EP3920667A1 - Method for the precise automatic addressing of bus subscribers with applicable self-calibration in a differential can bus system - Google Patents

Method for the precise automatic addressing of bus subscribers with applicable self-calibration in a differential can bus system Download PDF

Info

Publication number
EP3920667A1
EP3920667A1 EP21182457.8A EP21182457A EP3920667A1 EP 3920667 A1 EP3920667 A1 EP 3920667A1 EP 21182457 A EP21182457 A EP 21182457A EP 3920667 A1 EP3920667 A1 EP 3920667A1
Authority
EP
European Patent Office
Prior art keywords
bus
differential voltage
canh
canl
voltage value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP21182457.8A
Other languages
German (de)
French (fr)
Other versions
EP3920667B1 (en
Inventor
Jürgen Niendorf
Nico Gärtner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elmos Semiconductor SE
Original Assignee
Elmos Semiconductor SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elmos Semiconductor SE filed Critical Elmos Semiconductor SE
Publication of EP3920667A1 publication Critical patent/EP3920667A1/en
Application granted granted Critical
Publication of EP3920667B1 publication Critical patent/EP3920667B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/18Controlling the light source by remote control via data-bus transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/198Grouping of control procedures or address assignation to light sources
    • H05B47/199Commissioning of light sources
    • H05B47/1995Auto-commissioning

Definitions

  • the present invention relates to the field of electrical engineering and electronics in particular to the field of physical differential communication interfaces in a linear BUS architecture with a high data rate and relates to a method for the precise, automatic addressing of BUS users with applicative self-calibration in a differential CAN-BUS system.
  • An intelligent LED chain is understood to be a string of LEDs (light emitting diodes), each of which is controlled by an LED driver circuit, i.e. H. an LED controller.
  • an LED controller can control one or more LEDs.
  • a central control unit in the LED chain makes it possible, for example, to control and set the radiation intensity (trimming), color, etc. of individual LEDs or of LED groups in the chain using the LED driver circuits.
  • BUS systems represent a versatile and frequently used solution for controlling LED chains.
  • a large number of participants also known as BUS participants
  • BUS participants can be integrated into a BUS system to be applied and with the help of a suitable BUS Protocol can be connected via bidirectional communication.
  • a suitable BUS Protocol can be connected via bidirectional communication.
  • the fixed position of the participants in the BUS arrangement must be differentiated, which is typically achieved by individual address assignment of each individual participant.
  • An auto-addressing method for differential BUS systems for intelligently controlled LED chains is known from an invention registered at the same time as the present invention.
  • This auto-addressing method enables precise addressing of LED driver ICs in a linear BUS topology, which are arranged in a chain structure and at the same time have a differential interface, without an additional address line. Addressing takes place by evaluating a voltage drop through parasitic or additional line resistances between the participants. For this purpose, both the physical properties of the differential BUS structure that are already present and the standardized signal play of the BUS are used.
  • the method according to the invention in the invention registered at the same time uses the additional line resistances inserted in the two lines between the BUS subscribers of the CAN-BUS to ensure that a dominant difference level emitted by the BUS master from BUS subscriber to BUS subscriber through these BUS line resistances and the reduced termination resistance at the end of the BUS is slightly lower.
  • These resistors must be designed in such a way that normal CAN-BUS communication is not hindered or disturbed.
  • the position-dependent decrease in the voltage difference level is used to define the BUS subscriber addresses. To do this, all BUS users first measure with a command from the BUS master (short: "InitAA" - IAA) the dominant differential level arriving at you.
  • the present invention is therefore based on the object of providing a method for the precise, automatic addressing of BUS subscribers with applicative self-calibration in a differential CAN-BUS system, which does not have the disadvantages of the prior art described above and which requires a time-consuming adjustment process during of the manufacturing process is unnecessary in order to realize a serial production capability without significant additional effort.
  • a method for applicative self-calibration of a measuring arrangement necessary for auto-addressing in a CAN-BUS system which is preferably used for and in a CAN-BUS system with auto-addressing.
  • the BUS users are along a CAN-BUS arranged linearly and each connected with a first connection with a CANH line and with a second connection with a CANL line of the CAN-BUS.
  • CANH identifies the CAN high potential
  • CANL identifies the CAN low potential.
  • the order in which the first connections of the BUS users are connected to the CANH line along the CAN-BUS from a CAN-BUS master to a termination resistor is the same as the order in which the second connections of the BUS users are connected to the CANL line along the CAN-BUS from the BUS master to the termination resistor.
  • a CAN-BUS master is arranged at the beginning of the CAN-BUS and a termination resistor is arranged at the end of the CAN-BUS, the CAN-BUS master and the termination resistor connecting the CANH line and the CANL line to one another.
  • the procedure consists of the following steps:
  • the prerequisite for performing the self-alignment of the BUS subscriber ICs according to the invention is that the CAN-BUS system must first be switched on and / or reset.
  • a termination resistor is located at least at the end of the differential CAN-BUS, which is formed from the CANH and CANL lines.
  • the CAN-BUS master is located at the beginning of the CAN-BUS.
  • the assignment of the beginning and the end of the CAN-BUS are linguistically chosen so that the beginning and the end of a linearly extending CAN-BUS system are identified, whereby it is crucial that the CAN-BUS master has a dominant BUS- State initiates into the CAN-BUS and the termination resistor is arranged at the place that is furthest away from the CAN-BUS master and closes the circuit back to the CAN-BUS master.
  • an individual offset error for each BUS subscriber is compensated for by subtracting the first differential voltage value Vov from the second differential voltage value V CANH and from the third differential voltage value V CANL of the respective BUS subscriber.
  • the offset-compensated differential voltage values are V * CANH and V * CANL .
  • the BUS reference value V CMRef can be freely selected.
  • the BUS reference value V CMRef preferably corresponds to the nominally occurring common mode voltage of the dominant BUS state signal provided by the CAN BUS master in accordance with (V CANH + VCANL) / 2.
  • the individual levels V CANH, V CANL change via the BUS, but if the resistance distribution between the CANH and CANL lines is sufficiently uniform over the entire length of the BUS, the common mode voltage does not change in a degenerate manner between the BUS lines. Participants.
  • V AA (V CANH - V CANL )
  • k korr (V CANH - V CANL ) (2 V CMRef ) / (V * CANH + V * CANL ) is determined in each BUS participant.
  • the BUS reference value V CMRef can be freely selected.
  • the BUS reference value V CMRef corresponds to the nominally occurring common mode voltage of the dominant BUS state signal provided by the BUS master according to (V CANH + V CANL ) / 2.
  • the GND line of the supply for operating the CAN-BUS system is fed in at the BUS end. This ensures that systematically a GND shift that only becomes negative in the direction of the BUS end occurs, which only increases the difference between the measured values of neighboring BUS users and thus ensures more reliable position detection.
  • the described method for the applicative self-calibration of a measuring arrangement necessary for a localized automatic addressing of BUS users can advantageously be used in the method according to the invention for the localized automatic addressing of BUS users with applicative self-calibration in a differential CAN-BUS system.
  • the method according to the invention for the precise, automatic addressing of BUS subscribers with applicative self-calibration in a differential CAN-BUS system has the following steps: First the CAN-BUS system is switched on and / or reset.
  • the CAN-BUS master then signals to all BUS subscribers (BUS slaves) that auto-addressing is taking place, whereupon the BUS subscribers set an auto-addressing mode, i. H. the auto-addressing is initialized in each BUS subscriber and the task for measuring the differential voltages described below is carried out by each BUS subscriber.
  • a termination resistor is located at least at the end of the differential CAN-BUS, which is formed from the CANH and CANL lines.
  • the CAN-BUS master is located at the beginning of the CAN-BUS.
  • the assignment of the beginning and the end of the CAN-BUS are linguistically chosen so that the beginning and the end of a linearly extending CAN-BUS system are identified, whereby it is crucial that the CAN-BUS master has a dominant BUS- State initiates into the CAN-BUS and the termination resistor is arranged at the place that is furthest away from the CAN-BUS master and closes the circuit back to the CAN-BUS master.
  • an individual offset error for each BUS subscriber is compensated for by subtracting the first differential voltage value Vov from the second differential voltage value V CANH and from the third differential voltage value V CANL of the respective BUS subscriber.
  • the offset-compensated differential voltage values are V * CANH and V * CANL .
  • the BUS reference value V CMRef can be freely selected.
  • the BUS reference value V CMRef preferably corresponds to the nominally occurring common mode voltage of the dominant BUS state signal provided by the CAN BUS master in accordance with (V CANH + VCANL) / 2.
  • the individual levels V CANH, V CANL change via the BUS, but if the resistance distribution between the CANH and CANL lines is sufficiently uniform over the entire length of the BUS, the common mode voltage does not change in a degenerate manner between the BUS lines. Participants.
  • V AA (V CANH - V CANL )
  • k korr (V CANH - V CANL ) (2 V CMRef ) / (V * CANH + V * CANL ) is determined in each BUS participant.
  • the self-calibrated differential voltage value is simultaneously used by each BUS subscriber in a next process step V AA is transmitted to the CAN-BUS master, with each BUS subscriber repeating the transmission of its differential voltage value V AA until it has been transmitted to the CAN-BUS master without conflict up to the last bit, with the sequence of the conflict-free transmitted differential voltage values V AA is determined by means of an assignment rule known and defined in the CAN-BUS system, a BUS node address for each BUS subscriber. Based on the previous conflicting measured value transmissions, the BUS users assign themselves a BUS node address. The BUS master can check the correctness of the total number of BUS users if it knows the number of BUS users in the BUS system from the start.
  • the inventive method differs significantly z. B. from LIN auto-addressing method, where only one BUS user can be addressed per measurement.
  • the BUS subscriber who has transmitted his self-calibrated differential voltage value V AA to the CAN-BUS master without conflict saves the BUS node address that corresponds to the number of conflicting attempts to transmit to the CAN-BUS master and then blocks his transmission the CAN-BUS master.
  • the self-calibrated differential voltage value V AA is transmitted from each BUS user to the CAN-BUS master until a valid BUS node address has been assigned to this BUS user.
  • the process steps are controlled automatically and quasi-protocol-controlled by the CAN-BUS master.
  • the measurement method according to the invention with self-alignment includes, through the application-related approach, a location-dependent, individual offset and gain error correction of the entire measurement paths within the BUS subscribers, the sequence of which takes place automatically within the BUS subscribers and is initiated by the CAN master in a quasi-protocol-controlled manner.
  • the physical levels of the measuring arrangement that are typical of the BUS are also used as stimulating measuring signals, i.e. basically on Basis of the already existing physical properties of the BUS structure. With this type of signal processing, the integrated measuring arrangement can be subject to the usual process and parameter fluctuations and does not have to meet excessive accuracy requirements.
  • the BUS users are LED driver circuits that control one or more LEDs.
  • the method according to the invention enables self-calibration for a simpler and more reliable implementation of the auto-addressing of LED chains on the basis of the voltage drop in the BUS lines of the LED driver circuits. This solution only requires BUS communication, but does not require any additional components such as cables, pins, external components, etc.
  • the method according to the invention offers the following advantages: No complex adjustment is necessary for the auto-addressing at the end of the manufacturing process of the ICs or in the application.
  • the calibration is independent of both temperature influences and long-term drifts.
  • individual and location-dependent application properties can be taken into account at the module level.
  • the common mode voltage of the BUS master forms the reference for the self-adjustment of the measuring devices of the BUS participants and makes a high-precision external or internal reference superfluous. Due to the low absolute accuracy requirements that are placed on the measurement of the differential voltages, the procedure can be carried out with an absolutely minimal additional hardware expenditure in the integrated circuit (IC) for the self-adjustment by using the physical properties of the BUS structure that are already present for the measurements be used.
  • IC integrated circuit
  • the Figure 1 shows a CAN-BUS system 1, which comprises a CAN-BUS 2, which is formed from a CANH line 3 and a CANL line 4. Between the CANH line 3 and the CANL line 4, the BUS subscribers 5 are arranged linearly along the CAN-BUS 2 and each have a first connection to the CANH line 3 and a second connection to the CANL line 4 of the CAN-BUS 2 connected.
  • the sequence of the connection of the first connections of the BUS subscribers to the CANH line 3 along the CAN-BUS 2 from a BUS master 6 to a termination resistor 7 is the same as the sequence of the connection of the second connections of the BUS subscribers 5 to the CANL line 4 along the CAN-BUS 2 from the BUS master 6 to the termination resistor 7.
  • a BUS master 6 at the beginning of the CAN-BUS 2 and a termination resistor 7 at least at the end of the CAN-BUS 2 are arranged, the BUS -Master 6 and the termination resistor 7 connect the CANH line 3 and the CANL line 4 to one another.
  • the measurement voltages V meas processed by the measurement amplifier are fed to an ADC, which is usually already present, to carry out the measurements and then used for auto-addressing after the process-based calculation of the individual measurement values.
  • ADC Analog to Digital Converter
  • ADC ADC
  • the most important prerequisite for the function of a self-adjustment is the presence of a reference that can be used and measured by all BUS users 5 within the individual BUS system 1, for which the common mode voltage of the dominant signal from the master 6 can be used.
  • a reference that can be used and measured by all BUS users 5 within the individual BUS system 1, for which the common mode voltage of the dominant signal from the master 6 can be used.
  • three individual measurements are required in the dominant BUS state, namely a first voltage measurement between GND and GND, which supplies a first differential voltage value Vov, and a second voltage measurement between CANH and GND, which supplies a second differential voltage value V CANH and a third voltage measurement between CANL L and GND, which supplies a third differential voltage value V CANL.
  • the measured value to be compensated is the difference between the voltage measurements of V CANH and V CANL (i.e. V CANH - V CANL ).
  • the correction factor k korr for this difference results from the quotient of double the nominal common mode voltage, which is in principle arbitrarily defined, and the sum of the two offset-compensated values for V CANH and V CANL , which is double the common provided by the master Mode voltage corresponds to the dominant signal.
  • the product of the difference and the determined correction factor ((V CANH - V CANL ) ⁇ k corr ) now results in the comparable value for the differential voltage of V CANH and V CANL adjusted within the BUS.
  • FIG 3 an embodiment of the circuit structure of the measuring amplifier using SC technology to carry out the method for self-calibration of the measuring device for auto-addressing in a CAN-BUS system 1 is shown.
  • the self-adjustment of the measuring device for auto-addressing in a BUS application as such does not require absolute accuracy, nor is long-term stability of the variables to be measured required. It is only necessary that all BUS subscribers 5 within a BUS 2 have the same voltage available for measurement at the time of the self-adjustment. This is exactly where the solution for the measurement amplifier and the associated measurement process comes in, thus avoiding completely unnecessary effort and precision on the tester. Only three individual measurements are now required in the dominant BUS state. By subtracting the value of the Vov measurement from the two other measurements (V CANH , V CANL ), the offset compensation is initially carried out.
  • V * CANH , V * CANL the quotient of the difference and the sum is now a measure of the BUS differential voltage corrected in the gain, which may only need to be standardized, for example with twice the nominal common -Mode voltage.
  • the measuring amplifier and the associated measuring method with self-adjustment for CAN-AA + can be used for an RGB-LED multichannel PWM controller IC with a CANPhy interface and offers the possibility of an automatic, very precise "adjustment" of the amplifier with regard to offset and gain in the application during / after power-on for the purpose of performing safe auto-addressing in the BUS system 1.

Landscapes

  • Small-Scale Networks (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Dc Digital Transmission (AREA)

Abstract

Die vorliegende Erfindung bezieht sich auf das Gebiet der Elektrotechnik und der Elektronik und betrifft ein Verfahren zur ortsgenauen automatischen Adressierung von BUS-Teilnehmern mit applikativer Selbstkalibrierung in einem differentiellen CAN-BUS-System, das beispielsweise zur Kalibrierung der Steuerung zur Autoadressierung von intelligenten LED-Ketten in Fahrzeugen angewandt werden kann.Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren bereitzustellen, welches ein zeitintensives Abgleichverfahren während des Herstellungsprozesses unnötig macht.Gelöst wird die Aufgabe durch ein Verfahren, bei dem ein Signalisieren eines Autoadressierungsmodus durch den CAN-BUS-Master an die BUS-Teilnehme und ein Messen von drei Differenzspannungswerten während eines dominanten BUS-State an jedem BUS-Teilnehmer erfolgt, wobei ein erster Differenzspannungswert an jedem BUS-Teilnehmer gleichzeitig gemessen wird, ein zweiter Differenzspannungswert an jedem BUS-Teilnehmer gleichzeitig gemessen wird und ein dritter Differenzspannungswert an jedem BUS-Teilnehmer gleichzeitig gemessen wird. Es erfolgt das Kompensieren eines individuellen Offset- und Gainfehlers für jeden BUS-Teilnehmer und nachfolgend das Ermitteln eines selbstkalibrierten Differenzspannungswertes mit gleichzeitigem Übermitteln der selbstkalibrierten Differenzspannungswerte V<sub>AA</sub> von jedem BUS-Teilnehmer an den CAN-BUS-Master.The present invention relates to the field of electrical engineering and electronics and relates to a method for the precise, automatic addressing of BUS subscribers with applicative self-calibration in a differential CAN-BUS system, which is used, for example, to calibrate the control for the auto-addressing of intelligent LED chains can be used in vehicles. The invention is based on the object of providing a method which makes a time-consuming adjustment process unnecessary during the manufacturing process. The object is achieved by a method in which an auto addressing mode is signaled by the CAN-BUS master to the BUS participants and three differential voltage values are measured during a dominant BUS state at each BUS participant, with a first differential voltage value being measured simultaneously on each BUS participant and a second differential voltage value being measured simultaneously on each BUS participant d and a third differential voltage value is measured at each BUS user at the same time. An individual offset and gain error is compensated for for each BUS subscriber and then a self-calibrated differential voltage value is determined with simultaneous transmission of the self-calibrated differential voltage values V <sub> AA </sub> from each BUS subscriber to the CAN-BUS master.

Description

Die vorliegende Erfindung bezieht sich auf das Gebiet der Elektrotechnik und der Elektronik im Speziellen auf das Gebiet der physischen differentiellen Kommunikationsschnittstellen in einer linearen BUS-Architektur mit einer hohen Datenrate und betrifft ein Verfahren zur ortsgenauen automatischen Adressierung von BUS-Teilnehmern mit applikativer Selbstkalibrierung in einem differentiellen CAN-BUS-System.The present invention relates to the field of electrical engineering and electronics in particular to the field of physical differential communication interfaces in a linear BUS architecture with a high data rate and relates to a method for the precise, automatic addressing of BUS users with applicative self-calibration in a differential CAN-BUS system.

Zum Ansteuern von intelligenten LED-Ketten gibt es verschiedene Möglichkeiten. Unter einer intelligenten LED-Kette wird eine Aneinanderreihung von LEDs (light emitting diode) verstanden, die jeweils über einen LED-Treiber-Schaltkreis, d. h. einen LED-Controller, angesteuert werden. Dabei kann ein LED-Controller als Teilnehmer in der LED-Kette eine oder mehrere LEDs ansteuern. Durch eine zentrale Steuereinheit in der LED-Kette ist es möglich beispielsweise die Abstrahlintensität (Trimmen), Farbe usw. einzelner LEDs oder von LED-Gruppen in der Kette individuell über die LED-Treiber-Schaltkreise anzusteuern und einzustellen.There are various options for controlling intelligent LED chains. An intelligent LED chain is understood to be a string of LEDs (light emitting diodes), each of which is controlled by an LED driver circuit, i.e. H. an LED controller. As a participant in the LED chain, an LED controller can control one or more LEDs. A central control unit in the LED chain makes it possible, for example, to control and set the radiation intensity (trimming), color, etc. of individual LEDs or of LED groups in the chain using the LED driver circuits.

Eine vielseitige und häufig verwendete Lösung für das Ansteuern von LED-Ketten stellen BUS-Systeme dar. Mit einer solchen Vernetzungsstruktur können sehr viele Teilnehmer, auch als BUS-Teilnehmer bezeichnet, in ein zu applizierendes BUS-System eingebunden und mit Hilfe eines geeigneten BUS-Protokolls über bidirektionale Kommunikation verbunden werden. Für eine eineindeutige Unterscheidung der Teilnehmer innerhalb eines solchen BUS-Systems muss die ortsfeste Position der Teilnehmer in der BUS-Anordnung differenziert werden, was typischerweise durch individuelle Adresszuweisung jedes einzelnen Teilnehmers erreicht wird.BUS systems represent a versatile and frequently used solution for controlling LED chains. With such a network structure, a large number of participants, also known as BUS participants, can be integrated into a BUS system to be applied and with the help of a suitable BUS Protocol can be connected via bidirectional communication. For a one-to-one differentiation of the participants within such a BUS system, the fixed position of the participants in the BUS arrangement must be differentiated, which is typically achieved by individual address assignment of each individual participant.

Eine naheliegende Möglichkeit ist jeden Teilnehmer mit einer festen Individualadresse zu versehen. Eine andere Möglichkeit ist eine zusätzliche Funktionalbedingung zu verwenden, um gleichartige IC's in einem solchen BUS-System am Anfang unterscheiden zu können. Beide Vorgehensweisen sind durch einen sehr hohen Aufwand gekennzeichnet und sind zumeist sehr unflexibel, wie z. B. beim Austausch oder beim Hinzufügen von einzelnen BUS-Teilnehmern.An obvious possibility is to provide each participant with a fixed individual address. Another possibility is to use an additional functional condition in order to be able to distinguish ICs of the same type in such a BUS system at the beginning. Both approaches are through a very high effort and are usually very inflexible, such as B. when exchanging or adding individual BUS participants.

Zur Verbesserung der Handhabbarkeit von BUS-Strukturen sind unterschiedliche Verfahren zur selbstständigen, unterscheidbaren Adressierung entwickelt worden. Das Prinzip der Autoadressierung ist für LIN-BUS-Systeme bereits Stand der Technik. Allerdings ist die physische Charakteristik des LIN-BUS in einigen Punkten, wie z. B. der maximalen Datenrate, der Störsicherheit oder auch der Abstrahlung, limitiert und für manche Applikationen nicht geeignet. Differentielle BUS-Strukturen sind bezüglich vieler physischer Eigenschaften deutlich leistungsfähiger als LIN-BUS-Systeme und weisen überdies bessere Abstrahleigenschaften auf. Allerdings sind vergleichbare Verfahren zur automatischen Adressierung, wie sie für LIN-BUS-Systeme bekannt sind, für differentielle BUS-Strukturen nicht bekannt. Eine typische differentielle BUS-Struktur ist der CAN-BUS.To improve the manageability of BUS structures, different methods for independent, distinguishable addressing have been developed. The principle of auto addressing is already state of the art for LIN-BUS systems. However, the physical characteristics of the LIN-BUS are in some points, such as B. the maximum data rate, the interference immunity or the radiation, limited and not suitable for some applications. Differential BUS structures are significantly more powerful than LIN-BUS systems with regard to many physical properties and, moreover, have better radiation properties. However, comparable methods for automatic addressing, as are known for LIN-BUS systems, are not known for differential BUS structures. A typical differential BUS structure is the CAN-BUS.

Aus einer zur vorliegenden Erfindung zeitgleich angemeldeten Erfindung ist ein Autoadressierungsverfahren für differentielle BUS-Systeme für intelligent gesteuerte LED-Ketten bekannt. Mittels dieses Autoadressierungsverfahrens ist eine ortsgenaue Adressierung von LED-Treiber-IC's in einer linearen BUS-Topologie, die in Kettenstruktur angeordnet sind und gleichzeitig über eine differentielle Schnittstelle verfügen, ohne zusätzliche Adressleitung möglich. Die Adressierung erfolgt über die Auswertung eines Spannungsabfalls über parasitäre oder zusätzlich eingebrachte Leitungswiderstände zwischen den Teilnehmern. Dafür werden sowohl die physisch ohnehin vorliegenden Eigenschaften der differenziellen BUS-Struktur als auch das standardisierte Signalspiel des BUS genutzt.An auto-addressing method for differential BUS systems for intelligently controlled LED chains is known from an invention registered at the same time as the present invention. This auto-addressing method enables precise addressing of LED driver ICs in a linear BUS topology, which are arranged in a chain structure and at the same time have a differential interface, without an additional address line. Addressing takes place by evaluating a voltage drop through parasitic or additional line resistances between the participants. For this purpose, both the physical properties of the differential BUS structure that are already present and the standardized signal play of the BUS are used.

Das erfindungsgemäße Verfahren in der zeitgleich angemeldeten Erfindung nutzt die in den beiden Leitungen zwischen den BUS-Teilnehmern des CAN-BUS eingefügten zusätzlichen Leitungswiderstände dafür, dass ein vom BUS-Master abgegebener dominanter Differenzpegel von BUS-Teilnehmer zu BUS-Teilnehmer durch diese BUS-Leitungswiderstände und den reduzierten Terminierungswiderstand am Ende des BUS jeweils etwas geringer wird. Diese Widerstände sind dabei so auszulegen, dass die normale CAN-BUS-Kommunikation nicht behindert oder gestört wird. Die positionsabhängige Abnahme des Spannungsdifferenzpegels wird zur Festlegung der BUS-Teilnehmer-Adressen benutzt. Dazu messen zunächst alle BUS-Teilnehmer mit Kommando vom BUS-Master (kurz: "InitAA" - IAA) den bei ihnen ankommenden dominanten Differenzpegel. Danach erfolgt auf ein weiteres Kommando des BUS-Masters (kurz: "ExecuteAA" - EAA) die gleichzeitige Übertragung dieser Messwerte der BUS-Teilnehmer an den BUS-Master. Derjenige BUS-Teilnehmer mit dem niedrigsten Messwert kann kollisionsfrei seinen Messwert bis zum letzten Bit übertragen und speichert für sich die niedrigste Adresse und scheidet für die Folgekommandos (EAA) von der Übertragung aus. Der BUS-Master wiederholt dieses Kommando, bis kein BUS-Teilnehmer mehr antwortet. Die jeweils zu speichernde Teilnehmer-Adresse korreliert zu der Anzahl der vorangegangenen kollisionsbehafteten Übertragungen. Dann haben alle BUS-Teilnehmer ihre Adresse ermittelt, der BUS-Master registriert dies wegen der ausbleibenden Antwort von BUS-Teilnehmern, und der BUS kann in den normalen applikativen Modus wechseln.The method according to the invention in the invention registered at the same time uses the additional line resistances inserted in the two lines between the BUS subscribers of the CAN-BUS to ensure that a dominant difference level emitted by the BUS master from BUS subscriber to BUS subscriber through these BUS line resistances and the reduced termination resistance at the end of the BUS is slightly lower. These resistors must be designed in such a way that normal CAN-BUS communication is not hindered or disturbed. The position-dependent decrease in the voltage difference level is used to define the BUS subscriber addresses. To do this, all BUS users first measure with a command from the BUS master (short: "InitAA" - IAA) the dominant differential level arriving at you. Then, on a further command from the BUS master (short: "ExecuteAA" - EAA), the simultaneous transmission of these measured values from the BUS users to the BUS master. The BUS subscriber with the lowest measured value can transmit its measured value down to the last bit without collision and saves the lowest address for itself and is excluded from the transmission for the subsequent commands (EAA). The BUS master repeats this command until no more BUS users respond. The subscriber address to be stored in each case correlates to the number of previous collision-prone transmissions. Then all BUS participants have determined their address, the BUS master registers this because of the lack of a response from BUS participants, and the BUS can switch to the normal application mode.

Die oben genannte Messung und Auswertung der Spannungsabfälle zwischen den BUS-Teilnehmern setzt eine große Genauigkeit voraus, vor allem wenn angenommen wird, dass der gesamte Spannungsabfall über die BUS-Struktur begrenzt ist und gleichzeitig aber auch eine hinreichend große Anzahl von BUS-Teilnehmern eingebunden werden soll. Im Stand der Technik werden solche Messpfade in integrierten Schaltkreisen im Produktionsprozess mittels automatischer Testsysteme abgeglichen, was häufig ein zeitintensiver Backend-Vorgang ist. Er muss über unterschiedliche Maschinen und Standorte reproduzierbar sein, den gesamten Temperaturbereich einschließen und entsprechend geringe Langzeit-Drift aufweisen.The above-mentioned measurement and evaluation of the voltage drops between the BUS participants requires great accuracy, especially if it is assumed that the total voltage drop across the BUS structure is limited and at the same time a sufficiently large number of BUS participants are involved target. In the prior art, such measurement paths are compared in integrated circuits in the production process by means of automatic test systems, which is often a time-consuming back-end process. It must be reproducible across different machines and locations, include the entire temperature range and have correspondingly low long-term drift.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur ortsgenauen automatischen Adressierung von BUS-Teilnehmern mit applikativer Selbstkalibrierung in einem differentiellen CAN-BUS-System bereitzustellen, welches die oben beschriebenen Nachteile aus dem Stand der Technik nicht aufweist und welches ein zeitintensives Abgleichverfahren während des Herstellungsprozesses unnötig macht, um somit eine serienmäßige Produktionsfähigkeit ohne nennenswerte Mehraufwände zu verwirklichen.The present invention is therefore based on the object of providing a method for the precise, automatic addressing of BUS subscribers with applicative self-calibration in a differential CAN-BUS system, which does not have the disadvantages of the prior art described above and which requires a time-consuming adjustment process during of the manufacturing process is unnecessary in order to realize a serial production capability without significant additional effort.

Die Aufgabe wird durch die in den Patentansprüchen angegebene Erfindung gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche, wobei die Erfindung auch Kombinationen der einzelnen abhängigen Patentansprüche im Sinne einer Und-Verknüpfung einschließt, solange sie sich nicht gegenseitig ausschließen.The object is achieved by the invention specified in the patent claims. Advantageous refinements are the subject of the subclaims, wherein the Invention also includes combinations of the individual dependent claims in the sense of an AND link, as long as they are not mutually exclusive.

Erfindungsgemäß wird ein Verfahren zur ortsgenauen automatischen Adressierung von BUS-Teilnehmern mit applikativer Selbstkalibrierung in einem differentiellen CAN-BUS-System angegeben, wobei die BUS-Teilnehmer längs eines CAN-BUS linear angeordnet sind und jeweils mit einem ersten Anschluss mit einer CANH-Leitung und mit einem zweiten Anschluss mit einer CANL-Leitung des CAN-BUS verbunden sind und ein CAN-BUS-Master am Anfang des CAN-BUS und mindestens am Ende des CAN-BUS ein Terminierungswiderstand angeordnet sind, wobei der CAN-BUS-Master und der Terminierungswiderstand die CANH-Leitung und die CANL-Leitung jeweils miteinander verbinden, das Verfahren weist folgende Schritte auf:

  • Anschalten und/oder Zurücksetzen des CAN-BUS-Systems;
  • Signalisieren eines Autoadressierungsmodus durch den CAN-BUS-Master an die BUS-Teilnehmer, die den Autoadressierungsmodus einstellen;
  • Messen von drei Differenzspannungswerten während eines dominanten BUS-State an jedem BUS-Teilnehmer, wobei
    • ein erster Differenzspannungswert V0V von GND gegen GND an jedem BUS-Teilnehmer gleichzeitig gemessen wird,
    • ein zweiter Differenzspannungswert VCANH von der CANH-Leitung (3) gegen GND an jedem BUS-Teilnehmer gleichzeitig gemessen wird,
    • ein dritter Differenzspannungswert VCANL von der CANL-Leitung gegen GND an jedem BUS-Teilnehmer gleichzeitig gemessen wird;
  • Kompensieren eines individuellen Offsetfehlers für jeden BUS-Teilnehmer durch Subtrahieren des ersten V0V-Differenzspannungswertes jeweils vom zweiten VCANH-Differenzspannungswert und vom dritten VCANL-Differenzspannungswert des jeweiligen BUS-Teilnehmers;
  • Kompensieren eines individuellen Gainfehlers für jeden BUS-Teilnehmer (5) mittels eines Korrekturfaktors kkorr, wobei der Korrekturfaktor kkorr aus einem fixen BUS-Referenzwert VCMRef und den kompensierten V*CANH- und V*CANL-Differenzspannungswerten gemäß kkorr = 2 ·VCMRef / (V*CANH+ V*CANL) ermittelt wird;
  • Ermitteln eines selbstkalibrierten Differenzspannungswertes VAA gemäß VAA = (VCANH - VCANL) · kkorr = (VCANH - VCANL) · (2·VCMRef) / (V*CANH + V*CANL) durch jeden BUS-Teilnehmer;
  • Gleichzeitiges Übermitteln der selbstkalibrierten Differenzspannungswerte VAA von jedem BUS-Teilnehmer an den CAN-BUS-Master, wobei jeder BUS-Teilnehmer das Übermitteln seines Differenzspannungswertes VAA solange wiederholt, bis dieser konfliktfrei bis zum letzten Bit an den CAN-BUS-Master übertragen wurde, wobei aus der Reihenfolge der konfliktfrei übermittelten Differenzspannungswerte VAA mittels einer im CAN-BUS-System bekannten und festgelegten Zuordnungsvorschrift eine BUS-Knotenadresse für jeden BUS-Teilnehmer bestimmt wird.
According to the invention, a method for the precise, automatic addressing of BUS subscribers with applicative self-calibration in a differential CAN-BUS system is specified, the BUS subscribers being arranged linearly along a CAN-BUS and each with a first connection with a CANH line and are connected to a second connection with a CANL line of the CAN-BUS and a CAN-BUS master at the beginning of the CAN-BUS and at least at the end of the CAN-BUS a termination resistor are arranged, the CAN-BUS master and the Terminating resistor connect the CANH line and the CANL line to each other, the procedure has the following steps:
  • Switching on and / or resetting the CAN-BUS system;
  • Signaling of an auto-addressing mode by the CAN-BUS master to the BUS users who set the auto-addressing mode;
  • Measurement of three differential voltage values during a dominant BUS state at each BUS subscriber, whereby
    • a first differential voltage value V 0V from GND to GND is measured simultaneously on each BUS user,
    • a second differential voltage value V CANH is measured simultaneously from the CANH line (3) to GND on each BUS user,
    • a third differential voltage value V CANL is measured simultaneously from the CANL line to GND at each BUS user;
  • Compensating for an individual offset error for each BUS subscriber by subtracting the first V 0V differential voltage value from the second V CANH differential voltage value and from the third V CANL differential voltage value of the respective BUS subscriber;
  • Compensation of an individual gain error for each BUS user (5) by means of a correction factor k corr , the correction factor k corr from a fixed BUS reference value V CMRef and the compensated V * CANH and V * CANL differential voltage values according to kkorr = 2 · V CMRef / (V * CANH + V * CANL ) is determined;
  • Determination of a self-calibrated differential voltage value V AA according to V AA = (V CANH - V CANL ) · k corr = (V CANH - V CANL ) · (2 · V CMRef ) / (V * CANH + V * CANL ) by each BUS user ;
  • Simultaneous transmission of the self-calibrated differential voltage values V AA from each BUS subscriber to the CAN-BUS master, with each BUS subscriber repeating the transmission of its differential voltage value V AA until it has been transmitted to the CAN-BUS master without conflict up to the last bit , with a BUS node address being determined for each BUS subscriber from the sequence of the conflict-free transmitted differential voltage values V AA by means of an assignment rule known and defined in the CAN-BUS system.

Vorteilhafterweise sperrt derjenige BUS-Teilnehmer, der seinen selbstkalibrierten Differenzspannungswertes VAA konfliktfrei an den CAN-BUS-Master übertragen hat, seine Übertragung an den CAN-BUS-Master.Advantageously, that BUS subscriber who has transmitted his self-calibrated differential voltage value V AA to the CAN-BUS master without conflict, blocks his transmission to the CAN-BUS master.

Und auch vorteilhafterweise erfolgt eine Ablaufsteuerung der Verfahrensschritte automatisch und quasi-protokollgesteuert durch den CAN-BUS-Master.And the process steps are also advantageously controlled automatically and quasi-protocol-controlled by the CAN-BUS master.

Mit dem erfindungsgemäßen Verfahren wird es erstmals möglich, ein Verfahren zur applikativen Selbstkalibrierung der für die ortsgenaue automatische Adressierung von BUS-Teilnehmern in einem differentiellen CAN-BUS-System notwendigen Messanordnung anzugeben, mit dem ein zeitintensives Abgleichverfahren während des Herstellungsprozesses der ICs unnötig wird und welches ohne Probleme in einer serienmäßigen Produktion ohne nennenswerte Mehraufwände verwirklicht werden kann.With the method according to the invention, it is possible for the first time to specify a method for applicative self-calibration of the measuring arrangement required for the precise, automatic addressing of BUS subscribers in a differential CAN-BUS system, with which a time-consuming adjustment process becomes unnecessary during the manufacturing process of the ICs and which can be realized without problems in a series production without significant additional effort.

Erreicht wird dies durch ein Verfahren zur applikativen Selbstkalibrierung einer für die Autoadressierung in einem CAN-BUS-System notwendigen Messanordnung, welche vorzugsweise für ein und in einem CAN-BUS-System mit Autoadressierung genutzt wird. In dem CAN-BUS-System sind die BUS-Teilnehmer längs eines CAN-BUS linear angeordnet und jeweils mit einem ersten Anschluss mit einer CANH-Leitung und mit einem zweiten Anschluss mit einer CANL-Leitung des CAN-BUS verbunden. CANH kennzeichnet das CAN-High-Potential, CANL kennzeichnet das CAN-Low-Potential. Die Reihenfolge der Verbindung der ersten Anschlüsse der BUS-Teilnehmer mit der CANH-Leitung längs des CAN-BUS von einem CAN-BUS-Master hin zu einem Terminierungswiderstand ist gleich der Reihenfolge der Verbindung der zweiten Anschlüsse der BUS-Teilnehmer mit der CANL-Leitung längs des CAN-BUS vom BUS-Master hin zum Terminierungswiderstand. Ein CAN-BUS-Master ist am Anfang des CAN-BUS und ein Terminierungswiderstand am Ende des CAN-BUS angeordnet, wobei der CAN-BUS-Master und der Terminierungswiderstand die CANH-Leitung und die CANL-Leitung jeweils miteinander verbinden.This is achieved by a method for applicative self-calibration of a measuring arrangement necessary for auto-addressing in a CAN-BUS system, which is preferably used for and in a CAN-BUS system with auto-addressing. In the CAN-BUS system, the BUS users are along a CAN-BUS arranged linearly and each connected with a first connection with a CANH line and with a second connection with a CANL line of the CAN-BUS. CANH identifies the CAN high potential, CANL identifies the CAN low potential. The order in which the first connections of the BUS users are connected to the CANH line along the CAN-BUS from a CAN-BUS master to a termination resistor is the same as the order in which the second connections of the BUS users are connected to the CANL line along the CAN-BUS from the BUS master to the termination resistor. A CAN-BUS master is arranged at the beginning of the CAN-BUS and a termination resistor is arranged at the end of the CAN-BUS, the CAN-BUS master and the termination resistor connecting the CANH line and the CANL line to one another.

Das Verfahren weist folgende Schritte auf:
Voraussetzung für die Durchführung des erfindungsgemäßen Selbstabgleichs der BUS-Teilnehmer ICs ist, dass zunächst das CAN-BUS-System angeschaltet und/oder zurückgesetzt wird.
The procedure consists of the following steps:
The prerequisite for performing the self-alignment of the BUS subscriber ICs according to the invention is that the CAN-BUS system must first be switched on and / or reset.

Für den Selbstabgleich werden drei Differenzspannungswerte während eines dominanten BUS-State an jedem BUS-Teilnehmer gemessen, wobei ein erster Differenzspannungswert V0V von GND gegen GND an jedem BUS-Teilnehmer gleichzeitig gemessen wird, ein zweiter Differenzspannungswert VCANH von der CANH-Leitung gegen GND an jedem BUS-Teilnehmer gleichzeitig gemessen wird, und ein dritter Differenzspannungswert VCANL von der CANL-Leitung gegen GND an jedem BUS-Teilnehmer gleichzeitig gemessen wird. Ein Terminierungswiderstand befindet sich mindestens am Ende des differentiellen CAN-BUS, der aus der CANH- und CANL-Leitung gebildet wird. Der CAN-BUS-Master befindet sich am Anfang des CAN-BUS. Die Zuordnung des Anfangs und des Endes des CAN-BUS sind sprachlich so gewählt, dass damit der Beginn und das Ende eines sich linear erstreckenden CAN-BUS-Systems gekennzeichnet wird, wobei entscheidend ist, dass der CAN-BUS-Master einen dominanten BUS-State in den CAN-BUS einleitet und der Terminierungswiderstand an dem Ort angeordnet ist, der am weitesten vom CAN-BUS-Master entfernt ist und den Stromkreis zurück zum CAN-BUS-Master schließt.For self-adjustment, three differential voltage values are measured during a dominant BUS state on each BUS user, with a first differential voltage value V 0V from GND to GND being measured simultaneously on each BUS user, and a second differential voltage value V CANH from the CANH line to GND is measured simultaneously at each BUS user, and a third differential voltage value V CANL from the CANL line to GND is measured simultaneously at each BUS user. A termination resistor is located at least at the end of the differential CAN-BUS, which is formed from the CANH and CANL lines. The CAN-BUS master is located at the beginning of the CAN-BUS. The assignment of the beginning and the end of the CAN-BUS are linguistically chosen so that the beginning and the end of a linearly extending CAN-BUS system are identified, whereby it is crucial that the CAN-BUS master has a dominant BUS- State initiates into the CAN-BUS and the termination resistor is arranged at the place that is furthest away from the CAN-BUS master and closes the circuit back to the CAN-BUS master.

In einem nächsten Schritt wird ein individueller Offsetfehler für jeden BUS-Teilnehmer durch Subtrahieren des ersten Differenzspannungswertes Vov jeweils vom zweiten Differenzspannungswert VCANH und vom dritten Differenzspannungswert VCANL des jeweiligen BUS-Teilnehmers kompensiert. Die Offset-kompensierten Differenzspannungswerte sind V*CANH und V*CANL.In a next step, an individual offset error for each BUS subscriber is compensated for by subtracting the first differential voltage value Vov from the second differential voltage value V CANH and from the third differential voltage value V CANL of the respective BUS subscriber. The offset-compensated differential voltage values are V * CANH and V * CANL .

Anschließend wird ein individueller Gainfehler für jeden BUS-Teilnehmer mittels eines Korrekturfaktors kkorr kompensiert, wobei der Korrekturfaktor kkorr aus einem fixen BUS-Referenzwert VCMRef und den kompensierten V*CANH- und V*CANL-Differenzspannungswerten gemäß kkorr = 2 ·VCMRef / (V*CANH + V*CANL) ermittelt wird. Der BUS-Referenzwert VCMRef ist frei wählbar. Vorzugsweise entspricht der BUS-Referenzwert VCMRef der nominalen auftretenden Common-Mode-Spannung des vom CAN-BUS-Master bereitgestellten dominanten BUS-State Signals gemäß (VCANH + VCANL)/2. Zwar ändern sich die Einzelpegel VCANH, VCANL über den BUS, aber bei einer hinreichend gleichmäßigen Widerstandsverteilung zwischen der CANH- und CANL-Leitung über die gesamte BUS-Länge verändert sich die Common-Mode-Spannung nicht in entartender Weise zwischen den BUS-Teilnehmern.An individual gain error for each BUS user is then compensated for by means of a correction factor k korr , the correction factor k korr from a fixed BUS reference value V CMRef and the compensated V * CANH and V * CANL differential voltage values according to kkorr = 2 · V CMRef / (V * CANH + V * CANL ) is determined. The BUS reference value V CMRef can be freely selected. The BUS reference value V CMRef preferably corresponds to the nominally occurring common mode voltage of the dominant BUS state signal provided by the CAN BUS master in accordance with (V CANH + VCANL) / 2. The individual levels V CANH, V CANL change via the BUS, but if the resistance distribution between the CANH and CANL lines is sufficiently uniform over the entire length of the BUS, the common mode voltage does not change in a degenerate manner between the BUS lines. Participants.

In einem nächsten Schritt wird aus den Messwerten ein selbstkalibrierter Differenzspannungswert VAA gemäß VAA = (VCANH - VCANL) · kkorr = (VCANH - VCANL) · (2·VCMRef) / (V*CANH + V*CANL) in jedem BUS-Teilnehmer ermittelt. Damit ist der Selbstabgleich der BUS-Teilnehmer abgeschlossen. Mit dem erfindungsgemäßen Verfahren ist es möglich, mittels drei einzelner Messungen, nämlich einer Spannungsmessung von 0V/Kurzschluss, von VCANH und von VCANL für jeden BUS-Teilnehmer entlang des CAN-BUS und den nachfolgenden Übertragungen aller Spannungswerte der BUS-Teilnehmer zum BUS-Master, allen BUS-Teilnehmern eine Adresse zuzuweisen.In a next step, a self-calibrated differential voltage value V AA according to V AA = (V CANH - V CANL ) k korr = (V CANH - V CANL ) (2 V CMRef ) / (V * CANH + V * CANL ) is determined in each BUS participant. This completes the self-adjustment of the BUS users. With the method according to the invention it is possible by means of three individual measurements, namely a voltage measurement of 0V / short circuit, of V CANH and of V CANL for each BUS user along the CAN-BUS and the subsequent transmissions of all voltage values from the BUS users to the BUS -Master to assign an address to all BUS participants.

In einer Ausgestaltung des Verfahrens ist der BUS-Referenzwert VCMRef frei wählbar. In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens entspricht der BUS-Referenzwert VCMRef der nominal auftretenden Common-Mode-Spannung des vom BUS-Master bereitgestellten dominanten BUS-State Signals gemäß (VCANH + VCANL)/2. Der BUS-Referenzwert ist ein festgelegter Wert für alle BUS-Teilnehmer bzw. für alle produzierten IC's mit Autoadressierungsfähigkeit, Dieser Wert kann im Prinzip beliebig gewählt/festgelegt werden, vorzugsweise wird aber für die Normierung des Messwertes des dominanten Signals (VCANH - VCANL) die nominale Common-Mode-Spannung VCM des dominanten Signals vom Master (VCM_Master = (VCANH_Master + VCANL_Master)/2 ) verwendet, was somit eine typische Normierung von 1 ergibt.In one embodiment of the method, the BUS reference value V CMRef can be freely selected. In a preferred embodiment of the method according to the invention, the BUS reference value V CMRef corresponds to the nominally occurring common mode voltage of the dominant BUS state signal provided by the BUS master according to (V CANH + V CANL ) / 2. The BUS reference value is a fixed value for all BUS users or for all ICs produced with auto-addressing capability Normalization of the measured value of the dominant signal (V CANH - V CANL ) uses the nominal common mode voltage V CM of the dominant signal from the master (V CM_Master = (V CANH_Master + V CANL_Master ) / 2), which is a typical normalization of 1 results.

In einer Ausgestaltung des Verfahrens erfolgt die Einspeisung der GND-Leitung der Versorgung für den Betrieb des CAN-BUS-Systems am BUS-Ende. Das sorgt dafür, dass systematisch ein in Richtung BUS-Ende nur negativ werdender GND-Shift entsteht, wodurch sich die Differenz zwischen den Messwerten benachbarter BUS-Teilnehmer nur vergrößert und somit eine sicherere Positionserkennung gewährleistet wird.In one embodiment of the method, the GND line of the supply for operating the CAN-BUS system is fed in at the BUS end. This ensures that systematically a GND shift that only becomes negative in the direction of the BUS end occurs, which only increases the difference between the measured values of neighboring BUS users and thus ensures more reliable position detection.

Das beschriebene Verfahren zur applikativen Selbstkalibrierung einer für eine ortsgenaue automatische Adressierung von BUS-Teilnehmern notwendigen Messanordnung können vorteilhafterweise in dem erfindungsgemäßen Verfahren zur ortsgenauen automatischen Adressierung von BUS-Teilnehmern mit applikativer Selbstkalibierung in einem differentiellen CAN-BUS-System eingesetzt werden.The described method for the applicative self-calibration of a measuring arrangement necessary for a localized automatic addressing of BUS users can advantageously be used in the method according to the invention for the localized automatic addressing of BUS users with applicative self-calibration in a differential CAN-BUS system.

Das erfindungsgemäße Verfahren zur ortsgenauen automatischen Adressierung von BUS-Teilnehmern mit applikativer Selbstkalibierung in einem differentiellen CAN-BUS-System weist folgende Schritte auf:
Zunächst wird das CAN-BUS-System angeschaltet und/oder zurückgesetzt.
The method according to the invention for the precise, automatic addressing of BUS subscribers with applicative self-calibration in a differential CAN-BUS system has the following steps:
First the CAN-BUS system is switched on and / or reset.

Anschließend signalisiert der CAN-BUS-Master allen BUS-Teilnehmern (BUS-Slaves), dass eine Autoadressierung stattfindet, woraufhin die BUS-Teilnehmer einen Autoadressierungsmodus einstellen, d. h. die Autoadressierung wird in jedem BUS-Teilnehmer initialisiert und der Auftrag zur Messung der im folgenden beschriebenen Differenzspannungen wird von jedem BUS-Teilnehmer ausgeführt.The CAN-BUS master then signals to all BUS subscribers (BUS slaves) that auto-addressing is taking place, whereupon the BUS subscribers set an auto-addressing mode, i. H. the auto-addressing is initialized in each BUS subscriber and the task for measuring the differential voltages described below is carried out by each BUS subscriber.

Für den zuerst erfolgenden Selbstabgleich werden drei Differenzspannungswerte während eines dominanten BUS-State an jedem BUS-Teilnehmer gemessen, wobei ein erster Differenzspannungswert V0V von GND gegen GND an jedem BUS-Teilnehmer gleichzeitig gemessen wird, ein zweiter Differenzspannungswert VCANH von der CANH-Leitung gegen GND an jedem BUS-Teilnehmer gleichzeitig gemessen wird, und ein dritter Differenzspannungswert VCANL von der CANL-Leitung gegen GND an jedem BUS-Teilnehmer gleichzeitig gemessen wird. Ein Terminierungswiderstand befindet sich mindestens am Ende des differentiellen CAN-BUS, der aus der CANH- und CANL-Leitung gebildet wird. Der CAN-BUS-Master befindet sich am Anfang des CAN-BUS. Die Zuordnung des Anfangs und des Endes des CAN-BUS sind sprachlich so gewählt, dass damit der Beginn und das Ende eines sich linear erstreckenden CAN-BUS-Systems gekennzeichnet wird, wobei entscheidend ist, dass der CAN-BUS-Master einen dominanten BUS-State in den CAN-BUS einleitet und der Terminierungswiderstand an dem Ort angeordnet ist, der am weitesten vom CAN-BUS-Master entfernt ist und den Stromkreis zurück zum CAN-BUS-Master schließt.For the first self-adjustment, three differential voltage values are measured during a dominant BUS state on each BUS user, a first differential voltage value V 0V from GND to GND being measured simultaneously on each BUS user, and a second differential voltage value V CANH from the CANH line is measured against GND at each BUS user at the same time, and a third differential voltage value V CANL from the CANL line against GND is measured at each BUS user at the same time. A termination resistor is located at least at the end of the differential CAN-BUS, which is formed from the CANH and CANL lines. The CAN-BUS master is located at the beginning of the CAN-BUS. The assignment of the beginning and the end of the CAN-BUS are linguistically chosen so that the beginning and the end of a linearly extending CAN-BUS system are identified, whereby it is crucial that the CAN-BUS master has a dominant BUS- State initiates into the CAN-BUS and the termination resistor is arranged at the place that is furthest away from the CAN-BUS master and closes the circuit back to the CAN-BUS master.

In einem nächsten Schritt wird ein individueller Offsetfehler für jeden BUS-Teilnehmer durch Subtrahieren des ersten Differenzspannungswertes Vov jeweils vom zweiten Differenzspannungswert VCANH und vom dritten Differenzspannungswert VCANL des jeweiligen BUS-Teilnehmers kompensiert. Die Offset-kompensierten Differenzspannungswerte sind V*CANH und V*CANL.In a next step, an individual offset error for each BUS subscriber is compensated for by subtracting the first differential voltage value Vov from the second differential voltage value V CANH and from the third differential voltage value V CANL of the respective BUS subscriber. The offset-compensated differential voltage values are V * CANH and V * CANL .

Anschließend wird ein individueller Gainfehler für jeden BUS-Teilnehmer mittels eines Korrekturfaktors kkorr kompensiert, wobei der Korrekturfaktor kkorr aus einem fixen BUS-Referenzwert VCMRef und den kompensierten V*CANH- und V*CANL-Differenzspannungswerten gemäß kkorr = 2 ·VCMRef / (V*CANH + V*CANL) ermittelt wird. Der BUS-Referenzwert VCMRef ist frei wählbar. Vorzugsweise entspricht der BUS-Referenzwert VCMRef der nominalen auftretenden Common-Mode-Spannung des vom CAN-BUS-Master bereitgestellten dominanten BUS-State Signals gemäß (VCANH + VCANL)/2. Zwar ändern sich die Einzelpegel VCANH, VCANL über den BUS, aber bei einer hinreichend gleichmäßigen Widerstandsverteilung zwischen der CANH- und CANL-Leitung über die gesamte BUS-Länge verändert sich die Common-Mode-Spannung nicht in entartender Weise zwischen den BUS-Teilnehmern.An individual gain error for each BUS user is then compensated for by means of a correction factor k korr , the correction factor k korr from a fixed BUS reference value V CMRef and the compensated V * CANH and V * CANL differential voltage values according to kkorr = 2 · V CMRef / (V * CANH + V * CANL ) is determined. The BUS reference value V CMRef can be freely selected. The BUS reference value V CMRef preferably corresponds to the nominally occurring common mode voltage of the dominant BUS state signal provided by the CAN BUS master in accordance with (V CANH + VCANL) / 2. The individual levels V CANH, V CANL change via the BUS, but if the resistance distribution between the CANH and CANL lines is sufficiently uniform over the entire length of the BUS, the common mode voltage does not change in a degenerate manner between the BUS lines. Participants.

In einem nächsten Schritt wird aus den Messwerten ein selbstkalibrierter Differenzspannungswert VAA gemäß VAA = (VCANH - VCANL) · kkorr = (VCANH - VCANL) · (2·VCMRef) / (V*CANH + V*CANL) in jedem BUS-Teilnehmer ermittelt.In a next step, a self-calibrated differential voltage value V AA according to V AA = (V CANH - V CANL ) k korr = (V CANH - V CANL ) (2 V CMRef ) / (V * CANH + V * CANL ) is determined in each BUS participant.

Für die Durchführung der Autoadressierung wird in einem nächsten Verfahrensschritt von jedem BUS-Teilnehmer gleichzeitig der selbstkalibrierte Differenzspannungswert VAA an den CAN-BUS-Master übermittelt, wobei jeder BUS-Teilnehmer das Übermitteln seines Differenzspannungswertes VAA solange wiederholt, bis dieser konfliktfrei bis zum letzten Bit an den CAN-BUS-Master übertragen wurde, wobei aus der Reihenfolge der konfliktfrei übermittelten Differenzspannungswerte VAA mittels einer im CAN-BUS-System bekannten und festgelegten Zuordnungsvorschrift eine BUS-Knotenadresse für jeden BUS-Teilnehmer bestimmt wird. Basierend auf den vorangegangenen Konflikt-behafteten Messwertübertragungen ordnen sich die BUS-Teilnehmer selbst eine BUS-Knotenadresse zu. Der BUS-Master kann die Korrektheit der Gesamtzahl der BUS-Teilnehmer prüfen, falls ihm die Anzahl der BUS-Teilnehmer im BUS-System von Anfang an bekannt ist.To carry out the auto-addressing, the self-calibrated differential voltage value is simultaneously used by each BUS subscriber in a next process step V AA is transmitted to the CAN-BUS master, with each BUS subscriber repeating the transmission of its differential voltage value V AA until it has been transmitted to the CAN-BUS master without conflict up to the last bit, with the sequence of the conflict-free transmitted differential voltage values V AA is determined by means of an assignment rule known and defined in the CAN-BUS system, a BUS node address for each BUS subscriber. Based on the previous conflicting measured value transmissions, the BUS users assign themselves a BUS node address. The BUS master can check the correctness of the total number of BUS users if it knows the number of BUS users in the BUS system from the start.

Damit unterscheidet sich das erfindungsgemäße Verfahren deutlich z. B. von LIN-Autoadressierungsverfahren, wo pro Messung nur ein BUS-Teilnehmer adressiert werden kann.Thus, the inventive method differs significantly z. B. from LIN auto-addressing method, where only one BUS user can be addressed per measurement.

Derjenige BUS-Teilnehmer, der seinen selbstkalibrierten Differenzspannungswert VAA konfliktfrei an den CAN-BUS-Master übertragen hat, speichert die BUS-Knotenadresse, die der Anzahl der bisher absolvierten konfliktbehafteten Übertragungsversuche an den CAN-BUS-Master entspricht und sperrt danach seine Übertragung an den CAN-BUS-Master.The BUS subscriber who has transmitted his self-calibrated differential voltage value V AA to the CAN-BUS master without conflict saves the BUS node address that corresponds to the number of conflicting attempts to transmit to the CAN-BUS master and then blocks his transmission the CAN-BUS master.

Dementsprechend erfolgt die Übertragung des selbstkalibrierten Differenzspannungswertes VAA von jedem BUS-Teilnehmer an den CAN-BUS-Master solange, bis diesem BUS-Teilnehmer eine gültige BUS-Knotenadresse zugeordnet wurde.Accordingly, the self-calibrated differential voltage value V AA is transmitted from each BUS user to the CAN-BUS master until a valid BUS node address has been assigned to this BUS user.

In einer Ausgestaltung des erfindungsgemäßen Verfahrens erfolgt eine Ablaufsteuerung der Verfahrensschritte automatisch und quasi-protokollgesteuert durch den CAN-BUS-Master. Das erfindungsgemäße Messverfahren mit Selbstabgleich beinhaltet durch den anwendungsbezogenen Ansatz eine ortsabhängige individuelle Offset- und Gain-Fehlerkorrektur der gesamten Messpfade innerhalb der BUS-Teilnehmer, wobei deren Ablauf automatisch innerhalb der BUS-Teilnehmer erfolgt und quasi-protokollgesteuert durch den CAN-Master angestoßen wird. Als stimulierende Messsignale werden gleichfalls die BUStypischen, physischen Pegel der Messanordnung verwendet, also grundsätzlich auf Grundlage der ohnehin vorhandenen, physischen Eigenschaften der BUS-Struktur. Die integrierte Messanordnung kann bei dieser Art der Signalaufbereitung den üblichen Prozess- und Parameterschwankungen unterliegen und muss keine überhöhten Genauigkeitsanforderungen erfüllen.In one embodiment of the method according to the invention, the process steps are controlled automatically and quasi-protocol-controlled by the CAN-BUS master. The measurement method according to the invention with self-alignment includes, through the application-related approach, a location-dependent, individual offset and gain error correction of the entire measurement paths within the BUS subscribers, the sequence of which takes place automatically within the BUS subscribers and is initiated by the CAN master in a quasi-protocol-controlled manner. The physical levels of the measuring arrangement that are typical of the BUS are also used as stimulating measuring signals, i.e. basically on Basis of the already existing physical properties of the BUS structure. With this type of signal processing, the integrated measuring arrangement can be subject to the usual process and parameter fluctuations and does not have to meet excessive accuracy requirements.

In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens sind die BUS-Teilnehmer LED-Treiber-Schaltkreise, die eine oder mehrere LEDs steuern. Das erfindungsgemäße Verfahren ermöglicht die Selbstkalibrierung für eine einfachere und sichere Durchführung der Autoadressierung von LED-Ketten anhand des Spannungsabfalls der BUS-Leitungen der LED-Treiber-Schaltkreise. Diese Lösung erfordert lediglich eine BUS-Kommunikation, benötigt aber keine zusätzlichen Komponenten, wie Leitungen, Pins, externe Bauelemente usw.In a further embodiment of the method according to the invention, the BUS users are LED driver circuits that control one or more LEDs. The method according to the invention enables self-calibration for a simpler and more reliable implementation of the auto-addressing of LED chains on the basis of the voltage drop in the BUS lines of the LED driver circuits. This solution only requires BUS communication, but does not require any additional components such as cables, pins, external components, etc.

Zusammenfassend bietet das erfindungsgemäße Verfahren folgende Vorteile: Für die Autoadressierung ist kein aufwendiger Abgleich am Ende des Herstellungsprozesses der ICs oder in der Applikation notwendig. Die Kalibrierung ist unabhängig sowohl von Temperatureinflüssen als auch von Langzeitdriften. Mit dem Verfahren können individuelle und ortsabhängige applikative Eigenschaften auf Modulebene berücksichtigt werden. Die Common-Mode-Spannung des BUS-Masters bildet die Referenz für den Selbstabgleich der Messeinrichtungen der BUS-Teilnehmer und macht eine hochpräzise externe oder interne Referenz überflüssig. Durch die geringen absoluten Genauigkeitsanforderungen, die an die Messung der Differenzspannungen gestellt werden, kann das Verfahren mit einem absolut minimalen zusätzlichen Hardwareaufwand im integrierten Schaltkreis (IC) für den Selbstabgleich durchgeführt werden, indem für die Messungen die ohnehin vorhandenen, physischen Eigenschaften der BUS-Struktur verwendet werden.In summary, the method according to the invention offers the following advantages: No complex adjustment is necessary for the auto-addressing at the end of the manufacturing process of the ICs or in the application. The calibration is independent of both temperature influences and long-term drifts. With the method, individual and location-dependent application properties can be taken into account at the module level. The common mode voltage of the BUS master forms the reference for the self-adjustment of the measuring devices of the BUS participants and makes a high-precision external or internal reference superfluous. Due to the low absolute accuracy requirements that are placed on the measurement of the differential voltages, the procedure can be carried out with an absolutely minimal additional hardware expenditure in the integrated circuit (IC) for the self-adjustment by using the physical properties of the BUS structure that are already present for the measurements be used.

Die Erfindung soll nachfolgend an Ausführungsbeispielen näher erläutert werden.The invention is to be explained in more detail below using exemplary embodiments.

Die Zeichnungen zeigen

Fig. 1
BUS-Teilnehmer (BUS-Slaves) in einem CAN-BUS-System, das die Spannungsabfälle an jedem BUS-Teilnehmer entlang des BUS für die Autoadressierung nutzt;
Fig. 2
Prinzipielle Struktur des für den Selbstabgleich verwendeten Messverstärkers;
Fig. 3
Schaltungsaufbau des Messverstärkers in SC-Technik zur Durchführung des Verfahrens zur Selbstkalibrierung einer für die Autoadressierung von differentiellen BUS-Schnittstellen notwendigen Messanordnung.
The drawings show
Fig. 1
BUS subscribers (BUS slaves) in a CAN-BUS system that uses the voltage drops at each BUS subscriber along the BUS for auto-addressing;
Fig. 2
Basic structure of the measuring amplifier used for self-adjustment;
Fig. 3
Circuit structure of the measuring amplifier in SC technology for carrying out the method for self-calibration of a measuring arrangement necessary for the auto-addressing of differential BUS interfaces.

Die Figur 1 zeigt ein CAN-BUS-System 1, welches einen CAN-BUS 2 umfasst, der aus einer CANH-Leitung 3 und einer CANL-Leitung 4 gebildet ist. Zwischen der CANH-Leitung 3 und der CANL-Leitung 4 sind die BUS-Teilnehmer 5 längs des CAN-BUS 2 linear angeordnet und jeweils mit einem ersten Anschluss mit der CANH-Leitung 3 und mit einem zweiten Anschluss mit der CANL-Leitung 4 des CAN-BUS 2 verbunden. Die Reihenfolge der Verbindung der ersten Anschlüsse der BUS-Teilnehmer mit der CANH-Leitung 3 längs des CAN-BUS 2 von einem BUS-Master 6 hin zu einem Terminierungswiderstand 7 ist gleich der Reihenfolge der Verbindung der zweiten Anschlüsse der BUS-Teilnehmer 5 mit der CANL-Leitung 4 längs des CAN-BUS 2 vom BUS-Master 6 hin zum Terminierungswiderstand 7. Ein BUS-Master 6 am Anfang des CAN-BUS 2 und ein Terminierungswiderstand 7 mindestens am Ende des CAN-BUS 2 sind angeordnet, wobei der BUS-Master 6 und der Terminierungswiderstand 7 die CANH-Leitung 3 und die CANL-Leitung 4 jeweils miteinander verbinden.the Figure 1 shows a CAN-BUS system 1, which comprises a CAN-BUS 2, which is formed from a CANH line 3 and a CANL line 4. Between the CANH line 3 and the CANL line 4, the BUS subscribers 5 are arranged linearly along the CAN-BUS 2 and each have a first connection to the CANH line 3 and a second connection to the CANL line 4 of the CAN-BUS 2 connected. The sequence of the connection of the first connections of the BUS subscribers to the CANH line 3 along the CAN-BUS 2 from a BUS master 6 to a termination resistor 7 is the same as the sequence of the connection of the second connections of the BUS subscribers 5 to the CANL line 4 along the CAN-BUS 2 from the BUS master 6 to the termination resistor 7. A BUS master 6 at the beginning of the CAN-BUS 2 and a termination resistor 7 at least at the end of the CAN-BUS 2 are arranged, the BUS -Master 6 and the termination resistor 7 connect the CANH line 3 and the CANL line 4 to one another.

Das Verfahren zur Selbstkalibrierung einer für die Autoadressierung notwendigen Messanordnung bzw. zum Selbstabgleich für die automatische Adressierung von BUS-Teilnehmern in einem CAN-BUS-System wird anhand der Figur 2 mit dem dargestellten Messverstärker erläutert.The method for self-calibration of a measuring arrangement necessary for auto-addressing or for self-adjustment for automatic addressing of BUS users in a CAN-BUS system is based on Figure 2 explained with the measuring amplifier shown.

Die durch den Messverstärker aufbereiteten Messspannungen Vmeas werden einem in der Regel ohnehin schon vorhandenen ADC zur Durchführung der Messungen zugeführt und anschließend nach verfahrensmäßiger Verrechnung der einzelnen Messwerte für die Autoadressierung verwendet. Für das Verfahren erfolgen zunächst drei einzelne Messungen während einem dominanten BUS-State, und zwar für die Potentiale von CANH, CANL und GND, geteilt über r In = R Div R Add / R In R Add + R Div R Add + R In R Div

Figure imgb0001
gemäß der beispielhaften Struktur des Messverstärkers in Figur 2, wobei rln das Teilerverhältnis der Eingangsspannung zum Ausgang des Spannungsteilers 13 bezeichnet. Bei allen drei Messungen wird die Spannung V Add r Add = V Add R Div R In / R In R Add + R Div R Add + R In R Div
Figure imgb0002
mit rAdd = RDiv · RIn / (RIn·RAdd + RDiv·RAdd + RIn·RDiv), was das Teilerverhältnis der Hilfsspannung zum Ausgang des Spannungsteilers 13 bezeichnet, gleichermaßen addiert, wodurch ein Offset des Messverstärkers und der Folgestufen (ADC) für die Messung sicher auf einen positiven Wert gebracht werden soll. So ergeben sich für die drei Messungen entsprechende ADC-Werte für: V M 1 = V CANH r In + V Add r Add
Figure imgb0003
V M 2 = V CANL r In + V Add r Add und
Figure imgb0004
V M 3 = V GND r In + V Add r Add
Figure imgb0005
Nun erfolgt die digitale Verrechnung der Werte gemäß: V M 13 = V M 1 V M 3 = V CANH r In
Figure imgb0006
V M 23 = V M 2 V M 3 = V CANL r In
Figure imgb0007
das sind nun die vom Offset bereinigten Messwerte für CANH und CANL. The measurement voltages V meas processed by the measurement amplifier are fed to an ADC, which is usually already present, to carry out the measurements and then used for auto-addressing after the process-based calculation of the individual measurement values. For the procedure, three individual measurements are initially carried out during a dominant BUS state, namely for the potentials of CANH, CANL and GND, divided over r In = R. Div R. Add / R. In R. Add + R. Div R. Add + R. In R. Div
Figure imgb0001
according to the exemplary structure of the measuring amplifier in Figure 2 , where r ln denotes the division ratio of the input voltage to the output of the voltage divider 13. For all three measurements, the voltage becomes V Add r Add = V Add R. Div R. In / R. In R. Add + R. Div R. Add + R. In R. Div
Figure imgb0002
with r Add = R Div * R In / (R In * R Add + R Div * R Add + R In * R Div ), which denotes the divider ratio of the auxiliary voltage to the output of the voltage divider 13, is also added, creating an offset of the measuring amplifier and the following stage (ADC) for the measurement should be safely brought to a positive value. This results in corresponding ADC values for the three measurements for: V M. 1 = V CANH r In + V Add r Add
Figure imgb0003
V M. 2 = V CANL r In + V Add r Add and
Figure imgb0004
V M. 3 = V GND r In + V Add r Add
Figure imgb0005
The values are now digitally offset according to: V M. 13th = V M. 1 - V M. 3 = V CANH r In
Figure imgb0006
V M. 23 = V M. 2 - V M. 3 = V CANL r In
Figure imgb0007
these are now the measured values for CANH and CANL that have been cleared of the offset.

Die zu kompensierende Differenzspannung ergibt sich zu V Diff 12 = V M 1 V M 2 = V M 13 V M 23 = V CANH V CANL * r In .

Figure imgb0008
Der Korrekturfaktor für diese Differenzspannung ergibt sich nach: k korr = 2 V CMRef / V M 13 + V M 23 = 2 V CMRef / V CANH + V CANL r In
Figure imgb0009
wobei VCMRef eine im Prinzip beliebig festlegbare Spannung ist, vorzugsweise aber der nominalen Common Mode Spannung entsprechen sollte.The differential voltage to be compensated results from V Diff 12th = V M. 1 - V M. 2 = V M. 13th - V M. 23 = V CANH - V CANL * r In .
Figure imgb0008
The correction factor for this differential voltage results from: k corr = 2 V CMRef / V M. 13th + V M. 23 = 2 V CMRef / V CANH + V CANL r In
Figure imgb0009
where V CMRef is in principle a voltage that can be determined as desired, but should preferably correspond to the nominal common mode voltage.

Die korrigierte Differenzspannung für einen BUS-Teilnehmer 5 ergibt sich nun einfach aus: V korr = k korr V Diff 12 = 2 V CMRef V CANH V CANL / V CANH + V CANL = V AA

Figure imgb0010
The corrected differential voltage for a BUS subscriber 5 now results simply from: V corr = k corr V Diff 12th = 2 V CMRef V CANH - V CANL / V CANH + V CANL = V AA
Figure imgb0010

Die wichtigste Voraussetzung für die Funktion eines Selbstabgleichs ist das Vorhandensein einer innerhalb des einzelnen BUS-Systems 1 von allen BUS-Teilnehmern 5 nutzbaren und messbaren Referenz, wofür die Common Mode Spannung des dominanten Signals vom Master 6 benutzt werden kann. An jedem BUS-Teilnehmer 5 werden drei einzelne Messungen im dominanten BUS-State benötigt, und zwar eine erste Spannungsmessung zwischen GND und GND, die einen ersten Differenzspannungswert Vov liefert, eine zweite Spannungsmessung zwischen CANH und GND, die einen zweiten Differenzspannungswert VCANH liefert und eine dritte Spannungsmessung zwischen CANLL und GND, die einen dritten Differenzspannungswert VCANL liefert. Durch das Subtrahieren des Wertes aus der 0V-Messung von den beiden anderen Messungen erfolgt zunächst eine Offset-Kompensation. Der zu kompensierende Messwert ist die Differenz der Spannungsmessungen von VCANH und VCANL (also VCANH - VCANL). Der Korrekturfaktor kkorr für diese Differenz ergibt sich aus dem Quotienten der doppelten, im Prinzip beliebig festgelegten, nominellen Common-Mode-Spannung und der Summe der beiden im Offset kompensierten Werte für VCANH und VCANL, was dem Doppelten der vom Master bereitgestellten Common Mode Spannung des dominanten Signals entspricht. Das Produkt aus der Differenz und dem ermittelten Korrekturfaktor ((VCANH - VCANL) · kkorr ) ergibt nun den innerhalb des BUS abgeglichenen, vergleichbaren Wert für die Differenzspannung von VCANH und VCANL.The most important prerequisite for the function of a self-adjustment is the presence of a reference that can be used and measured by all BUS users 5 within the individual BUS system 1, for which the common mode voltage of the dominant signal from the master 6 can be used. At each BUS subscriber 5, three individual measurements are required in the dominant BUS state, namely a first voltage measurement between GND and GND, which supplies a first differential voltage value Vov, and a second voltage measurement between CANH and GND, which supplies a second differential voltage value V CANH and a third voltage measurement between CANL L and GND, which supplies a third differential voltage value V CANL. By subtracting the value from the 0V measurement from the other two measurements, an offset compensation is initially carried out. The measured value to be compensated is the difference between the voltage measurements of V CANH and V CANL ( i.e. V CANH - V CANL ). The correction factor k korr for this difference results from the quotient of double the nominal common mode voltage, which is in principle arbitrarily defined, and the sum of the two offset-compensated values for V CANH and V CANL , which is double the common provided by the master Mode voltage corresponds to the dominant signal. The product of the difference and the determined correction factor ((V CANH - V CANL ) · k corr ) now results in the comparable value for the differential voltage of V CANH and V CANL adjusted within the BUS.

Bei dem erfindungsgemäßen Verfahren ist es also möglich, über drei einzelne Messungen einen Selbstabgleich der BUS-Teilnehmer durchzuführen, um anschließend eine Autoadressierung für alle BUS-Teilnehmer im CAN-BUS zu starten. Vorteilhaft ist besonders, dass eine absolute Genauigkeit bei den Spannungsmessungen nicht erforderlich ist. Verwendung findet eine nur innerhalb des BUS gültige, quasi beliebige, Referenz, anstatt einer globalen absoluten Referenz wie sie bei einem Tester-Abgleich bereitgestellt werden müsste. Ein Vorteil die Common-Mode-Spannung des dominanten Signals vom BUS-Master 6 als Referenz zu nutzen, liegt darin, dass sie an allen BUS-Teilnehmern 5 gleichzeitig unverändert anliegt.With the method according to the invention, it is therefore possible to carry out a self-adjustment of the BUS users via three individual measurements in order to then start auto-addressing for all BUS users in the CAN-BUS. It is particularly advantageous that absolute accuracy is not required for the voltage measurements. A quasi-arbitrary reference that is only valid within the BUS is used instead of a global absolute reference as it would have to be provided for a tester comparison. One advantage of using the common mode voltage of the dominant signal from the BUS master 6 as a reference is that it is present unchanged at all BUS users 5 at the same time.

In Figur 3 ist eine Ausführungsform des Schaltungsaufbaus des Messverstärkers mit Nutzung der SC-Technik zur Durchführung des Verfahrens zur Selbstkalibrierung der Messeinrichtung für die Autoadressierung in einem CAN-BUS-System 1 dargestellt.In Figure 3 an embodiment of the circuit structure of the measuring amplifier using SC technology to carry out the method for self-calibration of the measuring device for auto-addressing in a CAN-BUS system 1 is shown.

Mit dem vorgeschlagenen Verfahren kann auf einen Abgleich am Ende der IC-Produktion auf einem Testsystem, der eine enorme Präzision erfordert, verzichtet werden.With the proposed method, an adjustment at the end of the IC production on a test system, which requires enormous precision, can be dispensed with.

Der Selbstabgleich der Messeinrichtung für eine Autoadressierung in einer BUS-Applikation als solcher, benötigt weder eine absolute Genauigkeit, noch ist eine Langzeitstabilität der zu messenden Größen erforderlich. Es ist lediglich erforderlich, dass allen BUS-Teilnehmern 5 innerhalb eines BUS 2 zum Zeitpunkt des Selbstabgleichs eine gleiche Spannung zur Messung zur Verfügung steht. Genau hier setzt die Lösung für den Messverstärker sowie das dazugehörige vorgestellte Messverfahren an, und vermeidet so völlig unnötigen Aufwand und Präzision am Tester. Es werden nun nur noch drei einzelne Messungen im dominanten BUS-State benötigt. Durch Subtrahieren des Wertes der Vov-Messung von den beiden anderen Messungen (VCANH, VCANL) erfolgt zunächst die Offset-Kompensation. Von diesen beiden im Offset kompensierten Messungen (V*CANH, V*CANL) ist nun der Quotient aus Differenz und Summe ein Maß der im Gain korrigierten BUS-Differenzspannung, die ggf. nur noch sinnvoll zu normieren ist, beispielsweise mit der doppelten nominalen Common-Mode-Spannung.The self-adjustment of the measuring device for auto-addressing in a BUS application as such does not require absolute accuracy, nor is long-term stability of the variables to be measured required. It is only necessary that all BUS subscribers 5 within a BUS 2 have the same voltage available for measurement at the time of the self-adjustment. This is exactly where the solution for the measurement amplifier and the associated measurement process comes in, thus avoiding completely unnecessary effort and precision on the tester. Only three individual measurements are now required in the dominant BUS state. By subtracting the value of the Vov measurement from the two other measurements (V CANH , V CANL ), the offset compensation is initially carried out. Of these two offset-compensated measurements (V * CANH , V * CANL ), the quotient of the difference and the sum is now a measure of the BUS differential voltage corrected in the gain, which may only need to be standardized, for example with twice the nominal common -Mode voltage.

Der Messverstärker und das zugehörige Messverfahren mit Selbstabgleich für CAN-AA+ (Auto-Addressing) kann für einen RGB-LED Multichannel PWM Controller IC mit einem CANPhy-Interface genutzt werden und bietet die Möglichkeit eines automatischen, sehr präzisen "Abgleichs" des Verstärkers bezüglich Offset und Gain in der Applikation bei/nach Power-On zum Zweck der Durchführung einer sicheren Autoadressierung im BUS-System 1.The measuring amplifier and the associated measuring method with self-adjustment for CAN-AA + (auto-addressing) can be used for an RGB-LED multichannel PWM controller IC with a CANPhy interface and offers the possibility of an automatic, very precise "adjustment" of the amplifier with regard to offset and gain in the application during / after power-on for the purpose of performing safe auto-addressing in the BUS system 1.

BezugszeichenlisteList of reference symbols

1.1.
CAN-BUS-SystemCAN-BUS system
2.2.
CAN-BUSCAN-BUS
3.3.
CAN-High-LeitungCAN high line
4.4th
CAN-Low-LeitungCAN low line
5.5.
BUS-Teilnehmer, LED-Treiber-SchaltkreisBUS participant, LED driver circuit
6.6th
BUS-MasterBUS master
7.7th
TerminierungswiderstandTermination resistance
8.8th.
CANH-EingangCANH input
9.9.
CANL-EingangCANL input
10.10.
GND-EingangGND input
11.11th
UmschalterToggle switch
12.12th
HilfsspannungAuxiliary voltage
13.13th
SpannungsteilerVoltage divider
14.14th
Gepufferte Ausgangsspannung des Spannungsteilers zum Analog Digital UmsetzerBuffered output voltage from the voltage divider to the analog-digital converter
15.15th
Buffer-OperationsverstärkerBuffer operational amplifier

Claims (3)

Verfahren zur ortsgenauen automatischen Adressierung von BUS-Teilnehmern (5) mit applikativer Selbstkalibrierung in einem differentiellen CAN-BUS-System (1), wobei die BUS-Teilnehmer (5) längs eines CAN-BUS (2) linear angeordnet sind und jeweils mit einem ersten Anschluss mit einer CANH-Leitung (3) und mit einem zweiten Anschluss mit einer CANL-Leitung (4) des CAN-BUS (2) verbunden sind und ein CAN-BUS-Master (6) am Anfang des CAN-BUS (2) und mindestens am Ende des CAN-BUS (2) ein Terminierungswiderstand (7) angeordnet sind, wobei der CAN-BUS-Master (6) und der Terminierungswiderstand (7) die CANH-Leitung (3) und die CANL-Leitung (4) jeweils miteinander verbinden, das Verfahren weist folgende Schritte auf: - Anschalten und/oder Zurücksetzen des CAN-BUS-Systems (1); - Signalisieren eines Autoadressierungsmodus durch den CAN-BUS-Master (6) an die BUS-Teilnehmer (5), die den Autoadressierungsmodus einstellen; - Messen von drei Differenzspannungswerten während eines dominanten BUS-State an jedem BUS-Teilnehmer (5), wobei - ein erster Differenzspannungswert Vov von GND gegen GND an jedem BUS-Teilnehmer (5) gleichzeitig gemessen wird, - ein zweiter Differenzspannungswert VCANH von der CANH-Leitung (3) gegen GND an jedem BUS-Teilnehmer (5) gleichzeitig gemessen wird, - ein dritter Differenzspannungswert VCANL von der CANL-Leitung (4) gegen GND an jedem BUS-Teilnehmer (5) gleichzeitig gemessen wird; - Kompensieren eines individuellen Offsetfehlers für jeden BUS-Teilnehmer (5) durch Subtrahieren des ersten Vov-Differenzspannungswertes jeweils vom zweiten VCANH-Differenzspannungswert und vom dritten VCANL-Differenzspannungswert des jeweiligen BUS-Teilnehmers (5); - Kompensieren eines individuellen Gainfehlers für jeden BUS-Teilnehmer (5) mittels eines Korrekturfaktors kkorr , wobei der Korrekturfaktor kkorr aus einem fixen BUS-Referenzwert VCMRef und den kompensierten V*CANH- und V*CANL-Differenzspannungswerten gemäß kkorr = 2 ·VCMRef / (V*CANH+ V*CANL) ermittelt wird; - Ermitteln eines selbstkalibrierten Differenzspannungswertes VAA gemäß VAA = (VCANH - VCANL) · kkorr = (VCANH - VCANL) · (2·VCMRef) / (V*CANH + V*CANL) durch jeden BUS-Teilnehmer (5); - Gleichzeitiges Übermitteln der selbstkalibrierten Differenzspannungswerte VAA von jedem BUS-Teilnehmer (5) an den CAN-BUS-Master (6), wobei jeder BUS-Teilnehmer (5) das Übermitteln seines Differenzspannungswertes VAA solange wiederholt, bis dieser konfliktfrei bis zum letzten Bit an den CAN-BUS-Master (6) übertragen wurde, wobei aus der Reihenfolge der konfliktfrei übermittelten Differenzspannungswerte VAA mittels einer im CAN-BUS-System (1) bekannten und festgelegten Zuordnungsvorschrift eine BUS-Knotenadresse für jeden BUS-Teilnehmer (5) bestimmt wird. Method for the precise, automatic addressing of BUS subscribers (5) with applicative self-calibration in a differential CAN-BUS system (1), the BUS subscribers (5) being arranged linearly along a CAN-BUS (2) and each with a first connection with a CANH line (3) and with a second connection with a CANL line (4) of the CAN-BUS (2) and a CAN-BUS master (6) at the beginning of the CAN-BUS (2 ) and at least at the end of the CAN-BUS (2) a termination resistor (7) are arranged, the CAN-BUS master (6) and the termination resistor (7) the CANH line (3) and the CANL line (4 ) connect with each other, the process has the following steps: - Switching on and / or resetting the CAN-BUS system (1); - Signaling of an auto-addressing mode by the CAN-BUS master (6) to the BUS users (5) who set the auto-addressing mode; - Measurement of three differential voltage values during a dominant BUS state at each BUS user (5), whereby - A first differential voltage value Vov from GND to GND is measured at each BUS user (5) at the same time, - a second differential voltage value V CANH is measured simultaneously from the CANH line (3) to GND at each BUS user (5), - A third differential voltage value V CANL is measured simultaneously from the CANL line (4) to GND at each BUS user (5); - Compensating for an individual offset error for each BUS subscriber (5) by subtracting the first Vov differential voltage value from the second V CANH differential voltage value and from the third V CANL differential voltage value of the respective BUS subscriber (5); - Compensation of an individual gain error for each BUS user (5) by means of a correction factor k korr , the correction factor k korr from a fixed BUS reference value V CMRef and the compensated V * CANH and V * CANL differential voltage values according to kkorr = 2 · V CMRef / (V * CANH + V * CANL ) is determined; - Determination of a self-calibrated differential voltage value V AA according to V AA = (V CANH - V CANL ) k korr = (V CANH - V CANL ) (2 V CMRef ) / (V * CANH + V * CANL ) through each BUS Participant (5); - Simultaneous transmission of the self-calibrated differential voltage values V AA from each BUS subscriber (5) to the CAN-BUS master (6), with each BUS subscriber (5) repeating the transmission of its differential voltage value V AA until it is free of conflicts up to the last bit is transferred to the CAN bus master (6), from the sequence of conflict-free transmitted differential voltage values V AA by means of one and the fixed allocation specification known in the CAN-BUS-system (1) comprises a BUS-node address for each bus subscriber (5 ) is determined. Verfahren nach Anspruch 1, wobei derjenige BUS-Teilnehmer (5), der seinen selbstkalibrierten Differenzspannungswertes VAA konfliktfrei an den CAN-BUS-Master (6) übertragen hat, seine Übertragung an den CAN-BUS-Master (6) sperrt.Method according to Claim 1, in which the BUS user (5) who has transmitted its self-calibrated differential voltage value V AA to the CAN-BUS master (6) without conflict blocks its transmission to the CAN-BUS master (6). Verfahren nach einem der vorherigen Ansprüche, wobei eine Ablaufsteuerung der Verfahrensschritte automatisch und quasi-protokollgesteuert durch den CAN-BUS-Master (6) erfolgt.Method according to one of the preceding claims, wherein a sequence control of the method steps takes place automatically and quasi-protocol-controlled by the CAN-BUS master (6).
EP21182457.8A 2020-04-07 2020-07-13 Method for the precise automatic addressing of bus subscribers with applicable self-calibration in a differential can bus system Active EP3920667B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020109717.4A DE102020109717A1 (en) 2020-04-07 2020-04-07 Method for auto-addressing a bidirectional two-wire bus
EP20185504.6A EP3893608B1 (en) 2020-04-07 2020-07-13 Method for applicative self-calibration of the measuring arrangement necessary for the autoaddressing of a differential bus system and corresponding measuring amplifier

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP20185504.6A Division-Into EP3893608B1 (en) 2020-04-07 2020-07-13 Method for applicative self-calibration of the measuring arrangement necessary for the autoaddressing of a differential bus system and corresponding measuring amplifier
EP20185504.6A Division EP3893608B1 (en) 2020-04-07 2020-07-13 Method for applicative self-calibration of the measuring arrangement necessary for the autoaddressing of a differential bus system and corresponding measuring amplifier

Publications (2)

Publication Number Publication Date
EP3920667A1 true EP3920667A1 (en) 2021-12-08
EP3920667B1 EP3920667B1 (en) 2022-06-22

Family

ID=71607791

Family Applications (3)

Application Number Title Priority Date Filing Date
EP20185496.5A Active EP3893607B1 (en) 2020-04-07 2020-07-13 A differential two-wire data bus system and method for location-specific automatic addressing of bus subscribers in a differential two-wire data bus system
EP21182457.8A Active EP3920667B1 (en) 2020-04-07 2020-07-13 Method for the precise automatic addressing of bus subscribers with applicable self-calibration in a differential can bus system
EP20185504.6A Active EP3893608B1 (en) 2020-04-07 2020-07-13 Method for applicative self-calibration of the measuring arrangement necessary for the autoaddressing of a differential bus system and corresponding measuring amplifier

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20185496.5A Active EP3893607B1 (en) 2020-04-07 2020-07-13 A differential two-wire data bus system and method for location-specific automatic addressing of bus subscribers in a differential two-wire data bus system

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20185504.6A Active EP3893608B1 (en) 2020-04-07 2020-07-13 Method for applicative self-calibration of the measuring arrangement necessary for the autoaddressing of a differential bus system and corresponding measuring amplifier

Country Status (2)

Country Link
EP (3) EP3893607B1 (en)
DE (1) DE102020109717A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10349600A1 (en) * 2002-10-25 2004-05-13 Infineon Technologies Ag Checking line faults in bus system involves dominant bus subscriber comparing voltage levels on bus lines with threshold values related to internal high level or internal low level of bus subscriber
CN104345176A (en) * 2014-11-19 2015-02-11 中北大学 Self-calibration digital acceleration sensor
DE102015004455B3 (en) * 2015-03-31 2016-03-24 Elmos Semiconductor Aktiengesellschaft Device and method for suppressing common mode interference in two-wire buses
WO2018114937A2 (en) * 2016-01-19 2018-06-28 Elmos Semiconductor Aktiengesellschaft Concatenated two-wire data bus consisting of two single-wire data buses, each with a plurality of differential levels for transmitting illumination data on the basis of the jtag protocol
DE102018110252A1 (en) * 2018-04-27 2019-10-31 Infineon Technologies Ag Transceiver, system with transceivers and signal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8060658B2 (en) 2008-03-06 2011-11-15 Siemens Industry, Inc. Auto addressing devices on a common power and communication bus structure and method therefor
US8492983B1 (en) 2010-05-11 2013-07-23 Analog Technologies Corporation System and method to address and control serially connected LEDs
DE102010032760A1 (en) 2010-07-29 2012-02-02 E:Cue Control Gmbh Control device for controlling a lamp and luminaire
AT514999B1 (en) 2013-11-06 2015-11-15 Tgw Mechanics Gmbh Method for addressing / series linearly linked control components of a conveyor system
EP3070999A1 (en) 2015-03-20 2016-09-21 Université d'Aix-Marseille Control of pixel addressable led strips
DE102018104852A1 (en) 2018-03-02 2019-09-05 Elmos Semiconductor Aktiengesellschaft Method for controlling electrical and / or electronic components of a motor vehicle module and such a motor vehicle module with automatic module addressing by means of bus shunt resistors in a differential bus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10349600A1 (en) * 2002-10-25 2004-05-13 Infineon Technologies Ag Checking line faults in bus system involves dominant bus subscriber comparing voltage levels on bus lines with threshold values related to internal high level or internal low level of bus subscriber
CN104345176A (en) * 2014-11-19 2015-02-11 中北大学 Self-calibration digital acceleration sensor
DE102015004455B3 (en) * 2015-03-31 2016-03-24 Elmos Semiconductor Aktiengesellschaft Device and method for suppressing common mode interference in two-wire buses
WO2018114937A2 (en) * 2016-01-19 2018-06-28 Elmos Semiconductor Aktiengesellschaft Concatenated two-wire data bus consisting of two single-wire data buses, each with a plurality of differential levels for transmitting illumination data on the basis of the jtag protocol
DE102018110252A1 (en) * 2018-04-27 2019-10-31 Infineon Technologies Ag Transceiver, system with transceivers and signal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Verfahren zur automatisierten Adressvergabe in CAN-Bussystemen ED - Darl Kuhn", IP.COM, IP.COM INC., WEST HENRIETTA, NY, US, 14 August 2009 (2009-08-14), XP013133047, ISSN: 1533-0001 *

Also Published As

Publication number Publication date
EP3893608B1 (en) 2024-05-29
EP3893607B1 (en) 2022-06-22
EP3893607A1 (en) 2021-10-13
DE102020109717A1 (en) 2021-10-07
EP3920667B1 (en) 2022-06-22
EP3893608A1 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
WO2008043404A1 (en) Device for sensing a fault current in a field bus system
EP2015518B1 (en) Slave device for use in a series connection and bus arrangement with series connection in a sub-bus system
EP3493479B1 (en) Method for the supply of addressing streams through bus nodes of a serial data bus system and bus node for such a data bus system
DE102008002946A1 (en) Method for detecting an error on a data line
EP2154831A1 (en) Method for determining the address or position of a participant
EP2917795B1 (en) Method for identifying the relative installation position of the modules used in a modular electronic system
EP3804223A1 (en) Method for identifying bus nodes in a bus system
DE102007028928A1 (en) Slave device for series connection and method for determining the position of Slaven devices in a series connection
DE102012218274A1 (en) Parallel reading of an analog sensor by two control units
DE102018109307B3 (en) 7Communication system for automation and process technology as well as Y-switch unit for such a communication system
EP3920667B1 (en) Method for the precise automatic addressing of bus subscribers with applicable self-calibration in a differential can bus system
EP1048934A2 (en) Dual-wire-type detector
DE102012021847B4 (en) Universal input / output interface for industrial applications
EP4018603B1 (en) Method for detecting the position of at least one bus subscriber
WO2019096629A1 (en) Communication system for automation and process engineering, and y selector switch unit for such a communication system
EP3882723B1 (en) Method for allocating addresses to bus users
DE102008045707A1 (en) Printed circuit board with termination of a T-shaped signal line
DE102018009924B4 (en) Dimmer and procedure for recognizing the correct wiring of dimming channels
DE102012201651A1 (en) Position measuring device
DE102017111544B4 (en) Combined PSI5 / DSI3 data interface for a mixed installation of sensors with PSI5 and PSI3 data bus interface in sensor systems
DE3634053A1 (en) Method and circuit arrangement for measuring the resistance values of two series-connected sensor resistors
DE102022108932B3 (en) Electronic system for a vehicle and method for identifying functional modules in a vehicle
DE102018110100B4 (en) Galvanically isolated, symmetrical sensor supply of an analog-digital converter for asymmetrical supply
DE10111468B4 (en) Method and device for determining properties of inserted modules
DE102020129113A1 (en) Detection of relative positions of sensors on a communication bus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210712

AC Divisional application: reference to earlier application

Ref document number: 3893608

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20211105

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220209

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3893608

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001274

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1500654

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221024

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020001274

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230731

Year of fee payment: 4

Ref country code: DE

Payment date: 20230726

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20200713