-CH2-CH2-CH2-).
  • the organic silicon compound of the invention of the formula (II) contains a structural grouping - [NR7- (A ')] -.
  • the organic silicon compound of the invention of the formula (II) contains a structural grouping - [NR8- (A "’)] -.
  • the radicals R7 and Rs independently of one another represent a hydrogen atom, a Ci-Ce-alkyl group, a hydroxy-Ci-C6-alkyl group, a C 2 -C6-alkenyl group, an amino-Ci-C6-alkyl group or a grouping of formula (III) - (A ““) - Si (R6 “) d“ (OR 5 “) c“ (IN).
  • the radicals R7 and R8, independently of one another, very particularly preferably represent a hydrogen atom, a methyl group, a 2-hydroxyethyl group, a 2-alkenyl group, a 2-aminoethyl group or a grouping of the formula (III).
  • the organic silicon compound according to the invention contains the grouping [NR7- (A ')], but not the grouping - [NR8- (A ”')] if the radical R7 is a grouping of the formula (III), the organic silicon compound comprises 3 reactive silane groups.
  • a method according to the invention is characterized in that in step (1) one or more organic Ci-C6-alkoxy-silanes of the formula (II) are reacted with water
  • R7 represents a hydrogen atom, a methyl group, a 2-hydroxyethyl group, a 2-alkenyl group, a 2-aminoethyl group or a grouping of the formula (III).
  • a method according to the invention is characterized in that in step (1) one or more organic Ci-C6-alkoxy-silanes of the formula (II) are mixed or reacted with water, wherein
  • - A and A ‘independently represent a methylene group (-CH2-), an ethylene group (-CH2-CH2-) or a propylene group (-CH2-CH2-CH2),
  • Bis (trimethoxysilylpropyl) amine with the CAS number 82985-35-1 can be purchased from Sigma-Aldrich, for example.
  • Bis [3- (triethoxysilyl) propyl] amine with the CAS number 13497-18-2 can be purchased from Sigma-Aldrich, for example.
  • N-methyl-3- (trimethoxysilyl) -N- [3- (trimethoxysilyl) propyl] -1-propanamine is alternatively also referred to as bis (3-trimethoxysilylpropyl) -N-methylamine and can be purchased commercially from Sigma-Aldrich or Fluorochem .
  • a method according to the invention is characterized in that in step (1) one or more organic Ci-C6-alkoxy-silanes of the formula (II) which are selected from the group of
  • the compounds of the formula (IV) are organic silicon compounds which are selected from silanes having one, two or three silicon atoms, the organic silicon compound comprising one or more hydrolyzable groups per molecule.
  • organic silicon compound or compounds of the formula (IV) can also be referred to as silanes of the alkyl-Ci-C6-alkoxy-silane type,
  • Rg stands for a Ci-Ci2-alkyl group
  • Rg stands for a Ci-Ci2-alkyl group
  • Ci-C6-alkyl group - k stands for an integer from 1 to 3
  • the radical Rg stands for a C1-C12-alkyl group. This Ci-Ci2-alkyl group is saturated and can be linear or branched.
  • R9 is preferably a linear Ci-Cs-alkyl group.
  • Rg preferably stands for a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-octyl group or an n-dodecyl group.
  • Rg particularly preferably represents a methyl group, an ethyl group or an n-octyl group.
  • the radical R10 stands for a Ci-C6-alkyl group.
  • R10 particularly preferably represents a methyl group or an ethyl group.
  • the radical Rn stands for a C1-C6-alkyl group.
  • R11 particularly preferably represents a methyl group or an ethyl group.
  • k stands for an integer from 1 to 3, and m stands for the integer 3 - k. If k is the number 3, then m is 0. If k is the number 2, then m is 1. If k is the number 1, then m is 2.
  • a method according to the invention is characterized in that in step (1) one or more organic Ci-C6-alkoxy-silanes of the formula (IV) which are selected from the group of
  • the process according to the invention can be carried out in a suitable reaction vessel or reactor. Depending on the desired batch size, various models for this are known from the prior art and are commercially available.
  • the reaction of the organic Ci-C6-alkoxy-silanes with water can be carried out in a reaction vessel or a reactor, preferably in a double-walled reactor, a reactor with an external heat exchanger, a tubular reactor, a reactor with a thin-film evaporator, a reactor with a falling-film evaporator and / or a reactor with an attached condenser.
  • a method according to the invention is characterized by
  • a reaction vessel that is very well suited for smaller batches is, for example, a glass flask with a capacity of 1 liter, 3 liters or 5 liters, which is usually used for chemical reactions, for example a 3 liter one- or multi-neck flask with ground joints.
  • a reactor is a delimited space (receptacle, container) that has been specially designed and manufactured to allow certain reactions to take place and control under defined conditions.
  • Typical reactors can, for example, have a capacity of 10 liters, 20 liters or 50 liters. Larger reactors for the production area can also have capacities of 100 liters, 500 liters or 1000 liters.
  • Double-wall reactors have two reactor shells or reactor walls, with a temperature control liquid being able to circulate in the area located between the two walls. This enables the temperature to be set particularly well to the required values.
  • reactors in particular double-walled reactors with an enlarged heat exchange surface, has also proven to be particularly suitable, with the heat exchange being able to take place either through internal fittings or also through the use of an external heat exchanger.
  • Corresponding reactors are, for example, laboratory reactors from IKA.
  • the models "LR-2.ST” or the model “magic plant” can be mentioned.
  • reactors that can be used are reactors with thin-film evaporators, since in this way very good heat dissipation and thus particularly precise temperature control can be carried out.
  • thin-film evaporators are also referred to as thin-film evaporators.
  • Thin film evaporators can be obtained commercially from Asahi Glassplant Inc., for example.
  • the evaporation In reactors with falling film evaporators, the evaporation generally takes place in a tube, ie the liquid to be evaporated (ie in this case the C1-C6 alcohols to be removed in step (2)) flows as a continuous liquid film. Reactors with falling film evaporators are also commercially available from various suppliers.
  • the reaction of the organic Ci-C6-alkoxy-silanes with water that takes place in step (1) can take place in various ways. The reaction starts as soon as the Ci-C6-alkoxy-silanes come into contact with water by mixing. One possibility is to place the desired amount of water in the reaction vessel or reactor and then to add that or the Ci-C6-alkoxy-silanes.
  • the hydrolysis reaction can also take place several times per Ci-C6-alkoxy-silane used:
  • the water can be added continuously, in partial amounts or directly as a total amount.
  • the reaction mixture is preferred to ensure the required temperature control cooled and / or the amount and speed of the water added. Depending on the amount of silanes used, the addition and reaction can take place over a period of 2 minutes to 72 hours.
  • step (1) In order to produce agents which produce a particularly good coating on the keratin material, it has been found to be explicitly and particularly preferred to use water in a substoichiometric amount in step (1).
  • the amount of water used is below the amount that would theoretically be required to remove all hydrolyzable Ci-C6 alkoxy groups present on the Si atoms, i.e. the alkoxysilane groups, to hydrolyze. Partial hydrolysis of the organic Ci-C6-alkoxy-silanes is therefore very particularly preferred.
  • the stoichiometric ratio of water to the organic Ci-C6-alkoxy-silanes can be defined via the proportion of molar equivalents of water (S-W), these are calculated using the following formula: mol (water)
  • mol (silanes) total molar amount of Ci-C6-alkoxy-silanes used in the reaction
  • n (alkoxy) number of Ci-C6-alkoxy groups per Ci-C6-alkoxy-silane
  • the molar equivalent of water indicates the molar ratio of the molar amount of water used to the total number of moles of hydrolyzable C1-C6 alkoxy groups that are on the Ci-C6 alkoxysilanes used.
  • a method according to the invention is characterized by
  • mol (silanes) total molar amount of Ci-C6-alkoxy-silanes used in the reaction
  • n (alkoxy) number of Ci-C6-alkoxy groups per Ci-C6-alkoxy-silane
  • step (1) For the production of particularly powerful keratin treatment agents, in step (1) it has been found to be particularly advantageous to maintain special temperature ranges.
  • step (1) a minimum temperature of 20 ° C. in step (1) is particularly well suited to allow the hydrolysis to proceed at a sufficiently high rate and to ensure efficient reaction management.
  • the temperature range given here relates to the temperature to which the mixture of Ci-C6-alkoxy-silanes and water must be set. This temperature can be measured, for example, by a calibrated thermometer protruding into this mixture.
  • the reaction of one or more organic Ci-C6-alkoxy-silanes with water is preferably carried out at a temperature from 20 ° C to 70 ° C, preferably from 20 to 65 ° C, more preferably from 20 to 60 ° C, even more preferably from 20 to 55 ° C, even more preferably from 20 to 50 ° C and very particularly preferably from 20 to 45 ° C.
  • a method according to the invention is characterized by
  • the preferred and particularly preferred temperature ranges can be set by controlling the temperature of the reaction vessel or reactor.
  • the reaction vessel or the reactor can be surrounded on the outside with a temperature control bath, which can be, for example, a water bath or a silicone oil bath.
  • a temperature-controlled liquid can also be passed through the space which is formed by the two walls and which surrounds the reaction space.
  • step (1) there is no active heating of the reaction mixture and that any increase in temperature above the ambient temperature is brought about only by the exothermic nature of the hydrolysis in step (1). If the exothermic reaction process heats the reaction mixture too much in step (1), it must be cooled again.
  • the reaction of the organic Ci-C6-alkoxy-silanes with water takes place preferably at normal pressure, i.e. at a pressure of 1013 mbar (1013 hPa).
  • Step (2) of the method according to the invention is optional. This is optional step (2) characterized by the partial or complete removal of the Ci-C6 alcohols released by the reaction in step (1) from the reaction mixture.
  • step (2) of the process according to the invention is not carried out, following (1) the mixing of the Ci-C6-alkoxy-silane (s) with water, the - likewise optional - addition of one or more cosmetic ingredients (3) or the (4) filling of the preparation into a packaging unit.
  • step (2) in the process according to the invention.
  • step (2) of the process takes place, if it is carried out, preferably after step (1).
  • the Ci-C6 alcohols can be removed either directly after the hydrolysis in step (1).
  • a cosmetic ingredient corresponding to step (3) of the method according to the invention can first be added and the Ci-C6 alcohols (step (2)) can then be removed.
  • step (2) can also be carried out simultaneously with the hydrolysis in step (1).
  • the removal of the Ci-C6 alcohols is started before the addition of the water, at the start of the addition or after 5-20% by weight of the planned total amount of the water has been added, i.e. the distillation - if necessary with a reduction in pressure - started.
  • the reaction equilibrium is shifted in favor of a condensation reaction, in which the Si-OH groups on the (partially) hydrolyzed Ci-C6-alkoxysilanes are split off with other Si-OH groups or with other Ci -C6-alkoxy-silane groups can react.
  • Ci-C6-alkoxysilanes which undergo a condensation with not yet reacted, partially or completely hydrolyzed Ci-C6-alkoxysilanes, can take part in the condensation reaction.
  • Ci-C6-alkoxysilanes of different structures a condensation of Ci-C6-alkoxysilanes of different structures is possible, for example, the Ci-C6-alkoxysilanes of the formula (I) can condense with the Ci-C6-alkoxysilanes of the formula (IV).
  • condensation to form a dimer is shown, but the condensation to form oligomers with several silane atoms is also possible and also preferred.
  • the extent of the condensation reaction is determined by the amount of water added in step (1).
  • the amount of water is preferably measured so that the condensation is a partial condensation, with “partial condensation” or “partial condensation” in this context meaning that not all condensable groups of the silanes present react with one another, so that the organic silicon compound formed per molecule still has on average at least one hydrolyzable / condensable group.
  • the temperature at which the Ci-C6 alcohols are removed from the reaction mixture in step (2) can also represent a significant influencing factor with regard to the performance of the subsequent hair treatment product.
  • the process according to the invention encompasses both complete and partial removal of the C 1 -C 6 alcohols released. Since it is difficult to completely remove all Ci-C6 alcohols (small residues of Ci-C6 alcohols are always in the reaction mixture remain, especially if the reaction mixture is not to be heated too much), partial removal of the Ci-C6 alcohols is preferred.
  • the specified temperature range again relates to the temperature to which the reaction mixture must be adjusted while the Ci-C6-alkoxy-silanes are removed from the reaction mixture.
  • This temperature can also be measured, for example, by a calibrated thermometer protruding into this mixture.
  • a method according to the invention is characterized by
  • the preferred temperature ranges according to the invention can be set, for example, by heating or cooling the reaction vessel or reactor, for example by inserting the reaction vessel into a heating mantle, or by surrounding the reaction vessel from the outside with a temperature-controlled bath becomes.
  • the temperature bath can, for example, be a water bath or a silicone oil bath.
  • a temperature-controlled liquid can also be passed through the space which is formed by the two walls and which surrounds the reaction space.
  • the Ci-C6 alcohols are preferably removed under reduced pressure (compared to normal pressure). It has proven particularly advantageous in this connection to distill off the C1-C6 alcohols from the reaction mixture using a distillation attachment. During this distillation, a pressure of 10 to 900 mbar, more preferably 10 to 800 mbar, even more preferably 10 to 600 mbar and very particularly preferably 10 to 300 mbar is set. Vacuum distillation is a common chemical process for which the common, commercially available vacuum pumps and distillation apparatus can be used. The distillation apparatus can be provided as an attachment on the reaction vessel or reactor.
  • a method according to the invention is characterized by
  • the volatile alcohols and, if necessary, also the water that has been distilled off can be condensed and collected as liquid distillate in a receiver.
  • the distillation can optionally take place with cooling of the evaporated alcohols / water by means of a cooler.
  • the reduced pressure can be generated using conventional methods known in the art, typically with a vacuum pump.
  • C 1 -C 6 alkoxysilanes which carry methoxysilane or ethoxysilane groups are very particularly preferably used in the process according to the invention, in particular di- and trimethoxy and -ethoxysilanes, particularly preferably trimethoxy or triethoxysilanes.
  • step (2) of the method according to the invention which is referred to as “evaporative cooling”.
  • a solvent is added to the reaction mixture prior to the removal of the Ci-C6 alcohols in step (2) which has a boiling point of 20 to 90 ° C, preferably 30 to 85 ° C and very particularly at normal pressure (1013 hPa) preferably from 40 to 80 ° C.
  • This added solvent can also be referred to as “low boiler”.
  • the added low boilers begin to boil at a maximum of 90 ° C., and under reduced pressure the boiling temperature is correspondingly lowered. As long as low boilers are still present in the reaction mixture, the reaction mixture is kept at the boiling point of the low boiler.
  • a method according to the invention is characterized in that before the removal of the Ci-C6 alcohols in step (2), Solvent is added which has a boiling point of 20 to 90 ° C, preferably from 30 to 85 ° C and very particularly preferably from 40 to 80 ° C at normal pressure (1013 hPa).
  • Suitable solvents are, for example:
  • Particularly suitable solvents are methanol, ethanol and isopropanol.
  • the vacuum distillation of step (2) takes place under conditions which result in a product which contains less than 5% by weight, preferably less than 2% by weight, even more preferably less than 1% by weight, alcohols (from the Hydrolysis reaction).
  • the water content of the product after vacuum distillation is less than 5.0% by weight, even more preferably less than 1.0% by weight and very particularly preferably less than 0.5% by weight.
  • the method according to the invention comprises the addition of one or more cosmetic ingredients.
  • the cosmetic ingredients that can optionally be used in step (3) can be all suitable constituents in order to impart further positive properties to the agent.
  • a solvent, a thickening or film-forming polymer, a surface-active compound from the group of nonionic, cationic, anionic or zwitterionic / amphoteric surfactants the coloring compounds from the group of pigments, substantive dyes, the Oxidation dye precursors, the fatty components from the group of Cs-Cso fatty alcohols, the hydrocarbon compounds, fatty acid esters, the acids and bases belonging to the group of pH regulators, those of perfumes, preservatives, plant extracts and protein hydrolysates.
  • a method according to the invention is characterized by
  • a cosmetic ingredient in step (3) which further improves the stability, in particular the storage stability, of the keratin treatment agent.
  • the addition (3) of one or more cosmetic ingredients from the group of hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane and / or decamethylcyclopentasiloxane has proven to be particularly advantageous with regard to increasing the stability of the composition.
  • a method according to the invention is characterized by
  • Hexamethyldisiloxane has the CAS number 107-46-0 and can be obtained commercially from Sigma-Aldrich, for example.
  • Octamethyltrisiloxane has the CAS number 107-51-7 and is also commercially available from Sigma-Aldrich.
  • Decamethyltetrasiloxane has the CAS number 141-62-8 and is also commercially available from Sigma-Aldrich.
  • Hexamethylcyclotrisiloxane has the CAS no. 541 -05-9.
  • Octamethylcyclotetrasiloxane has the CAS no. 556-67-2.
  • Decamethylcyclopentasiloxane has the CAS no. 541-02-6.
  • step (4) of the method according to the invention the preparation obtained after steps (1) and (2) - and, if appropriate, after the optional step (3) - is filled into a packaging unit.
  • the packaging unit can either be an end package from which the user takes the agent for treating the keratin materials.
  • Suitable end-of-line packaging is for example a bottle, a tube, a jar, a can, a sachet, an aerosol pressure container, a non-aerosol pressure container.
  • This end-of-line packaging can contain the keratin treatment agent in quantities that are sufficient for one, if necessary also for several, applications. Preference is given to filling in an amount that is sufficient for a single use.
  • the preparation in step (4) can, however, also be filled into an intermediate packaging, which can be, for example, a canister or a hobbock. Filling into intermediate packaging is particularly suitable if the reaction vessel or reactor in which the method according to the invention was carried out and the filling plant in which the final packaging is filled are spatially separated.
  • a method according to the invention is characterized by
  • Sachet an aerosol pressure container, a non-aerosol pressure container, a canister or a hobbock.
  • the aforementioned packaging units can be conventional, commercially available containers used as standard in cosmetics.
  • Step (5) of the method according to the invention is characterized by the storage of the preparation in the packaging unit for a period of at least 5 days. This step has been found to be essential to the invention for achieving particularly intense color results.
  • step (5) the preparation filled in step (4) is stored in the packaging unit for at least 5 days.
  • the packaging unit is kept locked during storage. This can be done, for example, by storing the closed packaging units in a storage room or warehouse for 5 days.
  • storage of the preparation in the packaging unit is understood to mean not opening the closed packaging unit for a period of at least 5 days. Since the preparation is in a closed packaging unit during storage, it does not come into contact with the humidity outside the packaging unit or with oxygen.
  • the sealed packaging unit can be, for example, a bottle, a tube, a crucible, a can, a sachet, an aerosol pressure container, a non-aerosol pressure container, a canister or a hobbock, each with a suitable lid are locked.
  • packaging usually used in the field of cosmetics and made from the usual materials can be used as packaging units. These packaging units are known to the person skilled in the art and are commercially available.
  • a tube with a screw cap or a hinge cap with a capacity of 20 ml, 50 ml, 100 ml, 250 ml, 500 ml, or even 1000 ml can be used as a tube. It is particularly preferred to seal the tube and only open the seal shortly before use by inserting the cover. Cans can also be provided with a screw cap with a seal and, for example, have a capacity of 20 ml, 50 ml, 100 ml, 250 ml, 500 ml, or even 1000 ml.
  • the sachet is also an inexpensive form of packaging with low material consumption.
  • a sachet is a small package in the shape of a bag or pouch that is often used in the packaging of cosmetics.
  • a typical sachet can be produced, for example, by gluing or hot-pressing two foils lying one on top of the other, the gluing taking place at all edges of the foils.
  • the interior of the sachet (i.e. the bag) produced by gluing can then be filled with the desired cosmetic preparation.
  • the sachet can be opened by tearing open or cutting open the bag.
  • canisters or hobbocks are suitable as packaging units. These usually have a larger capacity of 1 liter, 5 liters, 10 liters, 20 liters or even 50 liters.
  • a method according to the invention is characterized by
  • a method according to the invention is characterized by
  • oligomeric silane condensates of a certain minimum size must be present in order to be able to form a film on the keratin material with sufficient speed.
  • the molecular weight of these silane condensates should not be too large, since if the condensates are too large, good adhesion between silanes and keratin is no longer possible.
  • storage is also very particularly preferably carried out within certain temperature ranges. In particular, it has been found to be particularly advantageous to maintain certain temperature ranges during the storage period, which takes place directly after filling in step (4). Very good dyeing results could be obtained especially when the preparation was stored in the packaging unit at a temperature of 15 ° C to 40 ° C, preferably 15 ° C to 35 ° C and particularly preferably 15 ° C to 25 ° C .
  • a method according to the invention is characterized by
  • a method according to the invention is characterized by
  • keratinic material in particular human hair
  • a method for producing and using an agent for treating keratinic material, in particular human hair comprising the following steps:
  • keratinic material in particular human hair
  • a method for producing and using an agent for treating keratinic material, in particular human hair comprising the following steps:
  • keratinic material in particular human hair
  • a method for producing and using an agent for treating keratinic material, in particular human hair comprising the following steps:
  • keratinic material in particular human hair
  • a method for producing and using an agent for treating keratinic material, in particular human hair comprising the following steps:
  • keratinic material in particular human hair
  • a method for producing and using an agent for treating keratinic material, in particular human hair comprising the following steps:
  • keratinic material in particular human hair
  • a method for producing and using an agent for treating keratinic material, in particular human hair comprising the following steps:
  • keratinic material in particular human hair
  • a method for producing and using an agent for treating keratinic material, in particular human hair comprising the following steps:
  • a method according to the invention is characterized by
  • keratinic material in particular human hair
  • a method for producing and using an agent for treating keratinic material, in particular human hair comprising the following steps:
  • step (5) takes place directly after step (4).
  • the condensation reaction of the silanes seems to come to a standstill after some time, so that longer storage does not have a negative effect on a subsequent dyeing result.
  • the preparations can be stored in the closed packaging unit for a period of up to 365 days at a temperature of 15 to 40 ° C. Since the packaging unit is closed during storage and in this way contact with the possibly humid outside air is prevented, storage periods longer than 365 days are also possible.
  • a method according to the invention is characterized by
  • a method according to the invention is characterized by
  • steps (1), (2), (3), (4), (5) and (6), steps (2) and (3) each being optional steps are.
  • steps (1), (2), (3), (4), (5) and (6), steps (2) and (3) each being optional steps are.
  • steps (2) and (3) each being optional steps are.
  • sequence of the method steps several embodiments are suitable.
  • step (1) Application of the preparation on the keratin material.
  • step (2) First, one or more organic Ci-C6-alkoxy-silanes are mixed with water and after the partial or complete removal of the Ci-C6-alcohols in step (2) one or more cosmetic ingredients are added to the reaction mixture, for example a solvent Pigment, a thickening polymer or the like. can be (step 3).
  • the preparation is then filled into a packaging unit (step 4). After filling, the preparation is stored in the packaging unit for a period of at least 5 days and the preparation is then applied to the keratinic material.
  • the pH values which the reaction mixture has in the course of steps (1) to (6) of the process according to the invention can also have an influence on the condensation reaction. It was found here that alkaline pH values in particular stop the condensation at the oligomer stage. The more acidic the reaction mixture, the more condensation seems to take place and the higher the molecular weight of the siloxanes formed during the condensation. For this reason, it is preferred that the reaction mixture in step (1), (2), (3), (4), (5) and / or (6) has a pH of 7.0 to 12.0, preferably from 7.5 to 11.5, more preferably from 8.5 to 11.0 and very particularly preferably from 9.0 to 11.0.
  • a method according to the invention is characterized in that the reaction mixture in step (1), (2), (3), (4), (5) and / or (6) a pH value of 7.0 to 12.0, preferably from 7.5 to 11.5, more preferably from 8.5 to 11.0 and very particularly preferably from 9.0 to 1 1, 0 owns.
  • a method according to the invention is characterized in that the reaction mixture in steps (1) to (6) has a pH of 7.0 to 12.0, preferably from 7.5 to 11, 5, more preferably from 8.5 to 11.0 and very particularly preferably from 9.0 to 11.0.
  • the pH values in the context of the present invention are pH values that were measured at a temperature of 22 ° C.
  • Ammonia, alkanolamines and / or basic amino acids can be used as alkalizing agents.
  • Alkanolamines can be selected from primary amines with a C2-C6-alkyl parent structure which carries at least one hydroxyl group.
  • Preferred alkanolamines are selected from the group which is formed from 2-aminoethan-1 -ol (monoethanolamine), 3-aminopropan-1 -ol, 4-aminobutan-1 -ol, 5-aminopentan-1 -ol, 1-aminopropane -2-ol, 1-aminobutan-2-ol, 1-aminopentan-2-ol, 1-aminopentan-3-ol, 1-aminopentan-4-ol, 3-amino-2-methylpropan-1-ol, 1 -Amino-2-methyl-propan-2-ol, 3-aminopropan-1, 2-diol, 2-amino-2-methylpropan-1, 3-diol.
  • amino acid in the context of the invention is an organic compound which in its structure contains at least one amino group which can be protonated and at least one —COOH or one —SOsH group.
  • Preferred amino acids are aminocarboxylic acids, in particular ⁇ - (alpha) -amino carboxylic acids and w-aminocarboxylic acids, ⁇ -aminocarboxylic acids being particularly preferred.
  • basic amino acids are to be understood as meaning those amino acids which have an isoelectric point p1 of greater than 7.0.
  • Basic ⁇ -aminocarboxylic acids contain at least one asymmetric carbon atom.
  • both possible enantiomers can be used equally as specific compounds or mixtures thereof, in particular as racemates.
  • the basic amino acids are preferably selected from the group that is formed from arginine, lysine, ornithine and histidine, particularly preferably from arginine and lysine.
  • an agent according to the invention is therefore characterized in that the alkalizing agent is a basic amino acid from the group arginine, lysine, ornithine and / or histidine.
  • Inorganic alkalizing agents can also be used.
  • Inorganic alkalizing agents which can be used according to the invention are preferably selected from the group formed by sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, sodium phosphate, potassium phosphate, sodium silicate, sodium metasilicate, potassium silicate, sodium carbonate and potassium carbonate.
  • Very particularly preferred alkalizing agents are ammonia, 2-aminoethan-1-ol (monoethanolamine), 3-aminopropan-1-ol, 4-aminobutan-1 -ol, 5-aminopentan-1 -ol, 1-aminopropan-2-ol, 1-aminobutan-2-ol, 1-aminopentan-2-ol, 1-aminopentan-3-ol, 1-aminopentan-4-ol, 3-amino-2-methylpropan-1-ol, 1-amino-2- methylpropan-2-ol, 3-aminopropan-1, 2-diol, 2-amino-2-methylpropan-1, 3-diol, arginine, lysine, ornithine, histidine, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, sodium phosphate, potassium phosphate, Sodium silicate, sodium metasilicate, potassium silicate, sodium carbonate and potassium carbonate.
  • Acidifying agents preferred according to the invention are pleasure acids, such as citric acid, acetic acid, malic acid or tartaric acid, and also dilute mineral acids.
  • the keratin treatment agents produced by means of this process can be used for various purposes, for example as an agent for coloring keratin material, as an agent for the care of keratin material or as an agent for changing the shape of keratin material.
  • a method according to the invention is characterized in that an agent for coloring keratinous material, for caring for keratinous material or for changing the shape of keratinic material is produced, stored and used later.
  • a method according to the invention is characterized by
  • compositions produced explicitly show very particularly good suitability when used in a dyeing process.
  • a method according to the invention is characterized by
  • At least one coloring compound can be added to the agent, for example in step (3), wherein the coloring compound can be selected from the group of pigments, substantive dyes and / or oxidation dye precursors.
  • the coloring compound can be selected from the group of pigments, substantive dyes and / or oxidation dye precursors.
  • an agent for coloring keratin material can be obtained which, in addition to the prehydrolyzed / condensed Ci-C6-alkoxysilanes, also contains the coloring compound (s).
  • the user applies the hair dye to the keratin material as part of a multi-component packaging unit.
  • the stored preparation after step (5) is first mixed with a further preparation so that a ready-to-use colorant is obtained.
  • This ready-to-use colorant is then applied to the keratin materials.
  • a method according to the invention is characterized in that, after storage in step (5), the preparation is initially mixed with at least one further preparation and this application mixture is then applied to the keratinic material in step (6).
  • Multi-component packaging unit (kit-of-parts)
  • kit-of-parts To increase user comfort, all preparations necessary for the dyeing process are made available to the user in the form of a multi-component packaging unit (kit-of-parts).
  • a second subject matter of the present invention is a multi-component packaging unit (kit-of-parts) for coloring keratinic material, in particular human hair, which is packaged separately from one another -
  • the cosmetic preparation (A) was produced in the first packaging unit according to steps (1) to (5) of the method which was disclosed in detail in the description of the first subject matter of the invention, and
  • the cosmetic preparation (B) contains at least one coloring compound from the group of the pigments, the substantive dyes and / or the oxidation dye precursors.
  • the two preparations (A) and (B) are then mixed with one another, and this ready-to-use colorant is then applied to the keratin material.
  • the multicomponent packaging unit according to the invention can also comprise a third packaging unit containing a cosmetic preparation (C).
  • a cosmetic preparation C
  • Preparation (C) can be, for example, a conditioner, a shampoo, or a pre- or post-treatment agent.
  • one or more coloring compounds can be used.
  • the coloring compound (s) can either be added to the reaction mixture as cosmetic ingredients in step (3) of the process, or they can be made available to the user as an ingredient of a separately made-up preparation (B).
  • the coloring compound or compounds can preferably be selected from the pigments, the substantive dyes, the oxidation dyes, the photochromic dyes and the thermochromic dyes, particularly preferably from pigments and / or substantive dyes.
  • Pigments in the context of the present invention are understood to mean coloring compounds which at 25 ° C. in water have a solubility of less than 0.5 g / L, preferably less than 0.1 g / L, even more preferably less than 0, 05 g / L.
  • the water solubility can be achieved, for example, by means of the method described below: 0.5 g of the pigment is weighed out in a beaker. A stir fry is added. Then one liter of distilled water is added. This mixture is heated to 25 ° C. for one hour while stirring on a magnetic stirrer. If undissolved constituents of the pigment are still visible in the mixture after this period, the solubility of the pigment is below 0.5 g / L.
  • the mixture is filtered. Stay on top of that If filter paper contains a proportion of undissolved pigments, the solubility of the pigment is below 0.5 g / L.
  • Suitable color pigments can be of inorganic and / or organic origin.
  • the agent according to the invention is characterized in that it contains at least one coloring compound from the group of inorganic and / or organic pigments.
  • Preferred color pigments are selected from synthetic or natural inorganic pigments.
  • Inorganic color pigments of natural origin can be made from chalk, ocher, umber, green earth, burnt Terra di Siena or graphite, for example.
  • black pigments such as B. iron oxide black, colored pigments such.
  • B. ultramarine or iron oxide red and fluorescent or phosphorescent pigments can be used.
  • Colored metal oxides, hydroxides and oxide hydrates, mixed-phase pigments, sulfur-containing silicates, silicates, metal sulfides, complex metal cyanides, metal sulfates, metal chromates and / or molybdates are particularly suitable.
  • Particularly preferred color pigments are black iron oxide (CI 77499), yellow iron oxide (CI 77492), red and brown iron oxide (CI 77491), manganese violet (CI 77742), ultramarines (sodium aluminum sulfosilicates, CI 77007, Pigment Blue 29), chromium oxide hydrate (CI77289 ), Iron blue (Ferric Ferrocyanide, CI77510) and / or carmine (Cochineal).
  • Coloring compounds from the group of pigments which are likewise particularly preferred according to the invention are colored pearlescent pigments. These are usually based on mica and / or mica and can be coated with one or more metal oxides. Mica is one of the layered silicates. The most important representatives of these silicates are muscovite, phlogopite, paragonite, biotite, lepidolite and margarite. To produce the pearlescent pigments in conjunction with metal oxides, the mica, predominantly muscovite or phlogopite, is coated with a metal oxide.
  • synthetic mica coated with one or more metal oxide (s) can also be used as a pearlescent pigment.
  • Particularly preferred pearlescent pigments are based on natural or synthetic mica (mica) and are coated with one or more of the aforementioned metal oxides. The color of the respective pigments can be varied by varying the layer thickness of the metal oxide (s).
  • an agent according to the invention is characterized in that it (b) at least one coloring compound from the group of Contains pigments selected from the group of colored metal oxides, metal hydroxides, metal oxide hydrates, silicates, metal sulfides, complex metal cyanides, metal sulfates, bronze pigments and / or from coloring compounds based on mica or mica, which are coated with at least one metal oxide and / or a metal oxychloride are.
  • an agent according to the invention is characterized in that it contains (b) at least one coloring compound which is selected from pigments based on mica or mica which are mixed with one or more metal oxides from the group consisting of titanium dioxide (CI 77891), black iron oxide (CI 77499), yellow iron oxide (CI 77492), red and / or brown iron oxide (CI 77491, CI 77499), manganese violet (CI 77742), ultramarines (sodium aluminum sulfosilicates, CI 77007, pigment blue 29), chromium oxide hydrate ( CI 77289), chromium oxide (CI 77288) and / or iron blue (Ferric Ferrocyanide, CI 77510) are coated.
  • at least one coloring compound which is selected from pigments based on mica or mica which are mixed with one or more metal oxides from the group consisting of titanium dioxide (CI 77891), black iron oxide (CI 77499), yellow iron oxide (CI 77492), red and / or brown iron oxide (
  • color pigments are commercially available under the trade names Rona®, Colorona®, Xirona®, Dichrona® and Timiron® from Merck, Ariabel® and Unipure® from Sensient, Prestige® from Eckart Cosmetic Colors and Sunshine® available from Sunstar.
  • Colorona® Particularly preferred color pigments with the trade name Colorona® are, for example:
  • color pigments with the trade name Unipure® are, for example:
  • the agent according to the invention or the preparation according to the invention can also contain one or more coloring compounds from the group of organic pigments
  • the organic pigments according to the invention are correspondingly insoluble, organic dyes or color lakes, for example from the group of nitroso, nitro, azo, Xanthene, anthraquinone, isoindolinone, isoindoline, quinacridone, perinone, perylene, diketopyrrolopyorrole, indigo, thioindido, dioxazine and / or triarylmethane compounds can be selected.
  • Particularly suitable organic pigments are, for example, carmine, quinacridone, phthalocyanine, sorghum, blue pigments with the color index numbers CI 42090, CI 69800, CI 69825, CI 73000, CI 74100, CI 74160, yellow pigments with the color index numbers CI 1 1680, CI 11710, CI 15985, CI 19140, CI 20040, CI 21 100, CI 21 108, CI 47000, CI 47005, green pigments with the color index numbers CI 61565, CI 61570, CI 74260, orange pigments with the color index Numbers CI 1 1725, CI 15510, CI 45370, CI 71 105, red pigments with the Color Index numbers
  • an agent according to the invention is characterized in that it contains at least one coloring compound from the group of organic pigments, which is selected from the group of carmine, quinacridone, phthalocyanine, sorghum, blue pigments with the color index numbers CI 42090 , CI 69800, CI 69825, CI 73000, CI 74100, CI 74160, yellow pigments with the color index numbers CI 1 1680, CI 1 1710, CI 15985, CI 19140, CI 20040, CI 21 100, CI 21 108, CI 47000 , CI 47005, green pigments with the color index numbers CI 61565, CI 61570, CI 74260, orange pigments with the color index numbers CI 1 1725, CI 15510, CI 45370, CI 71 105, red pigments with the color index numbers
  • the group of organic pigments which is selected from the group of carmine, quinacridone, phthalocyanine, sorghum
  • the organic pigment can also be a colored lacquer.
  • the term “colored varnish” is understood to mean particles which comprise a layer of absorbed dyes, the unit of particles and dyestuff being included in the above. Conditions is insoluble.
  • the particles can be, for example, inorganic substrates, which can be aluminum, silica, calcium borosilicate, calcium aluminum borosilicate or also aluminum.
  • the alizarin color varnish for example, can be used as the color varnish.
  • the use of the aforementioned pigments in the agents according to the invention is particularly preferred because of their excellent light and temperature stability. It is also preferred if the pigments used have a certain particle size. On the one hand, this particle size leads to a uniform distribution of the pigments in the pigment Polymer film and on the other hand avoids a rough hair or skin feeling after the application of the cosmetic agent. It is therefore advantageous according to the invention if the at least one pigment has an average particle size D50 of from 1.0 to 50 ⁇ m, preferably from 5.0 to 45 ⁇ m, more preferably from 10 to 40 ⁇ m, in particular from 14 to 30 ⁇ m.
  • the mean particle size D50 can be determined, for example, using dynamic light scattering (DLS).
  • the pigment or pigments can be used in an amount of from 0.001 to 20% by weight, in particular from 0.05 to 5% by weight, based in each case on the total weight of the agent or preparation according to the invention.
  • the agents according to the invention can also contain one or more substantive dyes as coloring compounds.
  • Direct dyes are dyes that are absorbed directly onto the hair and do not require an oxidative process to develop the color.
  • Substantive dyes are usually nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinones, triarylmethane dyes or indophenols.
  • the substantive dyes for the purposes of the present invention have a solubility in water (760 mmHg) at 25 ° C. of more than 0.5 g / L and are therefore not to be regarded as pigments.
  • the substantive dyes preferably have a solubility in water (760 mmHg) at 25 ° C. of more than 1.0 g / l.
  • the substantive dyes particularly preferably have a solubility in water (760 mmHg) at 25 ° C. of more than 1.5 g / l.
  • Substantive dyes can be divided into anionic, cationic and nonionic substantive dyes.
  • an agent according to the invention is characterized in that it contains at least one anionic, cationic and / or nonionic substantive dye as the coloring compound.
  • an agent according to the invention is characterized in that it contains at least one anionic, cationic and / or nonionic substantive dye.
  • Suitable cationic substantive dyes are, for example, Basic Blue 7, Basic Blue 26, Basic Violet 2 and Basic Violet 14, Basic Yellow 57, Basic Red 76, Basic Blue 16, Basic Blue 347 (Cationic Blue 347 / Dystar), HC Blue No. 16, Basic Blue 99, Basic Brown 16, Basic Brown 17, Basic Yellow 57, Basic Yellow 87, Basic Orange 31, Basic Red 51 Basic Red 76
  • Nonionic nitro and quinone dyes and neutral azo dyes can be used as nonionic substantive dyes.
  • Suitable nonionic substantive dyes are those under the international names or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, HC Yellow 12, HC Orange 1, Disperse Orange 3, HC Red 1, HC Red 3, HC Red 10, HC Red 1 1, HC Red 13, HC Red BN, HC Blue 2, HC Blue 1 1, HC Blue 12, Disperse Blue 3, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9 known compounds , as well as 1, 4-diamino-2-nitrobenzene, 2-amino-4-nitrophenol, 1, 4-bis (2-hydroxyethyl) amino-2-nitrobenzene, 3-nitro-4- (2-hydroxyethyl) - aminophenol, 2- (2-
  • Acid dyes are taken to mean substantive dyes which have at least one carboxylic acid group (-COOH) and / or one sulfonic acid group (-SO3H).
  • -COOH carboxylic acid group
  • -SO3H sulfonic acid group
  • the protonated forms (-COOH, -SO3H) of the carboxylic acid or sulfonic acid groups are in equilibrium with their deprotonated forms (-COO-, -S03 _ ). The proportion of protonated forms increases with decreasing pH.
  • Acid dyes according to the invention can also be used in the form of their sodium salts and / or their potassium salts.
  • the acid dyes for the purposes of the present invention have a solubility in water (760 mmHg) at 25 ° C. of more than 0.5 g / L and are therefore not to be regarded as pigments.
  • the acid dyes preferably have a solubility in water (760 mmHg) at 25 ° C. of more than 1.0 g / l.
  • alkaline earth salts such as calcium salts and magnesium salts
  • aluminum salts of acid dyes often have a poorer solubility than the corresponding alkali salts. If the solubility of these salts is below 0.5 g / L (25 ° C, 760 mmHg), they do not fall under the definition of a substantive dye.
  • An essential feature of the acid dyes is their ability to form anionic charges, the carboxylic acid or sulfonic acid groups responsible for this usually being linked to different chromophoric systems.
  • Suitable chromophoric systems can be found, for example, in the structures of nitrophenylenediamines, nitroaminophenols, azo dyes, Anthraquinone dyes, triarylmethane dyes, xanthene dyes, rhodamine dyes, oxazine dyes and / or indophenol dyes.
  • Acid Yellow 1 (D&C Yellow 7, Citronin A, Ext. D&C Yellow No. 7, Japan Yellow 403, CI 10316, COLIPA n ° B001), Acid Yellow 3 (COLIPA n °: C 54, D&C Yellow N ° 10, Quinoline Yellow, E104, Food Yellow 13), Acid Yellow 9 (CI 13015), Acid Yellow 17 (CI 18965), Acid Yellow 23 (COLIPA n ° C 29, Covacap Jaune W 1 100 (LCW), Sicovit Tartrazine 85 E 102 (BASF), Tartrazine, Food Yellow 4, Japan Yellow 4, FD&C Yellow No.
  • Acid Yellow 1 (D&C Yellow 7, Citronin A, Ext. D&C Yellow No. 7, Japan Yellow 403, CI 10316, COLIPA n ° B001), Acid Yellow 3 (COLIPA n °: C 54, D&C Yellow N ° 10, Quinoline Yellow, E104, Food Yellow 13), Acid Yellow 9 (CI 13015), Acid Yellow 17 (CI 18965), Acid Yellow 23 (COLIPA
  • Acid Yellow 36 (CI 13065), Acid Yellow 121 ( CI 18690), Acid Orange 6 (CI 14270), Acid Orange 7 (2- Naphthol orange, Orange II, CI 15510, D&C Orange 4, COLIPA n ° C015), Acid Orange 10 (Cl 16230; Orange G sodium salt), Acid Orange 1 1 (CI 45370), Acid Orange 15 (CI 50120), Acid Orange 20 (CI 14600), Acid Orange 24 (BROWN 1; CI 20170; KATSU201; nosodiumsalt; Brown No.201; RESORCIN BROWN; ACID ORANGE 24 ; Japan Brown 201; D&C Brown No.1), Acid Re d 14 (C.I.14720), acid red 18 (E124, red 18; C1 16255), Acid Red 27 (E 123, C1 16185, C-Red 46, Echtrot D, FD&C Red Nr.2, Food Red 9, Naphtholrot S), Acid Red 33 (Red 33, Fuchsia Red, D&C Red 33,
  • Acid Green 50 (Brillantklare indispensable BS, Cl 44090, Acid Brilliant Green BS, E 142), Acid Black 1 (Black n ° 401, Naphthalene Black 10B, Amido Black 10B, CI 20 470, COLIPA n ° B15), Acid Black 52 (CI 1571 1), Food Yellow 8 (CI 14270), Food Blue 5, D&C Yellow 8, D&C Green 5, D&C Orange 10, D&C Orange 1 1, D&C Red 21, D&C Red 27, D&C Red 33, D&C Violet 2 and / or D&C Brown 1.
  • the water solubility of the anionic substantive dyes can be determined, for example, in the following way. 0.1 g of the anionic substantive dye are placed in a beaker. A stir bar is added. Then 100 ml of water are added. This mixture is heated to 25 ° C. on a magnetic stirrer while stirring. It is stirred for 60 minutes. The aqueous mixture is then assessed visually. If there are still undissolved residues, the amount of water is increased - for example in steps of 10 ml. Water is added until the amount of dye used has completely dissolved. Provided If the dye-water mixture cannot be assessed visually due to the high intensity of the dye, the mixture is filtered.
  • the solubility test is repeated with a larger amount of water. If 0.1 g of the anionic substantive dye dissolves in 100 ml of water at 25 ° C., the solubility of the dye is 1.0 g / l.
  • Acid Yellow 1 is called 8-hydroxy-5,7-dinitro-2-naphthalenesulfonic acid disodium salt and has a solubility in water of at least 40 g / L (25 ° C).
  • Acid Yellow 3 is a mixture of the sodium salts of mono- and sisulfonic acids of 2- (2-quinolyl) -1H-indene-1,3 (2H) -dione and has a water solubility of 20 g / L (25 ° C).
  • Acid Yellow 9 is the disodium salt of 8-hydroxy-5,7-dinitro-2-naphthalenesulfonic acid, its water solubility is above 40 g / L (25 ° C).
  • Acid Yellow 23 is the trisodium salt of 4,5-dihydro-5-oxo-1 - (4-sulfophenyl) -4 - ((4-sulfophenyl) azo) -1H-pyrazole-3-carboxylic acid and is good at 25 ° C soluble in water.
  • Acid Orange 7 is the sodium salt of 4 - [(2-Hydroxy-1-naphthyl) azo] benzene sulfonate. Its water solubility is more than 7 g / L (25 ° C).
  • Acid Red 18 is the trinity salt of 7-hydroxy-8 - [(E) - (4-sulfonato-1-naphthyl) -diazenyl)] - 1,3-naphthalenedisulfonate and has a very high solubility in water of more than 20 wt. %.
  • Acid Red 33 is the diantrium salt of 5-amino-4-hydroxy-3- (phenylazo) -naphthalene-2,7-disulphonate, its water solubility is 2.5 g / L (25 ° C).
  • Acid Red 92 is the disodium salt of 3,4,5,6-tetrachloro-2- (1,4,5,8-tetrabromo-6-hydroxy-3-oxoxanthen-9-yl) benzoic acid, its water solubility is specified with greater than 10 g / L (25 ° C).
  • Acid Blue 9 is the disodium salt of 2 - ( ⁇ 4- [N-ethyl (3-sulfonatobenzyl] amino] phenyl ⁇ ⁇ 4 - [(N-ethyl (3-sulfonatobenzyl) imino] -2,5-cyclohexadiene-1 - ylidene ⁇ methyl) benzene sulfonate and has a water solubility of more than 20% by weight (25 ° C).
  • thermochromic dyes can also be used.
  • Thermochromism includes the property of a material to change its color reversibly or irreversibly depending on the temperature. This can be done both by changing the intensity and / or the wavelength maximum.
  • Photochromism includes the property of a material to change its color reversibly or irreversibly depending on the exposure to light, in particular UV light. This can be done both by changing the intensity and / or the wavelength maximum.
  • Preparation (B) can also contain one or more other ingredients from the group of solvents, thickening or film-forming polymers Surface-active compounds from the group of nonionic, cationic, anionic or zwitterionic / amphoteric surfactants, the fatty components from the group of C8-C30 fatty alcohols, hydrocarbon compounds, fatty acid esters, the acids and bases belonging to the group of pH regulators, that of perfumes, the preservatives, the plant extracts and the protein hydrolysates can be selected.
  • solvents thickening or film-forming polymers
  • Surface-active compounds from the group of nonionic, cationic, anionic or zwitterionic / amphoteric surfactants, the fatty components from the group of C8-C30 fatty alcohols, hydrocarbon compounds, fatty acid esters, the acids and bases belonging to the group of pH regulators, that of perfumes, the preservatives, the plant extracts and the protein hydrolysates can be selected.
  • a reactor with a heatable / coolable outer shell and a capacity of 10 liters was filled with 4.67 kg of methyltrimethoxysilane. 1.33 kg (3-aminopropyl) triethoxysilane were then added with stirring. This mixture was stirred at 30 ° C. Then 670 ml of water (distilled) were added dropwise with vigorous stirring, the temperature of the reaction mixture being kept at 30 ° C. with external cooling. After the addition of water had ended, stirring was continued for a further 10 minutes. A vacuum of 280 mbar was then applied, the reaction mixture was heated to a temperature of 44 ° C., and the ethanol and methanol released during the reaction were distilled off. The alcohols distilled off were collected in a cooled receiver.
  • the bottles filled in step 1 were stored under defined conditions:

Abstract

La présente invention concerne un procédé pour la production et l'utilisation d'un produit pour le traitement de matière kératinique, en particulier de cheveux humains, comprenant les étapes suivantes : (1) mélange d'un ou plusieurs (alcoxy en C1-C6)silane-s organique-s avec de l'eau, (2) le cas échéant, élimination partielle ou complète des alcools en C1-C6 libérés par la réaction de l'étape (1) du mélange réactionnel, (3) le cas échéant, ajout d'un ou plusieurs ingrédients cosmétiques, (4) remplissage de la préparation dans une unité d'emballage, (5) stockage de la préparation dans l'unité d'emballage pendant une période d'au moins 5 jours, et (6) utilisation de la préparation sur la matière kératinique.
EP20702755.8A 2019-03-06 2020-01-24 Procédé pour la production et l'utilisation de produits de traitement capillaire comprenant des (alcoxy en c1-c6 )silanes organiques Withdrawn EP3934612A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019203076.9A DE102019203076A1 (de) 2019-03-06 2019-03-06 Verfahren zur Herstellung und Anwendung von Haarbehandlungsmitteln mit organischen C1-C6-Alkoxy-Silanen
PCT/EP2020/051827 WO2020177947A1 (fr) 2019-03-06 2020-01-24 Procédé pour la production et l'utilisation de produits de traitement capillaire comprenant des (alcoxy en c1-c6)silanes organiques

Publications (1)

Publication Number Publication Date
EP3934612A1 true EP3934612A1 (fr) 2022-01-12

Family

ID=69400536

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20702755.8A Withdrawn EP3934612A1 (fr) 2019-03-06 2020-01-24 Procédé pour la production et l'utilisation de produits de traitement capillaire comprenant des (alcoxy en c1-c6 )silanes organiques

Country Status (6)

Country Link
US (1) US20220000750A1 (fr)
EP (1) EP3934612A1 (fr)
JP (1) JP2022525004A (fr)
CN (1) CN113507919A (fr)
DE (1) DE102019203076A1 (fr)
WO (1) WO2020177947A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2168633B1 (fr) 2008-09-30 2016-03-30 L'Oréal Composition cosmétique comprenant un composé organique du silicium comportant au moins une fonction basique, un polymère filmogène hydrophobe, un pigment et un solvant volatil
FR2944963B1 (fr) * 2009-04-30 2011-05-27 Oreal Eclaircissement et/ou coloration de fibres keratiniques humaines au moyen d'une composition aqueuse comprenant un amino-trialcoxy silane ou -trialcenyloxy silane
FR2982155B1 (fr) 2011-11-09 2014-07-18 Oreal Composition cosmetique comprenant au moins un alcoxysilane
WO2017102856A1 (fr) * 2015-12-14 2017-06-22 L'oreal Procédé de traitement de fibres kératiniques à l'aide d'une composition aqueuse comprenant une combinaison d'alcoxysilanes particuliers

Also Published As

Publication number Publication date
DE102019203076A1 (de) 2020-09-10
WO2020177947A1 (fr) 2020-09-10
JP2022525004A (ja) 2022-05-11
US20220000750A1 (en) 2022-01-06
CN113507919A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
EP3837020B1 (fr) Procédé destiné à teindre de la matière kératinique, consistant en l'application d'un composé organique au silicium, d'un composé colorant et d'une huile de silicone
EP3946238A1 (fr) Augmentation de la stabilité d'agents utilisés pour traiter de la matière kératinique
EP3968938A1 (fr) Agent pour le traitement de fibres kératiniques contenant des silanes de formules définies
WO2020035186A1 (fr) Procédé destiné à teindre de la matière kératinique, consistant en l'application d'un composé organique au silicium, d'un oligoalkylsiloxane et d'un composé colorant
EP3934608B1 (fr) Procédé pour produire et utiliser des agents de traitement capillaire comportant des alcoxysilanes organiques en c1-c6
EP3934612A1 (fr) Procédé pour la production et l'utilisation de produits de traitement capillaire comprenant des (alcoxy en c1-c6 )silanes organiques
WO2020177935A1 (fr) Procédé pour la production et l'utilisation de produits de traitement capillaire comprenant des (alcoxy en c1-c6)silanes organiques
WO2020177933A1 (fr) Procédé pour la fabrication de produits de traitement capillaire comprenant des (alcoxy en c1-c6)silanes organiques
WO2020177934A1 (fr) Procédé pour produire des agents de traitement capillaire comportant des alcoxysilanes organiques en c1-c6
EP3934611B1 (fr) Moyens pour le traitement de fibres kératiniques contenant le produit de réaction composé de deux alcoxy-silanes en c1-c6 organiques et de l'eau
WO2023110229A1 (fr) Procédé de production de produits de traitement capillaire par mélange de c1-c6-alkoxysilanes organiques et d'agents alcalinisants dans des rapports molaires spécifiques
EP3968939A1 (fr) Agent pour le traitement de fibres kératiniques contenant des silanes de formules définies
WO2021228465A1 (fr) Méthode de traitement des cheveux humains avec des agents contenant des mélanges de siloxanes alcoxy en c1-c6 organiques
WO2022167184A1 (fr) Procédé de traitement de cheveux humains avec des agents contenant des mélanges d'alcoxy siloxanes organiques en c1 à c6
WO2020239291A1 (fr) Renforcement de la stabilité d'agents utilisés pour traiter de la matière kératinique
EP4196078A1 (fr) Composition cosmétique obtenue en mélangeant deux mélanges de silanes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220426