EP3904690B1 - Mehrstufiger zentrifugalverdichter mit pumpschutzsystem und steuerungsverfahren dafür - Google Patents

Mehrstufiger zentrifugalverdichter mit pumpschutzsystem und steuerungsverfahren dafür Download PDF

Info

Publication number
EP3904690B1
EP3904690B1 EP21168518.5A EP21168518A EP3904690B1 EP 3904690 B1 EP3904690 B1 EP 3904690B1 EP 21168518 A EP21168518 A EP 21168518A EP 3904690 B1 EP3904690 B1 EP 3904690B1
Authority
EP
European Patent Office
Prior art keywords
surge
compression stage
pipeline
backflow valve
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21168518.5A
Other languages
English (en)
French (fr)
Other versions
EP3904690A1 (de
Inventor
Fei Gao
Eric Day
Li Qu
Jian-Wei Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3904690A1 publication Critical patent/EP3904690A1/de
Application granted granted Critical
Publication of EP3904690B1 publication Critical patent/EP3904690B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0223Control schemes therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3011Inlet pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3013Outlet pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3015Pressure differential pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/306Mass flow
    • F05D2270/3061Mass flow of the working fluid

Definitions

  • the present invention belongs to the field of gas separation equipment, and relates to an anti-surge system and a control method for a centrifugal compressor.
  • a surge line and a surge control line are usually set in the performance map of a multi-stage compression system, and the surge control line is used to control the multi-stage compression system.
  • the manufacturer or designer of the multi-stage compression system sets the surge line at which surge occurs by subjecting the multi-stage compression system to theoretical analysis and multiple experiments, and sets the surge control line by presetting a 10% safety margin.
  • the discharge pressure of the compressor is adjusted by controlling the degree of opening of an inlet guide vane disposed in the compressor, or a backflow valve at the outlet of the compressor is opened, so that some gas discharged from the compressor is returned to the inlet side of the compressor, to achieve the objective of staying away from the surge line and preventing compressor surge.
  • An air booster in an air separation apparatus is usually provided with an intermediate gas extraction pipeline, the intermediately extracted gas being used to supply public facilities; the amount of intermediately extracted gas might account for 1% - 30% of the intake gas flow rate of the air booster.
  • the air booster can be regarded as two different centrifugal compressor sections with the intermediate gas extraction pipeline as a boundary.
  • two sets of inlet guide vanes, two backflow pipelines, and backflow valves disposed on the two backflow pipelines respectively are generally provided for anti-surge control, but this is not ideal from an economic perspective.
  • JP H09 273495 discloses an anti-surge system according to the preamble of Claim 1.
  • US2017/082113 teaches to control the surge margin of a compressor with at least three stages based on flow characteristics measured between each compression stage.
  • the present invention discloses a centrifugal compressor comprising an anti-surge system, the centrifugal compressor having N compression stages, including first to Nth compression stages, and an intermediate gas extraction pipeline being disposed between an (M-1)th compression stage and an Mth compression stage, wherein N denotes an integer greater than 2, and M denotes an integer less than or equal to N;
  • the intermediate gas extraction pipeline is the only intermediate gas extraction pipeline of the compressor;
  • the anti-surge system for the centrifugal compressor comprises a first throttle device, disposed on an inlet pipeline of the first compression stage, and configured to measure an inlet flow rate of the first compression stage; a first pressure sensor, disposed on the inlet pipeline of the first compression stage, and configured to measure an inlet pressure of the first compression stage; a first temperature sensor, disposed on the inlet pipeline of the first compression stage, and configured to measure an inlet temperature of the first compression stage; a second pressure sensor, disposed on an inlet pipeline of the Mth compression stage, and configured
  • the intermediate gas extraction pipeline provides intermediately extracted gas for supplying instrument gas and/or factory gas, and the flow rate of the intermediately extracted gas accounts for 1% - 30% of the intake gas flow rate of the inlet pipeline of the first compression stage.
  • the flow rate in the 1 st to M-1 th stages is greater than the flow rate in the Mth to Nth stages.
  • the present invention further discloses an anti-surge system control method for a centrifugal compressor as defined by claim 6, wherein: the compression stage of the centrifugal compressor that is disposed before the only intermediate gas extraction pipeline (i.e. the first to (M-1)th compression stages) is defined as a first compression section; the compression stage of the centrifugal compressor that is disposed after the intermediate gas extraction pipeline (i.e.
  • the Mth to Nth compression stages is defined as a second compression section;
  • the control method comprises a first anti-surge control associated with the first compression section, and a second anti-surge control associated with the second compression section;
  • the first anti-surge control is based on a first surge control line, and the second anti-surge control is based on a second surge control line;
  • the first anti-surge control and the second anti-surge control are executed together, such that neither one of the first compression section and second compression section of the centrifugal compressor experiences surge.
  • the first compression section is subjected to the first anti-surge control via the following steps: a pressure ratio at a first operating point is calculated according to pressure signals inputted by the first pressure sensor and the second pressure sensor, and a first anti-surge flow rate on the first surge control line is determined according to the pressure ratio at the first operating point, and defined as a first set value; a flow rate signal inputted by the first throttle device is defined as a first measured value; when the first measured value is less than the first set value, the first backflow valve opening degree signal is outputted, wherein the opening degree signal is dynamic, opening until the first measured value is equal to the first set value; and when the first measured value is not less than the first set value, the first backflow valve opening degree signal is not outputted.
  • the second compression section is subjected to the second anti-surge control via the following steps: a pressure ratio at a second operating point is calculated according to pressure signals inputted by the second pressure sensor and the third pressure sensor, and a second anti-surge flow rate on the second surge control line is determined according to the pressure ratio at the second operating point, and defined as a second set value; a flow rate signal inputted by the second throttle device is defined as a second measured value; when the second measured value is less than the second set value, the second backflow valve opening degree signal is outputted, wherein the opening degree signal is dynamic, opening until the second measured value is equal to the second set value; and when the second measured value is not less than the second set value, the second backflow valve opening degree signal is not outputted.
  • the high selector receives and compares the first backflow valve opening degree signal and the second backflow valve opening degree signal, and controls the opening of the anti-surge backflow valve according to the larger backflow valve opening degree signal; at least a portion of gas in the outlet pipeline of the Nth compression stage flows back to the inlet pipeline of the first compression stage via the branch pipeline, thereby increasing the intake gas flow rate of the inlet pipeline of the first compression stage, such that an operating point is on a surge control line or at the right side of the surge control line, to achieve the objective of preventing surge; if the high selector does not receive any first backflow valve opening degree signal or second backflow valve opening degree signal, the anti-surge backflow valve is not opened.
  • an anti-surge system for a centrifugal compressor comprises a first compression stage C1, a second compression stage C2, a third compression stage C3, a fourth compression stage C4, a first throttle device Fa, a first pressure sensor Pa, a first temperature sensor Ta, a second pressure sensor Pb, a second throttle device Fb, a second temperature sensor Tb, a third pressure sensor Pc, an inlet pipeline C1 in of the first compression stage, an inlet pipeline C2 in of the second compression stage, an outlet pipeline C4 out of the fourth compression stage, a branch pipeline Bp connecting the outlet pipeline of the fourth compression stage to the inlet pipeline of the first compression stage, an anti-surge backflow valve ASV installed on the branch pipeline Bp, a first anti-surge controller ASC1, a second anti-surge controller ASC2 and a high selector FY.
  • the centrifugal compressor according to the current embodiment is a four-stage compressor comprising the first compression stage C1, the second compression stage C2, the third compression stage C3 and the fourth compression stage C4; the compression pressure increases in sequence from the first stage to the fourth stage.
  • this embodiment is not limited to this.
  • the number of stages of the centrifugal compressor of the present invention is at least three; that is, the centrifugal compressor according to an exemplary embodiment may be configured to comprise ten compression stages or more.
  • the centrifugal compressor is divided into two compression sections; a first compression section comprises the first compression stage C1, and a second compression section comprises the second compression stage C2 to the fourth compression stage C4.
  • the intermediately extracted gas is used to supply instrument gas and/or factory gas (IA/PA), and since the amount of intermediately extracted gas accounts for 1% - 30% of the intake gas flow rate of the inlet pipeline C1 in of the first compression stage C1, the first compression section before an intermediate gas extraction pipeline and the second compression section after the intermediate gas extraction pipeline exhibit a change in flow rate, and can be regarded as two different centrifugal compressor sections with the intermediate gas extraction pipeline as a boundary; the performance curves thereof and the corresponding surge lines and surge control lines can be regarded as being in different operating conditions, so anti-surge control needs to be performed separately.
  • IA/PA instrument gas and/or factory gas
  • the first throttle device Fa, the first pressure sensor Pa and the first temperature sensor Ta are all disposed on the inlet pipeline C1 in of the first compression section; the second throttle device Fb, the second pressure sensor Pb and the second temperature sensor Tb are all disposed on the inlet pipeline C2 in of the second compression section (after the intermediate gas extraction pipeline); the third pressure sensor Pc is disposed on the outlet pipeline C4 out of the second compression section. Since the outlet pipeline of the first compression section is the inlet pipeline of the second compression section, the second pressure sensor is not only disposed on the outlet pipeline of the first compression section for the purpose of measuring an outlet pressure of the first compression section, but is also disposed on the inlet pipeline of the second compression section for the purpose of measuring an inlet pressure of the second compression section, i.e. the inlet pressure of the second compression section and the outlet pressure of the first compression section share the second pressure sensor, and approximately, the outlet pressure of the first compression section can be considered to be equal to the inlet pressure of the second compression section.
  • the first throttle device Fa and second throttle device Fb are both orifice plate flow meters; orifice plate flow meter throttle devices are simple in structure and sturdy, with stable and reliable performance, and a long service life; they are instruments that are commonly used in industry for measuring flow rates, are manufactured in accordance with international standards, and undergo rigorous checking and testing.
  • a static pressure difference arises between the regions before and after the orifice plate flow meter, and a certain functional relationship exists between this pressure difference and flow rate; the greater the flow rate, the greater the pressure difference.
  • a differential pressure signal is transmitted to a differential pressure transmitter, converted to a 4 - 20 ma. DC analog signal for output, and remotely transferred to a flow totalizer, thus achieving measurement of fluid flow rate.
  • the first pressure sensor Pa, the second pressure sensor Pb and the third pressure sensor Pc are electronic pressure sensors that automatically send measurement signals to a control system, but this embodiment is not limited to this. That is, the first pressure sensor, the second pressure sensor and the third pressure sensor according to an exemplary embodiment may be mechanical pressure sensors. In this case, a user can obtain measurement data from these sensors, and based on the measurement data, he/she performs anti-surge control manually.
  • the first temperature sensor Ta and the second temperature sensor Tb are electronic temperature sensors that automatically send measurement signals to the control system, but this embodiment is not limited to this. That is, the first temperature sensor and the second temperature sensor according to an exemplary embodiment may be mechanical temperature sensors. In this case, a user can obtain measurement data from these sensors, and based on the measurement data, he/she performs anti-surge control manually.
  • the anti-surge backflow valve ASV is opened or closed to control surge.
  • the anti-surge backflow valve ASV when the anti-surge backflow valve ASV is opened, at least a portion of gas flowing through the outlet pipeline C4 out of the second compression section flows back to the inlet pipeline C1 in of the first compression section through the branch pipeline Bp via the anti-surge control valve ASV; the outlet pressure of the second compression section falls and the intake gas flow rate of the inlet pipeline of the first compression section increases, thereby reducing the occurrence of surge.
  • the first anti-surge control and the second anti-surge control are executed together. That is, even if surge occurs in only one of the first compression section and the second compression section, the performance of the entire centrifugal compressor is reduced. Therefore, the anti-surge control should be executed such that surge does not occur in either one of the first compression section and the second compression section of the centrifugal compressor.
  • the surge control lines (the dotted lines in Figs. 2 and 3 ) are set by setting a safety margin of about 10% in the surge lines (the solid lines in Figs. 2 and 3 ), but the permitted safety margin can change according to the demands of the designer or user.
  • the surge lines of different compression sections are different.
  • a given pressure ratio on the surge control line has one and only one corresponding flow rate value, which is a set value of the present invention at that pressure ratio.
  • a measured value is directly measured by the throttle device at that pressure ratio.
  • the measured value is less than the set value, this indicates that the measured value is on the left side of the surge control line; if the measured value is not less than the set value, this indicates that the measured value is on the surge control line or on the right side of the surge control line.
  • Fig. 2 is a performance map of the present invention for the first compression section, schematically showing a first surge control line associated with first anti-surge control of the first compression section.
  • the first pressure sensor Pa measures the inlet pressure in the inlet pipeline C1 in of the first compression section to be P1
  • the second pressure sensor Pb measures the outlet pressure in the outlet pipeline of the first compression section (i.e. the inlet pipeline C2 in of the second compression section) to be P2; then the ratio of pressures of gas inputted to the first compression section and discharged from the first compression section, i.e. the pressure ratio at a first operating point, is P2/P1.
  • a first anti-surge flow rate F1 on the first surge control line is determined according to the pressure ratio P2/P1 at the first operating point, and defined to be a first set value; a flow rate signal inputted by the first throttle device Fa is defined to be a first measured value F2; at this time, the first measured value F2 is greater than the first set value F1, i.e. the first operating point is at the right side of the first surge control line, so a first backflow valve opening degree signal is not outputted, and the first compression section operates at the first operating point.
  • the first anti-surge controller comprises an integrated circuit and a circuit device to store data and perform arithmetic operations.
  • Fig. 3 is a performance map of the present invention for the second compression section, schematically showing a second surge control line associated with second anti-surge control of the second compression section.
  • the flow rate of the second compression section after the intermediate gas extraction pipeline is about 10% less than that of the first compression section. Therefore, the first compression section and the second compression section can be regarded as two different centrifugal compressor sections with the intermediate gas extraction pipeline as a boundary; the performance curves thereof and the corresponding surge lines and surge control lines can be regarded as being in different operating conditions.
  • the second pressure sensor Pb measures the inlet pressure in the inlet pipeline C2 in of the second compression section to be P2, and the third pressure sensor Pc measures the outlet pressure in the outlet pipeline C4 out of the second compression section to be P3; then the ratio of pressures of gas inputted to the second compression section and discharged from the second compression section, i.e. the pressure ratio at a second operating point, is P3/P2.
  • a second anti-surge flow rate F3 on the second surge control line is determined according to the pressure ratio P3/P2 at the second operating point, and defined to be a second set value; a flow rate signal inputted by the second throttle device Fb is defined to be a second measured value F4.
  • the second anti-surge controller comprises an integrated circuit and a circuit device to store data and perform arithmetic operations.
  • the selector FY receives and compares the first backflow valve opening degree signal and second backflow valve opening degree signal. Since no first backflow valve opening degree signal is outputted, the value of the first backflow valve opening degree signal is considered to be zero and only the second backflow valve opening degree signal is outputted, opening of the anti-surge backflow valve ASV is controlled according to the larger backflow valve opening degree signal, ie the second backflow valve opening degree signal.
  • the opening degree signal is dynamic, causing the opening of the anti surge backflow valve until the second measured flowrate value is equal to the second set value for the flowrate.
  • gas in the outlet pipeline C4 out of the fourth compression stage with a flow rate of at least I F4-F3 I flows back to the inlet pipeline C1 in of the first compression stage via the branch pipeline Bp, thereby increasing the intake gas flow rate of the inlet pipeline C1 in of the first compression stage, such that the measured flow rates at the first operating point and second operating point are both no less than the anti-surge flow rates of the corresponding surge control lines, to achieve the objective of preventing surge.
  • the four-stage compressor comprising the first to fourth compression stages according to the current embodiment has been described above.
  • the compressor is described as having four stages for convenience of explanation but is not limited to four.
  • the centrifugal compressor has N compression stages (N > 2), but since intermediate gas extraction takes place at only one position according to the present invention, the centrifugal compressor is still regarded as two compression sections with the intermediate gas extraction pipeline as a boundary for the purposes of anti-surge control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (17)

  1. Zentrifugalverdichter, umfassend ein Pumpschutzsystem, wobei der Zentrifugalverdichter N Verdichtungsstufen (C1, C2, C3, C4), umfassend erste bis N-te Verdichtungsstufen, und eine dazwischen liegende Gasextraktionsleitung, die zwischen einer (M-1)-ten Verdichtungsstufe und einer M-ten Verdichtungsstufe angeordnet ist, aufweist, wobei N eine ganze Zahl größer als 2 bezeichnet und M eine ganze Zahl kleiner oder gleich N bezeichnet, wobei die dazwischen liegende Gasextraktionsleitung die einzige dazwischen liegende Gasextraktionsleitung des Verdichters ist,
    dadurch gekennzeichnet, dass das Pumpschutzsystem für den Zentrifugalverdichter Folgendes umfasst:
    • eine erste Drosselvorrichtung (Fa), angeordnet an einer Einlassleitung (C1in) der ersten Verdichtungsstufe und ausgelegt zum Messen einer Einlassdurchflussrate der ersten Verdichtungsstufe;
    • einen ersten Drucksensor (Pa), angeordnet an der Einlassleitung der ersten Verdichtungsstufe und ausgelegt zum Messen eines Einlassdrucks der ersten Verdichtungsstufe;
    • einen ersten Temperatursensor (Ta), angeordnet an der Einlassleitung der ersten Verdichtungsstufe und ausgelegt zum Messen einer Einlasstemperatur der ersten Verdichtungsstufe;
    • einen zweiten Drucksensor (Pb), angeordnet an einer Einlassleitung der M-ten Verdichtungsstufe und ausgelegt zum Messen eines Einlassdrucks der M-ten Verdichtungsstufe;
    • eine zweite Drosselvorrichtung (Fb), angeordnet an der Einlassleitung der M-ten Verdichtungsstufe und angeordnet hinter der dazwischen liegenden Gasextraktionsleitung und ausgelegt zum Messen einer Einlassdurchflussrate der M-ten Verdichtungsstufe;
    • einen zweiten Temperatursensor (Tb), angeordnet an der Einlassleitung der M-ten Verdichtungsstufe und angeordnet hinter der dazwischen liegenden Gasextraktionsleitung und ausgelegt zum Messen einer Einlasstemperatur der M-ten Verdichtungsstufe;
    • einen dritten Drucksensor (Pc), angeordnet an einer Auslassleitung (C4out) der N-ten Verdichtungsstufe und ausgelegt zum Messen eines Auslassdrucks der N-ten Verdichtungsstufe;
    • eine Verzweigungsleitung, ausgelegt zum Verbinden der Auslassleitung der N-ten Verdichtungsstufe mit der Einlassleitung der ersten Verdichtungsstufe;
    • ein Pumpschutz-Rückflussventil (ASV), befindlich an der Verzweigungsleitung und ausgelegt zum Anpassen einer Rückflussrate von Rückfluss von der Auslassleitung der N-ten Verdichtungsstufe über die Verzweigungsleitung zum Einlass der ersten Verdichtungsstufe; und
    • ein Steuerungssystem, umfassend eine erste Pumpschutzsteuerung (ASC1), eine zweite Pumpschutzsteuerung (ASC2);
    • wobei die erste Pumpschutzsteuerung ausgelegt ist zum Empfangen von Durchflussraten-, Druck- und Temperatursignalen, eingegeben von der ersten Drosselvorrichtung, dem ersten Drucksensor, dem zweiten Drucksensor und dem ersten Temperatursensor, und zum Entscheiden, über eine Operation, ob ein erstes Rückflussventil-Öffnungsgradsignal ausgegeben werden soll;
    • wobei die zweite Pumpschutzsteuerung ausgelegt ist zum Empfangen von Durchflussraten-, Druck- und Temperatursignalen, eingegeben durch die zweite Drosselvorrichtung, den zweiten Drucksensor, den dritten Drucksensor und den zweiten Temperatursensor, und Entscheiden, über eine Operation, ob ein zweites Rückflussventil-Öffnungsgradsignal ausgegeben werden soll; und Mittel zum Öffnen des Pumpschutz-Rückflussventils, wenn eines aus dem ersten und dem zweiten Rückflussventil-Öffnungsgradsignal empfangen wird, sowie Mittel zum Schließen des Pumpschutz-Rückflussventils, wenn keines aus dem ersten und dem zweiten Rückflussventil-Öffnungsgradsignal empfangen wird.
  2. Verdichter nach Anspruch 1, umfassend einen Wähler (FY), ausgelegt zum Empfangen und Vergleichen des ersten Rückflussventil-Öffnungsgradsignals und des zweiten Rückflussventil-Öffnungsgradsignals und zum Steuern der Öffnung des Pumpschutz-Rückflussventils (ASV) entsprechend dem höheren aus dem ersten und dem zweiten Rückflussventil-Öffnungsgradsignal.
  3. Verdichter nach Anspruch 1 oder 2, wobei keine Leitung verbunden ist, um Gas aus der N-ten Stufe in die M-te Stufe zu senden.
  4. Verdichter nach einem der Ansprüche 1 bis 3, so ausgelegt, dass, wenn das Pumpschutz-Rückflussventil (ASV) geöffnet ist, zumindest ein Teil von Gas in der Auslassleitung der N-ten Verdichtungsstufe über die Verzweigungsleitung zur Einlassleitung (C1in) der ersten Verdichtungsstufe zurückfließen kann, dadurch die Eingangsgasdurchflussrate der Einlassleitung der ersten Verdichtungsstufe erhöhend.
  5. Verdichter nach einem der vorhergehenden Ansprüche, wobei die erste und/oder die zweite Pumpschutzsteuerung (ASC1, ASC2) in der Lage ist, das erste bzw. zweite Rückflussventil-Öffnungsgradsignal auszugeben, wenn das Verhältnis zwischen dem Einlass- und Auslassdruckverhältnis und der Durchflussrate für den entsprechenden Verdichtungsabschnitt größer als ein Schwellenwert ist.
  6. Steuerungsverfahren für ein Pumpschutzsystem für einen Zentrifugalverdichter, wobei der Zentrifugalverdichter N Verdichtungsstufen (C1, C2, C3, C4), umfassend erste bis N-te Verdichtungsstufen, und eine dazwischen liegende Gasextraktionsleitung, die zwischen einer (M-1)-ten Verdichtungsstufe und einer M-ten Verdichtungsstufe angeordnet ist, aufweist, wobei N eine ganze Zahl größer als 2 bezeichnet und M eine ganze Zahl kleiner oder gleich N bezeichnet, wobei die dazwischen liegende Gasextraktionsleitung die einzige dazwischen liegende Gasextraktionsleitung ist,
    dadurch gekennzeichnet, dass das Pumpschutzsystem für den Zentrifugalverdichter Folgendes umfasst:
    • eine erste Drosselvorrichtung (Fa), angeordnet an einer Einlassleitung (C1in) der ersten Verdichtungsstufe und ausgelegt zum Messen einer Einlassdurchflussrate der ersten Verdichtungsstufe;
    • einen ersten Drucksensor (Pa), angeordnet an der Einlassleitung der ersten Verdichtungsstufe und ausgelegt zum Messen eines Einlassdrucks der ersten Verdichtungsstufe;
    • einen ersten Temperatursensor (Ta), angeordnet an der Einlassleitung der ersten Verdichtungsstufe und ausgelegt zum Messen einer Einlasstemperatur der ersten Verdichtungsstufe;
    • einen zweiten Drucksensor (Pb), angeordnet an einer Einlassleitung der M-ten Verdichtungsstufe und ausgelegt zum Messen eines Einlassdrucks der M-ten Verdichtungsstufe;
    • eine zweite Drosselvorrichtung (Fb), angeordnet an der Einlassleitung der M-ten Verdichtungsstufe und angeordnet hinter der dazwischen liegenden Gasextraktionsleitung und ausgelegt zum Messen einer Einlassdurchflussrate der M-ten Verdichtungsstufe;
    • einen zweiten Temperatursensor (Tb), angeordnet an der Einlassleitung der M-ten Verdichtungsstufe und angeordnet hinter der dazwischen liegenden Gasextraktionsleitung und ausgelegt zum Messen einer Einlasstemperatur der M-ten Verdichtungsstufe;
    • einen dritten Drucksensor (Pc), angeordnet an einer Auslassleitung der N-ten Verdichtungsstufe und ausgelegt zum Messen eines Auslassdrucks der N-ten Verdichtungsstufe;
    • eine Verzweigungsleitung, ausgelegt zum Verbinden der Auslassleitung der N-ten Verdichtungsstufe mit der Einlassleitung der ersten Verdichtungsstufe;
    • ein Pumpschutz-Rückflussventil (ASV), befindlich an der Verzweigungsleitung und ausgelegt zum Anpassen einer Rückflussrate von Rückfluss von der Auslassleitung der N-ten Verdichtungsstufe über die Verzweigungsleitung zum Einlass der ersten Verdichtungsstufe;
    • wobei die Verdichtungsstufe(n) des Zentrifugalverdichters, die stromaufwärts der dazwischen liegenden Gasextraktionsleitung angeordnet ist/sind, als ein erster Verdichtungsabschnitt definiert ist/sind;
    • wobei die Verdichtungsstufe(n) des Zentrifugalverdichters, die stromabwärts der dazwischen liegenden Gasextraktionsleitung angeordnet ist/sind, als ein zweiter Verdichtungsabschnitt definiert ist/sind;
    • wobei das Steuerungsverfahren eine erste Pumpschutzsteuerung (ASC1) in Verbindung mit dem ersten Verdichtungsabschnitt und eine zweite Pumpschutzsteuerung (ASC2) in Verbindung mit dem zweiten Verdichtungsabschnitt verwendet;
    wobei die erste Pumpschutzsteuerung ein erstes Rückflussventil-Öffnungsgradsignal erzeugt, wenn ein Pumprisiko im ersten Verdichtungsabschnitt detektiert wird, wobei die zweite Pumpschutzsteuerung ein zweites Rückflussventil-Öffnungsgradsignal erzeugt, wenn ein Pumprisiko im zweiten Verdichtungsabschnitt detektiert wird, und wobei das Pumpschutz-Rückflussventil geöffnet wird, wenn das Rückflussventil-Öffnungsgradsignal von zumindest einer aus der ersten und der zweiten Pumpschutzsteuerung detektiert wird, und geschlossen wird, wenn kein Rückflussventil-Öffnungsgradsignal von der ersten und der zweiten Pumpschutzsteuerung detektiert wird.
  7. Verfahren nach Anspruch 6, wobei ein Wähler (FY) das erste Rückflussventil-Öffnungsgradsignal und das zweite Rückflussventil-Öffnungsgradsignal empfängt und vergleicht und den Grad von Öffnung des Pumpschutz-Rückflussventils (ASV) entsprechend dem höheren aus dem ersten und dem zweiten Rückflussventil-Öffnungsgradsignal anpasst.
  8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der erste Verdichtungsabschnitt (C1) über die folgenden Schritte der ersten Pumpschutzsteuerung unterzogen wird: ein Druckverhältnis an einem ersten Betriebspunkt wird entsprechend Drucksignalen berechnet, die vom ersten Drucksensor und vom zweiten Drucksensor eingegeben werden, und eine erste Pumpschutz-Durchflussrate an der ersten Pumpsteuerleitung wird entsprechend dem Druckverhältnis am ersten Betriebspunkt bestimmt und als ein erster Einstellwert definiert; ein Durchflussratensignal, das von der ersten Drosselvorrichtung (Fa) eingegeben wird, wird als ein erster gemessener Wert definiert; wenn der erste gemessene Wert kleiner als der erste Einstellwert ist, wird das erste Rückflussventil-Öffnungsgradsignal ausgegeben.
  9. Verfahren nach Anspruch 8, wobei das erste Rückflussventil-Öffnungsgradsignal das Rückfluss-Steuerventil (ASV) veranlasst, geöffnet zu bleiben, bis der erste gemessene Wert gleich dem ersten Einstellwert ist.
  10. Verfahren nach Anspruch 8 oder 9, wobei, wenn der erste gemessene Wert nicht kleiner als der erste Einstellwert ist, das erste Rückflussventil-Öffnungsgradsignal nicht ausgegeben wird.
  11. Verfahren nach Ansprüchen 6 bis 10, dadurch gekennzeichnet, dass der zweite Verdichtungsabschnitt (C2, C3, C4) über die folgenden Schritte der zweiten Pumpschutzsteuerung unterzogen wird: ein Druckverhältnis an einem zweiten Betriebspunkt wird entsprechend Drucksignalen berechnet, die von dem zweiten Drucksensor (Pb) und dem dritten Drucksensor (Pc) eingegeben werden, und eine zweite Pumpschutz-Durchflussrate an der zweiten Pumpsteuerleitung wird entsprechend dem Druckverhältnis am zweiten Betriebspunkt bestimmt und als einer zweiter Einstellwert definiert; ein Durchflussratensignal, das von der zweiten Drosselvorrichtung (Fb) eingegeben wird, wird als ein zweiter gemessener Wert definiert; wenn der zweite gemessene Wert kleiner als der zweite Einstellwert ist, wird das zweite Rückflussventil-Öffnungsgradsignal ausgegeben.
  12. Verfahren nach Anspruch 11, wobei das erste Öffnungsgradsignal das Rückfluss-Steuerventil (ASV) veranlasst, geöffnet zu bleiben, bis der zweite gemessene Wert mindestens gleich dem zweiten Einstellwert ist.
  13. Verfahren nach Anspruch 11 oder 12, wobei, wenn der zweite gemessene Wert nicht kleiner als der zweite Einstellwert ist, das zweite Rückflussventil-Öffnungsgradsignal nicht ausgegeben wird.
  14. Verfahren nach einem der Ansprüche 6 bis 13, wobei der Verdichter Luft verdichtet und die dazwischen liegende Gasextraktionsleitung dazwischen extrahiertes Gas zum Zuführen von Instrumentengas und/oder Fabrikgas bereitstellt.
  15. Verfahren nach einem der Ansprüche 6 bis 14, wobei der Verdichter Luft verdichtet und die Durchflussrate des dazwischen extrahierten Gases 1 % - 30 % der Eingangsgasdurchflussrate der Einlassleitung der ersten Verdichtungsstufe ausmacht.
  16. Verfahren nach einem der Ansprüche 6 bis 15, wobei kein Gas von der N-ten Verdichterstufe zur M-ten Verdichterstufe zurückgeführt wird.
  17. Steuerungsverfahren für ein Pumpschutzsystem eines Zentrifugalverdichters nach einem der Ansprüche 6 bis 14, dadurch gekennzeichnet, dass ein Wähler (FY) das erste Rückflussventil-Öffnungsgradsignal und das zweite Rückflussventil-Öffnungsgradsignal empfängt und vergleicht und den Grad von Öffnung des Pumpschutz-Rückflussventils entsprechend dem größeren Rückflussventil-Öffnungsgradsignal steuert; wobei zumindest ein Teil des Gases in der Auslassleitung der N-ten Verdichtungsstufe (C4) über die Verzweigungsleitung zur Einlassleitung der ersten Verdichtungsstufe (C1) zurückfließt, dadurch die Eingangsgasdurchflussrate der Einlassleitung der ersten Verdichtungsstufe erhöhend, sodass ein Betriebspunkt an einer Pumpsteuerleitung oder hinreichend entfernt von der Pumpsteuerleitung ist, um das Ziel des Verhinderns von Pumpen zu erreichen, und wenn der Wähler keines aus dem ersten Rückflussventil-Öffnungsgradsignal oder dem zweiten Rückflussventil-Öffnungsgradsignal empfängt, ist das Pumpschutz-Rückflussventil (ASV) nicht geöffnet.
EP21168518.5A 2020-04-27 2021-04-15 Mehrstufiger zentrifugalverdichter mit pumpschutzsystem und steuerungsverfahren dafür Active EP3904690B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010346052.XA CN111322265B (zh) 2020-04-27 2020-04-27 一种离心式压缩机的防喘振系统及控制方法

Publications (2)

Publication Number Publication Date
EP3904690A1 EP3904690A1 (de) 2021-11-03
EP3904690B1 true EP3904690B1 (de) 2023-12-20

Family

ID=71169927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21168518.5A Active EP3904690B1 (de) 2020-04-27 2021-04-15 Mehrstufiger zentrifugalverdichter mit pumpschutzsystem und steuerungsverfahren dafür

Country Status (2)

Country Link
EP (1) EP3904690B1 (de)
CN (1) CN111322265B (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202210723A (zh) * 2020-08-31 2022-03-16 復盛股份有限公司 可變轉速多級壓縮機及其控制方法
CN113404707B (zh) * 2021-06-01 2023-11-03 中冶南方(黄石)气体有限公司 一种用于空分的增压塔
CN114837967A (zh) * 2022-05-06 2022-08-02 重庆江增船舶重工有限公司 一种多级压缩机的自动防喘振方法
CN115949609B (zh) * 2023-02-07 2024-05-14 河南科技大学 一种车用燃料电池空压机的测试系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130045079A1 (en) * 2010-05-11 2013-02-21 Rolls-Royce Plc Gas compression

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3432674B2 (ja) * 1996-04-05 2003-08-04 株式会社日立製作所 多段遠心圧縮機
FR2863348B1 (fr) * 2003-12-05 2006-12-22 Air Liquide Compresseur de gaz, appareil de separation d'un melange gazeux incorporant un tel compresseur et procede de separation d'un melange gazeux incorporant un tel compresseur
WO2010044493A1 (en) * 2008-10-13 2010-04-22 Kturbo, Inc. Blow-off system for multi-stage turbo compressor
DE102008058799B4 (de) * 2008-11-24 2012-04-26 Siemens Aktiengesellschaft Verfahren zum Betrieb eines mehrstufigen Verdichters
CN102392812B (zh) * 2011-06-10 2015-09-30 辽宁华兴森威科技发展有限公司 压缩机组喘振控制系统
US9074606B1 (en) * 2012-03-02 2015-07-07 Rmoore Controls L.L.C. Compressor surge control
KR101858648B1 (ko) * 2012-12-07 2018-05-16 한화파워시스템 주식회사 다단 압축 시스템의 서지 제어 방법
US10254719B2 (en) * 2015-09-18 2019-04-09 Statistics & Control, Inc. Method and apparatus for surge prevention control of multistage compressor having one surge valve and at least one flow measuring device
CN105090086B (zh) * 2015-09-24 2016-09-28 哈尔滨汽轮机厂有限责任公司 一种轴流压气机调节风量风压时防喘振方法
EP3150827A1 (de) * 2015-09-30 2017-04-05 Siemens Aktiengesellschaft Kompressoranordnung und gasturbinenmotor
CN106766958A (zh) * 2016-12-27 2017-05-31 鞍钢集团工程技术有限公司 用于工业炉余热回收的旁路热循环系统及使用方法
EP3396169B1 (de) * 2017-04-27 2022-01-12 Cryostar SAS Verfahren zur steuerung eines mehrstufigen kompressors
CN108843613A (zh) * 2018-06-13 2018-11-20 合肥托卡拉图科技有限公司 一种离心式压缩机防喘振模糊控制器中模糊设计方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130045079A1 (en) * 2010-05-11 2013-02-21 Rolls-Royce Plc Gas compression

Also Published As

Publication number Publication date
EP3904690A1 (de) 2021-11-03
CN111322265B (zh) 2022-02-11
CN111322265A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
EP3904690B1 (de) Mehrstufiger zentrifugalverdichter mit pumpschutzsystem und steuerungsverfahren dafür
KR102551338B1 (ko) 압축기 제어 시스템 및 압축기의 제어 방법
US8152496B2 (en) Continuing compressor operation through redundant algorithms
US10883866B2 (en) Pressure-based flow rate control device and malfunction detection method therefor
US20160047392A1 (en) Methods and systems for controlling turbocompressors
JP4820698B2 (ja) 圧力式流量制御装置の絞り機構下流側バルブの作動異常検出方法
US4230437A (en) Compressor surge control system
CN109458355B (zh) 压缩机的喘振控制方法及压缩机的喘振控制系统
EP3114353B1 (de) Verfahren und system zum betreiben eines back-to-back-verdichters mit einem seitenstrom
KR20170106057A (ko) 압축기 제어 시스템 및 압축기의 제어 방법
CN112762004A (zh) 一种离心式压缩机防喘振装置
US10378536B2 (en) Air compressor discharge system
EP2386762A1 (de) Verfahren zum Schutz von Verdichterpumpen für einen dynamischen Kompressor mithilfe eines die Verdichterpumpen charakterisierenden Parameters
KR102474752B1 (ko) 입구 가이드 베인 제어 장치, 압축기 제어 시스템 및 압축기 제어 방법
KR101858643B1 (ko) 서지 방지를 위한 압축기 시스템 제어방법 및 압축기 시스템
KR101945413B1 (ko) 압축기 제어 시스템 및 압축기의 제어 방법
JP2006316759A (ja) 圧縮装置
CN116026579A (zh) 一种流量测控阀故障在线自诊断方法
JP4351623B2 (ja) 圧縮機設備およびその制御方法
US10746182B2 (en) Multi-stage compressor system, control device, malfunction determination method, and program
Kolnsberg Reasons for centrifugal compressor surging and surge control
CN220667984U (zh) 一种油泵检测用液压系统
CN116502561B (zh) 一种提升双阀组阀门耐压等级的方法及系统
RU2210008C2 (ru) Способ антипомпажного регулирования компрессорной станции
KR100201218B1 (ko) 유압펌프 성능 시험기

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20210903

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220503

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230713

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021007794

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240321

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240321

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240320

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1642674

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240320

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240425

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240422

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240422

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220