EP3933153A1 - Dispositif électromécanique d'actionnement pour un ouvrant avec des aimants permanents portés par au moins une roue de l'embrayage - Google Patents

Dispositif électromécanique d'actionnement pour un ouvrant avec des aimants permanents portés par au moins une roue de l'embrayage Download PDF

Info

Publication number
EP3933153A1
EP3933153A1 EP21182950.2A EP21182950A EP3933153A1 EP 3933153 A1 EP3933153 A1 EP 3933153A1 EP 21182950 A EP21182950 A EP 21182950A EP 3933153 A1 EP3933153 A1 EP 3933153A1
Authority
EP
European Patent Office
Prior art keywords
wheel
magnetic
rotation
magnetically active
clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP21182950.2A
Other languages
German (de)
English (en)
Other versions
EP3933153B1 (fr
Inventor
Aitor Agueda
Christian Raude
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somfy Protect by Myfox SAS
Original Assignee
Opendoors SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opendoors SAS filed Critical Opendoors SAS
Publication of EP3933153A1 publication Critical patent/EP3933153A1/fr
Application granted granted Critical
Publication of EP3933153B1 publication Critical patent/EP3933153B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/0038Operating or controlling locks or other fastening devices by electric or magnetic means using permanent magnets
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B15/00Other details of locks; Parts for engagement by bolts of fastening devices
    • E05B15/0053Other details of locks; Parts for engagement by bolts of fastening devices means providing a stable, i.e. indexed, position of lock parts
    • E05B15/0073Other details of locks; Parts for engagement by bolts of fastening devices means providing a stable, i.e. indexed, position of lock parts magnetically operated
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/02Movement of the bolt by electromagnetic means; Adaptation of locks, latches, or parts thereof, for movement of the bolt by electromagnetic means
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/0001Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof
    • E05B2047/0014Constructional features of actuators or power transmissions therefor
    • E05B2047/0018Details of actuator transmissions
    • E05B2047/002Geared transmissions
    • E05B2047/0022Planetary gears
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/0001Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof
    • E05B2047/0014Constructional features of actuators or power transmissions therefor
    • E05B2047/0018Details of actuator transmissions
    • E05B2047/0026Clutches, couplings or braking arrangements
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B2047/0083Devices of electrically driving keys, e.g. to facilitate opening
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/0001Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof
    • E05B47/0012Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with rotary electromotors

Definitions

  • the present invention relates to an electromechanical actuating device for an opening of the door or window type, the electromechanical actuating device being intended to drive in rotation a rotor of a rotary mechanism of the opening such as a cylinder of a lock mechanism.
  • the invention applies in particular to the fields of locks which include a lock cylinder equipped with a rotor with, on the exterior side, an exterior lock entry allowing the introduction of a key admitted by the lock and, on the interior side. , either an interior lock entry allowing the introduction of a key admitted by the lock, or a coupling member allowing the connection of the rotor with a manual button.
  • the rotational actuation of the rotor of the lock cylinder by means of a key or the manual button makes it possible to control the movement of a spring bolt and / or a dead bolt of the lock in order to open or close the door and / or lock or unlock the lock.
  • the opening may in particular relate to a movable part of a window or of a door.
  • the rotary mechanism to which the electromechanical actuating device is intended to be coupled in rotation may be the rotor of the handle of this window, whether it is an opening of the window according to a vertical axis or along two axes, vertical and horizontal respectively, as is the case for so-called tilt-and-turn windows.
  • a door lock comprises a lock cylinder having a stator fixedly mounted on the opening and a rotor mounted to rotate in the stator so as to pass through the thickness of the opening.
  • the rotational actuation of the rotor of the lock cylinder can actuate in translation a deadbolt of the lock, the latter being movable in translation with respect to the stator and capable of locking the lock by insertion into a keeper secured to a fixed frame, or jamb, on which the opening is movably mounted.
  • a deadbolt is capable of varying between a locking position where it is deployed and an unlocking position where it is retracted.
  • the door lock may also include a handle mounted to pivot on the opening or a rotary manual button to actuate at least one spring bolt movable in translation in the stator of the lock.
  • a spring bolt is capable of varying between a closed position where it is deployed and an open position where it is retracted.
  • the actuation of the handle or the manual rotary knob moves the spring bolt from the closed position to the open position, while the reverse movement can be done by a spring internal to the lock.
  • the rotational actuation of the rotor of the lock cylinder can also be used to actuate this spring bolt.
  • the spring bolt comprises a bevelled portion, which by reaction against the fixed frame when closing the movable leaf, causes retraction of the bolt in the opening against the action of the internal spring.
  • the rotor of the lock cylinder comprises, on the exterior side, an exterior lock entry allowing the introduction of a key admitted by the lock and, on the interior side, either an interior lock entry allowing the introduction of an admitted key by the lock, or a rotor coupling member allowing the installation of a manual button so as to couple in rotation the rotor of the lock cylinder with the manual button.
  • the rotational actuation of the rotor of the lock cylinder by means of a key or the manual button makes it possible to control the movement of the spring bolt and / or the dead bolt of the lock, in particular in order to open or close the lock. 'opening by moving the spring bolt and / or locking or unlocking the lock by moving the dead bolt.
  • electromechanical devices intended for motorized actuation of such locks, for example in the image of the solution described in the document EP2762661A1 .
  • These electromechanical lock actuation devices are intended to be fixed on the inside of the opening in a manner that cooperates with the rotor of the lock to be motorized with a view to its actuation in order to control its locking and / or its unlocking by movement of the lock. deadbolt and / or to control its opening and / or closing by movement of the spring bolt.
  • the electromechanical lock actuation devices generally comprise a frame to be fixed on one face of the opening, the lock of which is to be motorized and a drive member movable in rotation with respect to the frame and intended to be coupled to one end of the rotor. lock cylinder. They also include a source of electrical energy for supplying, on the one hand, an electric actuator suitable for rotating the drive member, and a programmable control unit suitable for communication with the outside, in particular with a view to receiving external instructions and transmitting outgoing information. The control unit controls the electric actuator taking into account, among other things, these instructions and this information.
  • Cooperation between the rotor of the lock cylinder and the drive member internal to the electromechanical device for operating the lock can be achieved by placing one of the keys accepted by the lock cylinder at the level of the lock cylinder. 'interior lock entry, this key then being engaged with the drive member to be integral in rotation with one another.
  • the cooperation between the rotor of the lock cylinder and the drive member internal to the electromechanical lock actuating device can take place through the aforementioned coupling member, which can be made integral with the rotor of the lock. lock cylinder and is intended initially for the installation of the manual button also mentioned above. Once the manual button has been removed, the coupling member can be brought into engagement with the drive member internal to the electromechanical actuating device so that these two elements are integral in rotation with one another.
  • Electromechanical devices To allow manual actuation of the drive member and / or to prevent damage to the actuator in the event that external forces are applied to the rotor of the lock cylinder, for example in the event of a break-in, most Electromechanical devices also include a clutch interposed between the actuator and the drive member.
  • Such a clutch conventionally varies between at least one engaged configuration in which there is a mechanical transmission link between the drive member and the actuator, and a disengaged configuration in which this mechanical transmission link is absent.
  • the clutch can be designed so as to be able to adopt a first engaged configuration in which the actuator is capable of rotating the drive member in a first direction of rotation and a second engaged configuration in which the actuator is capable of rotating the drive member in a second direction of rotation opposite to the first direction of rotation.
  • the clutch can operate according to friction principles, for example by repeating the teachings of the document FR3028282A1 .
  • the clutch can be based on the known principle of a tilting lyre, which solution exploits the presence of a tilting support relative to the frame.
  • This type of solution is for example described in the documents FR2693757A1 and WO2017 / 114534A1 .
  • a first drawback of this type of solution is that the principles of friction inevitably induce wear phenomena of the parts involved. This results in maintenance problems, or even malfunction, which is impractical and may be necessary. expensive.
  • the release value which defines the operation of the friction clutch device is not precise and is, on the contrary, susceptible to evolve over time in a random and uncontrolled manner. This can lead to malfunctions of the electromechanical device, such as, for example, the impossibility of being able to switch from a disengaged configuration to an engaged configuration, or even excessive braking or even locking of the wheel concerned, these situations not being acceptable.
  • the document FR2693757A1 provides for the presence of a magnetic return system to magnetically urge the tilting support towards the angular position corresponding to the disengaged configuration.
  • This system uses a permanent magnet carried by the frame and a permanent magnet carried by the tilting support.
  • a magnetic return system uses a permanent magnet carried by the frame and a permanent magnet carried by the tilting support.
  • such an organization is only able to exercise its return function within a relatively small pivoting angular range of the tilting support.
  • the magnetic force becomes too weak and is easily overcome. This risk is likely to appear in the event of strong vibrations or of a significant shock undergone by the electromechanical device, for example very simply at the moment when the opening had to undergo a slamming against the jamb.
  • the object of the present invention is to propose an electromechanical actuation device for an opening of the door or window type which responds to the problems raised by the state of the art as presented above, in particular which is reliable, requires little effort. maintenance, is economical, and avoids any risk of malfunction, in particular but not exclusively in the event of shock or vibration.
  • the tilting axis around which the tilting support tilts relative to the frame coincides with the axis of the driving wheel.
  • said at least one permanent magnet generates a generally oriented magnetic field, in the vicinity of at least one of the axial faces of the magnetically active wheel which carries it, substantially parallel to the axis of rotation of the magnetically active wheel which carries said at least one permanent magnet.
  • the coupling device comprises first and second distinct planet wheels, mounted to rotate with respect to the support tilting around first and second axes of rotation arranged on either side of the driving wheel and in engagement.
  • the first planet gear being in engagement with the driven wheel in its first circumferential zone in the first engaged configuration
  • the second planet gear being in engagement with the driven wheel in its second circumferential zone in the second engaged configuration, no first and second planet wheels not being in engagement with the driven wheel in the disengaged configuration
  • at least one magnetically active wheel chosen from among the first planet wheel and the second planet wheel carries at least one magnetic assembly including at least two permanent magnets arranged at respective locations distributed angularly around the axis of rotation of the magnetically active wheel which carries said magnetic assembly, the location of each of the permanent magnets of said magnetic assembly being radially offset with respect to the axis of rotation of the magnetically active wheel which carries it so that the permanent magnet is movable in rotation relative to the tilting support together with the magnetically active wheel which carries it.
  • each of the first and second planet wheels comprises such a magnetic assembly, which comprises a plurality of permanent magnets angularly distributed around the axis of rotation of the corresponding magnetically active wheel.
  • each magnetic assembly comprises at least four distinct permanent magnets distributed angularly at constant pitches around the axis of rotation of the magnetically active wheel which carries said magnetic assembly.
  • At least two permanent magnets are located, regardless of the angular position of the magnetically active wheel considered with respect to the tilting support, in line with the magnetic element with the interposition of d a predetermined air gap counted parallel to the axis of rotation of said magnetically active wheel and between 0.6 and 1 mm, and more preferably substantially equal to 0.8 mm.
  • the magnetic element of the tilting support is constituted by a plate comprising a ferromagnetic material arranged in line with at least one of the axial faces of each magnetically active wheel with the interposition of a predetermined interval included between 0.2 and 0.6 mm, and more preferably substantially equal to 0.4 mm.
  • the chassis carries two distinct static magnetic members respectively associated with two magnetically active wheels formed respectively by the first and second planet wheels, and in which for each magnetically active wheel, at least one of its permanent magnets comes position itself vis-à-vis the associated static magnetic member, when the tilting support occupies an angular position relative to the frame corresponding to the disengaged configuration of the clutch, with the interposition of a predetermined air gap counted parallel to the tilting axis between 0.6 and 1 mm, and more preferably substantially equal to 0.8 mm.
  • the at least one static magnetic member is transversely offset by a distance of between 1 and 2 mm relative to the plumb line of the magnetic element of the tilting support considered parallel to the tilting axis, avoiding a magnetic interaction between the at least one static magnetic member and the magnetic element.
  • the path taken by each permanent magnet carried by the at least one magnetically active wheel during the rotation of said magnetically active wheel relative to the tilting support under the effect of the drive by the actuator is transversely offset by a minimum distance of between 3 and 5 mm relative to the plumb line of at least one static magnetic member considered parallel to the axis of rotation of said wheel magnetically active.
  • the at least one static magnetic member comprises at least one permanent magnet, the magnetic pole of which is opposite the magnetic pole of the at least one permanent magnet carried by the at least one magnetically active wheel.
  • the electromechanical actuator 10 which is visible on the figures 2 to 8 is intended to be mounted on a face 201 of an opening 200 of the door or window type.
  • the electromechanical actuation device 10 is intended to drive in rotation a rotor of a rotary mechanism of the opening.
  • the opening 200 is a door and the rotary mechanism of which a rotor is to be driven by means of the electromechanical actuating device 10 is a cylinder of a lock mechanism.
  • the opening 200 is for example a door mounted to pivot on a fixed frame or jamb (not shown) connecting the opening 200 to a fixed wall.
  • the face 201 corresponds to a face of the opening 200 intended to be positioned on the interior side of the part closed by the opening 200 and the fixed wall.
  • the opening 200 is here equipped with a lock 100, having a lock cylinder whose rotor is to be driven via the electromechanical actuating device 10.
  • the opening 200 could be a casement of a window, pivoting or sliding, or with tilt-and-turn assembly.
  • the principles are in fact identical between a rotary mechanism to be motorized in the form of a rotor of a lock cylinder of a door lock (to lock and unlock the lock) and a rotary mechanism to be motorized in the form of a window handle (to lock and unlock the window), in order to carry out these operations without having to overcome the motorization due to the automatic disengagement. It is irrelevant whether, in the case of a tilt-and-turn window, turning the handle also causes tilt-and-turn opening and closing. of the window by a mechanical deflection of the crutch rotation.
  • the disengagement obtained by the electromechanical actuating device 10 is necessary in order to be able to manually carry out the rotary movement of the lock in the case of the door from the outside via a key or from the inside via the actuation button for this purpose. , or to manually perform the rotary movement of the window handle from the inside.
  • the lock 100 comprises, in a known manner, for example as described in the document EP2762661A1 , a lock cylinder having a stator mounted on the leaf 200 and a rotor mounted to rotate in the stator so as to pass through the thickness of the leaf 200.
  • the lock 100 comprises at least one primary lock equipped with a bolt spring 104 (also known under the terminology “limit bolt” or “closing bolt”) mechanically coupled to the rotor of the lock cylinder and capable of varying, for example by rotation of the rotor, between a closed position in in which the spring bolt 104 is deployed outwardly of the lock 100 and an open position in which the spring bolt 104 is retracted inwardly of the lock 100.
  • the lock 100 also includes a spring (not visible in the figures) urging the spring bolt 104 towards the closed position and such that the passage from the closed position to the open position by rotation of the rotor takes place in opposition to the action of this spring.
  • the spring bolt 104 comprises a bevelled portion, which by reaction against the fixed frame when closing the leaf 200, causes a retraction of the spring bolt 104 in the leaf 200 against the action of the internal spring, involving also the passage from the closed position to the open position without requiring rotation of the rotor for this purpose.
  • the spring bolt 104 in the closed position, due to the fact that it is deployed, the spring bolt 104 is able to be inserted into a keeper integral with the fixed frame on which the leaf 200 is mounted in order to hold the latch. opening 200 closed with respect to the fixed wall.
  • the spring bolt 104 in its open position, due to the fact that it is retracted, the spring bolt 104 is no longer inserted into the keeper and the opening of the leaf 200 is possible.
  • the lock 100 can also include a secondary lock equipped with a dead bolt 103 (otherwise known under the terminology "bit") mechanically coupled to the rotor 101 of the lock cylinder and capable of varying, by rotation of the rotor 101, between a position of. locking in which the deadbolt 103 is deployed relative to the rest of the lock 100 and a locking position in which the deadbolt 103 is retracted into the lock 100. Over a period of time angular travel, the rotational actuation of the rotor 101 translates this dead bolt 103 from one position to the other.
  • the deadbolt 103 is also able to be inserted in a retractable manner, in the locking position, in an indentation of the keeper integral with the fixed frame on which the leaf 200 is mounted, in order to lock or unlock the lock 100.
  • the arrangement of such bolts 103, 104 is for example described in the document FR2795120A1 .
  • the lock 100 can also include a handle 105 pivotally mounted on the opening 200 to actuate at least the spring bolt 104.
  • the rotor of the lock cylinder can comprise, on the outside, an outside lock entry allowing the introduction of a key admitted by the lock 100.
  • the rotor of the lock cylinder may comprise, on the interior side, either an interior entry allowing the introduction of a key (not shown) admitted by the lock 100, or a coupling member 107, an example of which is visible on the figure. figure 1 , suitable for being driven in rotation, for example by a manual button (not shown).
  • the coupling member 107 is for example a tail or a cylinder fork.
  • the rotational coupling with the rotor of the lock cylinder of the lock 100 can be done either by means of the key previously inserted into the interior entry of the lock. 100, or via the coupling member 107, with the prior removal of the aforementioned manual button.
  • the rotational actuation of the rotor of the lock 100 in a motorized manner makes it possible to control the movement of the spring bolt 104 between the open and closed positions in order, respectively, to open and close the leaf 200 and / or to control the movement of the dead bolt 103 between the locking and unlocking positions in order, respectively, to lock and unlock the lock 100 and therefore the opening 200 relative to the fixed frame.
  • the electromechanical actuation device 10 comprises a frame 11 in one or more parts, intended to be fixed on the face 201 of the opening 200.
  • the frame 11 is provided with a proximal face 12 and fixing elements 13 allowing to fix the frame 11 on the opening 200 in a manner placing the proximal face 12 of the frame 11 against the face 201 of the opening 200.
  • the fixing elements 13 are for example in the form of holes each suitable for the installation of a screw retaining the frame 11 against the opening 200 by engaging in the opening 200. It is possible to provide for the presence of a damping material between the face 201 of the opening 200 and the proximal face 12 of the frame 11, to provide a damped mechanical connection between the electromechanical actuating device 10 and the opening 200 for vibratory and mechanical decoupling.
  • the electromechanical actuation device 10 comprises a drive member 14 movable in rotation relative to the frame 11 and intended to be coupled to one end of the rotor of the lock cylinder of the lock 100, in particular at its end on the inside. , when the frame 11 is fixed to the face 201 of the opening 200.
  • This mechanical coupling can, as explained above, be produced by means of a key inserted beforehand into the interior entrance of the lock 100 or via the coupling member 107.
  • the drive member 14 is adapted accordingly and comprises suitable rotational coupling elements for cooperation either with the key or with the member. coupling 107.
  • the electromechanical actuating device 10 can also include a rotary operating button (not shown) adapted for manual engagement and for manually driving the drive member 14, ultimately making it possible to manually drive the rotor of the lock cylinder in rotation. of the lock when the latter is coupled in rotation to the drive member 14.
  • a rotary operating button (not shown) adapted for manual engagement and for manually driving the drive member 14, ultimately making it possible to manually drive the rotor of the lock cylinder in rotation. of the lock when the latter is coupled in rotation to the drive member 14.
  • the electromechanical actuation device 10 comprises an actuator 15 comprising an electric motor and allowing the drive member 14 to be electrically rotated either in a first direction of rotation suitable for moving the spring bolt 104 from its closed position. to its open position and / or move the dead bolt 103 from the locked position to the unlocked position, or in a second direction of rotation opposite to the first direction of rotation allowing passage of the spring bolt 104 from position d opening to the closed position and / or controlling the movement of the deadbolt 103 from its unlocked position to the locked position.
  • the electromechanical actuation device 10 comprises, for this purpose, a clutch 16 connecting the electric motor of the actuator 15 to the drive member 14.
  • the electromechanical actuation device 10 comprises an autonomous source of electrical energy, for example on battery, accumulator or cell, to supply on the one hand the actuator 15, on the other hand an electronic control unit programmable, microcontroller type, suitable for communication with the outside via means of communication of radiofrequency, wifi, Bluetooth, or equivalent type such as for example ZIGBEE, Zwave or proprietary protocols, in particular with a view to receiving external instructions and the transmission of outgoing information.
  • the electronic control unit controls the actuator 15 on the basis of these instructions and this information and as a function of any sensors integrated into the electromechanical actuation device 10, for example force sensors, pressure sensors. position, distance sensors, speed sensors or presence sensors.
  • the source of electrical energy can also be used to supply electricity to these various sensors if this is necessary.
  • the electronic control unit contains all the algorithms necessary for the operation of the assembly, these algorithms developing the control strategy for the various actuators including the actuator 15, according to the external instructions and the information received from the various sensors mentioned above. . These arrangements are conventional in the field and within the reach of a person skilled in the art who is able to adapt these elements.
  • the clutch 16 varies between a disengaged configuration and two different engaged configurations adapted to a rotation of the drive member 14 by the actuator 15.
  • the electric motor of the actuator 15 In the disengaged configuration, the electric motor of the actuator 15 is not activated. not coupled to the drive member 14.
  • the electric motor of the actuator 15 Conversely, in a first engaged configuration, the electric motor of the actuator 15 is coupled to the drive member 14 to ensure the rotational drive of the. drive member 14 electrically via the electric motor of the actuator 15 in the first direction of rotation.
  • the electric motor of the actuator 15 is coupled to the drive member 14 to ensure the rotational drive of the drive member 14 electrically via the electric motor of the actuator. 15 in the second direction of rotation.
  • the clutch 16 comprises a driving wheel 17 rotating relative to the frame 11 and driven in rotation by the actuator 15.
  • the driving wheel 17 is mounted in free rotation on the frame 11 and is itself driven in rotation by the output of a speed reducer whose input is rotated by an output shaft of the electric motor of the actuator 15.
  • the clutch 16 also comprises a driven wheel 18 connected in rotation with the drive member 14.
  • the driven wheel 18 is integral in rotation with the drive member 14 about the axis of rotation of the drive member 14 relative to the frame 11, this axis of rotation being moreover intended to be substantially aligned, in use, with the axis of the rotor of the rotating mechanism of the sash.
  • the driven wheel 18 can be formed by elements integral with the rest of the drive member 14.
  • the clutch 16 also comprises a tilting support 19 capable of tilting bidirectionally with respect to the frame 11 about a tilting axis 20.
  • the axis of tilting 20 around which the tilting support 19 swings relative to the frame 11 coincides with the axis of the driving wheel 17.
  • the tilting axis 20 it would still be possible to provide for the tilting axis 20 to be positioned between the driving wheel 17 and the driven wheel 18, for example by being positioned on a straight line passing through the axis of rotation of the driving wheel 17 and through the axis of rotation 22 of the driven wheel 18.
  • the tilting axis 20 is parallel to the 'axis of rotation of the driving wheel 17 and parallel to the axis of rotation 22 of the driven wheel 18.
  • the previously mentioned rotary operating button which is not illustrated as such, to be integral with a drive wheel 23 positioned around the electric motor of the actuator 15.
  • This drive wheel 23, when it is rotated by a manual force via the rotary operating button which caps the drive wheel 23, rotates the driven wheel 18 by means of an intermediate wheel absent in the figures, engaged both with the drive wheel 23 and with the driven wheel 18.
  • the axis of the maneuvering button is offset with respect to the axis of the member d 'drive 14.
  • the fact that the drive wheel 23 and the actuator 15 are housed in the rotary operating button makes it possible to optimize the general size and makes it possible to avoid phenomena of jamming of fingers for a hand actuating the handle 105.
  • the transmission from the drive wheel 23 to the r Oe driven 18 is in particular possible when the clutch 16 has previously been placed in the disengaged configuration.
  • the electromechanical actuating device 10 comprises a mechanical torque limiting mechanism 24 which varies between a deactivated configuration in which the maneuver button is rotatably coupled with the drive wheel 23 and an activated configuration. in which the operating button and the drive wheel 23 are separated in rotation.
  • the activated configuration is automatically adopted as soon as a mechanical torque having a value greater than a predetermined value for which the Mechanical torque limiting mechanism 24 is designed is manually applied to the operating button and the disabled configuration is automatically adopted otherwise, that is, as long as the mechanical torque manually applied to the operating button is less than or equal to this value predetermined.
  • the presence of the mechanical torque limiting mechanism 24 is advantageous in order to avoid any risk of deterioration of the transmission between the operating button and the drive member 14 when very high forces are applied to the operating button, in particular in the event of break-in, or in the event of the rotor of the rotary mechanism seizing up.
  • the mechanical torque limiting mechanism 24 comprises at least one radially displaceable latching projection 25 capable of being retractably inserted into a complementary locking notch formed in the operating button.
  • Each latching projection 25 is biased radially towards the inside of the locking notch by means of elastic means 26.
  • the elastic means 26 are for example constituted by a part of oblong shape visible on the figure 2 made of an elastically deformable material, the two latching projections 25 being provided projecting from the two large edges of this part. The shape and the material of the oblong part make it possible in particular to adjust the predetermined value beyond which the operating button is uncoupled in rotation with respect to the drive wheel 23.
  • the clutch 16 also comprises a coupling device carried by the tilting support 19, generally positioned between the driving wheel 17 and the driven wheel 18 and able to achieve selective coupling of the driving wheel 17 to the driven wheel 18. More precisely, this coupling device comprises at least one satellite wheel 27 in engagement with the driving wheel 17 permanently and movable in rotation with respect to the tilting support 19 along an axis of rotation 28 eccentric with respect to the tilting axis 20. The axis of rotation 28 of said at least one satellite wheel 27 thus moves around the tilting axis 20 together with the tilting support 19. By tilting, the tilting support 19 causes the axis of rotation 28 of each satellite wheel to move. 27 following a circular translation segment, the angle covered being equal to the tilting angle of the tilting support 19 relative to the chassis 11.
  • the number of satellite wheels 27 may be equal to 1, ma is more preferably greater than or equal to 2 in order to limit the angular tilting amplitude of the tilting support 19 to pass from the first engaged configuration to the second engaged configuration and vice versa.
  • the satellite wheel 27 can be offset from the tilting support 19 on which it is mounted along the axis. of rotation 28.
  • a silicone washer (not shown), allowing the free rotation of the satellite wheel relative to the tilting support 19 can be provided between the satellite wheel 27 and the tilting support 19.
  • the clutch 16 can vary between the first engaged configuration, the second engaged configuration and the disengaged configuration, by a simple angular tilting movement of the tilting support 19 around the tilting axis 20 relative to the chassis 11 .
  • a satellite wheel 27 of the coupling device is engaged with the driven wheel 18 in a first circumferential zone 181 of the driven wheel 18 so that the actuator 15 drives, via the clutch 16, the rotor of the rotary mechanism in the first direction of rotation P1, mentioned above.
  • the same planet wheel 27 can optionally, in a manner not shown, be used for each of the first and second engaged configurations.
  • two separate planet wheels 271, 272 can be provided, each being permanently engaged with the driving wheel 17 but only the planet wheel 271, mounted on the tilting support 19 by its axis of rotation 28, is in engagement with the first circumferential zone 181 of the driven wheel 18 in the first engaged configuration and only the satellite wheel 272, mounted on the tilting support 19 by its axis of rotation 28, is in engagement with the second circumferential zone 182 of the driven wheel 18 in the second engaged configuration. None of the planet wheels 271, 272 engages the driven wheel 18 in the disengaged configuration (for example figure 2 ).
  • At least one magnetically active wheel chosen from the group consisting of the driving wheel 17 and said at least one planet wheel 27 of the coupling device carries at least one permanent magnet 29 arranged in such a way that said at least one permanent magnet 29 is rotatable relative to the tilting support 19 together with the magnetically active wheel which carries said at least one permanent magnet 29.
  • a permanent magnet can typically be a neodymium magnet composed of an alloy of neodymium, iron and boron, or else based on ferrite, or else an alloy of iron with essentially aluminum, nickel and cobalt.
  • each permanent magnet 29 can therefore cooperate magnetically with the tilting support 19 and / or with a magnetic member secured to the frame 11 as will be developed later, makes it possible to propose an electromechanical actuating device 10 which is reliable, which requires little maintenance, which is economical, and which avoids any risk of malfunction, in particular but not exclusively in the event of an impact or of vibration.
  • the different wheels used for the operation of the clutch 16 are here toothed wheels adapted to come into engagement by a mutual engagement interposed between the teeth of two wheels cooperating with one another. But alternatively they could be wheels cooperating with each other only by friction, the adhesion depending on Coulomb's law.
  • Each permanent magnet 29 generates a globally oriented magnetic field, in the vicinity of at least one of the axial faces of the magnetically active wheel which carries it, substantially parallel to the axis of rotation 21, 28 of the magnetically active wheel which carries it. gate.
  • the coupling device comprises the aforementioned first and second planet wheels 271, 272, which are mounted to rotate with respect to the tilting support 19 around first and second axes of rotation 28 arranged, as can be seen on the figures, on either side of the driving wheel 17 and in engagement with the driving wheel 17.
  • At least one magnetically active wheel chosen from among the first satellite wheel 271 and the second satellite wheel 272 carries at least one magnetic assembly including at least two permanent magnets 29 arranged at respective locations distributed angularly around the axis of rotation 28 of the magnetically active wheel which carries said magnetic assembly.
  • the location of each of the permanent magnets 29 of said magnetic assembly is radially offset with respect to the axis of rotation 28 of the magnetically active wheel which carries it so that the permanent magnet 29 is rotatable relative to the tilting support 19 jointly with the magnetically active wheel that carries it.
  • the first satellite wheel 271 carries a magnetic assembly including four permanent magnets 29 arranged at respective locations distributed angularly at constant pitches around the axis of rotation 28 of the first satellite wheel 271 which wear this magnetic set.
  • the second satellite wheel 272 also carries a magnetic assembly including four permanent magnets 29 arranged at respective locations angularly at constant pitch around the axis of rotation 28 of the second satellite wheel 272 which carries this magnetic assembly.
  • the permanent magnets 29 are discrete and angularly distributed around the axis of rotation 28 of the first satellite wheel 271, respectively around the axis of rotation 28 of the second satellite wheel 272, ensures the presence of one of the permanent magnets in cooperation with the tilting support 19, regardless of the angle of rotation of the satellite wheel 271 or of the satellite wheel 272 when the latter is stationary.
  • the permanent magnet (s) 29 are mounted on the driving wheel 17, instead of the planet wheels 271, 272.
  • the figure 3 provides details on the organization of the clutch 16, which includes a tilting support 19 comprising a first plate 191 and a second plate 192 arranged parallel at a distance from each other.
  • Two cylindrical shafts 193 project from the first plate 191 towards the second plate 192. They are each secured at their distant end to the second plate 192, creating a one-piece assembly.
  • Each of the cylindrical axes 193 acts as the aforementioned axis of rotation 28 for the two planet wheels 271, 272, which are mounted axially on a respective cylindrical axis 193 in an axial position placed between the two plates 191, 192.
  • the first plate comprises an opening 194, which allows the component part of the drive shaft of the driving wheel 17 to pass on either side of the first plate 191, so that the driving wheel 17 is also positioned between the two plates 191, 192.
  • the tilting support 19 comprises an element sensitive to a magnetic field, called a magnetic element, capable of cooperating magnetically with each permanent magnet 29 carried by each wheel magnetically active, when the magnetic element is located in the magnetic field generated by the corresponding permanent magnet 29, in a manner creating a magnetic force of interaction between the magnetic element and the permanent magnet 29 considered.
  • a magnetic element capable of cooperating magnetically with each permanent magnet 29 carried by each wheel magnetically active, when the magnetic element is located in the magnetic field generated by the corresponding permanent magnet 29, in a manner creating a magnetic force of interaction between the magnetic element and the permanent magnet 29 considered.
  • the clutch 16 can thus comprise a magnetic clutch device associated with each magnetically active wheel where each magnetic clutch device is formed by the magnetic element and the at least one permanent magnet 29 carried by the associated magnetically active wheel.
  • the magnetic clutch device in fact results from the magnetic force of interaction between each permanent magnet 29 carried by the associated magnetically active wheel (the driving wheel 17 and / or at least one of the planet wheels 271, 272) and the 'magnetic element.
  • Each magnetic clutch device applies a magnetic return torque, around the axis of rotation 21, 28 of the magnetically active wheel associated with this magnetic clutch device, between the tilting support 19 and the magnetically active wheel associated with said device.
  • magnetic clutch the magnetic return torque having a predetermined nominal value depending on the magnetic force of interaction between each permanent magnet 29 carried by the associated magnetically active wheel and the magnetic element.
  • each magnetic clutch device ensures that the tilting support 19 and the magnetically active wheel associated with this magnetic clutch device are coupled in rotation when the mechanical torque applied to the associated magnetically active wheel is less than the nominal value, and that the tilting support 19 and the associated magnetically active wheel are decoupled in rotation when the mechanical torque applied to the associated magnetically active wheel is greater than or equal to the nominal value.
  • Such magnetic forces make it possible to convert a rotation of the drive wheel 17 into a movement of the tilting support 19 and of the planet wheels 271, 272 as long as one of the planet wheels 271, 272 is not in engagement with the driven wheel 18. , then to allow the tilting support 19 to stop its tilting while the driving wheel 17 continues to drive the planet wheels 271, 272 in rotation by tilting ratio 19, and the driven wheel 18 relative to the frame 11, in addition exceeding the nominal magnetic torque values mentioned above.
  • At least two permanent magnets 29 are located, regardless of the angular position of the magnetically active wheel considered relative to the tilting support 19, in line with the magnetic element with interposition of a predetermined air gap counted parallel to the axis of rotation 21, 28 of said magnetically active wheel 17, 271, 272 and between 0.6 and 1 mm, and more preferably substantially equal to 0.8 mm.
  • the magnetic element of the tilting support 19 is constituted by a plate comprising a ferromagnetic material arranged in line with at least one of the axial faces of each magnetically active wheel 17. , 271, 272 with the interposition of a predetermined interval between 0.2 and 0.6 mm, and more preferably substantially equal to 0.4 mm.
  • a ferromagnetic material is for example cobalt or iron.
  • the plate made of ferromagnetic material can in particular be formed by the first plate 191 and / or by the second plate 192.
  • the material is typically a steel of the DX51D type.
  • the frame 11 comprises at least one static magnetic member 30 capable of being positioned, when the clutch 16 occupies its disengaged configuration, in the magnetic field generated by at least one permanent magnet 29 of the at least one magnetically active wheel, creating a magnetic return force between the static magnetic member 30 and this permanent magnet 29.
  • a magnetic return device consists of said at least one static magnetic member 30 and the at least one permanent magnet 29 cooperating magnetically with the at least one static magnetic member 30.
  • the magnetic return device results from all the forces. magnetic return thus present by this phenomenon.
  • the magnetic return device applies a magnetic return torque, around the tilting axis 20, between the tilting support 19 and the frame 11, this mechanical return torque having a predetermined threshold value depending on the magnetic return forces applied.
  • the tilting support 19 is stabilized, in the frame 11, in an angular position corresponding to the disengaged configuration of the clutch 16, under the effect of the magnetic return torque.
  • the tilting support 19 swings around the pivot axis 20 relative to the frame 11, depending on the direction of rotation of the electric motor, overcoming the predetermined threshold value of the mechanical torque of recall, until the adoption of one of the first engaged configuration and the second engaged configuration.
  • the at least at least one permanent magnet 29 is carried by one of the planet wheels 271, 272, rather than by the tilting support 19, ensures excellent stability, and this over a significantly greater angular range of the tilting support 19. . This increases reliability or any risk of malfunction in case of large shock or strong vibration.
  • the frame 11 carries two separate static magnetic members 30 respectively associated with two magnetically active wheels formed respectively by the first and second planet wheels 271, 272. This ensures the principle. balancing at two different locations, and moreover advantageously positioned on either side of the tilting axis 20 of the tilting support 19. The reliability and the guarantee of the maintenance provided are reinforced.
  • each magnetically active wheel at least one of its permanent magnets 29 to be positioned opposite the associated static magnetic member 30, when the tilting support 19 occupies a position angular with respect to the frame 11 corresponding to the disengaged configuration of the clutch 16, with the interposition of a predetermined air gap counted parallel to the tilting axis 20 between 0.6 and 1 mm, and more preferably substantially equal to 0, 8 mm.
  • the at least one static magnetic member 30 is transversely offset by a distance 31 between 1 and 2 mm relative to the plumb line of the magnetic element of the tilting support 19 considered parallel to the tilting axis 20, avoiding a magnetic interaction between the at least one static magnetic member 30 and the magnetic element .
  • each permanent magnet 29 carried by the at least one magnetically active wheel during the rotation of said magnetically active wheel relative to the tilting support 19 under the effect of the drive by the actuator 15 is transversely offset by a minimum distance 32 included between 3 and 5 mm relative to the plumb line of at least one static magnetic member 30 considered parallel to the axis of rotation 21, 28 of said magnetically active wheel.
  • the at least one static magnetic member 30 comprises at least one permanent magnet, the magnetic pole of which is opposite the magnetic pole of the at least one permanent magnet 29 carried by the at least one magnetically active wheel.
  • the static magnetic member 30 and the permanent magnet 29 attract each other.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Mechanical Operated Clutches (AREA)
  • Power-Operated Mechanisms For Wings (AREA)
  • Lock And Its Accessories (AREA)

Abstract

Il est décrit un dispositif électromécanique d'actionnement (10) pour un ouvrant (200) de type porte ou fenêtre, pour entraîner en rotation un rotor d'un mécanisme rotatif de l'ouvrant. Il comprend un embrayage (16) entre un actionneur (15) et le rotor du mécanisme rotatif. L'embrayage (16) a au moins une roue magnétiquement active choisie parmi la roue menante (17) entraînée par l'actionneur (15) et au moins une roue satellite (27) s'accouplant à une roue menée (18) entraînant le rotor du mécanisme rotatif. Cette roue magnétiquement active porte au moins un aimant permanent (29) agencé d'une manière telle que celui-ci est mobile en rotation par rapport au support basculant (19) de l'embrayage (16) conjointement avec la roue magnétiquement active qui porte cet aimant permanent (29).

Description

    Domaine technique de l'invention
  • La présente invention concerne un dispositif électromécanique d'actionnement pour un ouvrant de type porte ou fenêtre, le dispositif électromécanique d'actionnement étant destiné à entrainer en rotation un rotor d'un mécanisme rotatif de l'ouvrant tel qu'un cylindre d'un mécanisme de serrure.
  • L'invention s'applique notamment aux domaines des serrures qui comprennent un cylindre de serrure équipé d'un rotor avec, du côté extérieur, une entrée extérieure de serrure permettant l'introduction d'une clé admise par la serrure et, du côté intérieur, soit une entrée intérieure de serrure permettant l'introduction d'une clé admise par la serrure, soit un organe de couplage permettant la mise en liaison du rotor avec un bouton manuel. L'actionnement en rotation du rotor du cylindre de serrure par l'intermédiaire d'une clé ou du bouton manuel permet de commander le déplacement d'un pêne à ressort et/ou d'un pêne dormant de la serrure afin d'ouvrir ou fermer l'ouvrant et/ou de verrouiller ou déverrouiller la serrure.
  • L'ouvrant peut notamment concerner une partie mobile d'une fenêtre ou d'une porte. Dans le cas d'une fenêtre, le mécanisme rotatif auquel le dispositif électromécanique d'actionnement est destiné à être accouplé en rotation peut être le rotor de la poignée de cette fenêtre, qu'il s'agisse d'une ouverture de la fenêtre selon un axe vertical ou selon deux axes, respectivement vertical et horizontal, comme c'est le cas pour les fenêtres dites oscillo-battantes.
  • Etat de la technique
  • Classiquement, une serrure de porte comprend un cylindre de serrure ayant un stator monté fixement sur l'ouvrant et un rotor monté à rotation dans le stator de sorte à traverser l'épaisseur de l'ouvrant. L'actionnement en rotation du rotor du cylindre de serrure peut actionner en translation un pêne dormant de la serrure, celui-ci étant mobile en translation par rapport au stator et apte à un verrouillage de la serrure par insertion dans une gâche solidaire d'un dormant fixe, ou chambranle, sur lequel l'ouvrant est monté de manière mobile. Un tel pêne dormant est susceptible de varier entre une position de verrouillage où il est déployé et une position de déverrouillage où il est rétracté.
  • La serrure de porte peut également comprendre une poignée montée à pivotement sur l'ouvrant ou un bouton manuel rotatif pour actionner au moins un pêne à ressort mobile en translation dans le stator de la serrure. Un tel pêne à ressort est susceptible de varier entre une position de fermeture où il est déployé et une position d'ouverture où il est rétracté. L'actionnement de la poignée ou du bouton manuel rotatif permet de déplacer le pêne à ressort de la position de fermeture à la position d'ouverture, tandis que le déplacement inverse peut se faire grâce à un ressort interne à la serrure. L'actionnement en rotation du rotor du cylindre de serrure peut également servir à actionner ce pêne à ressort. Classiquement, le pêne à ressort comprend une portion biseautée, qui par réaction contre le dormant fixe lors de la fermeture de l'ouvrant mobile, provoque une rétraction du pène dans l'ouvrant contre l'action du ressort interne.
  • Le rotor du cylindre de serrure comprend, du côté extérieur, une entrée extérieure de serrure permettant l'introduction d'une clé admise par la serrure et, du côté intérieur, soit une entrée intérieure de serrure permettant l'introduction d'une clé admise par la serrure, soit un organe de couplage du rotor permettant la mise en place d'un bouton manuel de sorte à coupler en rotation le rotor du cylindre de serrure avec le bouton manuel. L'actionnement en rotation du rotor du cylindre de serrure par l'intermédiaire d'une clé ou du bouton manuel permet de commander le déplacement du pêne à ressort et/ou du pêne dormant de la serrure, notamment afin d'ouvrir ou fermer l'ouvrant par déplacement du pêne à ressort et/ou de verrouiller ou déverrouiller la serrure par déplacement du pêne dormant.
  • Il existe des dispositifs électromécaniques destinés à actionner de manière motorisée de telles serrures, par exemple à l'image de la solution décrite dans le document EP2762661A1 . Ces dispositifs électromécaniques d'actionnement de serrure sont destinés à être fixés du côté intérieur de l'ouvrant d'une manière coopérant avec le rotor de la serrure à motoriser en vue de son actionnement pour commander son verrouillage et/ou son déverrouillage par déplacement du pêne dormant et/ou pour commander son ouverture et/ou sa fermeture par déplacement du pêne à ressort.
  • Les dispositifs électromécaniques d'actionnement de serrure comprennent généralement un châssis à fixer sur une face de l'ouvrant dont la serrure est à motoriser et un organe d'entrainement mobile en rotation par rapport au châssis et destiné à être accouplé à une extrémité du rotor du cylindre de serrure. Ils comprennent aussi une source d'énergie électrique pour alimenter d'une part un actionneur électrique adapté pour entrainer en rotation l'organe d'entrainement, et une unité de commande programmable apte à une communication avec l'extérieur, notamment en vue de la réception d'instructions extérieures et de la transmission d'informations sortantes. L'unité de commande assure un pilotage de l'actionneur électrique en tenant compte, entre autres, de ces instructions et de ces informations.
  • La coopération entre le rotor du cylindre de serrure et l'organe d'entrainement interne au dispositif électromécanique d'actionnement de serrure peut se faire grâce à la mise en place de l'une des clés admises par le cylindre de serrure au niveau de l'entrée intérieure de serrure, cette clé étant alors en prise avec l'organe d'entrainement pour être solidaires en rotation l'un et l'autre. Alternativement, la coopération entre le rotor du cylindre de serrure et l'organe d'entrainement interne au dispositif électromécanique d'actionnement de serrure peut se faire par l'intermédiaire de l'organe de couplage susmentionné, qui peut être rendu solidaire du rotor du cylindre de serrure et est destiné initialement à la mise en place du bouton manuel également susmentionné. Une fois le bouton manuel retiré, l'organe de couplage peut être mis en prise avec l'organe d'entrainement interne au dispositif électromécanique d'actionnement pour que ces deux éléments soient solidaires en rotation l'un et l'autre.
  • Pour permettre un actionnement manuel de l'organe d'entrainement et/ou pour éviter des détériorations de l'actionneur dans le cas où des efforts externes sont appliqués au rotor du cylindre de serruee, par exemple en cas d'effraction, la plupart des dispositifs électromécaniques comprennent aussi un embrayage interposé entre l'actionneur et l'organe d'entrainement.
  • Un tel embrayage varie classiquement entre au moins une configuration embrayée dans laquelle il existe une liaision mécanique de transmission entre l'organe d'entrainement et l'actionneur, et une configuration débrayée dans laquelle cette liaison mécanique de tranmission est absente.
  • L'embrayage peut être conçu de sorte à pouvoir adopter une première configuration embrayée dans laquelle l'actionneur est susceptible d'entraîner en rotation l'organe d'entrainement dans un premier sens de rotation et une seconde configuration embrayée dans laquelle l'actionneur est susceptible d'entraîner en rotation l'organe d'entrainement dans un second sens de rotation opposé au premier sens de rotation.
  • L'embrayage peut fonctionner selon des principes de friction, par exemple en reprenant les enseignements du document FR3028282A1 .
  • Alternativement, l'embrayage peut reposer sur le principe connu d'une lyre basculante, laquelle solution exploite la présence d'un support basculant par rapport au châssis. Ce type de solution est par exemple décrit dans les documents FR2693757A1 et WO2017/114534A1 .
  • Pour pouvoir convertir un mouvement de l'une des roues de l'embrayage en un mouvement de basculement du support basculant, tout en autorisant aussi une rotation de cette roue lorsque le support basculant se trouve bloqué en rotation dans la configuration embrayée, il est connu d'aménager un dispositif d'embrayage entre le support basculant et au moins l'une des roues de l'embrayage. Lorsque le couple mécanique transmis à la roue équipée d'un tel dispositif d'embrayage est inférieur à la valeur de libération prévue par le dispositif d'embrayage, le support basculant est entrainé en rotation dans un mouvement résultant de la rotation de cette roue. Par contre lorsque le couple mécanique devient supérieur à la valeur de libération, la rotation de la roue devient possible par rapport au support basculant au moment où celui-ci se trouve bloqué angulairement, lorsque l'une des configurations embrayées est adoptée.
  • Classiquement, la conception d'un tel dispositif d'embrayage repose sur l'utilisation du principe de friction mécanique, comme c'est le cas dans le document WO2017/114534A1 . Certaines solutions connues exploitent des rondelles-ressort exerçant des efforts de pression axiaux entre la roue concernée et le support basculant, ces efforts étant appliqués sur des rondelles en silicone.
  • Un premier inconvénient de ce type de solution est que les principes de friction induisent inévitablement des phénomènes d'usures des pièces mises en jeu. Il en résulte des problématiques d'entretien, voire de dysfonctionnement, ce qui n'est pas pratique et peut être coûteux.
  • Par ailleurs, le principe même de friction, et à plus forte raison comme conséquence de ces phénomènes d'usures, la valeur de libération qui définit le fonctionnement du dispositif d'embrayage par friction n'est pas précise et est, au contraire, susceptible d'évoluer dans le temps de manière aléatoire et incontrôlée. Cela peut entrainer des dysfonctionnements du dispositif électromécanique, comme par exemple l'impossibilité de pouvoir passer d'une configuration débrayée à une configuration embrayée, ou encore un freinage excessif voire un blocage de la roue concernée, ces situations n'étant pas acceptables.
  • Une autre problématique à résoudre est de s'assurer qu'au moment où un actionnement manuel de la serrure est désiré, l'embrayage occupe la configuration débrayée de manière certaine. A cet effet, il a déjà été imaginé des solutions exploitant une force magnétique.
  • Si le document WO2017/114534A1 prévoit un système délivrant une force magnétique par électroaimant favorisant la suppression de la coopération mécanique entre la roue de l'embrayage et l'organe d'entrainement, cette solution n'assure aucun maintien dans la configuration débrayée.
  • Le document FR2693757A1 prévoit la présence d'un système magnétique de rappel pour solliciter de manière magnétique le support basculant vers la position angulaire correspondant à la configuration débrayée. Ce système utilise un aimant permanent porté par le châssis et un aimant permanent porté par le support basculant. Mais une telle organisation n'est en mesure d'exercer sa fonction de rappel que dans une plage angulaire de pivotement du support basculant relativement faible. Dès que le support basculant s'écarte un peu trop de la configuration sollicitée via le rappel magnétique, la force magnétique devient trop faible et est facilement surmontable. Ce risque est susceptible d'apparaitre en cas de vibrations fortes ou d'un choc important subi par le dispositif électromécanique, par exemple très simplement au moment où l'ouvrant venait à subir un claquement contre le chambranle.
  • Il existe donc un besoin d'éviter de manière fiable et certaine, surtout en cas de vibrations ou de chocs subis, tout risque de voir passer l'embrayage passer de la configuration débrayée à l'une des configurations embrayées, ce qui risquerait de rendre l'ensemble non opérationnel.
  • Si les problématiques ci-dessus ont été présentées en lien avec le cas particulier d'un mécanisme rotatif de type serrure et un ouvrant de type porte, il reste qu'elles peuvent tout à fait se poser pour d'autres type de mécanisme rotatif d'une porte ou pour une fenêtre.
  • Objet de l'invention
  • La présente invention a pour but de proposer un dispositif électromécanique d'actionnement pour un ouvrant de type porte ou fenêtre qui réponde aux problématiques soulevées par l'état de la technique tel que présenté ci-avant, notamment qui soit fiable, nécessite peu d'entretien, soit économique, et évite tout risque de dysfonctionnement, en particulier mais non exclusivement en cas de choc ou de vibration.
  • Ce but peut être atteint grâce à la fourniture d'un dispositif électromécanique d'actionnement pour un ouvrant de type porte ou fenêtre, le dispositif électromécanique d'actionnement étant destiné à entrainer en rotation un rotord'un mécanisme rotatif de l'ouvrant tel qu'un cylindre d'un mécanisme de serrure, le dispositif électromécanique d'actionnement comprenant :
    • un châssis destiné à être fixé sur une face de l'ouvrant,
    • un organe d'entrainement, mobile en rotation par rapport au châssis, et apte à être couplé en rotation avec le rotor du mécanisme rotatif lorsque le châssis est fixé sur la face de l'ouvrant,
    • un actionneur comprenant un moteur électrique et permettant d'entrainer en rotation électriquement l'organe d'entrainement sélectivement dans un premier sens de rotation et dans un deuxième sens de rotation,
    • un embrayage liant le moteur électrique à l'organe d'entrainement, dans lequel l'embrayage comprend :
    • une roue menante rotative par rapport au châssis et entrainée en rotation par l'actionneur,
    • une roue menée liée en rotation avec l'organe d'entrainement,
    • un support basculant apte à basculer de manière bidirectionnelle par rapport au châssis autour d'un axe de basculement,
    • un dispositif d'accouplement comprenant au moins une roue satellite en prise avec la roue menante et mobile en rotation par rapport au support basculant selon un axe de rotation excentré par rapport à l'axe de basculement, l'axe de rotation de ladite au moins une roue satellite se déplaçant autour de l'axe de basculement conjointement avec le support basculant,
    dans lequel l'embrayage varie, par basculement du support basculant, entre :
    • une première configuration embrayée dans laquelle une roue satellite du dispositif d'accouplement est en prise avec la roue menée dans une première zone circonférentielle de la roue menée de manière que l'actionneur entraine, par l'intermédiaire de l'embrayage, le rotor du mécanisme rotatif dans le premier sens de rotation,
    • une deuxième configuration embrayée dans laquelle une roue satellite du dispositif d'accouplement est en prise avec la roue menée dans une deuxième zone circonférentielle de la roue menée de manière que l'actionneur entraine, par l'intermédiaire de l'embrayage, le rotor du mécanisme rotatif dans le deuxième sens de rotation,
    • une configuration débrayée dans laquelle aucune roue satellite du dispositif d'accouplement n'est en prise avec la roue menée,
    dans lequel au moins une roue magnétiquement active choisie dans le groupe constitué de la roue menante et de ladite au moins une roue satellite du dispositif d'accouplement porte au moins un aimant permanent agencé d'une manière telle que ledit au moins un aimant permanent est mobile en rotation par rapport au support basculant conjointement avec la roue magnétiquement active qui porte ledit au moins un aimant permanent.
  • Certains aspects préférés mais non limitatifs sont les suivants.
  • Selon un mode de réalisation, l'axe de basculement autour duquel le support basculant bascule par rapport au châssis est confondu avec l'axe de la roue menante.
  • Selon un mode de réalisation, ledit au moins un aimant permanent génère un champ magnétique globalement orienté, au voisinage d'au moins l'une des faces axiales de la roue magnétiquement active qui le porte, sensiblement parallèlement à l'axe de rotation de la roue magnétiquement active qui porte ledit au moins un aimant permanent.
  • Selon un mode de réalisation, le dispositif d'accouplement comprend des première et deuxième roues satellites distinctes, montées à rotation par rapport au support basculant autour de premier et deuxième axes de rotation disposés de part et d'autre de la roue menante et en prise avec la roue menante, la première roue satellite étant en prise avec la roue menée dans sa première zone circonférentielle dans la première configuration embrayée, la deuxième roue satellite étant en prise avec la roue menée dans sa deuxième zone circonférentielle dans la deuxième configuration embrayée, aucune des première et deuxième roues satellites n'étant en prise avec la roue menée dans la configuration débrayée, et dans lequel au moins une roue magnétiquement active choisie parmi la première roue satellite et la deuxième roue satellite porte au moins un ensemble magnétique incluant au moins deux aimants permanents agencés à des emplacements respectifs répartis angulairement autour de l'axe de rotation de la roue magnétiquement active qui porte ledit ensemble magnétique, l'emplacement de chacun des aimants permanents dudit ensemble magnétique étant radialement décalé par rapport à l'axe de rotation de la roue magnétiquement active qui le porte afin que l'aimant permanent soit mobile en rotation par rapport au support basculant conjointement avec la roue magnétiquement active qui le porte.
  • Selon un mode de réalisation, chacune des première et deuxième roues satellites comprend un tel ensemble magnétique, lequel comprend une pluralité d'aimants permanents angulairement répartis autour de l'axe de rotation de la roue magnétiquement active correspondante.
  • Selon un mode de réalisation, chaque ensemble magnétique comprend au moins quatre aimants permanents distincts répartis angulairement à pas constants autour de l'axe de rotation de la roue magnétiquement active qui porte ledit ensemble magnétique.
  • Selon un mode de réalisation, le dispositif électromécanique d'actionnement est tel que :
    • le support basculant comporte un élément magnétique susceptible de coopérer magnétiquement avec chaque aimant permanent porté par chaque roue magnétiquement active, lorsque l'élément magnétique est situé dans le champ magnétique généré par l'aimant permanent correspondant, d'une manière créant une force magnétique d'interaction entre l'élément magnétique et l'aimant permanent considéré,
    • l'embrayage comprend un dispositif magnétique d'embrayage associé à chaque roue magnétiquement active,
    • chaque dispositif magnétique d'embrayage est constitué par l'élément magnétique et le au moins un aimant permanent porté par la roue magnétiquement active associée,
    • le dispositif magnétique d'embrayage résultant de la force magnétique d'interaction entre chaque aimant permanent porté par la roue magnétiquement active associée et l'élément magnétique,
    • chaque dispositif magnétique d'embrayage applique un couple magnétique de rappel, autour de l'axe de rotation de la roue magnétiquement active associée audit dispositif magnétique d'embrayage, entre le support basculant et la roue magnétiquement active associée audit dispositif magnétique d'embrayage, le couple magnétique de rappel ayant une valeur nominale prédéterminée dépendant de la force magnétique d'interaction entre chaque aimant permanent porté par la roue magnétiquement active associée et l'élément magnétique,
    • chaque dispositif magnétique d'embrayage assure que le support basculant et la roue magnétiquement active associée audit dispositif magnétique d'embrayage sont couplés en rotation lorsque le couple mécanique appliqué à ladite roue magnétiquement active associée est inférieur à la valeur nominale, et que le support basculant et ladite roue magnétiquement active associée sont découplés en rotation lorsque le couple mécanique appliqué à ladite roue magnétiquement active associée est supérieur ou égal à la valeur nominale.
  • Selon un mode de réalisation, pour chaque roue magnétiquement active, au moins deux aimants permanents sont situés, quelle que soit la position angulaire de la roue magnétiquement active considérée par rapport au support basculant, à l'aplomb de l'élément magnétique avec interposition d'un entrefer prédéterminé compté parallèlement à l'axe de rotation de ladite roue magnétiquement active et compris entre 0,6 et 1 mm, et plus préférentiellement sensiblement égal à 0,8 mm.
  • Selon un mode de réalisation, l'élément magnétique du support basculant est constitué par une plaque comprenant un matériau ferromagnétique agencée à l'aplomb d'au moins l'une des faces axiales de chaque roue magnétiquement active avec interposition d'un intervalle prédéterminé compris entre 0,2 et 0,6 mm, et plus préférentiellement sensiblement égal à 0,4 mm.
  • Selon un mode de réalisation, le dispositif électromécanique d'actionnement est tel que :
    • le châssis comporte au moins un organe magnétique statique susceptible d'être positionné, lorsque l'embrayage occupe sa configuration débrayée, dans le champ magnétique généré par au moins un aimant permanent de l'au moins une roue magnétiquement active, créant une force magnétique de rappel entre l'organe magnétique statique et cet aimant permanent,
    • un dispositif magnétique de rappel est constitué par ledit au moins un organe magnétique statique et le au moins un aimant permanent coopérant magnétiquement avec ledit au moins un organe magnétique statique, le dispositif magnétique de rappel résultant de l'ensemble des forces magnétiques de rappel présentes,
    • le dispositif magnétique de rappel applique un couple magnétique de rappel, autour de l'axe de basculement, entre le support basculant et le châssis, ce couple mécanique de rappel ayant une valeur seuil prédéterminée dépendant des forces magnétiques de rappel appliquées,
    • le support basculant est stabilisé, dans le châssis, dans une position angulaire correspondant à la configuration débrayée de l'embrayage, sous l'effet du couple magnétique de rappel,
    • lors de l'activation de l'actionneur, le support basculant bascule autour de l'axe de basculement par rapport au châssis, en fonction du sens de rotation du moteur électrique, en surmontant la valeur seuil prédéterminée du couple mécanique de rappel, jusqu'à l'adoption de l'une parmi la première configuration embrayée et la deuxième configuration embrayée.
  • Selon un mode de réalisation, le châssis porte deux organes magnétiques statiques distincts respectivement associés à deux roues magnétiquement actives constituées respectivement par les première et deuxième roues satellites, et dans lequel pour chaque roue magnétiquement active, au moins l'un de ses aimants permanents vient se positionner en vis-à-vis de l'organe magnétique statique associé, lorsque le support basculant occupe une position angulaire par rapport au châssis correspondant à la configuration débrayée de l'embrayage, avec interposition d'un entrefer prédéterminé compté parallèlement à l'axe de basculement compris entre 0,6 et 1 mm, et plus préférentiellement sensiblement égal à 0,8 mm.
  • Selon un mode de réalisation, quelle que soit la position angulaire du support basculant entre ses positions extrêmales correspondant aux première et deuxième configurations embrayées de l'embrayage, le au moins un organe magnétique statique est décalé transversalement d'une distance comprise entre 1 et 2 mm par rapport à l'aplomb de l'élément magnétique du support basculant considéré parallèlement à l'axe de basculement, évitant une interaction magnétique entre le au moins un organe magnétique statique et l'élément magnétique.
  • Selon un mode de réalisation, dans chacune des première et deuxième configurations embrayées de l'embrayage, la trajectoire prise par chaque aimant permanent porté par l'au moins une roue magnétiquement active durant la rotation de ladite roue magnétiquement active par rapport au support basculant sous l'effet de l'entrainement par l'actionneur est transversalement décalée d'une distance minimale comprise entre 3 et 5 mm par rapport à l'aplomb du au moins un organe magnétique statique considéré parallèlement à l'axe de rotation de ladite roue magnétiquement active.
  • Selon un mode de réalisation, l'au moins un organe magnétique statique comprend au moins un aimant permanent dont le pôle magnétique est opposé au pôle magnétique de l'au moins un aimant permanent porté par l'au moins une roue magnétiquement active.
  • Description sommaire des dessins
  • D'autres aspects, buts, avantages et caractéristiques de l'invention apparaîtront mieux à la lecture de la description détaillée suivante de modes de réalisation préférés de celle-ci, donnée à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
    • [Fig. 1] La figure 1 est une vue en perspective d'un exemple de serrure montée sur un ouvrant de porte.
    • [Fig. 2] La figure 2 est une vue de face partielle d'un exemple de dispositif électromécanique d'actionnement selon l'invention, dans la configuration débrayée.
    • [Fig. 3] La figure 3 est une vue en perspective et en éclaté de l'embrayage utilisé dans le dispositif de la figure 2.
    • [Fig. 4] La figure 4 est une vue en perspective des éléments de la figure 2.
    • [Fig. 5] La figure 5 est une vue schématique illustrant l'embrayage dans la configuration débrayée et la roue de l'organe d'entrainement.
    • [Fig. 6] La figure 6 est une vue en perspective montrant le dispositif des figures précédentes au niveau d'une roue de l'embrayage, lequel est dans la configuration débrayée.
    • [Fig. 7] La figure 7 est une vue identique à la figure 2, mais dans l'une des deux configurations embrayées.
    • [Fig. 8] La figure 8 est une vue schématique illustrant l'embrayage dans l'une des configurations embrayées et la roue de l'organe d'entrainement.
    Description détaillée
  • Sur les figures 1 à 8 et dans la suite de la description, les mêmes références représentent des éléments identiques ou similaires. De plus, les différents modes de réalisation et variantes ne sont pas exclusifs les uns des autres et peuvent être combinés entre eux.
  • Le dispositif électromécanique d'actionnement 10 qui est visible sur les figures 2 à 8 est destiné à être monté sur une face 201 d'un ouvrant 200 de type porte ou fenêtre. Le dispositif électromécanique d'actionnement 10 est destiné à entrainer en rotation un rotor d'un mécanisme rotatif de l'ouvrant.
  • Dans l'exemple particulier qui est non limitatif du champ d'application, l'ouvrant 200 est une porte et le mécanisme rotatif dont un rotor est à entrainer grâce au dispositif électromécanique d'actionnement 10 est un cylindre d'un mécanisme de serrure.
  • En conséquence, dans l'exemple illustré ici, l'ouvrant 200 est par exemple une porte montée à pivotement sur un cadre fixe ou chambranle (non représenté) reliant l'ouvrant 200 à une paroi fixe. Par exemple, la face 201 correspond à une face de l'ouvrant 200 destinée à être positionnée du côté intérieur de la pièce fermée par l'ouvrant 200 et la paroi fixe. Comme cela est visible, l'ouvrant 200 est ici équipé d'une serrure 100, ayant un cylindre de serrure dont le rotor est à entrainer via le dispositif électromécanique d'actionnement 10. Alternativement, sans limitation, l'ouvrant 200 pourrait être un battant d'une fenêtre, pivotante ou coulissante, ou à montage en oscillo-battant. Les principes sont en effet identiques entre un mécanisme rotatif à motoriser sous la forme d'un rotor d'un cylindre de serrure d'une serrure de porte (pour verrouiller et déverrouiller la serrure) et un mécanisme rotatif à motorisé sous la forme d'une béquille d'une fenêtre (pour verrouiller et déverrouiller la fenêtre), afin de réaliser ces opérations sans avoir à vaincre la motorisation du fait du débrayage automatique. Il est indifférent si pour le cas d'une fenêtre à montage en oscillo-battant le fait de tourner la béquille provoque aussi l'ouverture et la fermeture en oscillo-battant de la fenêtre par un renvoi mécanique de la rotation de la béquille. Le débrayage obtenu par le dispositif électromécanique d'actionnement 10 est nécessaire pour pouvoir réaliser manuellement le mouvement rotatif de la serrure dans le cas de la porte par l'extérieur via une clé ou par l'intérieur via le bouton d'actionnement à cet effet, ou pour réaliser manuellement le mouvement rotatif de la béquille de la fenêtre du côté intérieur.
  • La serrure 100 comprend, de manière connue, par exemple comme décrit dans le document EP2762661A1 , un cylindre de serrure ayant un stator monté sur l'ouvrant 200 et un rotor monté à rotation dans le stator de sorte à traverser l'épaisseur de l'ouvrant 200. La serrure 100 comprend au moins un verrou primaire équipé d'un pêne à ressort 104 (également connu sous la terminologie « pêne de fin de course » ou encore « pêne de fermeture ») couplé mécaniquement au rotor du cylindre de serrure et susceptible de varier, par exemple par rotation du rotor, entre une position de fermeture dans laquelle le pêne à ressort 104 est déployé vers l'extérieur de la serrure 100 et une position d'ouverture dans laquelle le pêne à ressort 104 est rétracté vers l'intérieur de la serrure 100. La serrure 100 comprend aussi un ressort (non visible sur les figures) sollicitant le pêne à ressort 104 vers la position de fermeture et tel que le passage de la position de fermeture à la position d'ouverture par rotation du rotor se pratique en opposition à l'action de ce ressort. Comme visible à la figure 1, le pêne à ressort 104 comprend une portion biseautée, qui par réaction contre le cadre fixe lors de la fermeture de l'ouvrant 200, provoque une rétraction du pêne à ressort 104 dans l'ouvrant 200 contre l'action du ressort interne, impliquant aussi le passage de la position de fermeture à la position d'ouverture sans nécessiter de rotation du rotor à cet effet.
  • Dans cet exemple particulier, dans la position de fermeture, du fait qu'il est déployé, le pêne à ressort 104 est apte à s'insérer dans une gâche solidaire du cadre fixe sur lequel l'ouvrant 200 est monté afin de maintenir l'ouvrant 200 fermé par rapport à la paroi fixe. Par contre, dans sa position d'ouverture, du fait qu'il est rétracté, le pêne à ressort 104 n'est plus inséré dans la gâche et l'ouverture de l'ouvrant 200 est possible.
  • La serrure 100 peut aussi comprendre un verrou secondaire équipé d'un pêne dormant 103 (autrement connu sous la terminologie « panneton ») couplé mécaniquement au rotor 101 du cylindre de serrure et susceptible de varier, par rotation du rotor 101, entre une position de verrouillage dans laquelle le pêne dormant 103 est déployé par rapport au reste de la serrure 100 et une position de verrouillage dans laquelle le pêne dormant 103 est rétracté dans la serrure 100. Sur une certaine course angulaire, l'actionnement en rotation du rotor 101 actionne en translation ce pêne dormant 103 d'une position à l'autre. Le pêne dormant 103 est également apte à s'insérer de manière rétractable, dans la position de verrouillage, dans une empreinte de la gâche solidaire du cadre fixe sur lequel l'ouvrant 200 est monté, afin de verrouiller ou déverrouiller la serrure 100.
  • L'aménagement de tels pênes 103, 104 est par exemple décrit dans le document FR2795120A1 . La serrure 100 peut également comprendre une poignée 105 montée à pivotement sur l'ouvrant 200 pour actionner au moins le pêne à ressort 104.
  • Le rotor du cylindre de serrure peut comprendre, du côté extérieur, une entrée extérieure de serrure permettant l'introduction d'une clé admise par la serrure 100.
  • Le rotor du cylindre de serrure peut comprendre, du côté intérieur, soit une entrée intérieure permettant l'introduction d'une clé (non représentée) admise par la serrure 100, soit un organe de couplage 107 dont un exemple est visible sur la figure 1, adapté à être entrainé en rotation, par exemple par un bouton manuel (non représenté). L'organe de couplage 107 est par exemple une queue ou une fourche de cylindre.
  • Pour l'entrainement motorisé via le dispositif électromécanique d'actionnement 10, le couplage en rotation avec le rotor du cylindre de serrure de la serrure 100 peut se faire soit par l'intermédiaire de la clé préalablement insérée dans l'entrée intérieure de la serrure 100, soit par l'intermédiaire de l'organe de couplage 107, moyennant le retrait préalable du bouton manuel susmentionné.
  • L'actionnement en rotation du rotor de la serrure 100 de manière motorisée permet de commander le déplacement du pêne à ressort 104 entre les positions d'ouverture et de fermeture afin, respectivement, d'ouvrir et de fermer l'ouvrant 200 et/ou de commander le déplacement du pêne dormant 103 entre les positions de verrouillage et de déverrouillage afin, respectivement, de verrouiller et de déverrouiller la serrure 100 et donc l'ouvrant 200 par rapport au cadre fixe.
  • Le dispositif électromécanique d'actionnement 10 comprend un châssis 11 en une ou plusieurs pièces, destiné à être fixé sur la face 201 de l'ouvrant 200. Le châssis 11 est muni d'une face proximale 12 et d'éléments de fixation 13 permettant de fixer le châssis 11 sur l'ouvrant 200 d'une manière plaçant la face proximale 12 du châssis 11 contre la face 201 de l'ouvrant 200. Les éléments de fixation 13 se présentent par exemple sous la forme de trous aptes chacun à la mise en place d'une vis retenant le châssis 11 contre l'ouvrant 200 en venant en prise dans l'ouvrant 200. Il est possible de prévoir la présence d'un matériau amortisseur entre la face 201 de l'ouvrant 200 et la face proximale 12 du châssis 11, pour assurer une liaison mécanique amortie entre le dispositif électromécanique d'actionnement 10 et l'ouvrant 200 pour un découplage vibratoire et mécanique.
  • Le dispositif électromécanique d'actionnement 10 comprend un organe d'entrainement 14 mobile en rotation par rapport au châssis 11 et destiné à être accouplé à une extrémité du rotor du cylindre de serrure de la serrure 100, notamment au niveau de son extrémité du côté intérieur, lorsque le châssis 11 est fixé sur la face 201 de l'ouvrant 200. Cet accouplement mécanique peut, comme cela est expliqué précédemment, être réalisé par l'intermédiaire d'une clé préalablement insérée dans l'entrée intérieure de la serrure 100 ou par l'intermédiaire de l'organe de couplage 107. Suivant la variante retenue, l'organe d'entrainement 14 est adapté en conséquence et comprend des éléments de couplage en rotation idoines pour une coopération soit avec la clé, soit avec l'organe de couplage 107.
  • Le dispositif électromécanique d'actionnement 10 peut comprendre également un bouton de manœuvre rotatif (non représenté) adapté pour une prise manuelle et pour entrainer manuellement l'organe d'entrainement 14, permettant finalement d'entrainer manuellement en rotation le rotor du cylindre de serrure de la serrure lorsque celui-ci est couplé en rotation à l'organe d'entrainement 14.
  • Le dispositif électromécanique d'actionnement 10 comprend un actionneur 15 comprenant un moteur électrique et permettant d'entrainer en rotation électriquement l'organe d'entrainement 14 soit dans un premier sens de rotation adapté à déplacer le pêne à ressort 104 de sa position de fermeture vers sa position d'ouverture et/ou déplacer le pêne dormant 103 de la position de verrouillage à la position de déverrouillage, soit dans un deuxième sens de rotation opposé au premier sens de rotation autorisant un passage du pêne à ressort 104 de la position d'ouverture à la position de fermeture et/ou commander le déplacement du pêne dormant 103 de sa position de déverrouillage à la position de verrouillage.
  • Afin de pouvoir actionner en rotation manuellement le rotor du cylindre de serrure de la serrure par l'intermédiaire du bouton de manœuvre du dispositif électromécanique d'actionnement 10 ou par la clé extérieure, il est nécessaire de désaccoupler l'organe d'entrainement 14 par rapport à l'actionneur 15. Le dispositif électromécanique d'actionnement 10 comprend, à cet effet, un embrayage 16 liant le moteur électrique de l'actionneur 15 à l'organe d'entrainement 14.
  • Le dispositif électromécanique d'actionnement 10 comprend une source d'énergie électrique autonome, par exemple sur batterie, accumulateur ou pile, pour alimenter d'une part l'actionneur 15, d'autre part une unité de commande électronique programmable, de type microcontrôleur, apte à une communication avec l'extérieur via des moyens de communication de type radiofréquence, wifi, Bluetooth, ou équivalent comme par exemple ZIGBEE, Zwave ou des protocoles propriétaires, notamment en vue de la réception d'instructions extérieures et de la transmission d'informations sortantes. L'unité de commande électronique assure un pilotage de l'actionneur 15 à partir de ces instructions et de ces informations et en fonction de capteurs éventuels intégrés dans le dispositif électromécanique d'actionnement 10, par exemple des capteurs d'effort, des capteurs de position, des capteurs de distance, des capteurs de vitesse ou des capteurs de présence. La source d'énergie électrique peut aussi servir à l'alimentation électrique de ces différents capteurs si cela est nécessaire. L'unité de commande électronique renferme tous les algorithmes nécessaires au fonctionnement de l'ensemble, ces algorithmes élaborant la stratégie de commande des différents actionneurs dont l'actionneur 15, en fonction des instructions extérieures et des informations reçues des différents capteurs évoqués ci-dessus. Ces dispositions sont classiques dans le domaine et à la portée de l'homme du métier qui est à-même d'adapter ces éléments.
  • L'embrayage 16 varie entre une configuration débrayée et deux configurations embrayées différentes adaptées à une mise en rotation de l'organe d'entrainement 14 par l'actionneur 15. Dans la configuration débrayée, le moteur électrique de l'actionneur 15 n'est pas accouplé à l'organe d'entrainement 14. A l'inverse, dans une première configuration embrayée, le moteur électrique de l'actionneur 15 est accouplé à l'organe d'entrainement 14 pour assurer l'entraînement en rotation de l'organe d'entrainement 14 de manière électrique via le moteur électrique de l'actionneur 15 dans le premier sens de rotation. Dans une deuxième configuration embrayée, le moteur électrique de l'actionneur 15 est accouplé à l'organe d'entrainement 14 pour assurer l'entraînement en rotation de l'organe d'entrainement 14 de manière électrique via le moteur électrique de l'actionneur 15 dans le deuxième sens de rotation.
  • Comme cela est visible sur les figures 2 à 8, l'embrayage 16 comprend une roue menante 17 rotative par rapport au châssis 11 et entrainée en rotation par l'actionneur 15. Typiquement, la roue menante 17 est montée à rotation libre sur le châssis 11 et est elle-même entraînée en rotation par la sortie d'un réducteur de vitesse dont l'entrée est entraînée en rotation par un arbre de sortie du moteur électrique de l'actionneur 15.
  • L'embrayage 16 comprend également une roue menée 18 liée en rotation avec l'organe d'entrainement 14. Typiquement, la roue menée 18 est solidaire en rotation avec l'organe d'entrainement 14 autour de l'axe de rotation de l'organe d'entrainement 14 par rapport au châssis 11, cet axe de rotation étant par ailleurs destiné à être sensiblement aligné, en utilisation, avec l'axe de rotation du rotor du mécanisme rotatif de l'ouvrant. A titre d'exemple, la roue menée 18 peut être formée par des éléments venant de matière avec le reste de l'organe d'entrainement 14.
  • L'embrayage 16 comprend aussi un support basculant 19 apte à basculer de manière bidirectionnelle par rapport au châssis 11 autour d'un axe de basculement 20. Selon un mode de réalisation facilitant la transmission des mouvements et limitant les pertes internes, l'axe de basculement 20 autour duquel le support basculant 19 bascule par rapport au châssis 11 est confondu avec l'axe de la roue menante 17. Il reste toutefois qu'il serait possible de prévoir que l'axe de basculement 20 soit positionné entre la roue menante 17 et la roue menée 18, par exemple en étant positionné sur une droite passant par l'axe de rotation de la roue menante 17 et par l'axe de rotation 22 de la roue menée 18. L'axe de basculement 20 est parallèle à l'axe de rotation de la roue menante 17 et parallèle à l'axe de rotation 22 de la roue menée 18.
  • En vue de l'entrainement manuel, il peut être prévu que le bouton de manœuvre rotatif précédemment évoqué, qui n'est pas illustré en tant que tel, soit solidaire d'une roue d'entrainement 23 positionnée autour du moteur électrique de l'actionneur 15. Cette roue d'entrainement 23, lorsqu'elle est mise en rotation par une force manuelle via le bouton de manœuvre rotatif qui vient chapeauter la roue d'entrainement 23, met en rotation la roue menée 18 par l'intermédiaire d'une roue intermédiaire absente sur les figures, en prise à la fois avec la roue d'entrainement 23 et avec la roue menée 18. Autrement dit, l'axe du bouton de manœuvre est désaxé par rapport à l'axe de l'organe d'entrainement 14. Le fait que la roue d'entrainement 23 et l'actionneur 15 soient logés dans le bouton de manœuvré rotatif permet d'optimiser l'encombrement général et permet d'éviter des phénomènes de coincement de doigts pour une main actionnant la poignée 105. La transmission de la roue d'entrainement 23 à la roue menée 18 est notamment possible lorsque l'embrayage 16 a précédemment été placé dans la configuration débrayée.
  • Selon un mode de réalisation particulier, le dispositif électromécanique d'actionnement 10 comprend un mécanisme de limitation de couple mécanique 24 qui varie entre une configuration désactivée dans laquelle le bouton de manœuvre est couplé en rotation avec la roue d'entrainement 23 et une configuration activée dans laquelle le bouton de manœuvre et la roue d'entrainement 23 sont désolidarisés en rotation. La configuration activée est automatiquement adoptée dès qu'un couple mécanique ayant une valeur supérieure à une valeur prédéterminée pour laquelle le mécanisme de limitation de couple mécanique 24 est conçu est appliqué manuellement au bouton de manœuvre et la configuration désactivée est automatiquement adoptée sinon, c'est-à-dire tant que le couple mécanique appliqué manuellement au bouton de manœuvre est inférieur ou égal à cette valeur prédéterminée.
  • La présence du mécanisme de limitation de couple mécanique 24 est avantageuse pour éviter tout risque de détérioration de la transmission entre le bouton de manœuvre et l'organe d'entrainement 14 lorsque des efforts très élevés sont appliqués sur le bouton de manœuvre, notamment en cas d'effraction, ou en cas de grippage du rotor du mécanisme rotatif.
  • Selon un mode de réalisation non limitatif, le mécanisme de limitation de couple mécanique 24 comprend au moins une saillie d'encliquetage 25 déplaçable radialement apte à s'insérer de manière rétractable dans un cran de blocage complémentaire formé dans le bouton de manœuvre. Chaque saillie d'encliquetage 25 est sollicitée radialement vers l'intérieur du cran de blocage grâce à des moyens élastiques 26. Les moyens élastiques 26 sont par exemple constitués par une pièce de forme oblongue visible sur la figure 2 réalisée dans une matière élastiquement déformable, les deux saillies d'encliquetage 25 étant aménagées en saillie des deux grands bords de cette pièce. La forme et la matière de la pièce oblongue permettent notamment d'ajuster la valeur prédéterminée au-delà de laquelle le bouton de manœuvre est désaccouplé en rotation par rapport à la roue d'entrainement 23.
  • L'embrayage 16 comprend aussi un dispositif d'accouplement porté par le support basculant 19, globalement positionné entre la roue menante 17 et la roue menée 18 et apte réaliser un accouplement sélectif de la roue menante 17 à la roue menée 18. Plus précisément, ce dispositif d'accouplement comprend au moins une roue satellite 27 en prise avec la roue menante 17 en permanence et mobile en rotation par rapport au support basculant 19 selon un axe de rotation 28 excentré par rapport à l'axe de basculement 20. L'axe de rotation 28 de ladite au moins une roue satellite 27 se déplace ainsi autour de l'axe de basculement 20 conjointement avec le support basculant 19. En basculant, le support basculant 19 fait se déplacer l'axe de rotation 28 de chaque roue satellite 27 suivant un segment de translation circulaire, l'angle couvert étant égal à l'angle de basculement du support basculant 19 par rapport au châssis 11. Il est compris ici que le nombre de roue satellite 27 peut être égal à 1, mais plus préférentiellement supérieur ou égal à 2 afin de limiter l'amplitude angulaire de basculement du support basculant 19 pour passer de la première configuration embrayée à la deuxième configuration embrayée et réciproquement. La roue satellite 27 peut être décalée du support basculant 19 sur lequel elle est montée suivant l'axe de rotation 28. Une rondelle en silicone (non représentée), permettant la libre rotation de la roue satellite par rapport au support basculant 19 peut être prévue entre la roue satellite 27 et le support basculant 19.
  • Par les dispositions précédentes, l'embrayage 16 peut varier entre la première configuration embrayée, la deuxième configuration embrayée et la configuration débrayée, par un simple mouvement de basculement angulaire du support basculant 19 autour de l'axe de basculement 20 par rapport au châssis 11.
  • Dans la configuration débrayée telle que visible sur les figures 2, 5, 6 aucune roue satellite 27 du dispositif d'accouplement n'est en prise avec la roue menée 18.
  • Dans la première configuration embrayée telle que visible sur la figure 7, résultant d'un mouvement de basculement du support basculant 19 dans le premier sens S1 indiqué sur la figure 7, une roue satellite 27 du dispositif d'accouplement est en prise avec la roue menée 18 dans une première zone circonférentielle 181 de la roue menée 18 de manière que l'actionneur 15 entraine, par l'intermédiaire de l'embrayage 16, le rotor du mécanisme rotatif dans le premier sens de rotation P1, évoqué précédemment.
  • A l'inverse dans la deuxième configuration embrayée illustrée sur la figure 8, qui résulte d'un mouvement de basculement du support basculant 19 dans le deuxième sens S2 opposé au premier sens S1, une roue satellite 27 du dispositif d'accouplement est en prise avec la roue menée 18 dans une deuxième zone circonférentielle 182 de la roue menée 18 de manière que l'actionneur 15 entraine, par l'intermédiaire de l'embrayage 16, le rotor du mécanisme rotatif dans le deuxième sens de rotation P2, évoqué précédemment.
  • Il est compris de ce qui précède, que la même roue satellite 27 peut éventuellement, de manière non représentée, être utilisée pour chacune des première et deuxième configurations embrayées. Alternativement, comme cela est représenté et pour les avantages déjà évoqués, deux roues satellites 271, 272 distinctes peuvent être prévues, chacune étant en permanence en prise avec la roue menante 17 mais seule la roue satellite 271, montée sur le support basculant 19 par son axe de rotation 28, est en prise avec la première zone circonférentielle 181 de la roue menée 18 dans la première configuration embrayée et seule la roue satellite 272, montée sur le support basculant 19 par son axe de rotation 28, est en prise avec la deuxième zone circonférentielle 182 de la roue menée 18 dans la deuxième configuration embrayée. Aucune des roues satellites 271, 272 n'est en prise avec la roue menée 18 dans la configuration débrayée (par exemple figure 2).
  • Au moins une roue magnétiquement active choisie dans le groupe constitué de la roue menante 17 et de ladite au moins une roue satellite 27 du dispositif d'accouplement porte au moins un aimant permanent 29 agencé d'une manière telle que ledit au moins un aimant permanent 29 est mobile en rotation par rapport au support basculant 19 conjointement avec la roue magnétiquement active qui porte ledit au moins un aimant permanent 29.
  • Un aimant permanent peut typiquement être un aimant néodyme composé d'un alliage de néodyme, de fer et de bore, ou bien à base de ferrite, ou bien un alliage de fer avec essentiellement de l'aluminium, du nickel et du cobalt
  • Le fait de prévoir au moins un aimant permanant 29 sur ladite au moine une roue magnétiquement active telle que définie précédemment, où chaque aimant permanent 29 peut coopérer de ce fait magnétiquement avec le support basculant 19 et/ou avec un organe magnétique solidaire du châssis 11 comme cela sera développé plus loin, permet de proposer un dispositif électromécanique d'actionnement 10 qui soit fiable, qui nécessite peu d'entretien, qui soit économique, et qui évite tout risque de dysfonctionnement, en particulier mais non exclusivement en cas de choc ou de vibration.
  • Les différentes roues utilisées pour le fonctionnement de l'embrayage 16 sont ici des roues dentées adaptées à venir en prise par un engagement mutuel intercalé des dentures de deux roues coopérant entre elles. Mais alternativement il pourrait s'agir de roues coopérant entre elles uniquement par frottement, l'adhérence dépendant de la loi de Coulomb.
  • Chaque aimant permanent 29 génère un champ magnétique globalement orienté, au voisinage d'au moins l'une des faces axiales de la roue magnétiquement active qui le porte, sensiblement parallèlement à l'axe de rotation 21, 28 de la roue magnétiquement active qui le porte.
  • Selon un mode de réalisation, le dispositif d'accouplement comprend les première et deuxième roues satellites 271, 272 susmentionnées, qui sont montées à rotation par rapport au support basculant 19 autour de premier et deuxième axes de rotation 28 disposés, comme cela est visible sur les figures, de part et d'autre de la roue menante 17 et en prise avec la roue menante 17.
  • Selon un autre mode de réalisation préférentiel, au moins une roue magnétiquement active choisie parmi la première roue satellite 271 et la deuxième roue satellite 272 porte au moins un ensemble magnétique incluant au moins deux aimants permanents 29 agencés à des emplacements respectifs répartis angulairement autour de l'axe de rotation 28 de la roue magnétiquement active qui porte ledit ensemble magnétique. L'emplacement de chacun des aimants permanents 29 dudit ensemble magnétique est radialement décalé par rapport à l'axe de rotation 28 de la roue magnétiquement active qui le porte afin que l'aimant permanent 29 soit mobile en rotation par rapport au support basculant 19 conjointement avec la roue magnétiquement active qui le porte.
  • Dans l'exemple non limitatif tel qu'illustré, la première roue satellite 271 porte un ensemble magnétique incluant quatre aimants permanents 29 agencés à des emplacements respectifs répartis angulairement à pas constants autour de l'axe de rotation 28 de la première roue satellite 271 qui porte cet ensemble magnétique. La deuxième roue satellite 272 porte aussi un ensemble magnétique incluant quatre aimants permanents 29 agencés à des emplacements respectifs angulairement à pas constants autour de l'axe de rotation 28 de la deuxième roue satellite 272 qui porte cet ensemble magnétique.
  • Le fait que les aimants permanents 29 sont discrets et répartis angulairement autour de l'axe de rotation 28 de la première roue satellite 271, respectivement autour de l'axe de rotation 28 de la deuxième roue satellite 272, permet d'assurer la présence d'un des aimants permanents en coopération avec le support basculant 19, quelle que soit l'angle de rotation de la roue satellite 271 ou de la roue satellite 272 lorsque celle-ci est à l'arrêt.
  • Selon un mode de réalisation alternatif, le ou les aimants permanents 29 sont montés sur la roue menante 17, à la place des roues satellites 271, 272.
  • La figure 3 apporte des détails sur l'organisation de l'embrayage 16, lequel inclut un support basculant 19 comprenant une première plaque 191 et une deuxième plaque 192 disposés parallèlement à distance l'une de l'autre. Deux axes cylindriques 193 de projettent à partir de la première plaque 191 en direction de la deuxième plaque 192. Ils sont chacun assujettis à leur extrémité distante à la deuxième plaque 192, créant un ensemble d'un seul tenant. Chacun des axes cylindriques 193 joue le rôle de l'axe de rotation 28 susmentionné pour les deux roues satellites 271, 272, lesquelles sont montées axialement sur un axe cylindrique 193 respectif dans une position axiale placée entre les deux plaques 191, 192. La première plaque comprend une ouverture 194, laquelle permet à la pièce constitutive de l'arbre d'entraînement de la roue menante 17 de passer de part et d'autre de la première plaque 191, afin que la roue menante 17 soit aussi positionnée entre les deux plaques 191, 192.
  • Selon un mode de réalisation avantageux, le support basculant 19 comporte un élément sensible à un champ magnétique, dit élément magnétique, susceptible de coopérer magnétiquement avec chaque aimant permanent 29 porté par chaque roue magnétiquement active, lorsque l'élément magnétique est situé dans le champ magnétique généré par l'aimant permanent 29 correspondant, d'une manière créant une force magnétique d'interaction entre l'élément magnétique et l'aimant permanent 29 considéré. Cela permet de créer à moindre coût, de manière faible et sans frottement mécanique, des forces magnétiques qui sont peuvent être utilisées à des fins d'embrayage magnétique, comme cela est expliqué ci-après. Cette force d'interaction peut notamment avoir les mêmes effets que le frottement mécanique appliqué sur les rondelles en silicone par le biais des rondelles-ressort décrites dans le document WO2017/114534A1 .
  • L'embrayage 16 peut ainsi comprendre un dispositif magnétique d'embrayage associé à chaque roue magnétiquement active où chaque dispositif magnétique d'embrayage est constitué par l'élément magnétique et le au moins un aimant permanent 29 porté par la roue magnétiquement active associée. Le dispositif magnétique d'embrayage résulte en effet de la force magnétique d'interaction entre chaque aimant permanent 29 porté par la roue magnétiquement active associée (la roue menante 17 et/ou au moins l'une des roues satellites 271, 272) et l'élément magnétique. Chaque dispositif magnétique d'embrayage applique un couple magnétique de rappel, autour de l'axe de rotation 21, 28 de la roue magnétiquement active associée à ce dispositif magnétique d'embrayage, entre le support basculant 19 et la roue magnétiquement active associée audit dispositif magnétique d'embrayage, le couple magnétique de rappel ayant une valeur nominale prédéterminée dépendant de la force magnétique d'interaction entre chaque aimant permanent 29 porté par la roue magnétiquement active associée et l'élément magnétique.
  • Ainsi, chaque dispositif magnétique d'embrayage assure que le support basculant 19 et la roue magnétiquement active associée à ce dispositif magnétique d'embrayage soient couplés en rotation lorsque le couple mécanique appliqué à la roue magnétiquement active associée est inférieur à la valeur nominale, et que le support basculant 19 et la roue magnétiquement active associée soient découplés en rotation lorsque le couple mécanique appliqué à la roue magnétiquement active associée est supérieur ou égal à la valeur nominale.
  • De telles forces magnétiques permettent de convertir une rotation de la roue menante 17 en un mouvement du support basculant 19 et des roues satellites 271, 272 tant que l'une des roues satellites 271, 272 n'est pas en prise avec la roue menée 18, puis de permettre au support basculant 19 d'arrêter son basculement tandis que la roue menante 17 continue d'entrainer les roues satellites 271, 272 en rotation par rapport basculant 19, et la roue menée 18 par rapport au châssis 11, en outrepassant les valeurs nominales de couple magnétique évoquées ci-avant.
  • Selon un mode de réalisation, pour chaque roue magnétiquement active, au moins deux aimants permanents 29 sont situés, quelle que soit la position angulaire de la roue magnétiquement active considérée par rapport au support basculant 19, à l'aplomb de l'élément magnétique avec interposition d'un entrefer prédéterminé compté parallèlement à l'axe de rotation 21, 28 de ladite roue magnétiquement active 17, 271, 272 et compris entre 0,6 et 1 mm, et plus préférentiellement sensiblement égal à 0,8 mm.
  • Pour une simplicité, une bonne efficacité et un coût réduit, l'élément magnétique du support basculant 19 est constitué par une plaque comprenant un matériau ferromagnétique agencée à l'aplomb d'au moins l'une des faces axiales de chaque roue magnétiquement active 17, 271, 272 avec interposition d'un intervalle prédéterminé compris entre 0,2 et 0,6 mm, et plus préférentiellement sensiblement égal à 0,4 mm. Un tel matériau ferromagnétique est par exemple du cobalt ou du fer. La plaque en matériau ferromagnétique peut notamment être constituée par la première plaque 191 et/ou par la deuxième plaque 192. Le matériau est typiquement un acier de type DX51D.
  • Selon un mode de réalisation non limitatif, le châssis 11 comporte au moins un organe magnétique statique 30 susceptible d'être positionné, lorsque l'embrayage 16 occupe sa configuration débrayée, dans le champ magnétique généré par au moins un aimant permanent 29 de l'au moins une roue magnétiquement active, créant une force magnétique de rappel entre l'organe magnétique statique 30 et cet aimant permanent 29.
  • Cela permet de créer à moindre coût, de manière faible et sans frottement mécanique, des forces magnétiques qui sont peuvent être utilisées à des fins d'équilibrage magnétique du support basculant 19 dans une position correspondant à la configuration débrayée, comme cela est expliqué ci-après.
  • Ainsi, un dispositif magnétique de rappel est constitué par ledit au moins un organe magnétique statique 30 et le au moins un aimant permanent 29 coopérant magnétiquement avec le au moins un organe magnétique statique 30. Le dispositif magnétique de rappel résulte de l'ensemble des forces magnétiques de rappel ainsi présentes par ce phénomène. Le dispositif magnétique de rappel applique un couple magnétique de rappel, autour de l'axe de basculement 20, entre le support basculant 19 et le châssis 11, ce couple mécanique de rappel ayant une valeur seuil prédéterminée dépendant des forces magnétiques de rappel appliquées. Ainsi, le support basculant 19 est stabilisé, dans le châssis 11, dans une position angulaire correspondant à la configuration débrayée de l'embrayage 16, sous l'effet du couple magnétique de rappel.
  • Lors de l'activation de l'actionneur 15, le support basculant 19 bascule autour de l'axe de pivotement 20 par rapport au châssis 11, en fonction du sens de rotation du moteur électrique, en surmontant la valeur seuil prédéterminée du couple mécanique de rappel, jusqu'à l'adoption de l'une parmi la première configuration embrayée et la deuxième configuration embrayée.
  • Le fait que le au moins au moins un aimant permanent 29 soit porté par l'une des roues satellites 271, 272, plutôt que par le support basculant 19, assure une excellente stabilité, et ce sur une plage angulaire du support basculant 19 nettement supérieure. Cela renforce la fiabilité ou tout risque de dysfonctionnement en cas de grand choc ou de vibrations fortes.
  • Selon un mode de réalisation non limitatif, et selon dispositions illustrées, le châssis 11 porte deux organes magnétiques statiques 30 distincts respectivement associés à deux roues magnétiquement actives constituées respectivement par les première et deuxième roues satellites 271, 272. Cela permet d'assurer le principe d'équilibrage à deux endroits différents, et de surcroît avantageusement positionnés de part et d'autre de l'axe de basculement 20 du support basculant 19. La fiabilité et la garantie du maintien conféré sont renforcés.
  • En pratique, il peut être avantageux que pour chaque roue magnétiquement active, au moins l'un de ses aimants permanents 29 vienne se positionner en vis-à-vis de l'organe magnétique statique 30 associé, lorsque le support basculant 19 occupe une position angulaire par rapport au châssis 11 correspondant à la configuration débrayée de l'embrayage 16, avec interposition d'un entrefer prédéterminé compté parallèlement à l'axe de basculement 20 compris entre 0,6 et 1 mm, et plus préférentiellement sensiblement égal à 0,8 mm.
  • Comme cela est illustré sur les figures, quelle que soit la position angulaire du support basculant 19 entre ses positions extrêmales correspondant aux première et deuxième configurations embrayées de l'embrayage 16, le au moins un organe magnétique statique 30 est décalé transversalement d'une distance 31 comprise entre 1 et 2 mm par rapport à l'aplomb de l'élément magnétique du support basculant 19 considéré parallèlement à l'axe de basculement 20, évitant une interaction magnétique entre le au moins un organe magnétique statique 30 et l'élément magnétique.
  • Selon un mode de réalisation préférentiel, dans chacune des première et deuxième configurations embrayées de l'embrayage 16, la trajectoire prise par chaque aimant permanent 29 porté par l'au moins une roue magnétiquement active durant la rotation de ladite roue magnétiquement active par rapport au support basculant 19 sous l'effet de l'entrainement par l'actionneur 15 est transversalement décalée d'une distance 32 minimale comprise entre 3 et 5 mm par rapport à l'aplomb du au moins un organe magnétique statique 30 considéré parallèlement à l'axe de rotation 21, 28 de ladite roue magnétiquement active.
  • Préférentiellement, l'au moins un organe magnétique statique 30 comprend au moins un aimant permanent dont le pôle magnétique est opposé au pôle magnétique de l'au moins un aimant permanent 29 porté par l'au moins une roue magnétiquement active. Ainsi, l'organe magnétique statique 30 et l'aimant permanent 29 s'attirent mutuellement.
  • Les modes de réalisation présentés ci-dessus peuvent être combinés de manière avantageuse. Dans ce cas, un même aimant permanent 29 assure une double fonction :
    • par coopération avec l'élément magnétique du support basculant 19, il assure le couple de friction nécessaire au déplacement du support basculant 19 vers l'une ou l'autre des configurations embrayées ou débrayée ;
    • par coopération avec l'organe magnétique statique, il assure le maintien statique du support basculant 19 dans la configuration débrayée.

Claims (14)

  1. Dispositif électromécanique d'actionnement (10) pour un ouvrant (200) de type porte ou fenêtre, le dispositif électromécanique d'actionnement (10) étant destiné à entrainer en rotation un rotor d'un mécanisme rotatif de l'ouvrant tel qu'un cylindre d'un mécanisme de serrure, le dispositif électromécanique d'actionnement (10) comprenant :
    - un châssis (11) destiné à être fixé sur une face (201) de l'ouvrant (200),
    - un organe d'entrainement (14), mobile en rotation par rapport au châssis (11), et apte à être couplé en rotation avec le rotor du mécanisme rotatif lorsque le châssis (11) est fixé sur la face (201) de l'ouvrant (200),
    - un actionneur (15) comprenant un moteur électrique et permettant d'entrainer en rotation électriquement l'organe d'entrainement (14) sélectivement dans un premier sens de rotation (P1) et dans un deuxième sens de rotation (P2),
    - un embrayage (16) liant le moteur électrique à l'organe d'entrainement (14), dans lequel l'embrayage (16) comprend :
    - une roue menante (17) rotative par rapport au châssis (11) et entrainée en rotation par l'actionneur (15),
    - une roue menée (18) liée en rotation avec l'organe d'entrainement (14),
    - un support basculant (19) apte à basculer de manière bidirectionnelle par rapport au châssis (11) autour d'un axe de basculement (20),
    - un dispositif d'accouplement comprenant au moins une roue satellite (27) en prise avec la roue menante (17) et mobile en rotation par rapport au support basculant (19) selon un axe de rotation (28) excentré par rapport à l'axe de basculement (20), l'axe de rotation (28) de ladite au moins une roue satellite (27) se déplaçant autour de l'axe de basculement (20) conjointement avec le support basculant (19),
    dans lequel l'embrayage (16) varie, par basculement du support basculant (19), entre :
    - une première configuration embrayée dans laquelle une roue satellite (27) du dispositif d'accouplement est en prise avec la roue menée (18) dans une première zone circonférentielle (181) de la roue menée (18) de manière que l'actionneur (15) entraine, par l'intermédiaire de l'embrayage (16), le rotor du mécanisme rotatif dans le premier sens de rotation (P1),
    - une deuxième configuration embrayée dans laquelle une roue satellite (27) du dispositif d'accouplement est en prise avec la roue menée (18) dans une deuxième zone circonférentielle (182) de la roue menée (18) de manière que l'actionneur (15) entraine, par l'intermédiaire de l'embrayage (16), le rotor du mécanisme rotatif dans le deuxième sens de rotation (P2),
    - une configuration débrayée dans laquelle aucune roue satellite (27) du dispositif d'accouplement n'est en prise avec la roue menée (18),
    dans lequel au moins une roue magnétiquement active choisie dans le groupe constitué de la roue menante (17) et de ladite au moins une roue satellite (27) du dispositif d'accouplement porte au moins un aimant permanent (29) agencé d'une manière telle que ledit au moins un aimant permanent (29) est mobile en rotation par rapport au support basculant (19) conjointement avec la roue magnétiquement active qui porte ledit au moins un aimant permanent (29).
  2. Dispositif électromécanique d'actionnement (10) selon la revendication 1, dans lequel l'axe de basculement (20) autour duquel le support basculant (19) bascule par rapport au châssis (11) est confondu avec l'axe (21) de la roue menante (17).
  3. Dispositif électromécanique d'actionnement (10) selon l'une des revendications 1 ou 2, dans lequel ledit au moins un aimant permanent (29) génère un champ magnétique globalement orienté, au voisinage d'au moins l'une des faces axiales de la roue magnétiquement active qui le porte, sensiblement parallèlement à l'axe de rotation (21, 28) de la roue magnétiquement active qui porte ledit au moins un aimant permanent (29).
  4. Dispositif électromécanique d'actionnement (10) selon l'une des revendications 1 à 3, dans lequel le dispositif d'accouplement comprend des première et deuxième roues satellites (271, 272) distinctes, montées à rotation par rapport au support basculant (19) autour de premier et deuxième axes de rotation (28) disposés de part et d'autre de la roue menante (17) et en prise avec la roue menante (17), la première roue satellite (271) étant en prise avec la roue menée (18) dans sa première zone circonférentielle (181) dans la première configuration embrayée, la deuxième roue satellite (272) étant en prise avec la roue menée (18) dans sa deuxième zone circonférentielle (182) dans la deuxième configuration embrayée, aucune des première et deuxième roues satellites (271, 272) n'étant en prise avec la roue menée (18) dans la configuration débrayée, et dans lequel au moins une roue magnétiquement active choisie parmi la première roue satellite (271) et la deuxième roue satellite (272) porte au moins un ensemble magnétique incluant au moins deux aimants permanents (29) agencés à des emplacements respectifs répartis angulairement autour de l'axe de rotation (28) de la roue magnétiquement active qui porte ledit ensemble magnétique, l'emplacement de chacun des aimants permanents (29) dudit ensemble magnétique étant radialement décalé par rapport à l'axe de rotation (28) de la roue magnétiquement active qui le porte afin que l'aimant permanent (29) soit mobile en rotation par rapport au support basculant (19) conjointement avec la roue magnétiquement active qui le porte.
  5. Dispositif électromécanique d'actionnement (10) selon la revendication 4, dans lequel chacune des première et deuxième roues satellites (271, 272) comprend un tel ensemble magnétique, lequel comprend une pluralité d'aimants permanents (29) angulairement répartis autour de l'axe de rotation (28) de la roue magnétiquement active correspondante.
  6. Dispositif électromécanique d'actionnement (10) selon l'une des revendications 4 ou 5, dans lequel chaque ensemble magnétique comprend au moins quatre aimants permanents (29) distincts répartis angulairement à pas constants autour de l'axe de rotation (20) de la roue magnétiquement active qui porte ledit ensemble magnétique.
  7. Dispositif électromécanique d'actionnement (10) selon l'une des revendications 1 à 6, dans lequel :
    - le support basculant (19) comporte un élément magnétique susceptible de coopérer magnétiquement avec chaque aimant permanent (29) porté par chaque roue magnétiquement active, lorsque l'élément magnétique est situé dans le champ magnétique généré par l'aimant permanent (29) correspondant, d'une manière créant une force magnétique d'interaction entre l'élément magnétique et l'aimant permanent (29) considéré,
    - l'embrayage (16) comprend un dispositif magnétique d'embrayage associé à chaque roue magnétiquement active,
    - chaque dispositif magnétique d'embrayage est constitué par l'élément magnétique et le au moins un aimant permanent (29) porté par la roue magnétiquement active associée,
    - le dispositif magnétique d'embrayage résultant de la force magnétique d'interaction entre chaque aimant permanent (29) porté par la roue magnétiquement active associée et l'élément magnétique,
    - chaque dispositif magnétique d'embrayage applique un couple magnétique de rappel, autour de l'axe de rotation (21) de la roue magnétiquement active associée audit dispositif magnétique d'embrayage, entre le support basculant (19) et la roue magnétiquement active associée audit dispositif magnétique d'embrayage, le couple magnétique de rappel ayant une valeur nominale prédéterminée dépendant de la force magnétique d'interaction entre chaque aimant permanent (29) porté par la roue magnétiquement active associée et l'élément magnétique,
    - chaque dispositif magnétique d'embrayage assure que le support basculant (19) et la roue magnétiquement active associée audit dispositif magnétique d'embrayage sont couplés en rotation lorsque le couple mécanique appliqué à ladite roue magnétiquement active associée est inférieur à la valeur nominale, et que le support basculant (19) et ladite roue magnétiquement active associée sont découplés en rotation lorsque le couple mécanique appliqué à ladite roue magnétiquement active associée est supérieur ou égal à la valeur nominale.
  8. Dispositif électromécanique d'actionnement (10) la revendication 7, dans lequel pour chaque roue magnétiquement active, au moins deux aimants permanents (29) sont situés, quelle que soit la position angulaire de la roue magnétiquement active considérée par rapport au support basculant (19), à l'aplomb de l'élément magnétique avec interposition d'un entrefer prédéterminé compté parallèlement à l'axe de rotation (28) de ladite roue magnétiquement active et compris entre 0,6 et 1 mm, et plus préférentiellement sensiblement égal à 0,8 mm.
  9. Dispositif électromécanique d'actionnement selon l'une des revendications 7 ou 8, dans lequel l'élément magnétique du support basculant (19) est constitué par une plaque (191, 192) comprenant un matériau ferromagnétique agencée à l'aplomb d'au moins l'une des faces axiales de chaque roue magnétiquement active avec interposition d'un intervalle prédéterminé compris entre 0,2 et 0,6 mm, et plus préférentiellement sensiblement égal à 0,4 mm.
  10. Dispositif électromécanique d'actionnement (10) selon l'une quelconque des revendications 1 à 9, dans lequel :
    - le châssis (11) comporte au moins un organe magnétique statique (30) susceptible d'être positionné, lorsque l'embrayage (16) occupe sa configuration débrayée, dans le champ magnétique généré par au moins un aimant permanent (29) de l'au moins une roue magnétiquement active, créant une force magnétique de rappel entre l'organe magnétique statique (30) et cet aimant permanent (29),
    - un dispositif magnétique de rappel est constitué par ledit au moins un organe magnétique statique (30) et le au moins un aimant permanent (29) coopérant magnétiquement avec ledit au moins un organe magnétique statique (30), le dispositif magnétique de rappel résultant de l'ensemble des forces magnétiques de rappel présentes,
    - le dispositif magnétique de rappel applique un couple magnétique de rappel, autour de l'axe de basculement (20), entre le support basculant (19) et le châssis (11), ce couple mécanique de rappel ayant une valeur seuil prédéterminée dépendant des forces magnétiques de rappel appliquées,
    - le support basculant (19) est stabilisé, dans le châssis (11), dans une position angulaire correspondant à la configuration débrayée de l'embrayage (16), sous l'effet du couple magnétique de rappel,
    - lors de l'activation de l'actionneur (15), le support basculant (19) bascule autour de l'axe de basculement (20) par rapport au châssis (11), en fonction du sens de rotation du moteur électrique, en surmontant la valeur seuil prédéterminée du couple mécanique de rappel, jusqu'à l'adoption de l'une parmi la première configuration embrayée et la deuxième configuration embrayée.
  11. Dispositif électromécanique d'actionnement (10) selon l'une des revendications 4 à 6 et la revendication 10, dans lequel le châssis (11) porte deux organes magnétiques statiques (30) distincts respectivement associés à deux roues magnétiquement actives constituées respectivement par les première et deuxième roues satellites (271, 272), et dans lequel pour chaque roue magnétiquement active, au moins l'un de ses aimants permanents (29) vient se positionner en vis-à-vis de l'organe magnétique statique (30) associé, lorsque le support basculant (19) occupe une position angulaire par rapport au châssis (11) correspondant à la configuration débrayée de l'embrayage (16), avec interposition d'un entrefer prédéterminé compté parallèlement à l'axe de basculement (20) compris entre 0,6 et 1 mm, et plus préférentiellement sensiblement égal à 0,8 mm.
  12. Dispositif électromécanique d'actionnement (10) selon l'une des revendication 7 à 9 et selon l'une des revendications 10 ou 11, dans lequel quelle que soit la position angulaire du support basculant (19) entre ses positions extrêmales correspondant aux première et deuxième configurations embrayées de l'embrayage (16), le au moins un organe magnétique statique (30) est décalé transversalement d'une distance (31) comprise entre 1 et 2 mm par rapport à l'aplomb de l'élément magnétique du support basculant (19) considéré parallèlement à l'axe de basculement (20), évitant une interaction magnétique entre le au moins un organe magnétique statique (30) et l'élément magnétique.
  13. Dispositif électromécanique d'actionnement (10) selon l'une des revendications 1 à 12, dans lequel dans chacune des première et deuxième configurations embrayées de l'embrayage (16), la trajectoire prise par chaque aimant permanent (29) porté par l'au moins une roue magnétiquement active durant la rotation de ladite roue magnétiquement active par rapport au support basculant (19) sous l'effet de l'entrainement par l'actionneur (15) est transversalement décalée d'une distance (32) minimale comprise entre 3 et 5 mm par rapport à l'aplomb du au moins un organe magnétique statique (30) considéré parallèlement à l'axe de rotation (21, 28) de ladite roue magnétiquement active.
  14. Dispositif électromécanique d'actionnement (10) selon l'une des revendications 10 à 13, dans lequel l'au moins un organe magnétique statique (30) comprend au moins un aimant permanent dont le pôle magnétique est opposé au pôle magnétique de l'au moins un aimant permanent (29) porté par l'au moins une roue magnétiquement active.
EP21182950.2A 2020-07-03 2021-06-30 Dispositif électromécanique d'actionnement pour un ouvrant avec des aimants permanents portés par au moins une roue de l'embrayage Active EP3933153B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2007089A FR3112159B1 (fr) 2020-07-03 2020-07-03 Dispositif électromécanique d’actionnement pour un ouvrant avec des aimants permanents portés par au moins une roue de l’embrayage

Publications (2)

Publication Number Publication Date
EP3933153A1 true EP3933153A1 (fr) 2022-01-05
EP3933153B1 EP3933153B1 (fr) 2024-01-17

Family

ID=72801664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21182950.2A Active EP3933153B1 (fr) 2020-07-03 2021-06-30 Dispositif électromécanique d'actionnement pour un ouvrant avec des aimants permanents portés par au moins une roue de l'embrayage

Country Status (2)

Country Link
EP (1) EP3933153B1 (fr)
FR (1) FR3112159B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265871A1 (fr) 2022-04-21 2023-10-25 Cogelec Système d' actionnement d'un mécanisme à pêne
EP4265869A1 (fr) 2022-04-21 2023-10-25 Cogelec Système d'actionnement d'un mécanisme à pêne

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148691A (en) * 1989-06-29 1992-09-22 Assa Ab Electrically and mechanically activatable lock mechanism
FR2693757A1 (fr) 1992-07-16 1994-01-21 Kiekert Gmbh Co Kg Dispositif d'entraînement à moteur électrique pour un dispositif de verrouillage central installé dans un véhicule automobile.
FR2795120A1 (fr) 1999-06-18 2000-12-22 Metalux Serrure a pene demi-tour reversible
EP2762661A1 (fr) 2013-01-31 2014-08-06 Bekey A/S Actionneur de verrouillage
US20150096341A1 (en) * 2013-10-07 2015-04-09 Poly-Care Aps Motorised Door Lock Actuator
FR3028282A1 (fr) 2014-11-07 2016-05-13 Practical House Inc Mecanisme debrayable pour serrure motorisee de type cylindre a bouton.
WO2017114534A1 (fr) 2015-12-29 2017-07-06 Danalock Ivs Dispositif d'actionnement de serrure de porte électromécanique et son procédé de fonctionnement
US20180044943A1 (en) * 2015-06-02 2018-02-15 Sony Corporation Key drive device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148691A (en) * 1989-06-29 1992-09-22 Assa Ab Electrically and mechanically activatable lock mechanism
FR2693757A1 (fr) 1992-07-16 1994-01-21 Kiekert Gmbh Co Kg Dispositif d'entraînement à moteur électrique pour un dispositif de verrouillage central installé dans un véhicule automobile.
FR2795120A1 (fr) 1999-06-18 2000-12-22 Metalux Serrure a pene demi-tour reversible
EP2762661A1 (fr) 2013-01-31 2014-08-06 Bekey A/S Actionneur de verrouillage
US20150096341A1 (en) * 2013-10-07 2015-04-09 Poly-Care Aps Motorised Door Lock Actuator
FR3028282A1 (fr) 2014-11-07 2016-05-13 Practical House Inc Mecanisme debrayable pour serrure motorisee de type cylindre a bouton.
US20180044943A1 (en) * 2015-06-02 2018-02-15 Sony Corporation Key drive device
WO2017114534A1 (fr) 2015-12-29 2017-07-06 Danalock Ivs Dispositif d'actionnement de serrure de porte électromécanique et son procédé de fonctionnement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265871A1 (fr) 2022-04-21 2023-10-25 Cogelec Système d' actionnement d'un mécanisme à pêne
EP4265869A1 (fr) 2022-04-21 2023-10-25 Cogelec Système d'actionnement d'un mécanisme à pêne
FR3134837A1 (fr) * 2022-04-21 2023-10-27 Cogelec Système d’actionnement d’un mécanisme à pêne
FR3134836A1 (fr) * 2022-04-21 2023-10-27 Cogelec Système d’actionnement d’un mécanisme à pêne
EP4269730A1 (fr) 2022-04-21 2023-11-01 Cogelec Système d' actionnement d'un mécanisme à pêne
EP4269729A1 (fr) 2022-04-21 2023-11-01 Cogelec Système d'actionnement d'un mécanisme à pêne

Also Published As

Publication number Publication date
EP3933153B1 (fr) 2024-01-17
FR3112159B1 (fr) 2022-09-09
FR3112159A1 (fr) 2022-01-07

Similar Documents

Publication Publication Date Title
EP3677738B1 (fr) Dispositif électromécanique d'actionnement de serrure apte à coopérer indifféremment avec une clé insérée dans le rotor du cylindre de serrure et avec un organe de couplage solidaire du rotor du cylindre de serrure
EP3933153B1 (fr) Dispositif électromécanique d'actionnement pour un ouvrant avec des aimants permanents portés par au moins une roue de l'embrayage
EP3018268B1 (fr) Mécanisme débrayable pour serrure motorisée de type cylindre à bouton
EP2765264B1 (fr) Serrure électronique
FR2869938A1 (fr) Systeme de porte pour vehicule de transport utilisant un agencement de blocage a compression
EP0957293B1 (fr) Actionneur électro-mécanique du type à système vis/écrou
EP3677742A1 (fr) Dispositif électromécanique d'actionnement de serrure à bouton de manoeuvre désaxé
EP3511496B1 (fr) Serrure a trois positions pour vehicule automobile
EP3885514A1 (fr) Dispositif électromécanique d'actionnement de serrure à relâchement du pêne à ressort en cas d'ouverture de l'ouvrant durant une durée prédéterminée
EP1674647A2 (fr) Dispositif d'entraînement pour système de fermeture de type volet, portail ou similaire.
EP3677739B1 (fr) Procédé de commande d'un dispositif électromécanique d'actionnement de serrure
EP0709535A2 (fr) Dispositif d'accouplement débrayable de deux tiges coaxiales associées à des poignées d'actionnement d'une serrure
FR3098838A1 (fr) Dispositif électromécanique d’actionnement de serrure offrant une possibilité d’extraction partielle de la clé intérieure
EP3661836B1 (fr) Dispositif de verrouillage d'un cycle, cycle comprenant un tel dispositif, système comprenant un tel cycle
EP2189995B1 (fr) Commande d'appareillage électrique haute ou moyenne tension à mécanisme à double accrochage amélioré et procédé d'armement associé.
EP3690170B1 (fr) Dispositif électromécanique d'actionnement de serrure à découplage vibratoire
EP3819447B1 (fr) Dispositif électromécanique d'actionnement de serrure à double capteurs de distance et procédé
EP1460018A1 (fr) Systéme e commande d'un dispositif de déverrouillage de secours pour porte palière de gaine d'ascenseur
EP1640555B1 (fr) Dispositif d'entraînement a débrayage automatique pour système de fermeture de bâtiment
EP1760249B1 (fr) Dispositif d'entrainement pour système de fermeture de batîment
FR3012507A1 (fr) Dispositif electromecanique pour commande d'ouvrants
EP0940529A1 (fr) Cylindre de sûreté à barillet double
FR2796412A1 (fr) Poignee d'ouvrant de vehicule automobile comportant des moyens debrayables commandes d'actionnement d'une serrure
FR3015998A1 (fr) Mecanisme d'adaptation pour cylindre a panneton
FR3134837A1 (fr) Système d’actionnement d’un mécanisme à pêne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20211207

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOMFY PROTECT BY MYFOX

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220630

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E05B 47/00 20060101ALN20230721BHEP

Ipc: E05B 15/00 20060101ALI20230721BHEP

Ipc: E05B 47/02 20060101AFI20230721BHEP

INTG Intention to grant announced

Effective date: 20230814

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021008668

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240117