EP3894886A1 - Capteur de temps de vol et système de surveillance comportant un tel capteur - Google Patents

Capteur de temps de vol et système de surveillance comportant un tel capteur

Info

Publication number
EP3894886A1
EP3894886A1 EP19809075.5A EP19809075A EP3894886A1 EP 3894886 A1 EP3894886 A1 EP 3894886A1 EP 19809075 A EP19809075 A EP 19809075A EP 3894886 A1 EP3894886 A1 EP 3894886A1
Authority
EP
European Patent Office
Prior art keywords
source
time
modulation signal
illumination device
light power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19809075.5A
Other languages
German (de)
English (en)
Inventor
Sylvain BEAUDOIN
Sebastien TRAPANI
Frédéric AUTRAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Comfort and Driving Assistance SAS
Original Assignee
Valeo Comfort and Driving Assistance SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Comfort and Driving Assistance SAS filed Critical Valeo Comfort and Driving Assistance SAS
Publication of EP3894886A1 publication Critical patent/EP3894886A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4873Extracting wanted echo signals, e.g. pulse detection by deriving and controlling a threshold value
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/59Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/12Acquisition of 3D measurements of objects
    • G06V2201/121Acquisition of 3D measurements of objects using special illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation

Definitions

  • Time of flight sensor and monitoring system comprising such a sensor
  • the present invention relates generally to the field of vision and object detection by means of an optical detection system.
  • It relates more particularly to a time-of-flight sensor making it possible to reconstruct the three-dimensional mapping of a scene comprising one or more objects.
  • Time of flight sensors are known comprising:
  • an illumination device comprising a light source emitting a source beam, towards a scene comprising an object capable of reflecting this source beam;
  • a detector comprising a matrix of photosensitive pixels and receiving part of the source beam reflected by this reflecting object.
  • the light source of the illumination device is either a light-emitting diode (DE) or a laser diode (for example of the VCSEL type).
  • DE light-emitting diode
  • VCSEL laser diode
  • This source generally emits in a narrow band of the infrared domain, around 900 nanometers for example. This means that the source beam is not visible to users present near the sensor (the human eye is only sensitive up to around 800 nm).
  • the detector which is of the "matrix” type, is for example formed by a CMOS type camera, the photosensitive pixels of which are sensitive in IR, at least in an absorption band including the narrow emission band.
  • the sensor measures the time, therefore called “flight time”, taken by the source beam to go from the source to the object, then by the "reflected" beam) to go from the object to the detector.
  • the source beam must be modulated temporally.
  • an electronic unit configured to generate a modulation signal and to control the illumination device by means of this modulation signal so that the emitted source beam has a temporally modulated source light power.
  • this electronic unit is also configured to: process electrical signals delivered as a function of time by the detector, each electrical signal being representative of a fraction of the source light power reflected by the object towards an associated photosensitive pixel ; and
  • a time-of-flight sensor makes it possible to reconstruct a three-dimensional cartography of the scene it observes and to detect shapes there, or even recognize objects (a human body or part of a human body, the eyes of an individual, etc ).
  • the electronic time sensor controls the illumination device so that the average light power emitted from the source beam is high enough.
  • the present invention provides a time-of-flight sensor having increased security and avoiding the risks of damage by the source beam, in particular the risks of damage to persons.
  • a time of flight sensor as defined in the introduction is proposed according to the invention, in which said electronic unit is also configured for, when said object is detected as being at a characteristic distance less than a predetermined threshold distance:
  • said electronic unit is also configured to generate a modified modulation signal for controlling said illumination device by means of this modified modulation signal.
  • the electronic unit modifies the modulation signal almost instantaneously so that the source beam presents limited light output.
  • the predefined maximum value can for example be a danger threshold for the skin or the eyes of an individual.
  • this maximum value is defined in the international standard IEC 62471 ("Photobiological safety of lamps and devices using lamps").
  • the predetermined threshold distance may in particular depend on this predefined maximum value.
  • the characteristic distance of the object detected by the flight time sensor of the invention can be, for example, the average distance or else a weighted distance.
  • said characteristic distance is equal to the minimum distance between said illumination device and a particular point of the object reflecting said source beam towards a photosensitive pixel of said detector. In this way, we are sure that as soon as the object (or the individual) enters a particular danger zone, then the average light power is reduced so that no point of said object is illuminated with a source beam. too intense.
  • the modified modulation signal controls the extinction of said light source.
  • said modulation signal being such that said modulated source light power comprises a periodic succession of light pulses, said modified modulation signal is adjusted so that the source light power comprises a reduced number of light pulses and / or pulses brighter with narrower width and / or lower intensity;
  • said electronic unit is further configured to, when said object is then detected as being at another characteristic distance greater than said predetermined threshold distance, generating another modified modulation signal and controlling said illumination device by means of this modulation signal modified so as to increase said source light power beyond a predefined minimum value.
  • the time of flight sensor described above advantageously enters into the embodiment of a monitoring system intended to monitor the interior of a passenger compartment of a motor vehicle.
  • the invention therefore also provides a monitoring system comprising a time of flight sensor as defined above.
  • the reduction of the source light power by the time-of-flight sensor is also conditioned by the recognition of said object as being the head of an occupant (driver, passenger, etc.) of said motor vehicle. .
  • FIG. 1 is a schematic view of a vehicle and its passenger compartment which includes a time of flight sensor integrated into a passenger compartment monitoring system;
  • FIG. 2 is a schematic view of the time-of-flight sensor of FIG. 1 showing the operating principle of the time-of-flight measurement;
  • FIG. 3 shows a human head detected in the passenger compartment of the vehicle in FIG. 1;
  • FIG. 5 are graphs showing examples of modulation of the source power emitted by the time-of-flight sensor of FIG. 3.
  • FIG 1 there is shown a motor vehicle 1 and its passenger compartment 2, with the front and rear seats.
  • a monitoring system 20 is on board inside the passenger compartment 2 of the motor vehicle 1 to allow the acquisition of the cabin environment and its occupants (driver, front and / or rear passenger (s)).
  • IMS Interior Monitoring System
  • sensor 10 This type of monitoring system is called in English “Interior Monitoring System” or IMS. It comprises a time-of-flight sensor 10 (hereinafter referred to as “sensor 10”) which is generally positioned in the roof modules of the motor vehicle 1 but can also be in front of the driver, near the upright or in the center console.
  • the sensor 10 is directly oriented towards the occupants of the car and has a field of vision 17 (see FIG. 1), here so as to cover all the possible positions of the occupants of the motor vehicle 1.
  • the senor 10 comprises three elements which we will describe in more detail below: an illumination device 11, a detector 15 and an electronic unit 19.
  • the senor 10 faces a scene 3 comprising different “objects” (represented here by geometric shapes) capable of reflecting light, in particular infrared (IR) light.
  • objects may for example be the head of the driver or the passenger.
  • IR infrared
  • the illumination device 1 which can be controlled by the electronic unit 19 (we will see how in the following description), comprises a light source 12 whose light power can be modulated, for example via a current control.
  • the illumination device 1 1 emits a source beam 13 (see fig. 2) in the direction of scene 3 comprising the object 4 which will reflect the source beam 13.
  • the light source 12 is preferably a source emitting electromagnetic radiation at a wavelength little or not visible to the human eye.
  • this light source 12 emits in the infrared range.
  • the light source 12 is a light-emitting diode (LED) emitting in the IR, at a wavelength of 940 nm, with an emission width of 60 nm (+/- 30 nm around the central wavelength).
  • the diode could emit at a wavelength of 850 nm, or else at any other wavelength in the near infrared range between 800 nm and 1100 nm, or even possibly at a wavelength in the visible spectrum of deep reds, between 700 nm and 800 nm.
  • the light source of the device can be a laser diode, in particular of the VCSEL (“Vertical-cavity surface-emitting laser”) type, for example a GaAs / AIGaAs laser diode emitting between 700 nm and 1100 nm.
  • VCSEL Vertical-cavity surface-emitting laser
  • the illumination device 11 may comprise an optical system placed downstream from the light source 12 for shaping the source beam 13 (see FIG. 2) emitted by the light source 12.
  • This optical system can be simply formed of a single lens, or of a doublet.
  • a complex optical system can be provided to give particular properties to the source beam 13 (digital aperture, polarization, optical quality, etc.).
  • the electronic unit 19 is configured to generate a modulation signal, for example a modulated current signal, intended for the illumination device 11 (see arrow between the unit 19 and the device 11 in FIG. 2).
  • a modulation signal for example a modulated current signal
  • the light source 12 emits a source light beam 13 which has a source light power Ps which is temporally modulated.
  • the modulation signal is here such that during an activation period Ton (also called “integration period”) typically between 1 ps and 10 ms, the illumination device emits a periodic succession of pulses 21 square of power peak Po and of width At between 5 nanoseconds and 500 nanoseconds, at a frequency between 1 and 100 megahertz (MHz).
  • Ton also called “integration period”
  • the illumination device emits a periodic succession of pulses 21 square of power peak Po and of width At between 5 nanoseconds and 500 nanoseconds, at a frequency between 1 and 100 megahertz (MHz).
  • the modulation signal is such that the illumination device 1 1 does not emit a source beam (the current signal received at the input of the illumination device - and therefore from the source luminous - being for example zero current signal).
  • the set formed by the Ton activation period and the period Tott inactivation period constitutes a Tacq vesting period.
  • the modulation signal could be a sinusoidal signal so that the source light power is modulated sinusoidally as a function of time.
  • part 14 of the source beam 13 emitted by the illumination device 11 is reflected by the object 4 present in the scene 3.
  • the object 4 To be detected, the object 4 must be in the field of view 17 of the sensor 10 so that the reflected beam 18 is intercepted by the detector 15.
  • This detector 15 is a matrix detector (for example “focal plane array”) and comprises a matrix 16 of photosensitive pixels (“pixel array”), in particular at the emission wavelength of the light source 12, c that is to say here in the infrared.
  • the detector 15 can also include collection optics, for example a simple lens or a more complex optical system.
  • the detector 15 receives part 18 of the source beam 13 (reflected beam 18) reflected by the object 4 in the direction of the detector 15.
  • the source beam 13 being temporally modulated, the reflected beam 18 is also temporally modulated (the reflection on the object 4 does not modify this property).
  • each photosensitive pixel of the matrix 16 delivers an electrical signal as a function of time which is proportional to the amount of light received by the pixel.
  • the electrical signal is representative of the fraction (reflected beam 18) of the light power source P s reflected by the object 4 in the direction of said photosensitive pixel 16A.
  • the electronic unit 19 of the sensor 10 is precisely configured to: process these electrical signals delivered as a function of time by the detector 15;
  • the electronic unit 19 is further configured for, when the object 4 is detected as being at a characteristic distance Dobj less than a predetermined threshold distance Dmin:
  • the senor 10 detects that the object 4 is too close then it decreases the average power of the light source 12 so as to limit the infrared radiation received by the object 4 with the source beam 13.
  • the reduction of the source light power is further conditioned by the recognition of said object as being the head 5 of an occupant of the motor vehicle.
  • the recognition of the object as being the head of an occupant of the vehicle can for example be carried out by determining that the apparent surface or the volume of said object corresponds to that of a human head.
  • the monitoring system includes software processing capable of distinguishing on a three-dimensional representation of the observed scene that the volume detected is a human head.
  • FIG. 5 shows an example of the source light power Ps modified by the control of the illumination device 11 with the modified modulation signal generated by the electronic unit 19 after the object 4 has been detected as being at a characteristic distance Dobj less than the distance threshold Dmin.
  • this modified light source power P s is such that only one square pulse 21 out of two has been retained (the even order pulses 22 in dotted lines have been deleted), while keeping its level peak Po and its activation period Ton.
  • the source light power P s is here halved.
  • the characteristic distance Dobj of the object 4 can be taken equal to the minimum distance between the illumination device 1 1 and a particular point of the object 4 reflecting the source beam 14 in the direction d a photosensitive pixel 16A of the detector 15.
  • a single particular point of the object 4 (for example the head 5 of the conductor, see FIG. 3) is at a distance less than the threshold distance Dmin for the electronic unit 1 9 modifies the modulation signal in order to limit the light source power Ps.
  • the threshold distance Dmin depends on the average light power Ps.
  • the average light source power Ps is determined so as to be less than the danger levels defined by standard IEC 62471 for light-emitting diodes and by standard IEC 60825-1 for laser diodes.
  • the modified modulation signal generated by the electronic unit 19 controls the extinction of the light source 12 of the illumination device 1 1.
  • the light source is completely cut off, by example by canceling the source drive current.
  • the electronic unit 19 is further configured for, when the object 4 previously detected as too close to the sensor 10 is then detected as being at another characteristic distance Dobj greater than the predetermined threshold distance Dmin:
  • the range of the sensor 10 increases with the average light power of the source beam 13. By increasing the source light power, it is ensured that the object 4 can be detected again when it approaches.
  • the other modified modulation signal is preferably identical to the modulation signal generated before the object is detected as being too close.
  • the profile of the source light power P s is then that shown in FIG. 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

L'invention concerne un capteur de temps de vol (10) comportant : - un dispositif d'illumination (11) comprenant une source de lumière (12) émettant un faisceau source (13) en direction d'une scène (3) comprenant un objet (4) susceptible de réfléchir le faisceau source; - un détecteur (15) comprenant une matrice (16) de pixels (16A) photosensibles recevant une partie (18) du faisceau source réfléchi par l'objet; et - une unité électronique (19) configurée pour : - générer un signal de modulation et commander le dispositif au moyen de ce signal de sorte que le faisceau source présente une puissance lumineuse source modulée temporellement; - traiter des signaux électriques délivrés en fonction du temps par le détecteur, chaque signal électrique étant représentatif d'une fraction de la puissance lumineuse source réfléchie en direction d'un pixel; et - déduire des signaux électriques, une distance caractéristique (Dobj) entre l'objet et le dispositif. Selon l'invention, l'unité est configurée pour, lorsque l'objet est détecté comme étant à une distance caractéristique inférieure à une distance seuil prédéterminée, commander le dispositif de manière à réduire en moyenne la puissance lumineuse source.

Description

Description
Titre de l’invention : Capteur de temps de vol et système de surveillance comportant un tel capteur
DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTION
La présente invention concerne de manière générale le domaine de la vision et de la détection d’objets au moyen d’un système optique de détection.
Elle concerne plus particulièrement un capteur de temps de vol permettant de reconstruire la cartographie tridimensionnelle d’une scène comportant un ou plusieurs objets.
Elle concerne également un système de surveillance comportant un tel capteur.
ARRIERE-PLAN TECHNOLOGIQUE
On connaît des capteurs de temps de vol comportant :
un dispositif d’illumination comprenant une source de lumière émettant un faisceau source, en direction d’une scène comprenant un objet susceptible de réfléchir ce faisceau source ; et
un détecteur comprenant une matrice de pixels photosensibles et recevant une partie du faisceau source réfléchi par cet objet réfléchissant.
Généralement, la source de lumière du dispositif d’illumination est soit une diode électroluminescente (DE ), soit une diode laser (par exemple de type VCSEL). Cette source émet généralement dans une bande étroite du domaine infrarouge, autour de 900 nanomètres par exemple. Ceci permet que le faisceau source ne soit pas visible pour les utilisateurs présents près du capteur (l’œil humain est sensible seulement jusqu’à 800 nm environ).
Le détecteur, qui est du type « matriciel », est par exemple formé d’une caméra de type CMOS, dont les pixels photosensibles sont sensibles dans l’IR, au moins dans une bande d’absorption incluant la bande étroite d’émission.
Comme décrit dans le document « Time-of-Flight Caméra - An Introduction » (Texas Instruments Technical White Paper SLOA190B, May 2014), le capteur mesure le temps, appelé donc « temps de vol », mis par le faisceau source pour aller de la source à l’objet, puis par le faisceau « réfléchi ») pour aller de l’objet au détecteur. Pour cela, le faisceau source doit être modulé temporellement.
À cet effet, on prévoit généralement une unité électronique configurée pour générer un signal de modulation et commander le dispositif d’illumination au moyen de ce signal de modulation de sorte que le faisceau source émis présente une puissance lumineuse source modulée temporellement.
Généralement, cette unité électronique est également configurée pour : traiter des signaux électriques délivrés en fonction du temps par le détecteur, chaque signal électrique étant représentatif d’une fraction de la puissance lumineuse source réfléchie par l’objet en direction d’un pixel photosensible associé ; et
déduire des signaux électriques traités, une distance caractéristique entre l’objet et le dispositif d’illumination.
Ainsi, un capteur de temps de vol permet de reconstruire une cartographie tridimensionnelle de la scène qu’il observe et d’y détecter des formes, voire d’y reconnaître des objets (un corps humain ou une partie d’un corps humain, les yeux d’un individu, etc...).
Pour « voir » loin (longue portée) et bien (bon rapport signal à bruit), l’unité électronique du capteur de temps pilote le dispositif d’illumination de sorte que la puissance lumineuse moyenne émise du faisceau source est suffisamment élevée.
OBJET DE L’INVENTION
Afin de remédier à l’inconvénient précité de l’état de la technique, la présente invention propose un capteur de temps de vol présentant une sécurité accrue et évitant les risques d’endommagement par le faisceau source, notamment les risques de dommage aux personnes.
Plus particulièrement, on propose selon l’invention un capteur de temps de vol tel que défini en introduction, dans lequel ladite unité électronique est en outre configurée pour, lorsque ledit objet est détecté comme étant à une distance caractéristique inférieure à une distance seuil prédéterminée :
commander ledit dispositif d’illumination de manière à réduire en moyenne ladite puissance lumineuse source en deçà d’une valeur maximale prédéfinie.
Ainsi, grâce au capteur de temps de vol de l’invention, on limite le niveau de rayonnement infrarouge subi par les objets présents dans la scène et susceptibles de réfléchir ce rayonnement. Dans un mode de réalisation préféré, ladite unité électronique est également configurée pour générer un signal de modulation modifié pour commander ledit dispositif d’illumination au moyen de ce signal de modulation modifié.
Dans ce cas, lorsque le capteur de temps de vol détecte qu’un objet se situe à une distance caractéristique trop petite par rapport à la source lumineuse, alors l’unité électronique modifie quasi instantanément le signal de modulation de sorte que le faisceau source présente une puissance lumineuse limitée.
La valeur maximale prédéfinie peut être par exemple un seuil de dangerosité pour la peau ou les yeux d’un individu. Par exemple, lorsque le dispositif d’illumination comprend une source de type LED, cette valeur maximale est définie dans la norme internationale IEC 62471 (« Sécurité photobiologique des lampes et des appareils utilisant des lampes »).
La distance seuil prédéterminée peut en particulier dépendre de cette valeur maximale prédéfinie.
La distance caractéristique de l’objet détecté par le capteur de temps de vol de l’invention peut être par exemple la distance moyenne ou bien une distance pondérée.
De préférence, ladite distance caractéristique est égale à la distance minimale entre ledit dispositif d’illumination et un point particulier de l’objet réfléchissant ledit faisceau source en direction d’un pixel photosensible dudit détecteur. De cette façon, on est sûr que dès que l’objet (ou l’individu) entre dans une zone de dangerosité particulière, alors la puissance lumineuse moyenne est réduite de sorte qu’aucun point dudit objet n’est illuminé avec un faisceau source trop intense.
Avantageusement, dans des cas où ladite distance seuil prédéterminée est inférieure à 30 centimètres, de préférence inférieure à 20 centimètres, le signal de modulation modifié commande l’extinction de ladite source lumineuse.
D’autres caractéristiques non limitatives et avantageuses du capteur de temps de vol conforme à l’invention sont les suivantes :
ledit signal de modulation étant tel que ladite puissance lumineuse source modulée comprend une succession périodique d’impulsions lumineuses, ledit signal de modulation modifié est ajusté de sorte que la puissance lumineuse source comprend un nombre réduit d’impulsions lumineuses et/ou des impulsions lumineuses de largeur plus étroites et/ou d’intensité plus faible ; et
ladite unité électronique est en outre configurée pour, lorsque ledit objet est ensuite détecté comme étant à une autre distance caractéristique supérieure à ladite distance seuil prédéterminée, générer un autre signal de modulation modifié et commander ledit dispositif d’illumination au moyen de ce signal de modulation modifié de manière à augmenter ladite puissance lumineuse source au-delà d’une valeur minimale prédéfinie.
Le capteur de temps de vol décrit ci-dessus entre avantageusement dans la réalisation d’un système de surveillance destiné à surveiller l’intérieur d’un habitacle d’un véhicule automobile.
L’invention propose donc également un système de surveillance comprenant un capteur de temps de vol tel que défini ci-dessus.
Dans un mode de réalisation préféré, la réduction de la puissance lumineuse source par le capteur de temps de vol est en outre conditionnée par la reconnaissance dudit objet comme étant une tête d’un occupant (conducteur, passager, ...) dudit véhicule automobile.
DESCRIPTION DETAILLEE D’UN EXEMPLE DE RÉALISATION
La description qui va suivre en regard des dessins annexés, donnés à titre d’exemples non limitatifs, fera bien comprendre en quoi consiste l’invention et comment elle peut être réalisée.
Sur les dessins annexés :
[Fig. 1 ] est une vue schématique d’un véhicule et de son habitacle qui comprend un capteur de temps de vol intégré à un système de surveillance de l’habitacle ;
[Fig. 2] est une vue schématique du capteur de temps de vol de la figure 1 montrant le principe de fonctionnement de la mesure de temps de vol ;
[Fig. 3] montre une tête humaine détectée dans l’habitacle du véhicule de la figure 1 ; et
[Fig. 4] et
[Fig. 5] sont des graphes montrant des exemples de modulation de la puissance source émise par le capteur de temps de vol de la figure 3.
Sur la figure 1 , on a représenté un véhicule automobile 1 et son habitacle 2, avec les sièges avant et arrière.
Un système de surveillance 20 est embarqué à l’intérieur de l’habitacle 2 du véhicule automobile 1 pour permettre l’acquisition de l’environnement cabine et de ses occupants (conducteur, passager(s) avant et/ou arrière).
Ce type de système de surveillance est appelé en anglais « Interior Monitoring System » ou IMS. Il comporte un capteur de temps de vol 10 (ci-après désigné « capteur 10 ») qui est généralement positionné dans les modules de toits du véhicule automobile 1 mais peuvent aussi être en face du conducteur, près du montant ou en console centrale.
Le capteur 10 est directement orienté vers les occupants de la voiture et présente un champ de vision 17 (voir figure 1 ), ici de façon à couvrir toutes les positions possibles des occupants du véhicule automobile 1.
Comme représenté de manière schématique sur la figure 2, le capteur 10 comporte trois éléments que nous allons décrire plus en détail par la suite : un dispositif d’illumination 1 1 , un détecteur 15 et une unité électronique 19.
Dans le cas général, le capteur 10 fait face à une scène 3 comportant différents « objets » (représentés ici par des formes géométriques) susceptible de réfléchir la lumière, en particulier la lumière infrarouge (IR). Ces objets peuvent être par exemple la tête du conducteur ou du passager. Pour la suite, on considérera à titre d’exemple pour l’explication le cas particulier du cube 4 en tant qu’objet réfléchissant.
Le dispositif d’illumination 1 1 , qui peut être commandé par l’unité électronique 19 (on verra de quelle manière dans la suite de la description), comprend une source de lumière 12 dont la puissance lumineuse peut être modulée, par exemple via un pilotage en courant.
Ainsi commandé, le dispositif d’illumination 1 1 émet un faisceau source 13 (voir fig. 2) en direction de la scène 3 comprenant l’objet 4 qui va réfléchir le faisceau source 13.
La source de lumière 12 est de préférence une source émettant un rayonnement électromagnétique à une longueur d’onde peu ou pas visible pour l’œil humain. Avantageusement, cette source de lumière 12 émet dans le domaine infra rouge.
Ici, la source de lumière 12 est une diode électroluminescente (« Light- emitting diode » ou LED) émettant dans l’IR, à une longueur d’onde de 940 nm, avec une largeur d’émission de 60 nm (+/- 30 nm autour de la longueur d’onde centrale). En variante, la diode pourrait émettre à une longueur d’onde de 850 nm, ou bien à toute autre longueur d’onde dans le proche infra-rouge comprise entre 800 nm et 1 100 nm, voire éventuellement à une longueur d’onde dans le spectre visible des rouges profonds, compris entre 700 nm et 800 nm.
Dans d’autres modes de réalisation, la source de lumière du dispositif peut être une diode laser, en particulier de type VCSEL (« Vertical-cavity surface- emitting laser » en anglais), par exemple une diode laser GaAs/AIGaAs émettant entre 700 nm et 1 100 nm.
Dans des modes de réalisation particulièrement avantageux, le dispositif d’illumination 11 peut comprendre un système optique placé en aval de la source de lumière 12 pour mettre en forme le faisceau source 13 (voir fig. 2) émis par la source de lumière 12. Ce système optique peut être simplement formé d’une unique lentille, ou bien d’un doublet. En variante, on peut prévoir un système optique complexe pour donner des propriétés particulières au faisceau source 13 (ouverture numérique, polarisation, qualité optique, etc...).
L’unité électronique 19 est configurée pour générer un signal de modulation, par exemple un signal de courant modulé, à destination du dispositif d’illumination 11 (voir flèche entre l’unité 19 et le dispositif 1 1 sur la fig. 2).
Commandée au moyen de ce signal de modulation, la source de lumière 12 émet un faisceau lumineux source 13 qui présente une puissance lumineuse source Ps qui est modulée temporellement.
Ceci se voit sur la figure 4 où l’on a représenté en ordonnée les variations de la puissance lumineuse source Ps (en Watts W) émise par le dispositif d’illumination 11 en fonction du temps t (en secondes s).
Le signal de modulation est ici tel que pendant une période d’activation Ton (appelée aussi « période d’intégration ») typiquement comprise entre 1 ps et 10 ms, le dispositif d’illumination émet une succession périodique d’impulsions 21 carrés de puissance crête Po et de largeur At comprise entre 5 nanosecondes et 500 nanosecondes, à une fréquence comprise entre 1 et 100 mégahertz (MHz).
Pendant une autre période dite d’inactivation Tott, le signal de modulation est tel que le dispositif d’illumination 1 1 n’émet pas de faisceau source (le signal de courant reçu en entrée du dispositif d’illumination - et donc de la source lumineuse - étant par exemple signal de courant nul).
L’ensemble formé par la période d’activation Ton et la période d’inactivation Tott constitue une période d’acquisition Tacq.
Dans d’autres modes de réalisation, la signal de modulation pourrait être un signal sinusoïdal de sorte que la puissance lumineuse source soit modulée sinusoïdalement en fonction du temps.
Comme représenté sur la figure 2, une partie 14 du faisceau source 13 émis par le dispositif d’illumination 11 est réfléchie par l’objet 4 présent dans la scène 3. Pour être détecté, l’objet 4 doit être dans le champ de vue 17 du capteur 10 de sorte que le faisceau réfléchi 18 soit intercepté par le détecteur 15.
Ce détecteur 15 est un détecteur matriciel (par ex. « focal plane array ») et comprend une matrice 16 de pixels photosensibles (« pixel array »), en particulier à la longueur d’onde d’émission de la source lumineuse 12, c’est-à-dire ici dans l’infrarouge.
Avantageusement, le détecteur 15 peut comprendre également une optique de collection, par exemple une lentille simple ou un système optique plus complexe.
Le détecteur 15 reçoit une partie 18 du faisceau source 13 (faisceau réfléchi 18) réfléchi par l’objet 4 en direction du détecteur 15.
Le faisceau source 13 étant modulé temporellement, le faisceau réfléchi 18 est également modulé temporellement (la réflexion sur l’objet 4 ne modifie pas cette propriété).
À cause de la propagation de la lumière de la source lumineuse 12 jusqu’à l’objet 4, puis de l’objet 4 jusqu’au détecteur 15, il y a un décalage (« time shift ») à l’arrivée entre le moment où est émis le faisceau source 14 et le moment où le faisceau réfléchi 18 est collecté par la matrice 16 du détecteur 15. En déterminant ce décalage temporel, il est possible de remonter au temps de vol de la lumière entre le dispositif d’illumination 1 1 et le détecteur 15 (voir document Texas Instruments précédemment cité).
Cette détermination du temps de vol peut être faite pour chaque pixel de la matrice 16 de sorte qu’il est alors possible de reconstruire une vraie carte tridimensionnelle de la scène 3 se trouvant face au capteur 10. En effet, chaque pixel photosensible de la matrice 16 délivre un signal électrique en fonction du temps qui est proportionnel à la quantité de lumière reçue par le pixel.
Par exemple, pour le pixel 16A particulier de la figure 2, le signal électrique est représentatif de la fraction (faisceau réfléchi 18) de la puissance lumineuse source Ps réfléchie par l’objet 4 en direction dudit pixel 16A photosensible.
L’unité électronique 19 du capteur 10 est justement configurée pour : traiter ces signaux électriques délivrés en fonction du temps par le détecteur 15 ; et
déduire des signaux électriques traités, une distance caractéristique Dobj entre l’objet 4 de la scène 3 et le dispositif d’illumination 1 1.
Selon l’invention, l’unité électronique 19 est en outre configurée pour, lorsque l’objet 4 est détecté comme étant à une distance caractéristique Dobj inférieure à une distance seuil Dmin prédéterminée :
générer un signal de modulation modifié ; et
commander le dispositif d’illumination 1 1 au moyen de ce signal de modulation modifié de manière à réduire en moyenne la puissance lumineuse source Ps en deçà d’une valeur maximale prédéfinie Pmax.
En d’autres termes, si le capteur 10 détecte que l’objet 4 est trop proche alors il diminue la puissance moyenne de la source lumineuse 12 de manière à limiter le rayonnement infrarouge reçu par l’objet 4 avec le faisceau source 13.
Dans un mode de réalisation préféré du système de surveillance 20 de la figure 1 , la réduction de la puissance lumineuse source est en outre conditionnée par la reconnaissance dudit objet comme étant la tête 5 d’un occupant du véhicule automobile.
En effet, dans un cadre automobile, ceci peut être utile lorsque l’objet 4 détecté est la tête d’un individu (conducteur ou passager) car cela évite d’irradier à trop forte puissance la peau et/ou les yeux de l’individu, ce qui pourrait poser problème dans certaines situations.
La reconnaissance de l’objet comme étant la tête d'un occupant du véhicule peut par exemple être réalisée en déterminant que la surface apparente ou le volume dudit objet correspond à celle/celui d’une tête humaine.
Dans un autre exemple, le système de surveillance inclut un traitement logiciel capable de distinguer sur une représentation tridimensionnelle de la scène observée que le volume détecté est une tête humaine.
On a représenté sur la figure 5, un exemple de puissance lumineuse source Ps modifiée par la commande du dispositif d’illumination 1 1 avec le signal de modulation modifié généré par l’unité électronique 19 après que l’objet 4 a été détecté comme étant à une distance caractéristique Dobj inférieure à la distance seuil Dmin.
Comme on peut le voir sur cette figure 5, cette puissance lumineuse source Ps modifiée est telle que seule une impulsion 21 carrée sur deux a été conservée (les impulsions d’ordre pair 22 en pointillés ont été supprimées), tout en gardant son niveau crête Po et sa période d’activation Ton. Ainsi, en moyenne, la puissance lumineuse source Ps est ici divisée par deux.
Dans un mode de réalisation alternatif, on pourrait conserver toutes les impulsions de la modulation du faisceau source 13 et diminuer la puissance crête des impulsions, par exemple à une valeur Po/2 (pour avoir une puissance lumineuse moyenne de moitié). Ceci peut se faire aisément en divisant le courant de modulation envoyé à la source lumineuse 12 par deux.
Encore dans un autre mode de réalisation alternatif, on pourrait conserver toutes les impulsions de la période d’activation Ton mais réduire la largeur des impulsions (par exemple en la divisant par deux).
Toujours dans un autre mode de réalisation, on pourrait conserver les impulsions avec leur largeur et leur puissance d'origine mais diminuer la durée de la période d'activation Ton. Par exemple, en divisant par 2 cette durée, la puissance d'illumination moyenne est également divisée par 2.
Dans un mode de réalisation particulièrement sécuritaire, la distance caractéristique Dobj de l’objet 4 peut être prise égale à la distance minimale entre le dispositif d’illumination 1 1 et un point particulier de l’objet 4 réfléchissant le faisceau source 14 en direction d’un pixel 16A photosensible du détecteur 15.
Ainsi, dans ce mode de réalisation, il suffit qu’un seul point particulier de l’objet 4 (par exemple la tête 5 du conducteur, voir figure 3) soit à une distance inférieure à la distance seuil Dmin pour que l’unité électronique 1 9 modifie le signal de modulation afin de limiter la puissance lumineuse source Ps.
Dans le cas général, la distance seuil Dmin dépend de la puissance lumineuse source Ps moyenne.
En pratique, la puissance lumineuse source Ps moyenne est déterminée de manière à être inférieure aux niveaux de dangerosité définis par la norme IEC 62471 pour les diodes électroluminescentes et par la norme IEC 60825- 1 pour les diodes laser.
Dans un autre mode de réalisation encore plus sécuritaire, la distance seuil Dmin prédéterminée étant inférieure à 30 centimètres, voire inférieure à 20 cm, le signal de modulation modifié généré par l’unité électronique 19 commande l’extinction de la source lumineuse 12 du dispositif d’illumination 1 1. En d’autres termes, dans ce mode de réalisation particulier, on coupe entièrement la source lumineuse, par exemple en annulant le courant de pilotage de la source.
Avantageusement, l’unité électronique 19 est en outre configurée pour, lorsque l’objet 4 précédemment détecté comme trop proche du capteur 10 est ensuite détecté comme étant à une autre distance caractéristique Dobj supérieure à la distance seuil Dmin prédéterminée :
générer un autre signal de modulation modifié ; et
- commander ledit dispositif d’illumination au moyen de ce signal de modulation modifié de manière à augmenter ladite puissance lumineuse source au- delà d’une valeur minimale prédéfinie.
De cette façon, il est alors possible de détecter l’objet précédemment trop proche lorsque celui-ci s’est éloigné. En effet, la portée du capteur 10 augmente avec la puissance lumineuse moyenne du faisceau source 13. En augmentant la puissance lumineuse source, on s’assure de pouvoir détecter à nouveau l’objet 4 lorsqu’il se rapprochera.
En pratique, l’autre signal de modulation modifié est de préférence identique au signal de modulation généré avant la détection de l’objet comme étant trop proche. Le profil de la puissance lumineuse source Ps est alors celui représenté sur la figure 4.

Claims

REVENDICATIONS
1. Capteur de temps de vol (10) comportant :
• un dispositif d’illumination (1 1 ) comprenant une source de lumière (12) et adapté à émettre un faisceau source (13) en direction d’une scène (3) comprenant un objet (4) susceptible de réfléchir ledit faisceau source (13) ;
• un détecteur (15) comprenant une matrice (16) de pixels (16A) photosensibles et adapté à recevoir une partie (18) du faisceau source (13) réfléchi par ledit objet (4) de la scène (3) ; et
• une unité électronique (19) configurée pour :
• générer un signal de modulation et commander ledit dispositif d’illumination (1 1 ) au moyen de ce signal de modulation de sorte que le faisceau source (13) émis présente une puissance lumineuse source (Ps) modulée temporellement ;
• traiter des signaux électriques délivrés en fonction du temps par ledit détecteur (15), chaque signal électrique étant représentatif d’une fraction de la puissance lumineuse source (Ps) réfléchie par l’objet (4) en direction d’un pixel (16A) photosensible associé ; et
• déduire desdits signaux électriques traités, une distance caractéristique (Dobj) entre ledit objet (4) et ledit dispositif d’illumination (1 1 ), ledit capteur de temps de vol (10) étant caractérisé en ce que ladite unité électronique (19) est en outre configurée pour, lorsque ledit objet (4) est détecté comme étant à une distance caractéristique ( Dobj) inférieure à une distance seuil ( Dmin) prédéterminée :
commander ledit dispositif d’illumination (1 1 ) de manière à réduire en moyenne ladite puissance lumineuse source ( Ps) en deçà d’une valeur maximale (Pmax) prédéfinie.
2. Capteur de temps de vol (10) selon la revendication 1 , selon lequel ladite unité électronique (19) est en outre configurée pour générer un signal de modulation modifié pour commander ledit dispositif d’illumination (1 1 ) au moyen de ce signal de modulation modifié.
3. Capteur de temps de vol (10) selon la revendication 1 ou 2, dans lequel ladite distance caractéristique (Dobj) est égale à la distance minimale entre ledit dispositif d’illumination (1 1 ) et un point particulier de l’objet (4) réfléchissant ledit faisceau source (13) en direction d’un pixel (16A) photosensible dudit détecteur (15).
4. Capteur de temps de vol (10) selon la revendication 2 ou la revendication 3 prise dans la dépendance de la revendication 2, dans lequel, ladite distance seuil (Dmin) prédéterminée étant inférieure à 30 centimètres, le signal de modulation modifié commande l’extinction de ladite source lumineuse (12).
5. Capteur de temps de vol (10) selon l’une des revendications 2 à 4, dans lequel, ledit signal de modulation étant tel que ladite puissance lumineuse source (Ps) modulée comprend une succession périodique d’impulsions lumineuses (21 ), ledit signal de modulation modifié est ajusté de sorte que la puissance lumineuse source (Ps) comprend un nombre réduit d’impulsions lumineuses (21 ) ou des impulsions lumineuses de largeur plus étroites ou d’intensité plus faible.
6. Capteur de temps de vol (10) selon l’une des revendications 2 à 5, les revendications 3 à 5 étant prises dans la dépendance de la revendication 2, dans lequel ladite unité électronique (19) est en outre configurée pour, lorsque ledit objet (4) est ensuite détecté comme étant à une autre distance caractéristique (Dobj) supérieure à ladite distance seuil (Dmin) prédéterminée :
générer un autre signal de modulation modifié ; et
commander ledit dispositif d’illumination (11 ) au moyen de ce signal de modulation modifié de manière à augmenter ladite puissance lumineuse source (Ps) au-delà d’une valeur minimale (Pmin) prédéfinie.
7. Système de surveillance (20) destiné à surveiller l’intérieur d’un habitacle (2) d’un véhicule automobile (1 ) et comprenant un capteur de temps de vol (10) selon l’une des revendications 1 à 6.
8. Système de surveillance selon la revendication 7, dans lequel la réduction de la puissance lumineuse source (Ps) est en outre conditionnée par la reconnaissance dudit objet (4) comme étant une tête (5) d’un occupant dudit véhicule automobile (1 ).
EP19809075.5A 2018-12-14 2019-11-26 Capteur de temps de vol et système de surveillance comportant un tel capteur Withdrawn EP3894886A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1872981A FR3090124B1 (fr) 2018-12-14 2018-12-14 Capteur de temps de vol et système de surveillance comportant un tel capteur
PCT/EP2019/082602 WO2020120128A1 (fr) 2018-12-14 2019-11-26 Capteur de temps de vol et système de surveillance comportant un tel capteur

Publications (1)

Publication Number Publication Date
EP3894886A1 true EP3894886A1 (fr) 2021-10-20

Family

ID=67185115

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19809075.5A Withdrawn EP3894886A1 (fr) 2018-12-14 2019-11-26 Capteur de temps de vol et système de surveillance comportant un tel capteur

Country Status (5)

Country Link
US (1) US20220050202A1 (fr)
EP (1) EP3894886A1 (fr)
CN (1) CN113167874A (fr)
FR (1) FR3090124B1 (fr)
WO (1) WO2020120128A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3134548A1 (fr) * 2022-04-15 2023-10-20 Valeo Comfort And Driving Assistance procédé de commande d’une tête optique destinée à être utilisée dans un système d’observation d’un individu

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090273770A1 (en) * 2008-04-30 2009-11-05 Honeywell International Inc. Systems and methods for safe laser imaging, detection and ranging (lidar) operation
EP2469301A1 (fr) * 2010-12-23 2012-06-27 André Borowski Procédés et dispositifs pour générer une représentation d'une scène 3D à très haute vitesse
GB2492848A (en) * 2011-07-15 2013-01-16 Softkinetic Sensors Nv Optical distance measurement
WO2015157341A1 (fr) * 2014-04-07 2015-10-15 Samsung Electronics Co., Ltd. Capteur d'image à haute résolution, haute fréquence d'image et basse puissance
US10104365B2 (en) * 2014-04-26 2018-10-16 Tetravue, Inc. Method and system for robust and extended illumination waveforms for depth sensing in 3D imaging
FR3056304B1 (fr) * 2016-09-16 2020-06-19 Valeo Comfort And Driving Assistance Circuit electronique et capteur de temps de vol comprenant un tel circuit electronique
DE102016124197A1 (de) * 2016-12-13 2018-06-14 Valeo Schalter Und Sensoren Gmbh Verfahren zur Abstandsmessung, Empfangseinrichtung einer Abstandsmessvorrichtung, Abstandsmessvorrichtung und Fahrerassistenzsystem
CN107450081B (zh) * 2017-08-14 2019-09-06 上海擎朗智能科技有限公司 一种零盲区测距系统

Also Published As

Publication number Publication date
FR3090124B1 (fr) 2022-07-15
FR3090124A1 (fr) 2020-06-19
CN113167874A (zh) 2021-07-23
US20220050202A1 (en) 2022-02-17
WO2020120128A1 (fr) 2020-06-18

Similar Documents

Publication Publication Date Title
EP3210039B1 (fr) Système d'éclairage et/ou de signalisation comprenant des moyens de télémétrie
EP2821692B1 (fr) Module optique sécurisé pour véhicule automobile comprenant une source laser
FR2949725A1 (fr) Dispositif de signalisation a image holographique pour vehicule
FR2919726A1 (fr) Procede de detection d'une gerbe d'eau a l'arriere d'un vehicule
FR2723448A1 (fr) Dispositif de detection d'eau ou analogue sur une glace de vehicule automobile
WO2010076407A1 (fr) Systeme de securite perimetrique par l'analyse active des images reflechies par un jeu de miroirs sur une camera video
EP2830899B1 (fr) Procédé et dispositif d'aide à la conduite diurne des véhicules automobiles
EP3894886A1 (fr) Capteur de temps de vol et système de surveillance comportant un tel capteur
EP3258746A2 (fr) Sécurisation d'un module lumineux comprenant une source laser
FR2910408A1 (fr) Procede de vision de nuit sur route.
EP3615368B1 (fr) Module de commande pour habitacle de véhicule
WO2012080372A1 (fr) Dispositif actif d'observation d'une scène à travers un milieu diffusant, utilisation de ce dispositif et procédé d'observation
FR3051535A1 (fr) Module lumineux comportant un element laser
EP3241709B1 (fr) Module lumineux comportant un élément laser
FR3047945A1 (fr) Procede et dispositif d'eclairage interieur d'un vehicule automobile
EP3073181B1 (fr) Module d'éclairage laser à dispositif de sécurité
EP2330439B1 (fr) Système de détection d'obstacle pour véhicule
FR3056501A1 (fr) Systeme d'aide a l'identification d'un vehicule automobile et son procede de mise en oeuvre
FR3089890A1 (fr) Système de surveillance pour véhicule automobile
FR3090073A1 (fr) Module lumineux de véhicule automobile
FR3071070B1 (fr) Systeme de vision tete haute avec detection de surchauffe solaire.
WO2024022709A1 (fr) Dispositif électronique et procédé de surveillance de présence d'un élément optique
FR3074115A1 (fr) Dispositif de generation d’un environnement lumineux
FR3052578A1 (fr) Systeme de surveillance optique du visage d'un conducteur et procede de mise en œuvre
FR3102568A1 (fr) Afficheur tête-haute pour véhicule automobile et véhicule automobile comportant un tel afficheur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210708

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220202