EP3897961A1 - Reacteur pour la conversion du dioxyde de carbone - Google Patents

Reacteur pour la conversion du dioxyde de carbone

Info

Publication number
EP3897961A1
EP3897961A1 EP19827748.5A EP19827748A EP3897961A1 EP 3897961 A1 EP3897961 A1 EP 3897961A1 EP 19827748 A EP19827748 A EP 19827748A EP 3897961 A1 EP3897961 A1 EP 3897961A1
Authority
EP
European Patent Office
Prior art keywords
reactor
longitudinal channel
support
wire electrode
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19827748.5A
Other languages
German (de)
English (en)
Inventor
Vincent PIEPIORA
Stéphanie OGNIER
Simeon Cavadias
Xavier Duten
Michael Tatoulian
Elena GALVEZ-PARRUCA
Patrick Da Costa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Sorbonne Paris Nord Paris 13
Sorbonne Universite
Paris Sciences et Lettres Quartier Latin
Ecole Nationale Superieure de Chimie de Paris ENSCP
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Sorbonne Paris Nord Paris 13
Sorbonne Universite
Paris Sciences et Lettres Quartier Latin
Ecole Nationale Superieure de Chimie de Paris ENSCP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Sorbonne Paris Nord Paris 13, Sorbonne Universite, Paris Sciences et Lettres Quartier Latin, Ecole Nationale Superieure de Chimie de Paris ENSCP filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3897961A1 publication Critical patent/EP3897961A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/242Tubular reactors in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0405Apparatus
    • C07C1/041Reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2431Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes using cylindrical electrodes, e.g. rotary drums
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/245Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated using internal electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0815Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes involving stationary electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/0828Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0845Details relating to the type of discharge
    • B01J2219/0849Corona pulse discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0896Cold plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2403Geometry of the channels
    • B01J2219/2408Circular or ellipsoidal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2409Heat exchange aspects
    • B01J2219/2411The reactant being in indirect heat exchange with a non reacting heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2427Catalysts
    • B01J2219/243Catalyst in granular form in the channels
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/38Applying an electric field or inclusion of electrodes in the apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/15Ambient air; Ozonisers

Definitions

  • the present invention belongs to the field of conversion of carbon dioxide and / or carbon monoxide, and relates more particularly to a reactor for the conversion of carbon dioxide and / or carbon monoxide into hydrocarbon and / or alcohol, as well as a process for converting carbon dioxide and / or carbon monoxide using such a reactor.
  • Carbon dioxide is produced in large quantities industrially, often in the form of waste. There is a growing need to decrease carbon dioxide emissions. For this purpose, it is possible to convert carbon dioxide into a recoverable element, such as a hydrocarbon and / or an alcohol.
  • Gao et al. [1] describes a fixed bed catalytic reactor used to convert carbon dioxide to hydrocarbon.
  • the catalyst of such a reactor should be used at a temperature of about 350 ° C and at a pressure above 20 bar to convert carbon dioxide.
  • the catalyst is deposited on the surface of a support (for example a metal grid or a silica element) forming a fixed structure.
  • Gaseous reactants circulate in the reactor above the fixed structure and react on the surface of the latter with the catalyst.
  • the reaction is controlled in temperature by a flow of a heat transfer fluid in contact with the reactor.
  • this type of reactor requires the installation of numerous pieces of equipment in order to satisfy the pressure and temperature conditions required for the conversion of carbon dioxide. The implementation of this equipment results in a high production cost of the device comprising the reactor [2].
  • Hoeben et al. [4] describe a reactor allowing the methanisation of carbon monoxide and potentially carbon dioxide at room temperature.
  • the reactor includes an NiCr alloy electrode and a water bed. High voltage discharges are transmitted to the electrode, so as to generate a plasma in the reactor. This document also specifies that it is thus possible to hydrogenate carbon monoxide, and potentially carbon dioxide, without using a catalyst for the reaction.
  • this reactor only makes it possible to detect traces of the methanisation of CO2, but does not make it possible to convert the CO2 at rates sufficient for an industrial application.
  • This document indicates in particular that the improvement of the methanisation rate of CO2 could be obtained by using a nickel-based catalyst with a plasma at low temperature, by using pulsed corona type discharges having a rise time less than a nanosecond and by adjusting the spatial and energy distribution of the plasma.
  • An object of the invention is to provide a solution for converting carbon dioxide and / or carbon monoxide to hydrocarbon and / or alcohol at atmospheric pressure and at low temperature. Another object of the invention is to provide a solution for converting carbon dioxide and / or carbon monoxide with a flow rate greater than the flow rates described in the prior art. Another object of the invention is to provide a reactor structure for the conversion of carbon monoxide and / or carbon dioxide adapted to said higher flow rate.
  • the present invention relates to a reactor for the conversion of carbon dioxide and / or carbon monoxide into hydrocarbon and / or into alcohol comprising:
  • a support made of electrically and thermally conductive material, said support forming the wall or walls of at least one longitudinal channel which passes through the support and also playing the role of cathode of the reactor,
  • each wire electrode forming an anode of the reactor, each wire electrode extending inside each longitudinal channel, along said longitudinal channel, and being arranged at a distance from the wall (s) of said longitudinal channel, each electrode wire being possibly covered with an electrically insulating layer along the part of the wire electrode extending inside said longitudinal channel,
  • the longitudinal channel is a cylinder of revolution
  • the wire electrode is arranged along the axis of revolution of the cylinder of revolution
  • each longitudinal channel is provided with two plugs of electrically insulating material respectively disposed at each end of said longitudinal channel, each plug being permeable to gas and having a through passage in which the wire electrode is inserted,
  • the support is made of metal, in particular steel and preferably stainless steel,
  • the longitudinal channel has a diameter of less than 2 cm, in particular less than 1 cm, and the length of the channel is less than 20 cm, in particular less than 10 cm and preferably less than 5 cm,
  • the catalyst comprises at least one element chosen from cerium dioxide, such as mesoporous cerium dioxide, nickel, zirconium dioxide, hydrotalcite, clay and their mixtures,
  • the support also forms a flow channel for a heat transfer fluid, and at least one obstacle, preferably a pillar, in the flow channel for the heat transfer fluid, each obstacle comprising a single longitudinal channel, the flow channel for the heat transfer fluid and said longitudinal channel being separated by the support,
  • the reactor includes a two-dimensional network of longitudinal channels according to a plane of the network, preferably a hexagonal network of longitudinal channels, the longitudinal channels being mutually parallel and perpendicular to the plane of the network,
  • the network has a mesh defining a mesh surface
  • the shape of the support is adapted so that the average speed of the heat transfer fluid in flow measured on a mesh surface in a plane parallel to the plane of the network and centered on an axis of revolution of a first cylinder, ie between 0.5 and 1.5 times the average speed of the heat-transfer fluid on a mesh surface in a plane parallel to the plane of the network and centered on an axis of revolution of a second neighboring cylinder of the first cylinder.
  • Another object of the invention is a device for converting carbon dioxide and / or carbon monoxide into hydrocarbon and / or alcohol, comprising a pipe having a main flow axis, the pipe comprising at least one reactor according to au at least one embodiment of the invention, preferably a plurality of reactors according to at least one embodiment of the invention, arranged along at least part of the pipe, each support of each reactor extending mainly according to at least part of a section normal to the main axis of flow of the pipe, the support being formed and arranged in the pipe so that the longitudinal channels are parallel to the main axis of flow of the pipe.
  • the pipe has a fluid inlet and a fluid outlet, and also comprises:
  • a gas diffuser comprising carbon dioxide or carbon monoxide and hydrogen, connected to the fluid inlet, and
  • At least one condenser connected to the fluid outlet and adapted to condense at least one element among water and a hydrocarbon.
  • Another object of the invention is a process for converting carbon dioxide and / or carbon monoxide, comprising the steps of:
  • the method further comprises a step (d) of controlling the temperature between 150 ° C and 300 ° C, and preferably between 250 ° C and 300 ° C, inside the reactor.
  • the temperature control step (d) comprises for example the injection of the heat transfer fluid, or the circulation of the heat transfer fluid in a loop, in the flow channel of a reactor according to one embodiment of the invention.
  • the electrical potential applied in step (c) has a frequency between 1 MHz and 20 MHz.
  • FIG. 1 schematically illustrates part of a reactor according to an embodiment of the invention, comprising a longitudinal channel
  • FIG. 2 schematically illustrates part of a reactor according to an embodiment of the invention, comprising a wire electrode and two plugs,
  • FIG. 3 schematically illustrates part of a reactor according to an embodiment of the invention, comprising a wire electrode and two plugs,
  • FIG. 4 schematically illustrates part of a device according to an embodiment of the invention, comprising a reactor
  • FIG. 5 schematically illustrates a section through a reactor according to an embodiment of the invention, comprising a network of longitudinal channels
  • FIG. 6 schematically illustrates a reactor according to an embodiment of the invention, comprising a network of longitudinal channels
  • FIG. 7 diagrammatically illustrates a reactor according to an embodiment of the invention, comprising a network of longitudinal channels, and a flow channel for the heat-transfer liquid,
  • FIG. 8 schematically illustrates a device according to an embodiment of the invention, comprising a reactor according to an embodiment of the invention
  • FIG. 9 schematically illustrates a device according to an embodiment of the invention, comprising four reactors,
  • FIG. 10 schematically illustrates a device according to an embodiment of the invention
  • FIG. 11 schematically illustrates a reactor according to an embodiment of the invention, comprising a network of longitudinal channels,
  • FIG. 12 schematically illustrates a reactor according to an embodiment of the invention, comprising a network of longitudinal channels,
  • FIG. 13 schematically illustrates a reactor according to an embodiment of the invention, comprising a network of longitudinal channels,
  • FIG. 14 illustrates a digital simulation of the local speed of a flow of heat-transfer fluid in a flow channel according to a preferred embodiment of the invention
  • FIG. 15 illustrates a numerical simulation of the local speed of a flow of heat transfer fluid in a flow channel according to an embodiment of the invention
  • FIG. 16 illustrates a digital simulation of the local temperature of a flow of heat transfer fluid in a flow channel according to a preferred embodiment of the invention
  • FIG. 17 illustrates a digital simulation of the local temperature of a flow of heat-transfer fluid in a flow channel according to an embodiment of the invention
  • FIG.18 - Figure 18 schematically illustrates a process for converting carbon dioxide and / or carbon monoxide according to an embodiment of the invention
  • FIG. 19 schematically illustrates the use of a device according to an embodiment of the invention in a system comprising a source of carbon dioxide,
  • FIG. 20 schematically illustrates part of a reactor according to an embodiment of the invention for generating plasma in DBD
  • FIG. 21 schematically illustrates part of a reactor according to an embodiment of the invention for generating plasma in DBD
  • FIG. 22 schematically illustrates part of a reactor according to an embodiment of the invention, for a generation of pulsed plasma.
  • diameter of a longitudinal channel designates, in the present invention, the maximum dimension of a normal section of said longitudinal channel.
  • hydrocarbon denotes, in the present invention, a saturated or unsaturated, linear or branched hydrocarbon molecule, or a mixture of such molecules. Preferably, it is methane.
  • alcohol denotes, in the present invention, a molecule of formula R-OH where R represents a saturated or unsaturated, linear or branched hydrocarbon chain, or a mixture of such molecules. Preferably, it is methanol.
  • heat transfer fluid denotes, in the present invention, a fluid suitable for the transport of heat between two sources of temperatures. It can be oil, air, and / or an aqueous solution, and preferably oil.
  • Reactor 1 is adapted to convert carbon dioxide and / or carbon monoxide into a hydrocarbon and / or an alcohol by generation of a plasma in reactor 1.
  • FIG. 1 schematically illustrates part of a reactor 1 for the conversion of carbon dioxide and / or carbon monoxide into hydrocarbon and / or alcohol according to an embodiment of the invention.
  • the reactor 1 comprises a support 2 made of electrically and thermally conductive material.
  • the support 2 is preferably made of metal, in particular steel, and preferably stainless steel. Thus, the thermal, electrical and mechanical performances of the support 2 are maximized.
  • the support 2 forms the wall or walls of at least one longitudinal channel 3.
  • the longitudinal channel 3 passes through the support 2.
  • the longitudinal channel 3 has in particular a diameter less than 10 cm, in particular less than 5 cm, and preferably less than 2 cm.
  • the length of the longitudinal channel 3 is preferably less than 20 cm, in particular less than 10 cm, and more preferably less than 5 cm.
  • the reactor 1 comprises at least one wire electrode 4, which forms an anode of the reactor 1.
  • the wire electrode 4 is arranged at a distance from the wall (s) of the longitudinal channel 3 which form the cathode.
  • the wire electrode 4 extends inside the longitudinal channel 3. It can extend along part of the longitudinal channel 3 and preferably over the entire length of the longitudinal channel 3.
  • the spatial distribution of the plasma is homogeneous in the longitudinal channel 3.
  • the longitudinal channel 3 is a cylinder of revolution, having an axis of revolution 7.
  • the wire electrode 4 is disposed along the axis of revolution 7.
  • the potential gradient electrical can be homogeneous in the volume of the longitudinal channel 3 between the cathode and the anode.
  • the plasma is generated in part of the volume formed by the longitudinal channel (s) 3, comprised between the wire electrode 4 and the wall (s) of each channel longitudinal 3.
  • Plasma is generated by dielectric barrier discharge (also known as dielectric barrier discharge, or DBD).
  • the dielectric barrier discharge is an electrical discharge created between two electrodes separated by a dielectric material. This discharge can for example be pulsed when the dielectric material chosen is a dielectric gas.
  • the dielectric can be chosen at least from a layer 5 comprising a solid dielectric material, deposited on the wire electrode 4, a layer comprising a solid dielectric material deposited on the cathode, or the gas phase separating the two electrodes, including for example carbon dioxide.
  • each wire electrode 4 is covered with an electrically insulating layer 5 along the part of the wire electrode extending inside the longitudinal channel 3.
  • Layer 5 can preferably be made of alumina.
  • the reactor 1 also comprises a catalyst 6 suitable for catalyzing a reaction for converting carbon dioxide and / or carbon monoxide into a hydrocarbon and / or into an alcohol.
  • the catalyst 6 is arranged between the wire electrode 4 and the wall or walls of each longitudinal channel 3.
  • the catalyst 6 preferably comprises at least one element chosen from magnesium oxide, silicon oxide, lanthanum oxide, cerium oxide, zirconium oxide, and aluminum oxide.
  • the catalyst 6 comprises in particular at least one element chosen from magnesium oxide, lanthanum oxide, cerium dioxide and zirconium oxide and their combinations, the said oxide or oxides being impregnated with nickel or cobalt, preferably in metallic form.
  • the oxides can come from hydrotalcites, hydrocalumite or natural clays.
  • Catalyst 6 can comprise a substrate comprising mesopores. The substrate may have a zeolitic structure.
  • the nickel content can advantageously be between 5 to 30% by mass relative to the total composition of the catalyst 6.
  • the cobalt content may advantageously be between 5 to 30% by mass relative to the total composition of the catalyst 6.
  • the zirconia content (another name for zirconium oxide), in particular in the case of a catalyst 6 comprising an oxide composite of cerium and zirconia, can be between 1% to 20% by mass relative to the total composition of the catalyst 6.
  • the content of cerium oxide can be between 5 to 30% by mass relative to the total composition of the catalyst 6.
  • the content of silicon oxide may be between 15 to 40% by mass relative to the total composition of the catalyst 6.
  • the content of aluminum oxide may be between 15 to 40% by mass relative to the composition total of catalyst 6.
  • the content of magnesium oxide can be between 1 to 20% by mass relative to the total composition of catalyst 6.
  • the content of lanthanum oxide can be between 1 to 10% by mass relative to the total composition of catalyst 6.
  • Catalyst 6 can be activated by the electrical potential controlled between the cathode and the electrode.
  • activated it is meant that the electrical potential makes it possible to form positively or negatively polarized sites on the surface of the catalyst 6. These polarized sites promote the adsorption and the desorption of elements of the gas phase, allowing the conversion of carbon dioxide and / or carbon monoxide. This catalysis is particularly advantageous because it can be implemented at temperatures below 350 ° C.
  • the longitudinal channel 3 is provided with two plugs 8 disposed at each end of the longitudinal channel 3.
  • Each plug 8 is made at least from an electrically insulating material.
  • Each plug 8 is also permeable to gas.
  • at least one plug 8 disposed in a longitudinal channel 3, preferably the two plugs 8, have a through passage 9, into which the wire electrode 4 can be inserted.
  • the plugs 8 has several functions. It allows the wired electrode 4 to be supported on either side of the ends of the longitudinal channel 3.
  • the plug 8 also makes it possible to electrically isolate the volume defined inside the longitudinal channel 3 from the rest of the reactor 1. Thus, the plasma generated during the use of reactor 1 is confined in the longitudinal channel or channels.
  • the plugs 8 make it possible to performs the two preceding functions while allowing a gas flow from one end to the other of the longitudinal channel 3, so as to introduce carbon dioxide and / or carbon monoxide into the longitudinal channel 3.
  • the plugs 8 also allow to let out the hydrocarbon and / or the alcohol formed.
  • the support 2 forms a flow channel 10 of a heat transfer fluid 13.
  • the flow channel 10 of the heat transfer fluid and the longitudinal channel 3 are separated by the support 2.
  • the support 2 is both electrically and thermally conductive , it plays both the role of cathode of reactor 1, allowing the generation of a plasma in the longitudinal channel 3, and at the same time the role of heat exchanger, making it possible to exchange heat between the longitudinal channel 2 and the flow channel 10.
  • the support 2 also plays the role of mechanical support for the reactor 1.
  • the wire electrode 4 can be inserted into the two plugs 8 of a longitudinal channel 3.
  • a plug 8 can for example comprise a ceramic sleeve, surrounding a part of the wire electrode 4 intended for be arranged at one end of the longitudinal channel 3.
  • the sleeve forms the passage 9 of the plug.
  • the sleeve can be surrounded by a sintered glass part.
  • the sintered glass part can itself be surrounded by a cylindrical ceramic part.
  • the cylindrical ceramic part may for example have openings, allowing a gas flow to pass through the plug 8.
  • a part of the support 2 can surround each of the cylindrical parts of the plug 8 so as to form the longitudinal cylindrical channel 3, around the axis of revolution 7.
  • the support 2 can form a two-dimensional network 12 of longitudinal channels 3.
  • the two-dimensional network 12 can be planar, according to a plane of the network 12
  • the longitudinal channels 3 can preferably be parallel to each other and perpendicular to the plane of the network 12.
  • the longitudinal channels 3 can be oriented so as to allow a gas flow to pass through the support 2 from one of the half-spaces formed by the network plane to the other half-space formed by the network plane 12.
  • the support 2 forms preferably a plurality of longitudinal channels, namely at least 2, in particular at least 50, in particular at least 1000, and more preferably at least 2500 longitudinal channels 3.
  • FIG. 4 schematically illustrates the section of a reactor 1 along a plane perpendicular to the plane of the network 12.
  • a wired electrode 4 is inserted into each of the longitudinal channels 3 formed by the support 2.
  • Each electrode 4 can be electrically connected to the other electrodes 4 by a tree of electrically conductive wires.
  • the root of the tree has an electrical connection, intended to be connected to the outside of reactor 1.
  • the other vertices of the tree have electrical connections with the 4 wire electrodes.
  • FIG. 5 schematically illustrates the reactor 1 comprising a network 12 of longitudinal channels 3 seen from the side.
  • the support 2 forms a flow channel 10 for the heat transfer fluid 13.
  • FIG. 5 schematically illustrates an inlet and two outlets for the heat transfer fluid 13, allowing a flow of the heat transfer fluid 13 in the flow channel 10.
  • FIG. 6 schematically illustrates a front view of the reactor illustrated in FIG. 5.
  • the support 2 forms a two-dimensional hexagonal network 12 of longitudinal channels 3 (network of honeycomb type).
  • the support 2 forms both the flow channel 10 of the heat transfer fluid, and obstacles 11, preferably pillars, in the flow channel 10 of the heat transfer fluid 13.
  • Each obstacle 11 comprises a single longitudinal channel 3, the channel 10 for the heat transfer fluid 13 and said longitudinal channel 3 being separated by the support 2.
  • FIG. 7 schematically illustrates a perspective view of reactor 1.
  • the reactor 1 is cut so as to illustrate the separation between the flow channel 10 and the longitudinal channels 3 by the support 2.
  • the flow channel 10 thus allows the heat transfer fluid 13 to flow around of each of the obstacles 10 and thus around each of the longitudinal channels 3, so as to regulate the temperature in each of the longitudinal channels 3.
  • Device architecture 16
  • another object of the invention is a device 16 comprising a pipe 14.
  • the pipe 14 has a main flow axis 15, a fluid inlet 17 and a fluid outlet 18.
  • the fluid inlet 17 can be connected to a source of gas comprising carbon dioxide and / or carbon monoxide intended to be converted.
  • the fluid inlet 17 can preferably be connected to a gas diffuser comprising carbon dioxide and / or carbon monoxide and dihydrogen.
  • Line 14 comprises at least one reactor 1, and preferably a plurality of reactors 1, arranged in series along line 14.
  • Each support 2 of each reactor 1 mainly extends along at least part of a section normal to the main flow axis 15 of the pipe 14.
  • the support 2 is formed and arranged in the pipe 14 so that the longitudinal channels 3 are parallel to the main flow axis 15 of the pipe 14.
  • the gas introduced into line 14 through fluid inlet 17 can flow to a first reactor 1.
  • the gas then passes through the support 2 of the first reactor 1 through the set of parallel longitudinal channels 3, where carbon dioxide and / or carbon monoxide can be converted.
  • FIG. 9 illustrates for example a device 16 comprising three reactors 1 arranged in series.
  • the supports 2 in series can extend over the entire section of the pipe 14.
  • the entire gas flow upstream of a reactor 1 flows through the longitudinal channels 3, and the conversion rate of carbon monoxide and / or carbon dioxide between the upstream of said support 2 and the downstream of said support 2 is maximized.
  • a heat exchanger 34 for example of the shell and tube type, can be arranged downstream of the reactor (s) 1, in the pipe 14 of the device 16 or at the outlet of the device 16.
  • the gaseous products originating from the reactor 1 are condensed in the heat exchanger 34, for example by contact with cooled tubes of the heat exchanger, by a fluid heat transfer fluid circulating between the baffles 23, at a temperature between 20 to 40 ° C, for example around 30 ° C.
  • the heat exchanger 34 is configured to cool the gas leaving the reactor 1.
  • the heat exchanger 34 is configured to cool gas flow having a flow rate greater than 50 m 3 / h, in particular greater than 100 m 3 / h, and more preferably greater than 300 m 3 / h.
  • the heat exchanger 34 is for example configured to cool a methane gas flow having a flow rate greater than 50 m 3 / h.
  • the heat exchanger 34 is also configured to cool a gas flow comprising CO2 and dihydrogen, said gas flow having a flow rate greater than 300 m 3 / h.
  • the support 2 can extend only over a part of the section of the pipe 14.
  • the section of the pipe 14 then also includes a perforated part 21 , through which gas can flow.
  • This perforated part 21 has a lower hydrodynamic resistance than the rest of the support 2: the flow is favored there.
  • Several supports 2 can be arranged in series, the perforated parts 21 of the supports 2 being misaligned with respect to the main flow axis 15 of the pipe 14. Thus, the mixture of the gas comprising carbon dioxide and / or monoxide of carbon to be converted is favored.
  • a pipe 14 can also comprise both supports 2 extending over the whole of a section of the pipe 14 and supports 2 forming perforated parts 21 of the section.
  • the reactor 1 may comprise three supports 2, for example each of the supports 2 being illustrated respectively in FIG. 11, FIG. 12 and FIG. 13. Each support 2 forms an openwork part 21 of the section in which said support 2 s' extends. The perforated parts 21 are not aligned between each of the supports 2.
  • FIG. 1 1 diagrammatically illustrates a support 2 adapted to form four perforated parts 21 a and 21 b when the support 2 is inserted in the pipe 14.
  • FIG. 12 diagrammatically illustrates a support 2 adapted to form three openwork parts 21 and 22 when the support 2 is inserted in the pipe 14.
  • FIG. 13 schematically illustrates a support 2 adapted to form two openwork parts 22 when the support 2 is inserted in the pipe 14.
  • the supports 2 of figure 1 1, of figure 12 and of figure 13 can be mounted in series so that the gas containing CO2 and / or CO only passes once through a reactor 1.
  • the gas can either enter the reactor 1 via the inlets of the longitudinal channels 3 and then pass through the perforated parts 22 of FIGS. 12 and 13 after the conversion reaction, or enter through the openwork parts 21 a and 21 b.
  • the gas containing the CO 2 and / or the CO entering through the perforated parts 21 a can then be directed towards the longitudinal channels 3 of the support 2 of FIG. 12 to exit by the perforated part 22 of FIG. 13 after conversion reaction.
  • the gas comprising the CO 2 and the CO entering through the perforated parts 21 b can be directed to the perforated part 21 of FIG. 12 then to the longitudinal channels 3 of FIG. 13.
  • FIG. 14 illustrates a digital simulation of the local speed of a flow of heat transfer fluid 13 in the flow channel 10 according to a preferred embodiment of the invention.
  • the scale to the right of the figure corresponds to speeds in ms 1 .
  • FIG. 15 illustrates a numerical simulation of the local speed of a flow of heat-transfer fluid 13 in a flow channel 10 according to an embodiment of the invention.
  • the scale to the right of the figure corresponds to speeds in ms 1 .
  • the disparities in local flow velocities are higher in the embodiment illustrated in FIG.
  • the network 12 has a mesh defining a mesh surface and the shape of the support 2 is adapted so that the average speed of the heat-transfer fluid 13 in flow measured on a mesh surface in a plane parallel to the plane of the network 12 and centered on an axis of revolution of a first cylinder, ie between 0.5 and 1.5 times the average speed of the heat transfer fluid 13 on a mesh surface in a plane parallel to the plane of the network at 12 and centered on an axis of revolution 7 of a second cylinder next to the first cylinder.
  • the temperature in the longitudinal channels can be controlled homogeneously.
  • FIG. 16 illustrates a digital simulation of the local temperature in a flow of heat transfer fluid 13 in a flow channel according to a preferred embodiment of the invention.
  • FIG. 17 illustrates a digital simulation of the local temperature in a flow of heat transfer fluid in a flow channel according to an embodiment of the invention.
  • the geometry of the flow channel 10 illustrated in FIG. 16 makes it possible to control the temperature of the longitudinal channels 3 in a more homogeneous manner. Indeed, to maximize the efficiency of the CO2 and / or CO conversion reaction, it is preferable to maintain the temperature between 250 ° C and 300 ° C and therefore to control the cooling of reactor 1, the conversion reaction being exothermic.
  • a process for converting carbon dioxide and / or carbon monoxide comprises the steps of:
  • the conversion of carbon dioxide and / or carbon monoxide also comprises a step 183 of controlling the temperature of reactor 1 between 150 ° C and 300 ° C, and preferably between 250 ° C and 300 ° C.
  • the yield conversion of carbon dioxide and / or carbon monoxide into hydrocarbon and or into alcohol during a hydrogenation reaction is maximum in a temperature range between 250 ° C. and 300 ° C. Below this temperature, the conversion of carbon dioxide results in the production of unwanted side products, for example nickel tetracarbonyl if the catalyst 6 comprises nickel. Above 300 ° C, the conversion of carbon dioxide results in the production of carbon monoxide.
  • the temperature can be controlled by injecting the heat transfer fluid 13 into the flow channel 10 formed by the support 2.
  • the heat transfer fluid 13 can be cooled outside the flow channel 10, and its temperature controlled by a thermostat.
  • the method can be used to produce heat.
  • the process is carried out at atmospheric pressure.
  • the applied electrical potential is preferably an alternating potential, such as a pulsed or sinusoidal potential.
  • the electrical potential applied preferably has an amplitude between 5 kV and 50 kV, in particular between 10 kV and 20 kV.
  • the electrical potential applied preferably has a frequency between 0.5 MHz and 100 MHz, and in particular between 1 MHz and 20 MHz.
  • a methanizer 24 (which can be found for example on a farm) can advantageously include a device 16 according to an embodiment of the invention.
  • the methanizer comprises a digester 25.
  • the digester 25 is a reactor suitable for anaerobic fermentation of organic matter.
  • the digester 25 emits raw biogas to a biogas processing unit 23.
  • the biogas processing unit 23 is adapted to separate the biomethane from the other gaseous components of the raw biogas emitted by the digester 25.
  • the biogas processing unit 23 includes a biomethane outlet connected for example to the gas network.
  • the biogas processing unit 23 includes another outlet, emitting carbon dioxide carbon to device 16. Dihydrogen, for example from the hydrolysis of water, is also sent to device 16 to allow the conversion reaction.
  • a condenser is connected to the fluid outlet 18 of the device 16.
  • the condenser is adapted to condense at least one element among water and a hydrocarbon.
  • a reactor 1 comprising three longitudinal channels 3 was tested.
  • the longitudinal channels 3 can be used for plasma generation in DBD (Dielectric Barrier Discharge) or in pulsed plasma.
  • the setting up of a reactor 1 begins with the fixing of a second lower support 26 on the external surface of the support 2.
  • the cylindrical part for holding the plug 8 is then placed in the cell in abutted against the second support 26.
  • the electrode 4 comprises a stripped high voltage cable 27.
  • the high-voltage cable 27 is introduced into a tube of dielectric alumina material forming an electrically insulating layer 5.
  • a support sleeve 28 is slid along the electrode which is also introduced into a lower sleeve 29.
  • the sintered glass part 30 is placed around the lower sleeve 29 which is introduced into the crucible of the second lower support 26.
  • the catalyst 6 is then poured around the electrode through the upper part of the longitudinal channel 3.
  • a layer of dielectric material 31 can be arranged between the catalyst 6 is the support 2.
  • the layer of dielectric material 31 can for example consist of a cylindrical tube of dielectric material 31 inserted into the longitudinal channel 3, into which the wire electrode 4 is inserted, preferably covered with an electrically insulating layer 5 and catalyst 6.
  • the wire electrode 4 can also be inserted in a sheath of dielectric material, the sheath of dielectric material being covered with the catalyst 6.
  • a screen is placed between the support 2 and the cylindrical tube of dielectric material 31 so as to hold the catalyst 6.
  • the geometry of the cylindrical tube of dielectric material 31 is adapted to receive the catalyst 6 over a length along the main flow axis 15 greater than the length of the longitudinal tube 3 formed by the support 2.
  • the reactor 1 comprises catalyst 6 upstream from the longitudinal channel 3 over a length greater than 0.5 cm, and in particular greater than 1 cm.
  • the reactor 1 comprises catalyst 6 downstream from the longitudinal channel 3 over a length greater than 0.5 cm, and in particular greater than 1 cm.
  • the junction between the catalyst 6 and the plug 8 can favor the appearance of preferential electrical paths. Due to the geometry of the cylindrical tube made of dielectric material, this junction is distant from the longitudinal channel 3 formed by the support 2.
  • the wire electrode 4 is not inserted into a rigid dielectric tube. It is therefore necessary to tension the electric cable between two fixed points.
  • the installation of the cell begins with the fixing of the second lower support 26 on the external surface of the support 2.
  • the cylindrical part of the plug 8 is then placed in the cell in abutment against the second lower support 26.
  • a retaining sleeve 28 upper is slid along the high voltage cable 27.
  • the cable is then introduced into the lower sleeve 29 which can be opened in two for the introduction and fixing of the electric cable.
  • the lower sleeve 29 is then closed and fixed to the cylindrical part of the cap via a self-tightening polymer seal.
  • the sintered glass part 30, in the form of a ring, is placed around the lower sleeve 29 which is introduced into the crucible of the cylindrical part of the plug 8.
  • the catalyst 6 is then poured around the electrode by the upper part of the longitudinal channel 3.
  • Another part made of sintered glass, as well as the cylindrical part of the plug 8, are slid into the upper sleeve 28 as far as the catalyst 6.
  • the high-voltage cable is then stretched, a chock of cable and sleeve containing a jaw sheath and a self-tightening joint, allowing to keep the cable tension, is placed on the cylindrical part of the plug.
  • the second upper support 26 is fixed to the external surface of the support 2.
  • the reaction of conversion of CO2 to hydrocarbon by dihydrogen is exothermic.
  • the heat transfer fluid 13 in this case oil, is preheated to 200 ° C. by a resistance heating.
  • a pump is started so as to circulate the oil in a loop in the flow channel 10.
  • CO2 and dihydrogen are then sent to reactor 1.
  • the ratio of CO2 and dihydrogen is kept constant.
  • the ratio between the quantity of CO2 injected in gaseous form in reactor 1 and the quantity of dihydrogen injected in gaseous form in reactor 1) is preferably between 0.20 and 0.30 and in particular substantially equal to a quarter.
  • the production of methane is favored over the production of other possible reaction products.
  • the ratio between the quantity of CO injected in gaseous form in reactor 1 and the quantity of dihydrogen injected in gaseous form in reactor 1) is preferably between 0.25 and 0, 40 and in particular substantially equal to a third.
  • the production of methane is also favored over the production of other possible reaction products.
  • An electric potential generator connected to the anode and to the cathode is switched on at a frequency of 72 kHz.
  • the voltage is controlled between 15 and 25kV.
  • a separator flask is fluidly connected to the fluid outlet 18 of the pipe 14. The flask can be cooled.
  • the production of hydrocarbon is measured by collecting and analyzing the gas and the liquid obtained at the outlet of the pipe 14.
  • the flow rate of the oil pump is adjusted in continuous mode as a function of the temperature of the gases at the outlet of the reactor 1 and the return oil temperature.
  • the gas phase at the outlet of line 14 comprises, after measurement, 50% methane, 12.5% CO2, and 37.5% dihydrogen.
  • the liquid phase at the outlet of line 14 comprises, after measurement, 100% water.
  • the reactor 1 can allow the capture and storage of CO2, for example emitted industrially by a cement plant or a steelworks.
  • the process for converting carbon dioxide and / or carbon monoxide according to an embodiment of the invention can, for example, make it possible to treat pyrogasification products from wood waste.
  • pyrogasification of wood makes it possible to produce, after pyrolysis and gasification, mainly CO2, CO and H2. It is thus possible to produce a hydrocarbon, such as methane, by a process according to an embodiment of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Fluid Mechanics (AREA)
  • Materials Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

La présente invention concerne un réacteur pour la conversion du dioxyde carbone ou du monoxyde de carbone en hydrocarbure et/ou en alcool comprenant un support en matériau électriquement et thermiquement conducteur, formant la ou les parois d'au moins un canal longitudinal qui traverse le support et jouant également le rôle de cathode du réacteur, au moins une électrode filaire formant une anode du réacteur, et s'étendant à l'intérieur de chaque canal longitudinal, et étant arrangée à distance de la ou des parois dudit canal longitudinal, chaque électrode filaire étant éventuellement recouverte d'une couche électriquement isolante le long de la partie de l'électrode filaire s'étendant à l'intérieur dudit canal longitudinal, un catalyseur adapté à catalyser une réaction de conversion du dioxyde carbone ou du monoxyde de carbone en hydrocarbure et/ou en alcool, le catalyseur étant situé entre l'électrode filaire et la ou les parois de chaque canal longitudinal.

Description

REACTEUR POUR LA CONVERSION DU DIOXYDE DE CARBONE
DOMAINE DE L'INVENTION
La présente invention appartient au domaine de la conversion du dioxyde de carbone et/ou du monoxyde de carbone, et porte plus particulièrement sur un réacteur pour la conversion du dioxyde de carbone et/ou du monoxyde de carbone en hydrocarbure et/ou en alcool, ainsi que sur un procédé de conversion du dioxyde de carbone et/ou du monoxyde de carbone utilisant un tel réacteur.
ETAT DE LA TECHNIQUE
Le dioxyde de carbone est produit en grande quantité de manière industrielle, souvent sous forme de rejet. Il existe un besoin croissant de diminuer les émissions de dioxyde de carbone. A cet effet, il est possible de convertir le dioxyde de carbone en élément valorisable, tel qu’un hydrocarbure et/ou un alcool.
Gao et al. [1 ] décrit un réacteur catalytique à lit fixe utilisé pour convertir le dioxyde de carbone en hydrocarbure. Le catalyseur d’un tel réacteur doit être utilisé à une température d’environ 350° C et à une pression supérieure à 20 bars pour convertir le dioxyde de carbone. Le catalyseur est déposé sur la surface d’un support (par exemple une grille métallique ou un élément en silice) formant une structure fixe. Des réactifs gazeux circulent dans le réacteur au-dessus de la structure fixe et réagissent à la surface de ce dernier avec le catalyseur. La réaction est contrôlée en température par un écoulement d’un fluide caloporteur en contact avec le réacteur. Toutefois, ce type de réacteur nécessite l’installation de nombreux équipements de manière à satisfaire les conditions de pression et de température requises pour la conversion du dioxyde de carbone. La mise en œuvre de ces équipements entraîne un coût de production élevé du dispositif comprenant le réacteur [2] .
A cet effet, Ocampo et al. [3] décrivent la conversion de CO/CO2 en méthane en utilisant un réacteur catalytique à lit fixe à pression atmosphérique. Toutefois, la conversion du CO en carbone graphite entraîne une diminution du rendement en dessous de 50 % après 150 h d’utilisation.
Hoeben et al. [4] décrivent un réacteur permettant la méthanisation du monoxide de carbone et potentiellement du dioxyde de carbone à température ambiante. Le réacteur comprend une électrode en alliage NiCr et un lit d’eau. Des décharges de hautes tensions sont transmises à l’électrode, de manière à générer un plasma dans le réacteur. Ce document précise également qu’il est ainsi possible d’hydrogéner du monoxyde de carbone, et potentiellement du dioxyde de carbone, sans utiliser de catalyseur pour la réaction.
Cependant, ce réacteur permet seulement de détecter des traces de la méthanisation du CO2, mais ne permet pas de convertir le CO2 à des taux suffisants pour une application industrielle. Ce document indique en particulier que l’amélioration du taux de méthanisation du CO2 pourrait être obtenue en utilisant un catalyseur à base Nickel avec un plasma à basse température, en utilisant des décharges de type corona pulsées présentant une durée de montée inférieure à la nanoseconde et en ajustant la distribution spatiale et énergétique du plasma.
EXPOSE DE L'INVENTION
Un but de l’invention est de proposer une solution pour convertir le dioxyde de carbone et/ou le monoxyde de carbone en hydrocarbure et/ou en alcool à pression atmosphérique et à basse température. Un autre but de l’invention est de proposer une solution pour convertir le dioxyde de carbone et/ou le monoxyde de carbone avec un débit supérieur aux débits décrits dans l’art antérieur. Un autre but de l’invention est de proposer une structure de réacteur pour la conversion du monoxyde de carbone et/ou du dioxyde de carbone adaptée audit débit supérieur.
Ainsi, la présente invention concerne un réacteur pour la conversion du dioxyde carbone et/ou du monoxyde de carbone en hydrocarbure et/ou en alcool comprenant :
- un support en matériau électriquement et thermiquement conducteur, ledit support formant la ou les parois d’au moins un canal longitudinal qui traverse le support et jouant également le rôle de cathode du réacteur,
- au moins une électrode filai re formant une anode du réacteur, chaque électrode filaire s’étendant à l’intérieur de chaque canal longitudinal, le long dudit canal longitudinal, et étant arrangée à distance de la ou des parois dudit canal longitudinal, chaque électrode filaire étant éventuellement recouverte d’une couche électriquement isolante le long de la partie de l’électrode filaire s’étendant à l’intérieur dudit canal longitudinal,
- un catalyseur adapté à catalyser une réaction de conversion du dioxyde carbone ou du monoxyde de carbone en hydrocarbure et/ou en alcool, le catalyseur étant situé entre l’électrode filaire et la ou les parois de chaque canal longitudinal.
L'invention est avantageusement complétée par les caractéristiques suivantes, prises individuellement ou en l’une quelconque de leurs combinaisons techniquement possibles :
- le canal longitudinal est un cylindre de révolution, et l’électrode filaire est disposée le long de l’axe de révolution du cylindre de révolution,
- chaque canal longitudinal est muni de deux bouchons en matériau électriquement isolant disposés respectivement à chacune des extrémités dudit canal longitudinal, chaque bouchon étant perméable au gaz et présentant un passage traversant dans lequel est insérée l’électrode filaire,
- le support est en métal, notamment en acier et préférentiellement en acier inoxydable,
-le canal longitudinal présente un diamètre inférieur à 2 cm, notamment inférieur à 1 cm, et la longueur du canal est inférieure à 20 cm, notamment inférieure à 10 cm et préférentiellement inférieure à 5 cm,
- le catalyseur comprend au moins un élément choisi parmi du dioxyde de cérium, tel que du dioxyde de cérium mésoporeux, du nickel, du dioxyde de zirconium, de l’hydrotalcite, de l’argile et leurs mélanges,
- le support forme également un canal d’écoulement d’un fluide caloporteur, et au moins un obstacle, préférentiellement un pilier, dans le canal d’écoulement du fluide caloporteur, chaque obstacle comprenant un unique canal longitudinal, le canal d’écoulement du fluide caloporteur et ledit canal longitudinal étant séparés par le support,
- le réacteur comprend un réseau bidimensionnel de canaux longitudinaux selon un plan du réseau, préférentiellement un réseau hexagonal de canaux longitudinaux, les canaux longitudinaux étant parallèles entre eux et perpendiculaires au plan du réseau,
- le réseau présente une maille définissant une surface de maille, et la forme du support est adaptée à ce que la vitesse moyenne du fluide caloporteur en écoulement mesurée sur une surface de maille dans un plan parallèle au plan du réseau et centrée sur un axe de révolution d’un premier cylindre, soit comprise entre 0,5 et 1 ,5 fois la vitesse moyenne du fluide caloporteur sur une surface de maille dans un plan parallèle au plan du réseau et centrée sur un axe de révolution d’un deuxième cylindre voisin du premier cylindre.
Un autre objet de l’invention est un dispositif de conversion du dioxyde carbone et/ou du monoxyde de carbone en hydrocarbure et/ou en alcool, comprenant une conduite présentant un axe principal d’écoulement, la conduite comprenant au moins un réacteur selon au moins un mode de réalisation de l’invention, préférentiellement une pluralité de réacteurs selon au moins un mode de réalisation de l’invention, disposés le long d’au moins une partie de la conduite, chaque support de chaque réacteur s’étendant principalement selon au moins une partie d’une section normale à l’axe principal d’écoulement de la conduite, le support étant formé et disposé dans la conduite de sorte que les canaux longitudinaux soient parallèles à l’axe principal d’écoulement de la conduite.
Avantageusement, la conduite présente une entrée fluidique et une sortie fluidique, et comprend également :
- un diffuseur de gaz comprenant du dioxyde de carbone ou du monoxyde de carbone et de l’hydrogène, relié à l’entrée fluidique, et
- au moins un condenseur, relié à la sortie fluidique et adapté à condenser au moins un élément parmi de l’eau et un hydrocarbure.
Un autre objet de l’invention est un procédé de conversion du dioxyde de carbone et/ou du monoxyde de carbone, comprenant les étapes de :
(a) fourniture d’un réacteur selon un mode de réalisation de l’invention,
(b) injection dans le ou les canaux longitudinaux du réacteur d’un gaz comprenant du dioxyde de carbone et/ou du monoxyde de carbone, et du dihydrogène,
(c) application d’un potentiel électrique entre le support servant de cathode et la ou les électrodes filaires servant d’anode, le potentiel étant adapté à générer un plasma dans le volume du ou des canaux longitudinaux compris entre l’électrode filaire et la ou les parois de chaque canal longitudinal.
Avantageusement, le procédé comprend en outre une étape (d) de contrôle de la température entre 150° C et 300° C, et préférentiellement entre 250° C et 300° C, à l’intérieur du réacteur. L’étape (d) de contrôle de la température comprend par exemple l’injection du fluide caloporteur, ou la mise en circulation en boucle du fluide caloporteur, dans le canal d’écoulement d’un réacteur selon un mode de réalisation de l’invention.
Avantageusement, le potentiel électrique appliqué dans l’étape (c) présente une fréquence comprise entre 1 MHz et 20 MHz.
DESCRIPTION DES FIGURES
D’autres caractéristiques, buts et avantages de l’invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
[Fig. 1 ] - la figure 1 illustre schématiquement une partie d’un réacteur selon un mode de réalisation de l’invention, comprenant un canal longitudinal,
[Fig. 2] - la figure 2 illustre de façon schématiquement une partie d’un réacteur selon un mode de réalisation de l’invention, comprenant une électrode filaire et deux bouchons,
[Fig. 3] - la figure 3 illustre de façon schématiquement une partie d’un réacteur selon un mode de réalisation de l’invention, comprenant une électrode filaire et deux bouchons,
[Fig. 4] - la figure 4 illustre schématiquement une partie d’un dispositif selon un mode de réalisation de l’invention, comprenant un réacteur,
[Fig. 5] - la figure 5 illustre schématiquement une coupe d’un réacteur selon un mode de réalisation de l’invention, comprenant un réseau de canaux longitudinaux, [Fig. 6] - la figure 6 illustre schématiquement un réacteur selon un mode de réalisation de l’invention, comprenant un réseau de canaux longitudinaux,
[Fig. 7] - la figure 7 illustre schématiquement un réacteur selon un mode de réalisation de l’invention, comprenant un réseau de canaux longitudinaux, et un canal d’écoulement du liquide caloporteur,
[Fig. 8] - la figure 8 illustre schématiquement un dispositif selon un mode de réalisation de l’invention, comprenant un réacteur selon un mode de réalisation de l’invention,
[Fig. 9] - la figure 9 illustre schématiquement un dispositif selon un mode de réalisation de l’invention, comprenant quatre réacteurs,
[Fig. 10] - la figure 10 illustre schématiquement un dispositif selon un mode de réalisation de l’invention,
[Fig. 11 ] - la figure 11 illustre schématiquement un réacteur selon un mode de réalisation de l’invention, comprenant un réseau de canaux longitudinaux,
[Fig. 12] - la figure 12 illustre schématiquement un réacteur selon un mode de réalisation de l’invention, comprenant un réseau de canaux longitudinaux,
[Fig. 13] - la figure 13 illustre schématiquement un réacteur selon un mode de réalisation de l’invention, comprenant un réseau de canaux longitudinaux,
[Fig. 14] - la figure 14 illustre une simulation numérique de la vitesse locale d’un écoulement de fluide caloporteur dans un canal d’écoulement selon un mode de réalisation préféré de l’invention,
[Fig. 15] - la figure 15 illustre une simulation numérique de la vitesse locale d’un écoulement de fluide caloporteur dans un canal d’écoulement selon un mode de réalisation de l’invention,
[Fig. 16] - la figure 16 illustre une simulation numérique de la température locale d’un écoulement de fluide caloporteur dans un canal d’écoulement selon un mode de réalisation préféré de l’invention,
[Fig. 17] - la figure 17 illustre une simulation numérique de la température locale d’un écoulement de fluide caloporteur dans un canal d’écoulement selon un mode de réalisation de l’invention, [Fig.18] - la figure 18 illustre schématiquement un procédé de conversion du dioxyde de carbone et/ou du monoxyde de carbone selon un mode de réalisation de l’invention,
[Fig. 19] - la figure 19 illustre schématiquement l’utilisation d’un dispositif selon un mode de réalisation de l’invention dans un système comprenant une source de dioxyde de carbone,
[Fig. 20] - la figure 20 illustre schématiquement une partie d’un réacteur selon un mode de réalisation de l’invention pour une génération de plasma en DBD,
[Fig. 21 ] - la figure 21 illustre schématiquement une partie d’un réacteur selon un mode de réalisation de l’invention pour une génération de plasma en DBD,
[Fig. 22] - la figure 22 illustre schématiquement une partie d’un réacteur selon un mode de réalisation de l’invention, pour une génération de plasma pulsé.
DEFINITION
Le terme diamètre d’un canal longitudinal désigne, dans la présente invention, la dimension maximale d’une section normale dudit canal longitudinal.
Le terme hydrocarbure désigne, dans la présente invention, une molécule hydrocarbonée saturée ou insaturée, linéaire ou ramifiée, ou un mélange de telles molécules. De préférence, il s’agit du méthane.
Le terme alcool désigne, dans la présente invention, une molécule de formule R-OH où R représente une chaîne hydrocarbonée saturée ou insaturée, linéaire ou ramifiée, ou un mélange de telles molécules. De préférence, il s’agit du méthanol.
Le terme fluide caloporteur désigne, dans la présente invention, un fluide adapté au transport de chaleur entre deux sources de températures. Il peut s’agir d’huile, d’air, et/ou d’une solution aqueuse, et préférentiellement d’huile. DESCRIPTION DETAILLEE DE L'INVENTION
Architecture du réacteur 1
Le réacteur 1 est adapté à convertir le dioxyde de carbone et/ou le monoxyde de carbone en un hydrocarbure et/ou en un alcool par génération d’un plasma dans le réacteur 1 .
La figure 1 illustre schématiquement une partie d’un réacteur 1 pour la conversion du dioxyde carbone et/ou du monoxyde de carbone en hydrocarbure et/ou en alcool selon un mode de réalisation de l’invention. Le réacteur 1 comprend un support 2 en matériau électriquement et thermiquement conducteur. Le support 2 est préférentiellement réalisé en métal, notamment en acier, et préférentiellement en acier inoxydable. Ainsi, les performances à la fois thermiques, électriques et mécaniques du support 2 sont maximisées. Le support 2 forme la ou les parois d’au moins un canal longitudinal 3. Le canal longitudinal 3 traverse le support 2. Le canal longitudinal 3 présente notamment un diamètre inférieur à 10 cm, notamment inférieur à 5 cm, et préférentiellement inférieur à 2 cm. La longueur du canal longitudinal 3 est préférentiellement inférieure à 20 cm, notamment inférieure à 10 cm, et plus préférentiellement inférieure à 5 cm. Ainsi, il est possible d’appliquer des gradients de potentiels électriques suffisamment élevés, avec des générateurs de tensions de l’état de l’art, pour générer un plasma dans le canal longitudinal 3.
Le réacteur 1 comprend au moins une électrode 4 filaire, qui forme une anode du réacteur 1 . L’électrode 4 filaire est arrangée à distance de la ou des parois du canal longitudinal 3 qui forment la cathode. L’électrode 4 filaire s’étend à l’intérieur du canal longitudinal 3. Elle peut s’étendre le long d’une partie du canal longitudinal 3 et préférentiellement sur toute la longueur du canal longitudinal 3. Ainsi, la distribution spatiale du plasma est homogène dans le canal longitudinal 3. Préférentiellement, le canal longitudinal 3 est un cylindre de révolution, présentant un axe de révolution 7. L’électrode 4 filaire est disposée le long de l’axe de révolution 7. Ainsi, le gradient de potentiel électrique peut être homogène dans le volume du canal longitudinal 3 entre la cathode et l’anode. Lors de la conversion du dioxyde de carbone et/ou du monoxyde de carbone, le plasma est généré dans une partie du volume formé par le ou les canaux longitudinaux 3, compris entre l’électrode 4 filai re et la ou les parois de chaque canal longitudinal 3. Le plasma est généré par décharge à barrière diélectrique (aussi connue sous le nom de décharge contrôlée par barrière diélectrique, ou DBD). La décharge à barrière diélectrique est une décharge électrique créée entre deux électrodes séparées par un matériau diélectrique. Cette décharge peut être par exemple pulsée lorsque le matériau diélectrique choisi est un gaz diélectrique. Dans le réacteur 1 , le diélectrique peut être choisi au moins parmi une couche 5 comprenant un matériau diélectrique solide, déposée sur l’électrode 4 filai re, une couche comprenant un matériau diélectrique solide déposée sur la cathode, ou la phase gazeuse séparant les deux électrodes, comprenant par exemple du dioxyde de carbone. Préférentiellement, chaque électrode filaire 4 est recouverte d’une couche 5 électriquement isolante le long de la partie de l’électrode filaire s’étendant à l’intérieur du canal longitudinal 3. Ainsi, il est possible d’imposer dans le réacteur des tensions entre la cathode et l’anode supérieure à 10 kV, et préférentiellement supérieur à 20 kV. La couche 5 peut être préférentiellement réalisée en alumine.
Le réacteur 1 comprend également un catalyseur 6 adapté à catalyser une réaction de conversion du dioxyde de carbone et/ou du monoxyde de carbone en hydrocarbure et/ ou en alcool. Le catalyseur 6 est agencé entre l’électrode 4 filaire et la ou les parois de chaque canal longitudinal 3.
Le catalyseur 6 comprend préférentiellement au moins un élément choisi parmi de l’oxyde de magnésium, de l’oxyde de silicium, de l’oxyde de lanthane, de l’oxyde de cérium, de l’oxyde de zirconium, et de l’oxyde d’aluminium. Le catalyseur 6 comprend notamment au moins un élément choisi parmi de l’oxyde de magnésium, de l’oxyde de lanthane, du dioxyde de cérium et de l’oxyde de zirconium et leur combinaisons, ledit ou lesdits oxydes étant imprégnés par du nickel ou du cobalt, préférentiellement sous forme métallique. Les oxydes peuvent provenir d’hydrotalcites, d’hydrocalumite ou d’argiles naturels. Le catalyseur 6 peut comprendre un substrat comprenant des mésopores. Le substrat peut présenter une structure zéolithique.
La teneur en nickel peut avantageusement être comprise entre 5 à 30 % en masse par rapport à la composition totale du catalyseur 6. La teneur en cobalt peut avantageusement être comprise entre 5 à 30 % en masse par rapport à la composition totale du catalyseur 6. La teneur en zircone (autre nom de l’oxyde de zirconium), en particulier dans le cas d’un catalyseur 6 comprenant un composite oxyde de cérium et zircone, peut être comprise entre 1 % à 20 % en masse par rapport à la composition totale du catalyseur 6. La teneur en oxyde de cérium peut être comprise entre 5 à 30 % en masse par rapport à la composition totale du catalyseur 6. La teneur en oxyde de silicium peut être comprise entre 15 à 40 % en masse par rapport à la composition totale du catalyseur 6. La teneur en oxyde d’aluminium peut être comprise entre 15 à 40 % en masse par rapport à la composition totale du catalyseur 6. La teneur en oxyde de magnésium peut être comprise entre 1 à 20 % en masse par rapport à la composition totale du catalyseur 6. La teneur en oxyde de lanthane peut être comprise entre 1 à 10 % en masse par rapport à la composition totale du catalyseur 6.
Le catalyseur 6 peut être activé par le potentiel électrique contrôlé entre la cathode et l’électrode. Par activé , on entend que le potentiel électrique permet de former des sites polarisés positivement ou négativement à la surface du catalyseur 6. Ces sites polarisés favorisent l’adsorption et la désorption d’éléments de la phase gazeuse, permettant la conversion du dioxyde de carbone et/ou du monoxyde de carbone. Cette catalyse est particulièrement avantageuse car elle peut être mise en œuvre à des températures inférieures à 350° C.
Le canal longitudinal 3 est muni de deux bouchons 8 disposés à chacune des extrémités du canal longitudinal 3. Chaque bouchon 8 est réalisé au moins dans un matériau électriquement isolant. Chaque bouchon 8 est également perméable au gaz. Enfin, au moins un bouchon 8 disposé dans un canal longitudinal 3, préférentiellement les deux bouchons 8, présentent un passage 9 traversant, dans lequel l’électrode 4 filaire peut être insérée. Le bouchons 8 présente plusieurs fonctions. Il permet de supporter l’électrode 4 filaire de part et d’autre des extrémités du canal longitudinal 3. Le bouchon 8 permet également d’isoler électriquement le volume défini à l’intérieur du canal longitudinal 3 du reste du réacteur 1 . Ainsi, le plasma généré lors de l’utilisation du réacteur 1 est confiné dans le ou les canaux longitudinaux. Enfin, de par sa perméabilité au gaz, les bouchons 8 permettent de mettre en œuvre les deux fonctions précédentes tout en permettant un écoulement gazeux d’une extrémité à l’autre du canal longitudinal 3, de manière à introduire du dioxyde de carbone et/ou du monoxyde de carbone dans le canal longitudinal 3. Les bouchons 8 permettent également de laisser sortir l’hydrocarbure et/ou l’alcool formé.
Le support 2 forme un canal d’écoulement 10 d’un fluide caloporteur 13. Le canal d’écoulement 10 du fluide caloporteur et le canal longitudinal 3 sont séparés par le support 2. Comme le support 2 est à la fois électriquement et thermiquement conducteur, il joue à la fois le rôle de cathode du réacteur 1 , permettant la génération d’un plasma dans le canal longitudinal 3, et à la fois le rôle d’échangeur thermique, permettant d’échanger de la chaleur entre le canal longitudinal 2 et le canal d’écoulement 10. Le support 2 joue également le rôle de support mécanique du réacteur 1.
En référence à la figure 2, l’électrode filaire 4 peut être insérée dans les deux bouchons 8 d’un canal longitudinal 3. Un bouchon 8 peut par exemple comprendre un manchon en céramique, entourant une partie de l’électrode 4 filaire destinée à être agencée à l’une des extrémités du canal longitudinal 3. Le manchon forme le passage 9 du bouchon. Le manchon peut être entouré d’une partie en verre fritté. La partie en verre fritté peut elle-même être entourée par une partie cylindrique en céramique. La partie cylindrique en céramique peut par exemple présenter des ajours, permettant à un écoulement gazeux de passer au travers du bouchon 8.
En référence à la figure 3, une partie du support 2, peut entourer chacune des parties cylindriques du bouchon 8 de manière à former le canal longitudinal 3 cylindrique, autour de l’axe de révolution 7.
En référence à la figure 4, à la figure 5, à la figure 6 et à la figure 7, le support 2 peut former un réseau 12 bidimensionnel de canaux longitudinaux 3. Le réseau 12 bidimensionnel peut être planaire, selon un plan du réseau 12. Les canaux longitudinaux 3 peuvent être préférentiellement parallèles entre eux et perpendiculaires au plan du réseau 12. Ainsi, les canaux longitudinaux 3 peuvent être orientés de manière à permettre à un écoulement gazeux de traverser le support 2 depuis l’un des demi-espaces formé par le plan du réseau vers l’autre demi-espace formé par le plan du réseau 12. Le support 2 forme préférentiellement une pluralité de canaux longitudinaux, à savoir au moins 2, notamment au moins 50, en particulier au moins 1000, et plus préférentiellement au moins 2500 canaux longitudinaux 3. De par la fonction de support mécanique du support 2 et de cathode, la fabrication d’un réacteur 1 comprenant une pluralité de canaux longitudinaux est simplifiée.
La figure 4 illustre schématiquement la coupe d’un réacteur 1 selon un plan perpendiculaire au plan du réseau 12. Une électrode 4 filaire est insérée dans chacun des canaux longitudinaux 3 formés par le support 2. Chaque électrode 4 peut être reliée électriquement aux autres électrodes 4 par une arborescence de fils électriquement conducteurs. La racine de l’arborescence présente une connexion électrique, destinée à être reliée à l’extérieur du réacteur 1. Les autres sommets de l’arborescence présentent des connexions électriques avec les électrodes 4 fi lai res.
La figure 5 illustre schématiquement le réacteur 1 comprenant un réseau 12 de canaux longitudinaux 3 vu de côté. Le support 2 forme un canal d’écoulement 10 du fluide caloporteur 13. La figure 5 illustre schématiquement une entrée et deux sorties de fluide caloporteur 13, permettant un écoulement du fluide caloporteur 13 dans le canal d’écoulement 10.
La figure 6 illustre schématiquement une vue de face du réacteur illustré en figure 5. Le support 2 forme un réseau 12 bidimensionnel hexagonal de canaux longitudinaux 3 (réseau de type nid d’abeille). Le support 2 forme à la fois le canal d’écoulement 10 du fluide caloporteur, et des obstacles 11 , préférentiellement des piliers, dans le canal d’écoulement 10 du fluide caloporteur 13. Chaque obstacle 11 comprend un unique canal longitudinal 3, le canal d’écoulement 10 du fluide caloporteur 13 et ledit canal longitudinal 3 étant séparés par le support 2.
La figure 7 illustre schématiquement une vue en perspective du réacteur 1 . Dans la figure 7, le réacteur 1 est coupé de manière à illustrer la séparation entre le canal d’écoulement 10 et les canaux longitudinaux 3 par le support 2. La canal d’écoulement 10 permet ainsi au fluide caloporteur 13 de s’écouler autour de chacun des obstacles 10 et ainsi autour de chacun des canaux longitudinaux 3, de manière à réguler la température dans chacun des canaux longitudinaux 3. Architecture du dispositif 16
En référence à la figure 8 et à la figure 9, un autre objet de l’invention est un dispositif 16 comprenant une conduite 14. La conduite 14 présente un axe principal d’écoulement 15, une entrée fluidique 17 et une sortie fluidique 18. L’entrée fluidique 17 peut être reliée à une source de gaz comprenant le dioxyde de carbone et/ou le monoxyde de carbone destiné à être converti. L’entrée fluidique 17 peut préférentiellement être reliée à un diffuseur de gaz comprenant du dioxyde de carbone et/ou du monoxyde de carbone et du dihydrogène.
La conduite 14 comprend au moins un réacteur 1 , et préférentiellement une pluralité de réacteurs 1 , disposés en série le long de la conduite 14. Chaque support 2 de chaque réacteur 1 s’étend principalement selon au moins une partie d’une section normale à l’axe principal d’écoulement 15 de la conduite 14. Le support 2 est formé et disposé dans la conduite 14 de sorte que les canaux longitudinaux 3 soient parallèles à l’axe principal d’écoulement 15 de la conduite 14. Ainsi, le gaz introduit dans la conduite 14 par l’entrée fluidique 17 peut s’écouler jusqu’à un premier réacteur 1 . Le gaz traverse alors le support 2 du premier réacteur 1 par l’ensemble des canaux longitudinaux 3 parallèles, où le dioxyde de carbone et/ou le monoxyde de carbone peuvent être convertis. La figure 9 illustre par exemple un dispositif 16 comprenant trois réacteurs 1 agencés en série.
Selon un mode de réalisation de l’invention, les supports 2 en série peuvent s’étendre sur la totalité d’une section de la conduite 14. Ainsi, la totalité de l’écoulement gazeux en amont d’un réacteur 1 s’écoule au travers des canaux longitudinaux 3, et le taux de conversion du monoxyde de carbone et/ou du dioxyde de carbone entre l’amont dudit support 2 et l’aval dudit support 2 est maximisé.
En référence à la figure 10, un échangeur thermique 34, par exemple de type shell and tube , peut être agencé en aval du ou des réacteurs 1 , dans la conduite 14 du dispositif 16 ou en sortie du dispositif 16. Les produits gazeux issus du réacteur 1 sont condensés dans l’échangeur thermique 34, par exemple par contact avec des tubes refroidies de l’échangeur thermique, par un fluide caloporteur circulants entre les chicanes 23, à une température comprise entre 20 à 40° C, par exemple d’environ 30° C. L’échangeur thermique 34 est configuré pour refroidir le gaz en sortie du réacteur 1 . L’échangeur thermique 34 est configuré pour refroidir écoulement gazeux présentant un débit supérieur à 50 m3/h, notamment supérieur à 100 m3/h, et plus préférentiellement supérieur à 300 m3/h. L’échangeur thermique 34 est par exemple configuré pour refroidir un écoulement gazeux de méthane présentant un débit supérieur à 50 m3/h. L’échangeur thermique 34 est également configuré pour refroidir un écoulement gazeux comprenant du CO2 et du dihydrogène, ledit écoulement de gaz présentant un débit supérieur à 300 m3/h.
En référence à la figure 1 1 , à la figure 12 et à la figure 13, le support 2 peut s’étendre uniquement sur une partie de la section de la conduite 14. La section de la conduite 14 comprend alors également une partie ajourée 21 , par laquelle peut s’écouler le gaz. Cette partie ajourée 21 présente une résistance hydrodynamique plus faible que le reste du support 2 : l’écoulement y est favorisé. Plusieurs supports 2 peuvent être agencés en série, les parties ajourées 21 des supports 2 étant désalignées par rapport à l’axe principal d’écoulement 15 de la conduite 14. Ainsi, le mélange du gaz comprenant le dioxyde de carbone et/ou le monoxyde de carbone à convertir est favorisé. Une conduite 14 peut également comprendre à la fois des supports 2 s’étendant sur l’ensemble d’une section de la conduite 14 et des supports 2 formant des parties ajourées 21 de la section. Le réacteur 1 peut comprendre trois supports 2, par exemple chacun des supports 2 étant illustrés respectivement dans la figure 1 1 , la figure 12 et la figure 13. Chaque support 2 forme une partie ajourée 21 de la section dans laquelle ledit support 2 s’étend. Les parties ajourées 21 ne sont pas alignées entre chacun des support 2. La figure 1 1 illustre schématiquement un support 2 adapté pour former quatre parties ajourées 21 a et 21 b lorsque le support 2 est inséré dans la conduite 14. La figure 12 illustre schématiquement un support 2 adapté pour former trois parties ajourées 21 et 22 lorsque le support 2 est inséré dans la conduite 14. La figure 13 illustre schématiquement un support 2 adapté pour former deux parties ajourées 22 lorsque le support 2 est inséré dans la conduite 14. Les supports 2 de la figure 1 1 , de la figure 12 et de la figure 13 peuvent être montés en série de sorte à ce que le gaz contenant du CO2 et/ou du CO ne passe qu’une fois au travers d’un réacteur 1 . A l’entrée du support 2 de la figure 11 , le gaz peut soit entrer dans le réacteur 1 par les entrées des canaux longitudinaux 3 puis passer par les parties ajourées 22 des figures 12 et 13 après la réaction de conversion, soit entrer par les parties ajourées 21 a et 21 b. Le gaz contenant le CO2 et/ou le CO entrant par les parties ajourées 21 a peut alors être dirigé vers les canaux longitudinaux 3 du support 2 de la figure 12 pour sortir par la partie ajourée 22 de la figure 13 après réaction de conversion. Le gaz comprenant le CO2 et le CO entrant par les parties ajourées 21 b peut être dirigé vers la partie ajourée 21 de la figure 12 puis vers les canaux longitudinaux 3 de la figure 13.
En référence à la figure 14, à la figure 15, à la figure 16 et à la figure 17, les obstacles 11 du support 2 peuvent être agencés dans le canal d’écoulement 10 du fluide caloporteur de manière à optimiser l’homogénéité de la température dans les canaux longitudinaux 3. La figure 14 illustre une simulation numérique de la vitesse locale d’un écoulement de fluide caloporteur 13 dans le canal d’écoulement 10 selon un mode de réalisation préféré de l’invention. L’échelle à droite de la figure correspond à des vitesses en m.s 1. La figure 15 illustre une simulation numérique de la vitesse locale d’un écoulement de fluide caloporteur 13 dans un canal d’écoulement 10 selon un mode de réalisation de l’invention. L’échelle à droite de la figure correspond à des vitesses en m.s 1. Les disparités de vitesses locales d’écoulement sont plus élevées dans le mode de réalisation illustré dans la figure 15 qu’en figure 14. En effet, la géométrie du canal d’écoulement entraîne une résistance hydrodynamique plus faible en périphérie du canal d’écoulement 10. Les vitesses d’écoulement du fluide caloporteur 13 sont alors plus élevées en périphérie que dans le reste du canal d’écoulement 10. Cette configuration n’est pas favorable pour optimiser l’homogénéité de la température dans les canaux longitudinaux 3. Préférentiellement, le réseau 12 présente une maille définissant une surface de maille et la forme du support 2 est adaptée à ce que la vitesse moyenne du fluide caloporteur 13 en écoulement mesurée sur une surface de maille dans un plan parallèle au plan du réseau 12 et centrée sur un axe de révolution d’un premier cylindre, soit comprise entre 0,5 et 1 ,5 fois la vitesse moyenne du fluide caloporteur 13 sur une surface de maille dans un plan parallèle au plan du réseau 12 et centrée sur un axe de révolution 7 d’un deuxième cylindre voisin du premier cylindre. Ainsi, la température dans les canaux longitudinaux peut être contrôlée de manière homogène. La figure 16 illustre une simulation numérique de la température locale dans un écoulement de fluide caloporteur 13 dans un canal d’écoulement selon un mode de réalisation préféré de l’invention. La figure 17 illustre une simulation numérique de la température locale dans un écoulement de fluide caloporteur dans un canal d’écoulement selon un mode de réalisation de l’invention. La géométrie du canal d’écoulement 10 illustré en figure 16 permet de contrôler la température des canaux longitudinaux 3 de manière plus homogène. En effet, pour maximiser l’efficacité de la réaction de conversion du CO2 et/ou du CO, il est préférable de maintenir la température entre 250° C et 300° C et donc de contrôler le refroidissement du réacteur 1 , la réaction de conversion étant exothermique.
Mise en œuvre de la conversion de dioxyde de carbone et/ou de monoxyde de carbone
En référence à la figure 18, un procédé de conversion du dioxyde de carbone et/ou du monoxyde de carbone comprend les étapes de :
- fourniture 181 d’un réacteur 1 ,
- injection 182 dans le ou les canaux longitudinaux 3 du réacteur 1 d’un gaz comprenant du dioxyde de carbone et/ou du monoxyde de carbone et du di hydrogène, et
- application 184 d’un potentiel électrique entre le support 2, servant de cathode, et la ou les électrodes 4 filaires, servant d’anode, le potentiel étant adapté à générer un plasma dans le volume du ou des canaux longitudinaux 3 compris entre l’électrode 4 filai re et la ou les parois de chaque canal longitudinal 3.
Préférentiellement, le conversion du dioxyde de carbone et/ou du monoxyde de carbone comprend également une étape de contrôle 183 de la température du réacteur 1 entre 150° C et 300° C, et préférentiellement entre 250° C et 300° C. Le rendement de conversion du dioxyde de carbone et/ou du monoxyde de carbone en hydrocarbure et ou en alcool lors d’une réaction d’hydrogénation est maximal dans une plage de température comprise entre 250° C et 300° C. En dessous de cette température, la conversion du dioxyde de carbone entraîne la production de produits secondaires non désirés, par exemple de tétracarbonyle de nickel si le catalyseur 6 comprend du nickel. Au-dessus de 300° C, la conversion du dioxyde de carbone entraîne la production de monoxyde de carbone. Le contrôle de la température peut être assuré par l’injection du fluide caloporteur 13 dans le canal d’écoulement 10 formé par le support 2. La réaction de conversion du dioxyde de carbone et/ou du monoxyde de carbone en hydrocarbure et ou en alcool étant exothermique, le fluide caloporteur 13 peut être refroidi en dehors du canal d’écoulement 10, et sa température contrôlée par un thermostat. Préférentiellement, on peut utiliser le procédé pour produire de la chaleur. De préférence, le procédé est mis en œuvre à pression atmosphérique.
Lors de l’application 184 d’un potentiel électrique, le potentiel électrique appliqué est préférentiellement un potentiel alternatif, tel qu’un potentiel pulsé ou sinusoïdal. Le potentiel électrique appliqué présente préférentiellement une amplitude comprise entre 5 kV et 50 kV, notamment entre 10 kV et 20 kV. Enfin, le potentiel électrique appliqué présente préférentiellement une fréquence comprise entre 0,5 MHz et 100 MHz, et notamment entre 1 MHz et 20 MHz. Ces caractéristiques du potentiel électrique appliqué, prises de manière indépendantes ou combinées, permettent de favoriser l’apparition de sites actifs sur la surface du catalyseur 6, et ainsi d’augmenter le taux de conversion. Selon le ratio molaire entre le CO2 et IΉ2, la formation d’un hydrocarbure donné et/ou d’un alcool donné peut être privilégiée. Par exemple, avec un ratio molaire de 1 CO2 pour 4 H2, le méthane (CH4) est formé préférentiellement. De préférence, le procédé est utilisé pour produire un hydrocarbure et plus particulièrement le méthane.
En référence à la figure 19, un méthaniseur 24 (que l’on peut trouver par exemple dans une ferme) peut avantageusement comprendre un dispositif 16 selon un mode de réalisation de l’invention. Le méthaniseur comprend un digesteur 25. Le digesteur 25 est un réacteur adapté à la fermentation anaérobie de matières organiques. Le digesteur 25 émet un biogaz brut vers une unité de traitement du biogaz 23. L’unité de traitement du biogaz 23 est adaptée à séparer le biométhane des autres composant gazeux du biogaz brut émis par le digesteur 25. L’unité de traitement du biogaz 23 comprend une sortie de biométhane reliée par exemple au réseau de gaz. L’unité de traitement du biogaz 23 comprend une autre sortie, émettant le dioxyde de carbone vers le dispositif 16. Du dihydrogène, par exemple issu de l’hydrolyse de l’eau, est également envoyé vers le dispositif 16 pour permettre la réaction de conversion. Après conversion du dioxyde de carbone par le dispositif 16, le dispositif 16 émet de l’eau et du méthane qui est réinjecté dans l’unité de traitement du biogaz 23. Ainsi, le taux de production de méthane du méthaniseur 24 est maximisé, et les émissions de dioxyde de carbone dans l’atmosphère sont minimisées. Préférentiellement, un condenseur est relié à la sortie fluidique 18 du dispositif 16. Le condenseur est adapté à condenser au moins un élément parmi de l’eau et un hydrocarbure.
Exemples
Un réacteur 1 comprenant trois canaux longitudinaux 3 a été testé. Les canaux longitudinaux 3 peuvent être utilisés pour une génération plasma en DBD (Décharge à Barrière Diélectrique) ou en plasma pulsé.
Dispositif pour une génération de plasma en DBD
En référence à la figure 20, la mise en place d’un réacteur 1 commence par la fixation d’un deuxième support 26 inférieur sur la surface extérieure du support 2. La partie cylindrique de maintien du bouchon 8 est ensuite placée dans la cellule en butté contre le deuxième support 26. L’électrode 4 comprend un câble haute tension 27 dénudé. Le câble haute tension 27 est introduit dans un tube de matériau diélectrique en alumine formant une couche électriquement isolante 5. Un manchon 28 de maintien est glissé le long de l’électrode qui est également introduite dans un manchon inférieur 29. La partie en verre fritté 30 est placée autour du manchon inférieur 29 qui est introduit dans le creuset du deuxième support 26 inférieur. Le catalyseur 6 est ensuite versé autour de l’électrode par la partie supérieure du canal longitudinal 3. Une autre partie en verre fritté 30, ainsi que le deuxième support 26 supérieur sont glissés dans le manchon de maintien 28 jusqu’au catalyseur 6. Une cale de câble et de manchon est posée sur le deuxième support 26. Enfin le deuxième support 26 supérieur est fixé sur la surface extérieure du support 2. En référence à la figure 21 , et selon un mode de réalisation préféré de l’invention, une couche de matériau diélectrique 31 peut être agencée entre le catalyseur 6 est le support 2. La couche de matériau diélectrique 31 peut par exemple être constituée d’un tube cylindrique en matériau diélectrique 31 inséré dans le canal longitudinal 3, dans lequel on vient insérer l’électrode filaire 4, préférentiellement recouverte d’une couche 5 électriquement isolante et du catalyseur 6. L’électrode filaire 4 peut également être insérée dans une gaine en matériau diélectrique, la gaine en matériau diélectrique étant recouverte du catalyseur 6. Un tamis est placé entre le support 2 et le tube cylindrique en matériau diélectrique 31 de sorte à maintenir le catalyseur 6. La géométrie du tube cylindrique en matériau diélectrique 31 est adaptée à recevoir le catalyseur 6 sur une longueur selon l’axe principale d’écoulement 15 plus élevée que la longueur du tube longitudinal 3 formé par le support 2. Préférentiellement, le réacteur 1 comprend du catalyseur 6 en amont du canal longitudinal 3 sur une longueur supérieure à 0,5 cm, et notamment supérieure à 1 cm. Préférentiellement, le réacteur 1 comprend du catalyseur 6 en aval du canal longitudinal 3 sur une longueur supérieure à 0,5 cm, et notamment supérieure à 1 cm. Ainsi, la formation de chemins électriques préférentiels, aboutissant potentiellement à formation d’un arc électrique, est évitée. En effet, dans d’autres modes de réalisation, la jonction entre le catalyseur 6 et le bouchon 8 peut favoriser l’apparition de chemins électriques préférentiels. De par la géométrie du tube cylindrique en matériau diélectrique, cette jonction est éloignée du canal longitudinal 3 formé par le support 2.
Dispositif pour une génération de plasma pulsé
En référence à la figure 22, l’électrode 4 filaire n’est pas insérée dans un tube de diélectrique rigide. Il est donc nécessaire de mettre en tension le câble électrique entre deux points fixes. La mise en place de la cellule commence par la fixation du deuxième support 26 inférieur sur la surface extérieure du support 2. La partie cylindrique du bouchon 8 est ensuite placée dans la cellule en butté contre le deuxième support inférieur 26. Un manchon de maintien 28 supérieur est glissé le long du câble haute tension 27. Le câble est ensuite introduit dans le manchon inférieur 29 qui peut être ouvert en deux pour l’introduction et la fixation du câble électrique. Le manchon inférieur 29 est ensuite fermé et fixé à la partie cylindrique du bouchon via un joints auto- serrant en polymère. La partie en verre fritté 30, en forme d’anneau, est placée autour du manchon inférieur 29 qui est introduit dans le creuset de la partie cylindrique du bouchon 8. Le catalyseur 6 est ensuite versé autour de l’électrode par la partie supérieure du canal longitudinal 3. Une autre partie en verre fritté, ainsi que la partie cylindrique du bouchon 8 sont glissés dans le manchon supérieur 28 jusqu’au catalyseur 6. Le câble haute tension est ensuite tendu, une cale de câble et de manchon contenant un mors de gaine et un joints auto-serrant, permettant de garder la tension du câble, est posée sur la partie cylindrique du bouchon. Enfin le deuxième support 26 supérieur est fixé sur la surface extérieure du support 2.
Conversion
La réaction de conversion de CO2 en hydrocarbure par le dihydrogène est exothermique. Pour la production de méthane, le meilleur rendement est obtenu pour une température du réacteur 1 comprise entre 250° C et 300° C. Le fluide caloporteur 13, en l’occurrence de l’huile, est préchauffée à 200° C par une résistance chauffante. Une pompe est mise en marche de manière à faire circuler l’huile en boucle dans le canal d’écoulement 10. Du CO2 et du dihydrogène sont ensuite envoyés dans le réacteur 1. Le ratio de CO2 et de dihydrogène est maintenu constant. Le rapport entre la quantité de CO2 injecté sous forme gazeuse dans le réacteur 1 et la quantité de dihydrogène injecté sous forme gazeuse dans le réacteur 1 ) est préférentiellement compris entre 0,20 et 0,30 et notamment sensiblement égal à un quart. Ainsi, la production de méthane est favorisée devant la production d’autres produits de réaction possibles. Si du CO est utilisé à la place de CO2, le rapport entre la quantité de CO injecté sous forme gazeuse dans le réacteur 1 et la quantité de dihydrogène injecté sous forme gazeuse dans le réacteur 1 ) est préférentiellement compris entre 0,25 et 0,40 et notamment sensiblement égal à un tiers. Ainsi, la production de méthane est également favorisée devant la production d’autres produits de réaction possibles.
Un générateur de potentiel électrique, connecté à l’anode et à la cathode est allumé à une fréquence de 72kHz. La tension est contrôlée entre 15 et 25kV. Un ballon séparateur est relié fluidiquement à la sortie fluidique 18 de la conduite 14. Le ballon peut être refroidi. La production d’hydrocarbure est mesurée en collectant et analysant le gaz et le liquide obtenus en sortie de la conduite 14. Le débit de la pompe d’huile est ajusté en régime continu en fonction de la température des gaz en sortie du réacteur 1 et de la température de l’huile de retour.
La phase gazeuse en sortie de la conduite 14 comprend, après mesure, 50 % de méthane, 12,5 % de CO2, et 37,5 % dihydrogène. La phase liquide en sortie de la conduite 14 comprend, après mesure, 100 % d’eau. Ainsi, le réacteur 1 peut permettre la capture et le stockage de CO2, par exemple émis de manière industrielle par une cimenterie ou une aciérie.
Le procédé de conversion du dioxyde de carbone et/ou du monoxyde de carbone selon un mode de réalisation de l’invention peut par exemple permettre de traiter les produits de pyrogazéification des déchets de bois. En effet, la pyrogazéification du bois permet de produire, après pyrolyse et gazéification, principalement du CO2, CO et H2. Il est ainsi possible de produire un hydrocarbure, tel que du méthane, par un procédé selon un mode de réalisation de l’invention.
REFERENCES
[1 ] Gao, J., Wang, Y., Ping, Y., Hu, D., Xu, G., Gu, F., & Su, F. (2012). A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2(6), 2358-2368.
[2] E&E Consultant, Hespul, S. (2014). Etude portant sur l’hydrogène et la méthanation comme procédé de valorisation de l’ électricité excédentaire. E&E
Consultant, Hespul, Solagro: Cassel, France.
[3] Ocampo, F., Louis, B., & Roger, A. C. (2009). Methanation of carbon dioxide over nickel-based CeO. 72ZrO. 2802 mixed oxide catalysts prepared by sol-gel method. Applied Catalysis A: General, 369( 1 -2), 90-96. [4] Hoeben, W. F. L. M., van Heesch, E. J. M., Beckers, F. J. C. M., Boekhoven, W., 6t Pemen, A. J. M. (2015). Plasma-Driven Water Assisted CO2 Methanation. IEEE Transactions on Plasma Science, 43(6), 1954-1958.

Claims

REVENDICATIONS
1. Réacteur (1 ) pour la conversion du dioxyde carbone ou du monoxyde de carbone en hydrocarbure et/ou en alcool comprenant :
- un support (2) en matériau électriquement et thermiquement conducteur, ledit support (2) formant la ou les parois d’au moins un canal longitudinal (3) qui traverse le support (2) et jouant également le rôle de cathode du réacteur (1 ) ,
- au moins une électrode (4) filaire formant une anode du réacteur (1 ), chaque électrode (4) filaire s’étendant à l’intérieur de chaque canal longitudinal (3), le long dudit canal longitudinal (3), et étant arrangée à distance de la ou des parois dudit canal longitudinal (3), chaque électrode (4) filaire étant éventuellement recouverte d’une couche (5) électriquement isolante le long de la partie de l’électrode (4) filaire s’étendant à l’intérieur dudit canal longitudinal (3),
- un catalyseur (6) adapté à catalyser une réaction de conversion du dioxyde carbone ou du monoxyde de carbone en hydrocarbure et/ou en alcool, le catalyseur (6) étant situé entre l’électrode (4) filaire et la ou les parois de chaque canal longitudinal (3) .
2. Réacteur (1 ) selon la revendication 1 , dans lequel le canal longitudinal
(3) est un cylindre de révolution, et dans lequel l’électrode (4) filaire est disposée le long de l’axe de révolution (7) du cylindre de révolution.
3. Réacteur (1 ) selon la revendication 1 ou 2, dans lequel chaque canal longitudinal (3) est muni de deux bouchons (8) en matériau électriquement isolant disposés respectivement à chacune des extrémités dudit canal longitudinal, chaque bouchon (8) étant perméable au gaz et présentant un passage (9) traversant dans lequel est insérée l’électrode (4) filaire.
4. Réacteur (1 ) selon l’une des revendications précédentes, dans lequel le support (2) est en métal, notamment en acier et préférentiellement en acier inoxydable.
5. Réacteur (1 ) selon l’une des revendications précédentes, dans lequel le canal longitudinal (3) présente un diamètre inférieur à 2 cm, notamment inférieur à 1 cm, et dans lequel la longueur du canal est inférieure à 20 cm, notamment inférieure à 10 cm et préférentiellement inférieure à 5 cm.
6. Réacteur (1 ) selon l’une des revendications précédentes, dans lequel le catalyseur (6) comprend au moins un élément choisi parmi du dioxyde de cérium, du dioxyde de cérium mésoporeux, du nickel, du dioxyde de zirconium, de l’hydrotalcite, de l’argile et leurs mélanges.
7. Réacteur (1 ) selon l’une des revendications précédentes, dans lequel le support (2) forme également :
- un canal d’écoulement (10) d’un fluide caloporteur (13), et
- au moins un obstacle (11 ), préférentiellement un pilier, dans le canal d’écoulement (10) du fluide caloporteur (13), chaque obstacle (11 ) comprenant un unique canal longitudinal (3), le canal d’écoulement (10) du fluide caloporteur (13) et ledit canal longitudinal (3) étant séparés par le support (2).
8. Réacteur (1 ) selon l’une des revendications précédentes, comprenant un réseau (12) bidimensionnel de canaux longitudinaux selon un plan du réseau
(12), préférentiellement un réseau (12) hexagonal de canaux longitudinaux (3), les canaux longitudinaux (3) étant parallèles entre eux et perpendiculaires au plan du réseau (12).
9. Réacteur (1 ) selon la revendication 8, dans lequel le réseau (12) présente une maille définissant une surface de maille, et dans lequel la forme du support (2) est adaptée à ce que la vitesse moyenne du fluide caloporteur
(13) en écoulement mesurée sur une surface de maille dans un plan parallèle au plan du réseau (12) et centrée sur un axe de révolution d’un premier cylindre, soit comprise entre 0,5 et 1 ,5 fois la vitesse moyenne du fluide caloporteur (13) sur une surface de maille dans un plan parallèle au plan du réseau (12) et centrée sur un axe de révolution (7) d’un deuxième cylindre voisin du premier cylindre.
10. Dispositif (16) de conversion du dioxyde carbone ou du monoxyde de carbone en hydrocarbure et/ou en alcool, comprenant une conduite (14) présentant un axe principal d’écoulement (15), la conduite (14) comprenant une pluralité de réacteurs (1 ) selon la revendication 8 ou 9, disposés le long d’au moins une partie de la conduite (14), chaque support (2) de chaque réacteur (1 ) s’étendant principalement selon au moins une partie d’une section normale à l’axe principal d’écoulement (15) de la conduite (14), le support (2) étant formé et disposé dans la conduite (14) de sorte que les canaux longitudinaux (3) soient parallèles à l’axe principal d’écoulement(15) de la conduite (14).
1 1. Dispositif (16) selon la revendication précédente, dans lequel la conduite (14) présente une entrée fluidique (17) et une sortie fluidique (18), et comprenant :
- un diffuseur de gaz comprenant du dioxyde de carbone ou du monoxyde de carbone et de l’hydrogène, relié à l’entrée fluidique, et
- au moins un condenseur, relié à la sortie fluidique et adapté à condenser au moins un élément parmi de l’eau et un hydrocarbure.
12. Procédé de conversion du dioxyde de carbone et/ou du monoxyde de carbone, comprenant les étapes de :
(a) fourniture d’un réacteur (1 ) selon l’une des revendications 1 à 9,
(b) injection dans le ou les canaux longitudinaux (3) du réacteur (1 ) d’un gaz comprenant du dioxyde de carbone ou du monoxyde de carbone et du dihydrogène,
(c) application d’un potentiel électrique entre le support (2) servant de cathode et la ou les électrodes (4) filaires servant d’anode, le potentiel étant adapté à générer un plasma dans le volume du ou des canaux longitudinaux (3) compris entre l’électrode (4) filai re et la ou les parois de chaque canal longitudinal (3).
13. Procédé selon la revendication 12, comprenant en outre une étape (d) de contrôle de la température entre 150° C et 300° C, et préférentiellement entre 250° C et 300° C, à l’intérieur du réacteur (1 ).
14. Procédé selon la revendication 12 ou 13, dans lequel le potentiel électrique appliqué dans l’étape (c) présente une fréquence comprise entre 1 MHz et 20 MHz.
EP19827748.5A 2018-12-21 2019-12-20 Reacteur pour la conversion du dioxyde de carbone Pending EP3897961A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1874033A FR3090409B1 (fr) 2018-12-21 2018-12-21 Reacteur pour la conversion du dioxyde de carbone
PCT/EP2019/086743 WO2020128009A1 (fr) 2018-12-21 2019-12-20 Reacteur pour la conversion du dioxyde de carbone

Publications (1)

Publication Number Publication Date
EP3897961A1 true EP3897961A1 (fr) 2021-10-27

Family

ID=67001909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19827748.5A Pending EP3897961A1 (fr) 2018-12-21 2019-12-20 Reacteur pour la conversion du dioxyde de carbone

Country Status (5)

Country Link
US (1) US20220040664A1 (fr)
EP (1) EP3897961A1 (fr)
CN (1) CN113811384B (fr)
FR (1) FR3090409B1 (fr)
WO (1) WO2020128009A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111878338B (zh) * 2020-08-20 2021-08-27 西安交通大学 脉冲等离子体推力器
FR3115711A1 (fr) * 2020-10-29 2022-05-06 Paris Sciences Et Lettres - Quartier Latin Système catalytique mixte pour la conversion du CO2 et/ou du CO dans un procédé hybride plasma froid-catalyse
FR3126630A1 (fr) * 2021-09-09 2023-03-10 Energo Reacteur isotherme pour la conversion chimique par plasma-catalyse
CN115318218B (zh) * 2022-04-18 2024-01-23 刘文斌 一种流动反应器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695619A (en) * 1995-05-25 1997-12-09 Hughes Aircraft Gaseous pollutant destruction method using self-resonant corona discharge
FR2757499B1 (fr) * 1996-12-24 2001-09-14 Etievant Claude Generateur d'hydrogene
GB9903400D0 (en) * 1999-02-16 1999-04-07 Aea Technology Plc Reactor for plasma assisted gas processing
EP1052220A3 (fr) * 1999-05-13 2003-02-05 21 Century Environment Co. Ltd. Dispositif de génération d'un gaz ionisé par décharge haute tension
CN1180058C (zh) * 2000-12-22 2004-12-15 天津大学 采用等离子体转化甲烷和二氧化碳制备汽油的方法
FR2836397B1 (fr) * 2002-02-27 2004-04-23 Renault Reacteur pour le traitement par plasma d'un flux gazeux, notamment des gaz d'echappement produit par le moteur a combustion interne d'un vehicule automobile
DK2496515T3 (da) * 2009-11-06 2020-10-12 Univ Auburn Mikrofibermateriale til optimering og kontrol af stærkt eksoterme og stærkt endoterme reaktioner/processer
US20140284206A1 (en) * 2011-10-27 2014-09-25 Dalian University Of Technology Method for converting methanol
ES2578704B1 (es) * 2015-01-28 2017-05-10 Université Pierre et Marie Curie Procedimiento para la reducción de dióxido de carbono a metano mediante catalizador activado por plasma DBD
CN104761431A (zh) * 2015-04-22 2015-07-08 黑龙江科技大学 利用等离子体与催化剂协同作用转化煤矿瓦斯制甲醇的方法
KR101788808B1 (ko) * 2015-11-26 2017-11-15 조선대학교산학협력단 상온 및 상압 조건하에서 이산화탄소와 수소를 이용한 메탄가스 합성방법 및 합성장치
KR102159158B1 (ko) * 2018-10-25 2020-09-23 서강대학교 산학협력단 유전체 장벽 방전 플라즈마법을 이용한 COx 수소화 반응을 통해 경질탄화수소를 제조하는 방법

Also Published As

Publication number Publication date
WO2020128009A1 (fr) 2020-06-25
FR3090409A1 (fr) 2020-06-26
FR3090409B1 (fr) 2023-04-14
CN113811384A (zh) 2021-12-17
CN113811384B (zh) 2023-10-03
US20220040664A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
EP3897961A1 (fr) Reacteur pour la conversion du dioxyde de carbone
EP0952957B1 (fr) Procede et appareils de production d'hydrogene par reformage a plasma
EP2984209B1 (fr) Procedes d'obtention de gaz combustible a partir d'electrolyse de l'eau (eht) ou de co-electrolyse avec h2o/co2 au sein d'une meme enceinte, reacteur catalytique et systeme associes
WO2004041425A1 (fr) Reacteur a chauffage electrique pour le reformage en phase gazeuse
FR2758317A1 (fr) Conversion d'hydrocarbures assistee par les arcs electriques glissants en presence de la vapeur d'eau et/ou de gaz carbonique
CN109569473B (zh) 一种液态金属催化烃生产氢气和炭黑的装置及方法
CA2299667A1 (fr) Procede et dispositif de production d'hydrogene par decomposition thermocatalytique d'hydrocarbures
Lau et al. Biogas upgrade to syngas through thermochemical recovery using exhaust gas reforming
Rossi et al. Ethanol reforming for supplying molten carbonate fuel cells
Xu et al. Arming wood carbon with carbon-coated mesoporous nickel-silica nanolayer as monolithic composite catalyst for steam reforming of toluene
Xin et al. Plasma in aqueous methanol: Influence of plasma initiation mechanism on hydrogen production
Zhang et al. Mechanism and kinetic characteristics of photo-thermal dry reforming of methane on Pt/mesoporous-TiO2 catalyst
CN101295795B (zh) 烷烃裂解与燃料电池复合发电系统
Ferreira-Aparicio et al. Pure hydrogen production from methylcyclohexane using a new high performance membrane reactor
FR2828012A1 (fr) Installation de piles a combustible comportant deux unites de transformation pour une decomposition catalytique
US20210154634A1 (en) Reactor for performing equilibrium-reduced reactions
FR2786409A1 (fr) Dispositif a plasma de decharges electriques mobiles et ses applications pour convertir une matiere carbonee
Labanca et al. Technological solution for distributing vehicular hydrogen using dry plasma reforming of natural gas and biogas
FR3101075A1 (fr) : Réacteur à lit fixe catalytique intégrant un élément chauffant électrique, Unité de production d’hydrogène par vaporeformage comprenant un tel réacteur et un générateur de vapeur électrique, procédé de fonctionnement associé.
Hawangchu et al. Enhanced microwave induced thermochemical conversion of waste glycerol for syngas production
WO2011148066A2 (fr) Procédé de production anaérobie d'hydrogène
US20140053561A1 (en) Aircraft fuel cell system, aircraft and use of a synthetic fuel
RU2635609C1 (ru) Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода
RU2520475C1 (ru) Способ преобразования солнечной энергии в химическую и аккумулирование ее в водородсодержащих продуктах
RU2537627C1 (ru) Способ получения синтез-газа

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)