EP3902782A1 - Purification d'hydroperoxyde d'alkyle par distillation en presence de methanol et d'eau - Google Patents

Purification d'hydroperoxyde d'alkyle par distillation en presence de methanol et d'eau

Info

Publication number
EP3902782A1
EP3902782A1 EP19848899.1A EP19848899A EP3902782A1 EP 3902782 A1 EP3902782 A1 EP 3902782A1 EP 19848899 A EP19848899 A EP 19848899A EP 3902782 A1 EP3902782 A1 EP 3902782A1
Authority
EP
European Patent Office
Prior art keywords
hydroperoxide
peroxide
tert
distillation
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19848899.1A
Other languages
German (de)
English (en)
Inventor
Bruno Van Hemelryck
Serge Hub
Philippe Maj
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3902782A1 publication Critical patent/EP3902782A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • C07C407/003Separation; Purification; Stabilisation; Use of additives

Definitions

  • the present invention relates to a method of separation and purification by means of extractive distillation of organic peroxides, and more particularly the separation of dialkyl peroxides of the general formula R1-OO-R2 with Ri and R 2 alkyl structures of C to C, identical or not, possibly being cyclic.
  • the present invention relates to the purification of alkyl hydroperoxides, from mixtures containing dialkyl peroxides as defined above.
  • This invention is applicable in particular, but not exclusively, during the production of organic peroxides obtained by synthesis of alkyl hydroperoxides containing the peroxide dialkyl impurities.
  • This invention therefore makes it possible to obtain with improved purity organic peroxides of the peresters type such as tert-butyl peroxypivalate, tert-butyl peroxy-2-ethylhexanoate, tert-amyl peroxy-2-ethylhexanoate of monoperoxypercarbonate type 00 tert-butyl-0- (2-ethylhexyl) - perketal-type monoperoxycarbonate such as 2,2-di-tert-butyl-peroxybutane, 2,2-di-tert-amyl-peroxybutane of hemi-perketal type or peroxide ether such as 1, 1 - dimethyl-propyl-1-methoxy-cyclohexyl peroxide and of dialkyl or
  • the alkyl hydroperoxides are typically tertiary amyl hydroperoxide (hereinafter abbreviated as TAHP) and tertiary butyl hydroperoxide (hereinafter abbreviated as TBHP).
  • TAHP tertiary amyl hydroperoxide
  • TBHP tertiary butyl hydroperoxide
  • Alkyl hydroperoxides are commonly used as raw materials to produce crosslinkers, intended to be mixed with polymers, such as polyester, ethylene-vinyl acetate or even ethylene-propylene-diene monomer. They are also used in the production of polymerization initiators, for example that of polystyrene or polyethylene.
  • alkyl hydroperoxides present on the market contain impurities, mainly represented by dialkyl peroxides, derived from the hydroperoxides in question.
  • alkyl hydroperoxides are conventionally obtained by acid catalysis, resulting in the formation of dialkyl peroxides associated, generally present between 3 and 30% by weight relative to the total weight of the composition of alkyl hydroperoxides.
  • dialkyl peroxides are not desired in association with their respective alkyl hydroperoxides and represent the primary source of harmful / negative contamination in the synthesis of crosslinkers and polymerization initiators.
  • alkyl hydroperoxides there are different modes of purification of alkyl hydroperoxides, well known to those skilled in the art, such as for example washing by salt formation, to which the document FR 2455036 refers.
  • the alkyl hydroperoxides are conventionally soluble in water but generally their associated dialkyl peroxides are much less so.
  • the alkyl hydroperoxides react with a base such as, for example, sodium hydroxide (NaOH) or potassium hydroxide (KOH), to form a salt of alkyl hydroperoxide soluble in water.
  • NaOH sodium hydroxide
  • KOH potassium hydroxide
  • the alkyl hydroperoxide salt is acidified, for example with using an aqueous solution of sulfuric acid, to reform the alkyl hydroperoxide.
  • the alkyl hydroperoxide is thus recovered by phase shift or by extraction with a solvent, for example a hydrocarbon.
  • a solvent for example a hydrocarbon.
  • Another purification method is direct distillation, as described in document FR 2455036.
  • the distillation of TAHP containing di-tert-amyl peroxide (DTA) is carried out in the presence of water under reduced pressure and at a temperature below 45 ° C, allowing the TAHP to be recovered at the bottom of the column. Distillation provides a composition of TAHP with a residue of 0.8% (8000 ppm) of DTA. These results remain insufficient, particularly for the use of TAHP as raw materials for the production of polymerization initiators.
  • the loss of TAHP is significant, between 4 and 16%, due to a lack of selectivity during the separation of DTA, and / or to a thermal degradation of TAHP.
  • organic peroxides are chemical in nature to decompose thermally, with in particular the formation of flammable vapors.
  • dialkyl peroxide is eliminated in the corresponding alkyl hydroperoxide, by entraining a reduced amount of this alkyl hydroperoxide during the process according to the invention.
  • alkyl hydroperoxide is meant a compound of formula ROOH in which R represents an alkyl group, linear or branched, cyclic or non-cyclic, unsaturated or functionalized, or an aromatic group, optionally substituted, preferably having from 4 to 8 carbon atoms, more preferably 4 to 6 carbon atoms, more preferably 4 or 5 carbon atoms.
  • said alkyl hydroperoxide is chosen from the group consisting of tert-butyl hydroperoxide, tert-amyl hydroperoxide, hexylene glycol hydroperoxide, tert-octyl hydroperoxide, hydroperoxide of tert-hexyl, 1-methyl-cyclopentyl hydroperoxide and 1-methyl-cyclohexyl hydroperoxide.
  • the water-soluble organic peroxide is chosen from the group consisting of tert-butyl hydroperoxide and tert-amyl hydroperoxide, more preferably still is tert-amyl hydroperoxide.
  • dialkyl peroxide is meant a compound of formula R1-OO-R2 in which Ri and R 2 are identical or different, and independently represent an alkyl group, linear or branched, cyclic or non-cyclic, unsaturated or functionalized, or an aromatic group, optionally substituted, preferably having from 4 to 8 carbon atoms, preferably from 4 to 6 carbon atoms, more preferably still 4 or 5 carbon atoms.
  • dialkyl peroxide to be separated from the hydroperoxide mention may be made of ditertiobutyl peroxide, ditertioamyl peroxide, di-3-hydroxy-1, 1-dimethylbutyl peroxide, di-tert-octyl peroxide, peroxide di-tert-hexyl, di (1-methyl-cyclopentyl) peroxide and di (1-methyl-cyclohexyl) peroxide.
  • the dialkyl peroxide is symmetrical, that is to say that the groups framing the group 0-0 are identical.
  • said at least one water-soluble organic peroxide preferably said at least one hydroperoxide, and said at least one dialkyl peroxide have identical groups R, Ri and R 2 .
  • the water-soluble organic peroxide is tert-butyl hydroperoxide and the dialkyl peroxide is ditertiobutyl peroxide.
  • the water-soluble organic peroxide is tert-amyl hydroperoxide and the dialkyl peroxide is ditertioamyl peroxide.
  • the water-soluble organic peroxide is hexylene glycol hydroperoxide and the dialkyl peroxide is di-3-hydroxy-1,1-dimethylbutyl peroxide.
  • the water-soluble organic peroxide is tert-octyl hydroperoxide and the dialkyl peroxide is di-tert-octyl peroxide.
  • the water-soluble organic peroxide is tert-hexyl hydroperoxide and the dialkyl peroxide is di-tert-hexyl peroxide.
  • the alkyl peroxide consists of tertiary amyl peroxide (DTA) or tertiary butyl peroxide (DI), even more preferably is tertiary amyl peroxide (DTA).
  • DTA tertiary amyl peroxide
  • DI tertiary butyl peroxide
  • DTA tertiary amyl peroxide
  • the present invention relates to a process for the separation of an alkyl hydroperoxide from a dialkyl peroxide comprising at least one stage of distillation of the composition comprising the alkyl hydroperoxide and said dialkyl peroxide in the presence of methanol and d 'water.
  • the content by weight of methanol present in stage a) of distillation is greater by 5 times, preferably is greater by 10 times, preferably is greater by 25 times, and more preferably is greater by 30 times, to that of said dialkyl peroxide,
  • the latter undergoes a condensation step then step of passage through at least one hydrocarbon, so as to obtain an organic phase containing said hydrocarbon as well as all or part dialkyl peroxide R1-OO-R2 and an aqueous phase containing water and methanol;
  • the process can thus comprise, after the distillation step a), an extraction step b) carried out by bringing said hydrocarbon into contact with the condensate obtained in step a), so as to obtain an organic phase containing said hydrocarbon as well as all or part of the dialkyl peroxide and an aqueous phase containing the hydroperoxide, water and methanol; in other words, the process according to the invention is preferably an extractive distillation process,
  • the hydrocarbon can be present in the composition before stage a) of distillation, or introduced during the stage of distillation;
  • steps a) and b) can be carried out concomitantly; very advantageously, the hydrocarbon is chosen from C 6 to C 12 hydrocarbons, preferably C 6 to C 8 hydrocarbons; more preferably a hydrocarbon in
  • the hydrocarbon is saturated
  • the above-mentioned methanolic aqueous phase is recycled to the distillation boiler so as in particular to conserve the quantity of methanol necessary to maintain the purification;
  • the above organic phase is distilled in order to separate said hydrocarbon from dialkyl peroxide
  • the distillation of the mixture according to the invention is carried out at a temperature between 25 ° C and 60 ° C, preferably between 30 ° C fe45 ° C;
  • the distillation of the mixture according to the invention is carried out at a pressure between 30 and 200 mbar (millibars), preferably between 40 and 180 mbar, and more preferably between 50 and 160 mbar,
  • the distillation of the mixture according to the invention is carried out at a pressure of between 90 and 200 mbar (millibars), preferably between 100 and 180 mbar, and more preferably between 100 and 160 mbar.
  • the Applicant has thus discovered a selective and secure distillation process, avoiding the loss and / or thermal degradation of organic peroxides.
  • Said process comprises a more selective distillation step in dialkyl peroxide, as well as, very advantageously, its recovery preferably carried out by selective extraction in a hydrocarbon.
  • the recovery of dialkyl peroxide is carried out by selective extraction in a hydrocarbon.
  • the process can also comprise at least one step b) of extraction using a hydrocarbon of dialkyl peroxide.
  • composition comprising methanol allows the elimination of the dialkyl peroxide in the hydroperoxide to be purified, by generating a dilute solution of alkyl hydroperoxide with methanol and water which can be easily removed by direct distillation. then by settling known to those skilled in the art.
  • the condensation of the distillation head comprising the dialkyl peroxide to be eliminated preferably takes place between -30 ° C and 0 ° C, preferably between -20 ° C and -10 ° C.
  • the distillation head is recovered by any means well known to those skilled in the art, such as a condenser.
  • the method according to the invention comprises a step of selective recovery of the dialkyl peroxide using a hydrocarbon.
  • the hydrocarbon is maintained in liquid form by adjusting the temperature, the latter being preferably between -30 ° C and 0 ° C, very preferably between -20 ° C and -10 ° C, in order to reduce the risk of boiling of the methanol phase and maintain good separation of the phases during selective capture of the dialkyl peroxide by the hydrocarbon.
  • the hydrocarbon is preferably chosen from hydrocarbons comprising from 6 to 12 carbon atoms. Said hydrocarbons comprising from 6 to 12 carbon atoms remain liquid at the condensation temperature of the distillation head. Hydrocarbons in C ? are preferred for their ease of elimination when entrained with the methanolic solution in the boiler during its recycling.
  • an upper organic phase consisting of dialkyl peroxide and the hydrocarbon
  • a lower aqueous phase comprising the mixture of water and methanol.
  • the choice of hydrocarbon allows selective retention of dialkyl peroxide such as DTA or DI.
  • the aqueous phase can thus be recycled in the mixture to be purified so as to allow the exhaustion of dialkyl peroxide by distillation. Recycling can be done continuously, or discontinuously.
  • the purification process according to the invention that is to say including the evaporation of the methanolic composition, its condensation, and according to a preferred mode, its extraction with the hydrocarbon and the recycling of the aqueous phase generated, can be carried out in batch, semi-continuous or continuous mode, depending on the mode of supply of the peroxide to be purified, methanol, water, and hydrocarbon.
  • dialkyl peroxide During distillation, the hydrocarbon is concentrated in dialkyl peroxide. This hydrocarbon solution can be drawn off and renewed continuously. This hydrocarbon solution comprising dialkyl peroxide can be distilled so as to recycle the hydrocarbon to the purification process according to the invention, and to enhance the dialkyl peroxide thus isolated.
  • the purified mixture generally comprises alkyl hydroperoxide, water and methanol.
  • a majority amount of water and methanol can be removed by any means well known to those skilled in the art, such as for example evaporation, for example by heating the mixture to a temperature between 30 and 50 ° C, under pressure reduced included between 60 and 200 mbar.
  • the degradation of the alkyl hydroperoxide is between 0 and 1% by weight relative to the organic peroxide initially present in the solution to be purified.
  • the separation process according to the invention may comprise a step a ’), prior to step a), of synthesis of said alkyl hydroperoxide.
  • Step a ’) of synthesis of the alkyl hydroperoxide can be carried out by any method known by a person skilled in the art leading to the formation of dialkyl peroxide, as an impurity.
  • step a ’) can be carried out by the reaction of at least one alcohol or at least one alkene with hydrogen peroxide in the presence of an acid, preferably sulfuric acid. Such a process results in particular in the synthesis of dialkyl peroxide as impurities.
  • the alkyl hydroperoxide can be prepared in an acid medium.
  • the synthetic step a ’) notably consists in reacting hydrogen peroxide (hydrogen peroxide) in the presence of at least one alcohol or at least one alkene in an acid medium.
  • step a ’) of synthesis consists in particular of reacting hydrogen peroxide (hydrogen peroxide) in the presence of at least one alcohol or an unsaturated compound in an acid medium.
  • hydrogen peroxide hydrogen peroxide
  • Synthesis step a ’) can be carried out at a temperature which can range from 10 ° C to 80 ° C, preferably from 20 ° C to 40 ° C.
  • stage a ’) of synthesis is carried out in the presence of one or more mineral or organic acids, in particular one or more mineral acids.
  • the mineral acid is sulfuric acid.
  • composition comprising at least one alkyl hydroperoxide and at least one dialkyl peroxide may comprise at least 50% by weight of alkyl hydroperoxide, preferably at least 60% by weight of alkyl hydroperoxide, more preferably at least 68% by weight of alkyl hydroperoxide, even more preferably at least 70% by weight of alkyl hydroperoxide relative to the total weight of organic peroxides.
  • the composition comprising an alkyl hydroperoxide and a dialkyl peroxide (before step a)) comprises from 0.1% to 40% by weight of dialkyl peroxide, preferably from 1 to 30% by weight of dialkyl peroxide, more preferably from 2 to 22% by weight of dialkyl peroxide, even more preferably from 3 to 20% by weight of dialkyl peroxide relative to the total weight of alkyl hydroperoxide and dialkyl peroxide.
  • the present invention also relates to an alkyl hydroperoxide composition capable of being obtained by the process according to the invention.
  • the composition thus obtained comprises less than 1% by weight of methanol, preferably less than 1000 ppm, and even more preferably less than 100 ppm relative to the total weight of the composition.
  • the composition thus obtained comprises less than 1000 ppm of hydrocarbon, relative to the total weight of said composition, preferably less than 100 ppm.
  • Another subject of the present invention relates to a purified alkyl hydroperoxide composition
  • a purified alkyl hydroperoxide composition comprising less than 1000 ppm of dialkyl peroxide, preferably less than 500 ppm, preferably less than 250 ppm, and more preferably less than 100 ppm of dialkyl peroxide .
  • said composition is an aqueous composition containing at least 60% by weight of alkyl hydroperoxide, as defined above, and less than 1000 ppm by weight of dialkyl peroxide as defined above, the proportions being calculated by weight relative to the total weight of the composition.
  • the aqueous composition contains at least 70% by weight of alkyl hydroperoxide, as defined above, more preferably at least 80% by weight.
  • the group R of the alkyl hydroperoxide as defined above represents a branched alkyl group, optionally substituted, of C -C 8 , preferably of C 5 - C 8 , more preferably of C 5 -C 6 , even more preferably in C 5 .
  • the alkyl hydroperoxide is preferably chosen from the group consisting of tert-amyl hydroperoxide, hexylene glycol hydroperoxide, tert-octyl hydroperoxide and tert-hexyl hydroperoxide.
  • the alkyl hydroperoxide is tert-amyl hydroperoxide (TAHP).
  • TAHP tert-amyl hydroperoxide
  • the aqueous composition contains less than 800 ppm by weight, preferably less than 700 ppm by weight of dialkyl peroxide, preferably less than 500 ppm by weight of dialkyl peroxide, preferably less than 250 ppm by weight of dialkyl peroxide, even more preferably less than 100 ppm by weight of dialkyl peroxide relative to the total weight of the composition.
  • dialkyl peroxide chosen from the group consisting of di-tertio-amyl peroxide, di-3-hydroxy-1, 1-dimethylbutyl peroxide, di-tert-octyl peroxide and di peroxide -tert-hexyle.
  • dialkyl peroxide is di-tertio-amyl peroxide.
  • the composition is a tert-amyl hydroperoxide composition and comprises less than 1000 ppm of dialkyl peroxide, preferably less than 1000 ppm of tert-amyl peroxide (DTA).
  • DTA tert-amyl peroxide
  • the aqueous composition contains at least 60% by weight of tert-amyl hydroperoxide (TAHP) and less than 1 000 ppm by weight of di-tertio-amyl peroxide (DTA), the proportions being calculated by weight relative to the total weight of the composition.
  • TAHP tert-amyl hydroperoxide
  • DTA di-tertio-amyl peroxide
  • the present invention also relates to the use of the composition as defined above for the preparation of crosslinking agent (s) or of polymerization initiator (s).
  • the initiator or initiators is or are initiators for radical polymerization, in particular ethylene under high pressure.
  • high pressure is meant in the sense of the present invention, a pressure greater than 50 MPa.
  • the pressure varies from 500 bar (50 MPa) to 3000 bar (300 MPa), preferably from 1200 bar (120 MPa) to 3000 bar (300 MPa), better from 1200 bar (120 MPa) to 2600 bar (260 MPa).
  • the crosslinking agents or the polymerization initiators are chosen from the group consisting of organic peroxides, in particular peroxyesters, hemi-peroxyacetals and peroxyacetals.
  • hemi-peroxyacetal means a compound of general formula (R 3 ) (R 4 ) C (- ORI) (- OOR 2 ), in which:
  • - Ri represents an alkyl group, linear or branched, preferably in C1 -C12, preferably in C1 -C4, more preferably in C1, or a cycloalkyl group with R 2 ,
  • R 2 represents a linear or branched alkyl group, preferably of CrCi 2 , preferably of C 4 -Ci 2 , more preferably of C 5 , or a cyclo alkyl group with FL,
  • R 3 represents a hydrogen or an alkyl group, linear or branched, preferably C1-C12, more preferably C4-C12, or a cycloalkyl group with FL,
  • - FL represents a hydrogen or an alkyl group, linear or branched, preferably in C1-C12, more preferably in C4-C12, or a cyclo-alkyl group with FL.
  • FL forms a cycloalkyl group with FL.
  • FL is an alkyl group, linear or branched, preferably C1-C12, more preferably C4-C12.
  • the assembly consists of a flask surmounted by a distillation column equipped with temperature measurement at the bottom and at the top.
  • a refrigerant is attached to the head of the column to condense the vapors.
  • the overhead vapor recovery / separation system (Dean Stark type) is connected to the refrigerant and has a cooled jacket. This system contains the hydrocarbon allowing the recovery of DTA and the methanolic aqueous phase.
  • This system is fitted with a bottom valve for recycling the methanolic aqueous phase below the column boiler.
  • the boiler is stirred and heated.
  • the distillation is carried out under a vacuum of approximately 1 10 mbar.
  • the temperature of the boiler is around 31 ° C and around 28 ° C at the top of the column.
  • the mixture to be distilled is produced by mixing commercial TAHP comprising DTA, with methanol and water so as to obtain the following composition of: 58.7 g of TAHP, 3.1 g of DTA, 74.5 g of methanol and 79.8 g of 'water.
  • the contents of the boiler are distilled to remove the methanol in the same experimental system.
  • the procedure is similar to the previous one except that nothing is recycled to the boiler during this second distillation.
  • 102.0 g of the above mixture consisting of 28.3 g of TAHP, 33.8 g of MeOH and 39.9 g of water
  • the distillation is carried out with a bath temperature of 32 to 35 ° C and a partial vacuum of 120 to 80 mbar.
  • the solution of the boiler phase in 2 the upper organic phase (27.6g) consists of 23.3 g of TAHP, 0.25 g of methanol and 4 g of water.
  • DTA is no longer detected by gas chromatography within the detection limit of ⁇ 100 ppm.
  • the lower aqueous phase (27.2 g) consists of 1.5 g of TAHP, 0.4 g of methanol and 25.3 g of water.
  • 3.2 g of TAHP are recovered with condensed methanol.
  • This example shows the possibility of reducing the amount of DTA present in the commercial TAHP, to a content of around one hundred ppm (0.01%) thanks to the process according to the invention, and in complete safety.
  • Example 2a Extractive Distillation of TAHP Using Alcohols Different from Methanol
  • Extractive distillation as described in Example 1 was carried out with alcohols other than methanol, such as tert-amyl alcohol and ethanol.
  • the distillation of these mixtures was carried out under total reflux for a hundred minutes at 40 ° C.
  • the DTA / alcohol / water mixtures subjected to distillation were mixed in a 1: 1: 1 mass ratio.
  • the assembly carried out corresponds to the assembly of Example 1.
  • the starting mixture is composed of 34.7 g of tert-butyl hydroperoxide (TBH), 2.7 g of di-tert-butyl peroxide (DI), 49.4 g of methanol and 62, 4 g of water. This mixture is placed in the distillation bottom flask.
  • the Dean Stark is initially charged with a methanolic aqueous phase composed of 2.4 g of water, 1.7 g of methanol, and an upper phase of 6.9 g of isododecane.
  • the quantity of DI present in the distillation bottom in the initial TBH thus diluted is 1.8% by weight of the methanolic composition.
  • the flask is heated using a water bath, set at 35 ° C, and is stirred with a magnetic bar at 500 rpm.
  • the distillation is carried out under a vacuum of between 1 12 mbar (millibar) and 106 mbar, to maintain a head temperature of between 28 ° C and 30 ° C.

Abstract

L'invention concerne un procédé de purification d'un hydroperoxyde d'alkyle de son peroxyde de dialkyle, comprenant une étape de distillation en présence de méthanol et d'eau.

Description

PURIFICATION D’HYDROPEROXYDE D’ALKYLE PAR DISTILLATION EN PRESENCE
DE METHANOL ET D’EAU
DOMAINE DE L’INVENTION
La présente invention concerne un procédé de séparation et de purification par voie de distillation extractive de peroxydes organiques, et plus particulièrement la séparation de peroxydes de dialkyle de formule générale R1-OO-R2 avec Ri et R2 de structures alkyles de C à Cs, identiques ou non, pouvant éventuellement être cycliques.
Ainsi, plus spécifiquement mais sans être limitée à cette application, la présente invention concerne la purification des hydroperoxydes d’alkyle, à partir de mélanges contenant des peroxydes de dialkyle tels que définis ci-dessus.
Cette invention trouve à s’appliquer en particulier, mais non exclusivement, lors de la production de peroxydes organiques obtenus par synthèse d’hydroperoxydes d’alkyles contenant les impuretés peroxydes de dialkyle. Cette invention permet donc l’obtention avec une pureté améliorée de peroxydes organiques de type peresters comme le tert-butyl peroxypivalate, le tert-butyl peroxy-2-ethylhexanoate, le tert-amyl peroxy-2-ethylhexanoate de type monoperoxypercarbonate comme le 00-tert-butyl-0-(2-ethylhexyl)- monoperoxycarbonate de type perketal tel le 2,2-di-tert-butyl-peroxybutane, le 2,2-di-tert- amyl-peroxybutane de type hemi-perkétal ou éther peroxyde comme le peroxyde de 1 ,1 - diméthyl-propyl-1 -méthoxy-cyclohexyle et de type peroxydes de dialkyle ou d’aryle tels que le peroxyde de 2,5-diméthyl-2,5-di-(tert-butylperoxy)-hexane, le peroxyde de tert-butyl-cumyle, le di(tert-butyl-peroxy-isopropyl)-benzène...
Les hydroperoxydes d’alkyle sont typiquement l’hydroperoxyde de tertio amyle (désigné dans la suite par l’abréviation TAHP) et l’hydroperoxyde de tertio butyle (désigné dans la suite par l’abréviation TBHP).
ARRIERE-PLAN TECHNIQUE
Les hydroperoxydes d’alkyles sont couramment utilisés comme matières premières pour produire des réticulants, destinés à être mélangés à des polymères, tels que le polyester, l’éthylène-vinyl acétate ou encore l’éthylène-propylène-diène monomère. Ils sont aussi utilisés dans la production d’initiateurs de polymérisation, par exemple celle du polystyrène ou du polyéthylène.
En général, les hydroperoxydes d’alkyles présents sur le marché contiennent des impuretés, majoritairement représentées par les peroxydes de dialkyle, dérivés des hydroperoxydes d’alkyles en question. En effet, les hydroperoxydes d’alkyle sont classiquement obtenus par catalyse acide, entraînant la formation des peroxydes de dialkyles associés, généralement présents entre 3 et 30% en poids par rapport au poids total de la composition d’hydroperoxydes d’alkyles.
Ces peroxydes de dialkyles ne sont pas souhaités en association avec leurs hydroperoxydes d’alkyles respectifs et représentent la principale source de contamination néfaste/négative dans la synthèse des réticulants et des initiateurs de polymérisation.
Ainsi, ces impuretés obtenues dans les matières premières hydroperoxydes d’alkyle, entrent dans le processus de production des réticulants pour polymères et des initiateurs de polymérisation. Cela a pour conséquence directe, d’abaisser la pureté des produits obtenus. Pour certaines applications telles que le polyéthylène basse densité obtenu par initiation peroxydique sous très haute pression, la présence de peroxyde de dialkyle dans les initiateurs peut être une source de mauvais profils thermiques de réaction, nuisant ainsi à la mise en oeuvre de la polymérisation.
Des recherches ont donc été réalisées pour purifier les réticulants et les initiateurs de polymérisation, autrement dit pour éliminer ces impuretés, plus particulièrement dans ce cas des peroxydes de dialkyle. Malheureusement, les résultats obtenus ne sont pas satisfaisants à l’heure actuelle : les rendements de purification sont faibles, les peroxydes organiques traités sont dégradés en partie.
Ainsi, il apparaît nécessaire de trouver un procédé permettant d’éliminer ces impuretés, et particulièrement les peroxydes de dialkyle, dans les matières premières, i.e. des hydroperoxydes d’alkyle, tout en préservant les propriétés physico-chimiques de ces derniers.
Il existe différents modes de purification des hydroperoxydes d’alkyle, bien connus de l’homme du métier, comme par exemple le lavage par formation de sels, auquel le document FR 2455036 fait référence. Les hydroperoxydes d’alkyle sont classiquement solubles dans l’eau mais généralement leurs peroxydes de dialkyles associés le sont beaucoup moins. Les hydroperoxydes d’alkyle réagissent avec une base comme par exemple la soude (NaOH) ou la potasse (KOH), pour former un sel d’hydroperoxyde d’alkyle soluble dans l’eau. Ainsi par décantation, le sel et les composés organiques insolubles dans l’eau, dont les peroxydes de dialkyle, sont séparés. Ensuite, lorsque l’usage de l’hydroperoxyde d’alkyle et non celui de son sel est requis dans la synthèse ultérieure de l’initiateur de polymérisation ou du réticulant, le sel d’hydroperoxyde d’alkyle est acidifié, par exemple à l’aide d’une solution aqueuse d’acide sulfurique, pour reformer l’hydroperoxyde d’alkyle. L’hydroperoxyde d’alkyle est ainsi récupéré par déphasage ou par extraction avec un solvant, par exemple un hydrocarbure. Les inconvénients majeurs de cette technique proviennent d’une part de sa faible productivité si l’on considère que le même réacteur assure les étapes (formation de sel/décantation, ré acidification/extraction), d’autre part de la formation d’effluents aqueux salins. Les effluents aqueux formés lors de l’acidification, comme par exemple le sulfate de potassium, doivent être traités. De plus, l’utilisation de base, et d’acide, augmentent les coûts de production. Enfin, les teneurs en dialkyle obtenues restent trop importantes.
Un autre mode de purification est la distillation directe, telle que décrite dans le document FR 2455036. La distillation du TAHP contenant du peroxyde de di-tert-amyle (DTA), s’effectue en présence d’eau sous pression réduite et à une température inférieure à 45°C, permettant de récupérer le TAHP en pied de colonne. La distillation permet d’obtenir une composition de TAHP avec un résidu de 0,8% (8000 ppm) de DTA. Ces résultats restent insuffisants, notamment pour l’utilisation du TAHP comme matières premières pour la production d’initiateurs de polymérisation. De plus, la perte de TAHP est importante, entre 4 et 16%, due à un manque de sélectivité lors de la séparation du DTA, et/ou à une dégradation thermique du TAHP.
Les solutions actuelles existantes et proposées pour purifier les hydroperoxydes d’alkyle de leurs peroxydes associés sont insuffisantes. Ceci est notamment dû au manque de sélectivité des traitements de purification, des faibles rendements obtenus, des coûts de production, mais aussi aux conditions de sécurité à prendre en compte lors de la purification.
En effet, il est important de noter que les peroxydes organiques sont de nature chimique à se décomposer thermiquement, avec notamment la formation de vapeurs inflammables.
Pour des raisons de sécurité et de qualité du produit à purifier il est donc important de limiter au mieux la température de traitement, ce qui rend d’autant plus difficile la purification des peroxydes organiques.
À l’heure actuelle, des solutions efficaces sont donc recherchées afin d’obtenir un procédé de purification des solutions de peroxydes organiques, plus particulièrement des hydroperoxydes d’alkyles, par élimination de peroxyde de dialkyle R1 -00-R2 définis ci- dessus, ceci sans perte ni dégradation de matière, en toute sécurité et avec un bon rendement. Ainsi, il existe un besoin fort d’obtenir des compositions de peroxydes organiques purifiées comprenant moins de 1000 ppm d’impuretés, voire de l’ordre d’une centaine de ppm.
RESUME DE L’INVENTION
De façon surprenante, la Demanderesse a ainsi découvert que la mise en oeuvre d’un procédé comprenant au moins une étape a) de distillation d’une composition comprenant l’hydroperoxyde d’alkyle et le peroxyde de dialkyle en présence de méthanol et d’eau, permet l’élimination sélective du peroxyde de dialkyle de l’hydroperoxyde d’alkyle correspondant.
Un des aspects particulièrement intéressant de la présente invention réside dans le fait qu’on élimine le peroxyde de dialkyle dans l’hydroperoxyde d’alkyle correspondant, en entraînant une quantité réduite de cet hydroperoxyde d’alkyle au cours du procédé selon l’invention. L’élimination du peroxyde de dialkyle de l’hydroperoxyde d’alkyle correspondant, avec perte réduite en hydroperoxyde, est particulièrement efficace lorsque l’alcool introduit dans le bouilleur de distillation est notamment le méthanol.
Par « hydroperoxyde d’alkyle» , on entend un composé de formule R-O-O-H dans laquelle R représente un groupe alkyle, linéaire ou branché, cyclique ou non cyclique, insaturé ou fonctionnalisé, ou un groupe aromatique, éventuellement substitué, ayant de préférence de 4 à 8 atomes de carbone, encore préférentiellement de 4 à 6 atomes de carbones, encore préférentiellement de 4 ou 5 atomes de carbones.
De préférence, ledit hydroperoxyde d’alkyle est choisi dans le groupe constitué par l’hydroperoxyde de tert-butyle, l’hydroperoxyde de tert-amyle, l’hydroperoxyde d’hexylene glycol, l’hydroperoxyde de tert-octyle, l’hydroperoxyde de tert-hexyle, l’hydroperoxyde de 1 - methyl-cyclopentyle et l’hydroperoxyde de 1 -methyl-cyclohexyle. De préférence, le peroxyde organique hydrosoluble est choisi dans le groupe constitué par l’hydroperoxyde de tert-butyle et l’hydroperoxyde de tert-amyle, encore préférentiellement est l’hydroperoxyde de tert-amyle.
Par « peroxyde de dialkyle », on entend un composé de formule R1-O-O-R2 dans laquelle Ri et R2 sont identiques ou différents, et représentent indépendamment un groupe alkyle, linéaire ou branché, cyclique ou non cyclique, insaturé ou fonctionnalisé, ou un groupe aromatique, éventuellement substitué, ayant de préférence de 4 à 8 atomes de carbone, préférentiellement de 4 à 6 atomes de carbones, encore préférentiellement 4 ou 5 atomes de carbones.
Comme peroxyde de dialkyle à séparer de l’hydroperoxyde, on peut citer le peroxyde de ditertiobutyle, le peroxyde de ditertioamyle, le peroxyde de di-3-hydroxy-1 , 1 -dimethylbutyle, le peroxyde de di-tert-octyle, le peroxyde de di-tert-hexyle, le peroxyde de di(1 -methyl- cyclopentyle) et le peroxyde de di(1 -methyl-cyclohexyle). En particulier, le peroxyde de dialkyle est symétrique, c’est-à-dire que les groupes encadrant le groupe 0-0 sont identiques.
Les caractéristiques du peroxyde organique hydrosoluble décrites en relation avec le procédé de concentration ci-dessus peuvent s’appliquer de la même façon au peroxyde organique hydrosoluble dans le cadre du procédé de séparation.
Avantageusement, ledit au moins un peroxyde organique hydrosoluble, de préférence ledit au moins un hydroperoxyde, et ledit au moins un peroxyde de dialkyle présentent des groupements R, Ri et R2 identiques.
Par exemple, le peroxyde organique hydrosoluble est l’hydroperoxyde de tert-butyle et le peroxyde de dialkyle est le peroxyde de ditertiobutyle.
Alternativement, le peroxyde organique hydrosoluble est l’hydroperoxyde de tert-amyle et le peroxyde de dialkyle est le peroxyde de ditertioamyle. Alternativement, le peroxyde organique hydrosoluble est l’hydroperoxyde d’hexylene glycol et le peroxyde de dialkyle est le peroxyde de di-3-hydroxy-1 ,1 -dimethylbutyle.
Alternativement, le peroxyde organique hydrosoluble est l’hydroperoxyde de tert-octyle et le peroxyde de dialkyle est le peroxyde de di-tert-octyle.
Alternativement, le peroxyde organique hydrosoluble est l’hydroperoxyde de tert- hexyle et le peroxyde de dialkyle est le peroxyde de di-tert-hexyle.
De préférence, le peroxyde d’alkyle consiste en du peroxyde de tertio amyle (DTA) ou du peroxyde de tertio butyle (DI), encore plus préférentiellement est le peroxyde de tertio amyle (DTA).
Ainsi la présente invention concerne un procédé de séparation d’un hydroperoxyde d’alkyle d’un peroxyde de dialkyle comprenant au moins une étape de distillation de la composition comprenant l’hydroperoxyde d’alkyle et ledit peroxyde de dialkyle en présence de méthanol et d’eau.
D’autres caractéristiques de ce procédé de purification sont présentées dans la suite :
- de préférence, la teneur en poids en méthanol présent à l’étape a) de distillation est supérieure de 5 fois, de préférence est supérieure de 10 fois, de préférence est supérieure de 25 fois, et encore préférentiellement est supérieure de 30 fois, à celle dudit peroxyde de dialkyle,
- de préférence à la suite de l’étape d’évaporation de la composition méthanolique, cette dernière subit une étape de condensation puis étape de passage dans au moins un hydrocarbure, de manière à obtenir une phase organique contenant ledit hydrocarbure ainsi que tout ou partie du peroxyde de dialkyle R1-OO-R2 et une phase aqueuse contenant l’eau et le méthanol ;
- le procédé peut ainsi comprendre, après l’étape de distillation a), une étape b) d’extraction réalisée par mise en contact dudit hydrocarbure avec le condensât obtenu à l’étape a), de manière à obtenir une phase organique contenant ledit hydrocarbure ainsi que tout ou partie du peroxyde de dialkyle et une phase aqueuse contenant l’hydroperoxyde, l’eau et le méthanol ; autrement dit, le procédé selon l’invention est de préférence un procédé de distillation extractive,
- alternativement, l’hydrocarbure peut être présent dans la composition avant l’étape a) de distillation, ou introduit au cours de l’étape de distillation ;
- avantageusement, les étapes a) et b) peuvent être réalisées de manière concomitante ; - très avantageusement, l’hydrocarbure est choisi parmi les hydrocarbures en C6 à C12, de préférence des hydrocarbures en C6 à C8 ; plus préférentiellement un hydrocarbure en
C7;
- de préférence, l’hydrocarbure est saturé ;
- de façon avantageuse, la susdite phase aqueuse méthanolique est recyclée au bouilleur de la distillation de manière à notamment conserver la quantité de méthanol nécessaire pour maintenir la purification ;
- selon une possibilité offerte par l’invention, la susdite phase organique est distillée afin de séparer ledit hydrocarbure du peroxyde de dialkyle ;
- avantageusement, la distillation du mélange selon l’invention (hydroperoxyde d’alkyle R-OOH /méthanol/peroxyde de dialkyle R-OO-R/eau) est réalisée à une température comprise entre 25 °C et 60 °C, préférentiellement entre 30 °C fe45°C ;
- avantageusement, la distillation du mélange selon l’invention (hydroperoxyde d’alkyle R-OOH /méthanol/peroxyde de dialkyle R-OO-R/eau) est réalisée à une pression comprise entre 30 et 200 mbars (millibars), préférentiellement entre 40 et 180 mbars, et plus préférentiellement entre 50 et 160 mbars,
- avantageusement encore, la distillation du mélange selon l’invention (hydroperoxyde d’alkyle R-OOH /alcool/peroxyde de dialkyle R-OO-R/eau) est réalisée à une pression comprise entre 90 et 200 mbars (millibars), préférentiellement entre 100 et 180 mbars, et plus préférentiellement entre 100 et 160 mbars.
La Demanderesse a ainsi découvert un procédé de distillation sélective et sécurisée, évitant la perte et/ou la dégradation thermique des peroxydes organiques. Ledit procédé comprend une étape de distillation plus sélective en peroxyde de dialkyle, ainsi que, très avantageusement, sa récupération de préférence mise en oeuvre par extraction sélective dans un hydrocarbure.
Avantageusement, la récupération du peroxyde de dialkyle est mise en oeuvre par extraction sélective dans un hydrocarbure. En d’autres termes, le procédé peut comprendre en outre au moins une étape b) d’extraction à l’aide d’un hydrocarbure du peroxyde de dialkyle.
Cela offre à la fois l’avantage de réduire le chauffage du mélange peroxydique en toute sécurité et l’avantage de recycler facilement les solvants eau et méthanol, ayant contribué à la purification.
Le recours à une composition comprenant du méthanol permet l’élimination du peroxyde de dialkyle dans l’hydroperoxyde à purifier, en générant une solution diluée d’hydroperoxyde d’alkyle par du méthanol et de l’eau qui peuvent être éliminés facilement par distillation directe puis par décantation connues de l’homme de l’art.
La description qui va suivre est donnée uniquement à titre illustratif et non limitatif. DESCRIPTION DÉTAILLÉE DE L’INVENTION
La distillation, l’évaporation ainsi que l’extraction sont per se des méthodes bien connues de l’homme du métier.
La condensation de la tête de distillation comportant le peroxyde de dialkyle à éliminer, c’est-à-dire l’étape de condensation, se déroule préférentiellement entre -30 °C et 0 °C, préférentiellement entre -20 °C et -10°C. La tête dedistillation est récupérée par tout moyen bien connu de l’homme du métier, comme par exemple un condenseur.
De préférence, le procédé selon l’invention comporte une étape de récupération sélective du peroxyde de dialkyle à l’aide d’un hydrocarbure.
Ainsi lors du passage de la composition comportant le peroxyde de dialkyle à éliminer dans un hydrocarbure, l’hydrocarbure est maintenu sous forme liquide par ajustement de la température, celle-ci étant comprise préférentiellement entre -30 °C et 0°C, très préférentiellement entre -20°C et -10°C, afin de Hniter le risque d’ébullition de la phase méthanol et conserver une bonne séparation des phases en cours de captage sélectif du peroxyde de dialkyle par l’hydrocarbure.
L’hydrocarbure est de préférence choisi parmi les hydrocarbures comprenant de 6 à 12 atomes de carbone. Lesdits hydrocarbures comprenant de 6 à 12 atomes de carbone restent liquides à la température de condensation de la tête de distillation. Les hydrocarbures en C ? sont préférés pour leur facilité d’élimination en cas d’entraînement avec la solution méthanolique dans le bouilleur lors de son recyclage.
Lors du contact de la composition de tête avec l’hydrocarbure, il se forme deux phases, une phase organique supérieure constituée du peroxyde de dialkyle et de l’hydrocarbure et une phase aqueuse inférieure comprenant le mélange d’eau et de méthanol.
De façon avantageuse, le choix de l’hydrocarbure permet une rétention sélective du peroxyde de dialkyle tel que le DTA ou le DI.
La phase aqueuse peut ainsi être recyclée dans le mélange à purifier de façon à permettre l’épuisement en peroxyde de dialkyle par voie de distillation. Le recyclage peut se faire en continu, ou en discontinu.
Le procédé de purification selon l’invention, c’est-à-dire incluant l’évaporation de la composition méthanolique, sa condensation, et selon un mode préféré, son extraction par l’hydrocarbure et le recyclage de la phase aqueuse générée, peut être réalisé en mode batch, semi-continu ou continu, selon le mode d’alimentation du peroxyde à purifier, du méthanol, de l’eau, et de l’hydrocarbure.
Au cours de la distillation, l’hydrocarbure se concentre en peroxyde de dialkyle. Cette solution d’hydrocarbure peut être soutirée et renouvelée en continu. Cette solution d’hydrocarbure comprenant le peroxyde de dialkyle peut être distillée de façon à recycler l’hydrocarbure au procédé de purification selon l’invention, et de valoriser le peroxyde de dialkyle ainsi isolé.
A la fin de la distillation batch selon l’invention, le mélange purifié comporte généralement l’hydroperoxyde d’alkyle, de l’eau et du méthanol. Une quantité majoritaire d’eau et de méthanol peut être éliminée par tout moyen bien connu de l’homme du métier, comme par exemple l’évaporation, par exemple en chauffant le mélange à une température comprise entre 30 et 50 °C, sous pression réduite comprise ertre 60 et 200 mbars.
Durant le procédé de distillation, la dégradation de l’hydroperoxyde d’alkyle est comprise entre 0 et 1 % en poids par rapport au peroxyde organique initialement présent dans la solution à purifier.
Le procédé de séparation selon l’invention peut comprendre une étape a’), préalable à l’étape a), de synthèse dudit hydroperoxyde d’alkyle.
L’étape a’) de synthèse de l’hydroperoxyde d’alkyle peut être effectuée par toute méthode connue par l’homme du métier conduisant à la formation de peroxyde de dialkyle, en tant qu’impureté. En particulier, l’étape a’) peut être réalisée par la réaction d’au moins un alcool ou au moins un alcène avec du peroxyde d’hydrogène en présence d’un acide, de préférence l’acide sulfurique. Un tel procédé aboutit notamment à la synthèse de peroxyde de dialkyle en tant qu’impuretés.
De préférence, l’hydroperoxyde d’alkyle peut être préparé en milieu acide.
Dans ce cas, l’étape a’) de synthèse consiste notamment à faire réagir de l’eau oxygénée (peroxyde d’hydrogène) en présence d’au moins un alcool ou d’au moins un alcène en milieu acide.
De préférence, l’étape a’) de synthèse consiste notamment à faire réagir de l’eau oxygénée (peroxyde d’hydrogène) en présence d’au moins un alcool ou un composé insaturé en milieu acide.
L’étape a’) de synthèse peut être effectuée à une température pouvant aller de 10°C à 80 °C, de préférence de 20 °C à 40 °C.
De préférence, l’étape a’) de synthèse est effectuée en présence d’un ou plusieurs acides minéraux ou organiques, notamment un ou plusieurs acides minéraux.
Plus préférentiellement, l’acide minéral est l’acide sulfurique.
La composition comprenant au moins un hydroperoxyde d’alkyle et au moins un peroxyde de dialkyle (avant l’étape a)), peut comprendre au moins 50% en poids de hydroperoxyde d’alkyle, de préférence au moins 60% en poids d'hydroperoxyde d’alkyle, plus préférentiellement au moins 68% en poids d'hydroperoxyde d’alkyle, encore plus préférentiellement au moins 70% en poids d'hydroperoxyde d’alkyle par rapport au poids total de peroxydes organiques.
Selon des modes de réalisation, la composition comprenant un 'hydroperoxyde d’alkyle et un peroxyde de dialkyle (avant l’étape a)), comprend de 0,1 % à 40% en poids de peroxyde de dialkyle, de préférence de 1 à 30% en poids de peroxyde de dialkyle, plus préférentiellement de 2 à 22% en poids de peroxyde de dialkyle, encore plus préférentiellement de 3 à 20% en poids de peroxyde de dialkyle par rapport au poids total de d'hydroperoxyde d’alkyle et de peroxyde de dialkyle.
La présente invention concerne également une composition d’hydroperoxyde d’alkyle susceptible d’être obtenue par le procédé selon l’invention.
De préférence, la composition ainsi obtenue comprend moins de 1 % en poids de méthanol, de préférence moins de 1000 ppm, et de façon encore plus préférée moins de 100 ppm par rapport au poids total de la composition.
Avantageusement, la composition ainsi obtenue comprend moins de 1000 ppm d’hydrocarbure, par rapport au poids total de ladite composition, de préférence moins de 100 ppm.
Un autre objet de la présente invention concerne une composition d’hydroperoxyde d’alkyle purifiée comprenant moins de 1000 ppm de peroxyde de dialkyle, préférentiellement moins de 500 ppm, préférentiellement moins de 250 ppm, et plus préférentiellement moins de 100 ppm de peroxyde de dialkyle.
De préférence, ladite composition est une composition aqueuse contenant au moins 60% en poids d’hydroperoxyde d’alkyle, tel que défini précédemment, et moins de 1000 ppm en poids de peroxyde de dialkyle tel que défini précédemment, les proportions étant calculées en poids par rapport au poids total de la composition.
De préférence, la composition aqueuse contient au moins 70% en poids d’hydroperoxyde d’alkyle, tel que défini précédemment, plus préférentiellement au moins 80% en poids.
De préférence, le groupement R de l’hydroperoxyde d’alkyle tel que défini ci-dessus représente un groupe alkyle ramifié, éventuellement substitué, en C -C8, de préférence en C5- C8, plus préférentiellement en C5-C6, encore plus préférentiellement en C5.
L’hydroperoxyde d’alkyle est de préférence choisi dans le groupe constitué par l’hydroperoxyde de tert-amyle, l’hydroperoxyde d’hexylène glycol, l’hydroperoxyde de tert- octyle et l’hydroperoxyde de tert-hexyle.
Plus préférentiellement, l’hydroperoxyde d’alkyle est l’hydroperoxyde de tert-amyle (TAHP). Avantageusement, la composition aqueuse contient moins de 800ppm en poids, de préférence moins de 700ppm en poids de peroxyde de dialkyle, de préférence moins de 500ppm en poids de peroxyde de dialkyle, de préférence moins de 250ppm en poids de peroxyde de dialkyle, encore préférentiellement moins de 100ppm en poids de peroxyde de dialkyle par rapport au poids total de la composition.
De préférence, le peroxyde de dialkyle choisi dans le groupe constitué par le peroxyde de di-tertio-amyle, le peroxyde de di-3-hydroxy-1 , 1 -diméthylbutyle, le peroxyde de di-tert- octyle et le peroxyde de di-tert-hexyle.
Plus préférentiellement, le peroxyde de dialkyle est le peroxyde de di-tertio-amyle.
Avantageusement, la composition est une composition d’hydroperoxyde de tert-amyle et comprend moins de 1000 ppm de peroxyde de dialkyle, préférentiellement moins de 1000 ppm de peroxyde de tertio amyle (DTA).
Avantageusement, la composition aqueuse contient au moins 60% en poids d’hydroperoxyde de tert-amyle (TAHP) et moins de l OOOppm en poids de peroxyde de di- tertio-amyle (DTA), les proportions étant calculées en poids par rapport au poids total de la composition.
La présente invention est également relative à l’utilisation de la composition telle que définie ci-avant pour la préparation d’agent(s) de réticulation ou d’amorceur(s) de polymérisation.
De préférence, le ou les amorceurs est ou sont des amorceurs de polymérisation par voie radicalaire, notamment de l’éthylène sous haute pression.
Par « haute pression », on entend au sens de la présente invention, une pression supérieure à 50 MPa. De préférence, la pression varie de 500 bar (50 MPa) à 3000 bar (300 MPa), préférentiellement de 1200 bar (120 MPa) à 3000 bar (300 MPa), mieux de 1200 bar (120 MPa) à 2600 bar (260 MPa).
De préférence, les agents de réticulation ou les amorceurs de polymérisation sont choisis dans le groupe constitué par les peroxydes organiques, notamment les peroxyesters, les hémi-peroxyacétals et les peroxyacétals.
On entend par « hémi-peroxyacétal » un composé de formule générale (R3)(R4)C(- ORI)(-OOR2), dans laquelle :
- Ri représente un groupement alkyle, linéaire ou ramifié, de préférence en C1 -C12, de préférence de C1 -C4, encore de préférence en Ci, ou un groupement cyclo alkyle avec R2,
- R2 représente un groupement alkyle, linéaire ou ramifié, de préférence en CrCi2, de préférence en C4-Ci2, encore de préférence en C5, ou un groupement cyclo alkyle avec FL,
- R3 représente un hydrogène ou un groupement alkyle, linéaire ou ramifié, de préférence en C1 -C12, encore de préférence en C4-C12, ou un groupement cyclo alkyle avec FL,
- FL représente un hydrogène ou un groupement alkyle, linéaire ou ramifié, de préférence en C1 -C12, encore de préférence en C4-C12, ou un groupement cyclo alkyle avec FL.
De préférence FL forme un groupement cyclo alkyle avec FL.
De préférence, lorsque R3 est un hydrogène, FL est un groupement alkyle, linéaire ou ramifié, de préférence en C1 -C12, encore de préférence en C4-C12.
Dans la description de la présente invention, les pourcentages sont indiqués en poids, « ppm » signifie partie par million en poids.
Les exemples suivants illustrent l'invention sans la limiter.
EXEMPLES
Exemple 1 : Purification par distillation-extractive d’une solution de TAHP
Montage :
Le montage est composé d’un ballon surmonté d’une colonne de distillation équipée de mesure de température en pied et en tête. Un réfrigérant est fixé en tête de colonne pour condenser les vapeurs.
Le système de récupération/séparation des vapeurs de tête (de type Dean Stark) est raccordé au réfrigérant et dispose d’une double enveloppe refroidie. Ce système contient l’hydrocarbure permettant la récupération du DTA et la phase aqueuse méthanolique.
Ce système est équipé d’une vanne de fond permettant de recycler la phase aqueuse méthanolique inférieure au bouilleur de la colonne.
Le bouilleur est agité et chauffé. La distillation se fait sous un vide d’environ 1 10 mbar. À l’équilibre, la température du bouilleur est d’environ 31 °C et d’environ 28°C en tête de colonne.
Les vapeurs se condensent dans le réfrigérant et le condensât tombe dans l’hydrocarbure. Au contact de l’hydrocarbure, deux phases se forment. Le DTA est sélectivement retenu dans la phase organique supérieure et le méthanol forme avec l’eau la phase aqueuse méthanolique inférieure, qui est recyclée au bouilleur.
La distillation est poursuivie en opérant de la manière décrite jusqu’à ce que la quasi totalité du DTA soit éliminée du bouilleur. Mélange de départ :
Le mélange à distiller est réalisé en mélangeant du TAHP commercial comprenant du DTA, avec du méthanol et de l’eau de manière à obtenir la composition suivante de: 58.7 g de TAHP, 3.1 g de DTA, 74.5 g de méthanol et 79.8 g d’eau.
Dans le système de récupération/séparation (Dean Stark), on introduit 2.1 g d’eau, 3,9 g de méthanol et 15,7 g d’hydrocarbure isododécane.
En fin de distillation extractive, on récupère 200.8 g de solution dans le bouilleur contenant 0.02 g de DTA, 57.5 g de TAHP, 65.6 g de méthanol.
En tête de distillation, on récupère 18,5 g de phase hydrocarbure contenant 3 g de DTA et 15,5g d’hydrocarbure.
Après l’élimination du DTA, le contenu du bouilleur est distillé pour éliminer le méthanol dans le même système expérimental. La procédure est similaire à la précédente sauf que plus rien n’est recyclé au bouilleur durant cette deuxième distillation. Ainsi on introduit 102.0 g du mélange précédent (composée de 28.3 g de TAHP, 33.8 g de MeOH et 39.9 g d’eau) dans le bouilleur. Puis on procède à la distillation avec une température de bain de 32 à 35°C et un vide partiel de 120 à 80 mbar. Après distillation, la solution du bouilleur déphase en 2, la phase organique supérieure (27.6g) se compose de 23.3 g de TAHP, de 0.25 g de méthanol et 4 g d’eau. On ne détecte plus de DTA par chromatographie en phase gaz dans la limite de détection de < 100ppm. La phase aqueuse inférieure (27.2 g) se compose de 1 .5 g de TAHP, 0.4 g de méthanol et 25.3 g d’eau. En tête de colonne on récupère 3,2 g de TAHP avec le méthanol condensé.
Cet exemple montre la possibilité de ramener la quantité de DTA présente dans le TAHP commercial, à une teneur d’une centaine de ppm (0,01 %) grâce au procédé selon l’invention, et en toute sécurité.
Exemple 2:
Exemple 2a : distillation extractive du TAHP utilisant des alcools différents du méthanol
Une distillation extractive telle que décrit à l’exemple 1 a été réalisée avec des alcools différents du méthanol tels le tert-amyl alcool et l’éthanol. La distillation de ces mélanges a été réalisée sous reflux total pendant une centaine de minutes à 40 °C. Les mélanges DTA/alcool/eau soumis à distillation ont été mélangés dans un ratio massique 1 :1 :1 .
Les produits obtenus en tête de distillation sont présentés ci-après. [Table 1 ]
Ces expériences indiquent que, contrairement au méthanol, un entraînement important de TAHP en tête de distillation est obtenu pour les alcools différents du méthanol ainsi qu’un taux d’entraînement de DTA à éliminer inférieur à celui permis par le méthanol.
Ces expériences montrent bien que l’élimination du DTA avec une perte réduite du TAHP est plus efficace avec le méthanol qu’avec les autres alcools testés ci-dessus.
Exemple 3 : élimination du peroxyde de di-tertio-butyle (DI) dans l’hydroperoxyde de tertio-butyle (TBH)
Le montage réalisé correspond au montage de l’Exemple 1 . Le mélange de départ est composé de 34,7 g d’hydroperoxyde de tert-butyle (TBH), de 2,7 g de peroxyde de di-tert- butyle (DI), de 49,4 g de méthanol et de 62,4 g d’eau. Ce mélange est placé dans le ballon de pied de distillation.
Le Dean Stark est chargé initialement d’une phase aqueuse méthanolique composée de 2,4 g d’eau, de 1 ,7 g de méthanol, et d’une phase supérieure de 6,9 g d’isododécane. La quantité de DI présente dans le pied de distillation dans le TBH initial ainsi dilué est de 1 ,8% en poids de la composition méthanolique.
Le ballon est chauffé à l’aide d’un bain d’eau, consigne à 35°C, et est agité grâce à un barreau magnétique à 500 tour/min. La distillation se fait sous un vide compris entre 1 12 mbar (millibar) et 106 mbar, pour maintenir une température de tête comprise entre 28°C et 30°C.
Les condensais sont récupérés dans le Dean Stark contenant l’isododécane. Ainsi 2 phases apparaissent, la phase supérieure hydrocarbure contenant le DI et une phase inférieure eau-méthanol. Cette dernière est recyclée en pied. La méthode permet de réduire la quantité de DI à 0,17% poids de la composition de pied par élimination sélective permise par le captage du DI dans l’hydrocarbure, selon l’invention. Si la distillation est encore poussée, la quantité de DI est encore abaissée à 0,07% dans la composition de pied. Exemple 4 : Distillation simple du mélange tel qu’en exemple 3, sans hydrocarbure dans le Dean Stark
Un mélange comprenant TBH, DI, MeOH et eau, de composition massique suivante DI/Methanol/eau/TBH 3,5%/32,6%/64,0%/27,9% respectivement, a été distillé mais sans hydrocarbure dans le Dean Stark. Les vapeurs condensées n’ont pas été recyclées au bouilleur. L’analyse GC de la tête de distillation à l’équilibre indique une composition DI/MeOH/eau/TBH 48,2% / 36,5% / 10,7% / 4,6% (température de tête comprise entre 30,4 °C et 31 °C et une pression entre 1 15 mbar et 1 19 miar). Au bout de 180 minutes, l’analyse du pied de distillation indique un appauvrissement en DI car il représente 2,1 % pour 28,9% de TBHP et 31 ,6% de méthanol.
Cette expérience montre que le procédé selon l’invention mettant en oeuvre l’étape de distillation a) permet de récupérer du DI avec un rendement satisfaisant.

Claims

REVENDICATIONS
1. Procédé de séparation d’un hydroperoxyde d’alkyle d’un peroxyde de dialkyle comprenant au moins une étape a) de distillation de la composition comprenant l’hydroperoxyde d’alkyle et ledit peroxyde de dialkyle en présence de méthanol et d’eau.
2. Procédé selon la revendication 1 , caractérisé en ce que l’hydroperoxyde d’alkyle est choisi dans le groupe constitué par l’hydroperoxyde de tert-butyle, l’hydroperoxyde de tert- amyle, l’hydroperoxyde d’hexylene glycol, l’hydroperoxyde de tert-octyle, l’hydroperoxyde de tert-hexyle, l’hydroperoxyde de 1 -methyl-cyclopentyle et l’hydroperoxyde de 1 -methyl - cyclohexyle, de préférence est choisi dans le groupe constitué par l’hydroperoxyde de tert- butyle et l’hydroperoxyde de tert-amyle, encore préférentiellement est l’hydroperoxyde de tert- amyle.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le peroxyde de dialkyle est choisi dans le groupe constitué par le ditertiobutyle, le peroxyde de ditertioamyle, le peroxyde de di-3-hydroxy-1 ,1 -dimethylbutyle, le peroxyde de di-tert-octyle, le peroxyde de di-tert-hexyle, le peroxyde de di(1 -methyl-cyclopentyle) et le peroxyde de di(l -methyl-cyclohexyle), de préférence est choisi dans le groupe constitué par le ditertiobutyle et le peroxyde de ditertioamyle, encore préférentiellement est le peroxyde de ditertioamyle.
4. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la teneur en poids en méthanol est supérieure de 5 fois, de préférence est supérieure de 10 fois, de préférence est supérieure de 25 fois, et encore préférentiellement est supérieure de 30 fois, à celle dudit peroxyde de dialkyle.
5. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le procédé comporte en outre au moins une étape b) d’extraction à l’aide d’un hydrocarbure du peroxyde de dialkyle.
6. Procédé selon la revendication 5, caractérisé en ce que l’étape b) d’extraction est réalisée par mise en contact dudit hydrocarbure avec le condensât obtenu à l’étape a), de manière à obtenir une phase organique contenant ledit hydrocarbure ainsi que tout ou partie du peroxyde de dialkyle et une phase aqueuse contenant l’hydroperoxyde, l’eau et le méthanol.
7. Procédé selon la revendication 5 ou 6, caractérisé en ce que l’hydrocarbure est choisi dans le groupe constitué par les hydrocarbures en C6 à C12, de préférence des hydrocarbures en C6 à C8, de préférence est un hydrocarbure en C7.
8. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la phase aqueuse obtenue à l’étape de distillation est recyclée au bouilleur de la distillation.
9. Procédé selon l’une quelconque des revendications 5 à 8, caractérisé en ce que la phase organique du condenseur est distillée afin de séparer le(s) hydrocarbure du peroxyde de dialkyle.
10. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’étape de distillation a) est mise en œuvre à une température comprise entre 25 °C et 60°C, préférentiellement entre 30°C et 45°C.
11. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’étape de distillation a) est mise en œuvre à une pression comprise entre 30 et 200 mbars (millibars), préférentiellement entre 40 et 180 mbars, et plus préférentiellement entre 50 et 160 mbars.
12. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comprend une étape a’), préalable à l’étape a), de synthèse dudit hydroperoxyde d’alkyle en milieu acide.
13. Composition d’hydroperoxyde d’alkyle susceptible d’être obtenue par le procédé selon l’une quelconque des revendications précédentes.
14. Composition selon la revendication 13, comprenant moins de 1% en poids de méthanol, de préférence moins de 1000 ppm, et de façon encore plus préférée moins de 100 ppm par rapport au poids total de la composition.
15. Composition selon l’une quelconque des revendications 13 à 14, caractérisée en ce que l’hydroperoxyde d’alkyle comprend de 5 à 8 atomes de carbones, préférentiellement de 5 à 7, encore préférentiellement est l’hydroperoxyde de tert-amyle.
16. Composition selon l’une quelconque des revendications 13 à 15, comprenant moins de 1000 ppm de peroxyde de dialkyle par rapport au poids total de ladite composition, préférentiellement moins de 500 ppm de peroxyde de dialkyle, préférentiellement moins de 250 ppm, et plus préférentiellement moins de 100 ppm de peroxyde de dialkyle.
EP19848899.1A 2018-12-26 2019-12-20 Purification d'hydroperoxyde d'alkyle par distillation en presence de methanol et d'eau Pending EP3902782A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1874176A FR3091283B1 (fr) 2018-12-26 2018-12-26 Purification d’hydroperoxyde d’alkyle par distillation en presence de methanol et d’eau
PCT/FR2019/053243 WO2020136335A1 (fr) 2018-12-26 2019-12-20 Purification d'hydroperoxyde d'alkyle par distillation en presence de methanol et d'eau

Publications (1)

Publication Number Publication Date
EP3902782A1 true EP3902782A1 (fr) 2021-11-03

Family

ID=66776499

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19848899.1A Pending EP3902782A1 (fr) 2018-12-26 2019-12-20 Purification d'hydroperoxyde d'alkyle par distillation en presence de methanol et d'eau

Country Status (3)

Country Link
EP (1) EP3902782A1 (fr)
FR (1) FR3091283B1 (fr)
WO (1) WO2020136335A1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2430864A (en) * 1945-01-30 1947-11-18 Union Oil Co Hydrocarbon peroxides
GB816200A (en) * 1957-02-28 1959-07-08 Bataafsche Petroleum Process for the separation of diisopropyl benzene dihydroperoxides
FR1506296A (fr) * 1966-03-11 1967-12-22 Charbonnages De France Procédé d'oxydation en continu de composés organiques
US3449217A (en) * 1968-01-05 1969-06-10 Halcon International Inc Process of buffering a neutralized t-butyl hydroperoxide during distillation
DE2916572A1 (de) 1979-04-24 1980-11-13 Peroxid Chemie Gmbh Verfahren zur destillativen trennung von tert.-alkylhydroperoxiden und di- tert.-alkylperoxiden
CN107501152B (zh) * 2017-08-16 2019-09-20 中山大学惠州研究院 一种叔丁基过氧化氢的分离方法

Also Published As

Publication number Publication date
WO2020136335A1 (fr) 2020-07-02
FR3091283B1 (fr) 2021-06-25
FR3091283A1 (fr) 2020-07-03

Similar Documents

Publication Publication Date Title
FR2913683A1 (fr) Produit brut a base de glycerol, procede pour sa purification et son utilisation dans la fabrication de dichloropropanol
WO2020136337A1 (fr) Purification d&#39;hydroperoxyde d&#39;alkyle par distillation extractive
FR3062652A1 (fr) Procede de purification de la vanilline naturelle
EP0084286B1 (fr) Procédé perfectionné de fabrication de l&#39;epsilon-caprolactone
FR2486072A1 (fr) Procede pour la fabrication de l&#39;acide b-hydroxybutyrique et de ses oligocondensats
EP0462252A1 (fr) Procede de preparation du citral.
WO2020136335A1 (fr) Purification d&#39;hydroperoxyde d&#39;alkyle par distillation en presence de methanol et d&#39;eau
EP0037349B1 (fr) Procédé de préparation d&#39;O,O-diméthyl-phosphorodithioate de mercaptosuccinate d&#39;ethyl (malathion(R))
WO2022171954A1 (fr) Procede perfectionne de fabrication d&#39;acrylates d&#39;alkyle de purete elevee
FR2689885A1 (fr) Procédé pour inhiber la décomposition du 1,1-dichloro-1-fluoréthane.
EP0296990B1 (fr) Procédé de fabrication de polybutadiène hydroxylé
EP0102297A2 (fr) Procédé de décomposition d&#39;un complexe d&#39;acide ortho-benzoyl-benzoique, de fluorure d&#39;hydrogène et de trifluorure de bore
EP0478428B1 (fr) Procédé de préparation d&#39;oxyde borique par hydrolyse du borate de méthyle et sa mise en oeuvre dans l&#39;oxydation d&#39;hydrocarbures saturées en alcools
EP3902783A1 (fr) Procédé de purification de l&#39;hydroperoxyde d&#39;alkyle par extraction à l&#39;eau et séparation de la phase aqueuse
FR2955321A1 (fr) Procede d&#39;oxydation d&#39;hydrocarbures
WO2023025999A1 (fr) Procede perfectionne de fabrication d&#39;acrylate de butyle de purete elevee
CA2168585A1 (fr) Procede de preparation d&#39;hydroperoxyde de cumene
BE1005731A3 (fr) Procede pour l&#39;epuration de 1,1-dichloro-1-fluoroethane.
FR3137089A1 (fr) Procede de valorisation de sous-produits lourds issus de la fabrication d’acide acrylique
WO2020234123A1 (fr) Procede de purification d&#39;eugenol et nouvelles compositions comprenant de l&#39;eugenol
FR2494683A1 (fr) Procede de production de 2,3-dichlorobutadiene-1,3 a partir de 1,2,3-trichlorobutene-3
FR3096050A1 (fr) Procede de purification d’eugenol et nouvelles compositions comprenant de l’eugenol
BE522886A (fr)
CH285772A (fr) Procédé de préparation du bêta-naphtol.
FR2787443A1 (fr) Procede de separation de florure d&#39;hydrogene de ses melanges avec du 1,1,1,3,3-pentafluorobutane et procede de fabrication de 1,1,1,3,-pentafluorobutane

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)