EP3893928A1 - Production of viral vaccines on an avian cell line - Google Patents

Production of viral vaccines on an avian cell line

Info

Publication number
EP3893928A1
EP3893928A1 EP19842600.9A EP19842600A EP3893928A1 EP 3893928 A1 EP3893928 A1 EP 3893928A1 EP 19842600 A EP19842600 A EP 19842600A EP 3893928 A1 EP3893928 A1 EP 3893928A1
Authority
EP
European Patent Office
Prior art keywords
viral
strain
attenuated
vaccine
virus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19842600.9A
Other languages
German (de)
French (fr)
Inventor
Manuel Rosa-Calatrava
Guy Boivin
Julia DUBOIS
Mario Andres PIZZORNO
Olivier Terrier
Aurélien TRAVERSIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite Laval
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Transgene SA
Institut National de la Sante et de la Recherche Medicale INSERM
Ecole Normale Superieure de Lyon
Original Assignee
Universite Laval
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Transgene SA
Institut National de la Sante et de la Recherche Medicale INSERM
Ecole Normale Superieure de Lyon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Laval, Centre National de la Recherche Scientifique CNRS, Universite Claude Bernard Lyon 1 UCBL, Transgene SA, Institut National de la Sante et de la Recherche Medicale INSERM, Ecole Normale Superieure de Lyon filed Critical Universite Laval
Publication of EP3893928A1 publication Critical patent/EP3893928A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/04Inactivation or attenuation; Producing viral sub-units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5254Virus avirulent or attenuated
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18311Metapneumovirus, e.g. avian pneumovirus
    • C12N2760/18334Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18311Metapneumovirus, e.g. avian pneumovirus
    • C12N2760/18351Methods of production or purification of viral material

Definitions

  • the present invention relates to the use of an immortalized avian cell line for the production of a pneumovirus type virus, and of viral vaccines consisting of live attenuated viral strains.
  • Pneumoviruses are viruses responsible for acute respiratory tract infections such as bronchiolitis, bronchitis or pneumonia, mainly in the at-risk populations of young children under 5, the elderly and the immunocompromised.
  • the family Pneumoviridae whose members were previously included in the family Paramyxoviridae, includes enveloped viruses with negative-polarity single-stranded RNA, including:
  • hVRS human respiratory syncytial virus
  • hMPV human metapneumovirus
  • ICTV International Committee on Virus Taxonomy
  • the hVRS virus is the most common cause of respiratory infections in young children. Very contagious, this virus mainly infects infants under two years of age.
  • the hMPV virus is also one of the major causes of pediatric bronchiolitis, responsible for 5 to 15% of hospitalizations attributable to acute lower respiratory tract infections in young children.
  • the average age of children hospitalized as a result of hMPV infection is 6 to 12 months, later than that caused by hVRS, which mainly occurs between 0 and 3 months.
  • ribavirin which is not free from adverse effects, or very expensive intravenous immunoglobulins, can be used occasionally for the treatment of severe cases of hMPV infections, as well as hVRS.
  • the usual clinical approach consists mainly of treating the symptoms of the infection, by putting patients on respiratory assistance (administration of oxygen or mechanized ventilation) and by administering bronchodilators, corticosteroids and / or antibiotics for them. prevent and / or treat secondary bacterial infections.
  • the company Novavax has developed a “non-living nanoparticle” vaccine candidate.
  • This vaccine is made up of nanoparticles with an F protein from the hVRS virus, genetically modified to increase its immunogenicity.
  • This vaccine candidate is intended for pregnant women, it would be used to generate transient immunization of the unborn child in utero.
  • GSK is also developing a vaccine for pregnant women to immunize the fetus in utero, based on recombinant antigens derived from the F protein of the hVRS virus.
  • Another approach is to use non-pathogenic viral vectors, such as adenoviruses, by making them express pneumovirus antigens.
  • adenoviruses A candidate vaccine for newborns, composed of an adenovirus encoding 3 major pneumovirus antigens (proteins F, N and M2.1) is currently being developed by the company GSK.
  • live attenuated vaccines made up of attenuated viral strains. Indeed, live attenuated vaccines have many advantages:
  • this vaccination strategy does not require the addition of adjuvants, the live attenuated vaccine being by nature sufficiently immunogenic to generate a satisfactory immune reaction.
  • viral vaccines are produced by a step of viral replication on virus host cells, cultured in vitro.
  • the choice of these cells is essential: they must be both:
  • Laboratory cell lines in their “adherent” form in culture, such as:
  • the MDCK cell line a canine cell line
  • Vero cell line an African green monkey kidney cell line, commonly used in cell culture to test various viruses
  • the PERC6 cell line a cell line of human origin
  • LLC-MK2 cell line a cell line derived from rhesus monkey kidney cells, available from ATCC under the number CCL-7, and commonly used for tests of infection by various viruses,
  • “industrialized” cell lines that is to say stable (“robust”), nonadherent, which can be cultured in the absence of serum (for example), and conform regulatory requirements for the production of viral vaccines for use in humans or animals have been established.
  • the EB66® cell line developed by VALNEVA is a line derived from duck embryonic cells; it has already enabled the development of several viral vaccines.
  • the AGE1.CR® cell lines distributed by ProBioGen come from several cell types, from gallinaceae or humans.
  • the AGE1.CR.plX® line is derived from musk duck cells (Jordan et al., 2009). This very stable line allows the production, on an industrial scale, of vectors from alphavirus and paramyxovirus genomes, as well as for the growth of poxviruses.
  • the present invention relates to the identification of an industrialized immortalized duck cell line allowing the replication of viral vectors derived from hMPV and / or hVRS viruses, in particular the replication of live attenuated viral vaccines derived from a specific viral strain of hMPV .
  • the present invention relates to the identification of an "industrializable" cell line which allows the replication of live attenuated viral vaccines intended to prevent infections by hMPV and / or hVRS.
  • the present invention relates to the use of the immortalized cell line ECACC 09070703, deposited with the European Collection of Cell Cultures (ECACC, Salisbury, United Kingdom) under the number 09070703 on July 7, 2009, for the production of a viral vaccine consisting of an attenuated strain derived from a human metapneumovirus.
  • Said viral vaccine may in particular be an attenuated strain derived from a human metapneumovirus comprising the genomic sequence represented by the sequence SEQ ID NO. 1.
  • said viral vaccine is an attenuated viral strain which has been genetically modified by the introduction of at least one exogenous gene, in particular a gene coding for an antigen derived from the hVRS virus, such as the fusion protein F by example.
  • the present invention also relates to a process for the production of a viral vaccine constituted by an attenuated strain derived from a human metapneumovirus, comprising the following steps:
  • step (a) Culture of said infected cells in step (a) for a period of between 2 and 14 days, in a suitable medium;
  • the present invention also relates to a viral vaccine as obtained by the method described above, as well as a pharmaceutical composition comprising said viral vaccine, and at least one pharmaceutically acceptable vehicle. According to another aspect, the present invention relates to said viral vaccine or to said pharmaceutical composition, for their use as a medicament.
  • the present invention relates to said viral vaccine or to said pharmaceutical composition, for their use in the prevention or treatment of viral infections, in particular infections by pneumovirus, and more particularly by human metapneumovirus and / or human respiratory syncytial virus.
  • the present invention also relates to a kit for implementing the process for producing a viral vaccine, comprising at least:
  • the immortalized cell line ECACC 09070703;
  • Figure 1 Replicative capacity of wild viral strain C-85473 in DuckCelt®-T17 cells, in comparison with the replicative capacities of wild strains CAN98-75, CAN97-82 and CAN99-81. The kinetics are stopped ( * ) when more than 50% of the cells are dead.
  • FIG. 1 a Monitoring of the quantity of cells according to the days post-viral infection
  • FIG. 1b Monitoring of the viral titer (TCID50 / ml) according to the days post-viral infection
  • FIG. 2a Cell growth after infection. Mock cells were not infected.
  • FIG. 2b Infectivity of the recombinant viruses C-85473 WT (GFP), ASH-C-85473 (GFP) and AG- C-85473 (GFP). The percentage of infected cells is evaluated by flow cytometry (detection of the expression of GFP expressed by these recombinant viruses) during the 14 days of viral kinetics.
  • FIG. 2c Viral replication of the recombinant viruses C-85473 WT (GFP), ASH- C-
  • FIG. 3a A cell mat of LLC-MK2 cells (left) and healthy reconstituted human respiratory epithelia MucilAir TM (right) were infected with the recombinant hMPV virus ASH-C-85473 at MOI (multiplicity of infection) 0.01 and 0.1, respectively. The photos were taken after 3, 5, 7, 12 and 17 days post-infection for the respiratory epithelium.
  • FIG. 3b A cell mat of LLC-MK2 cells (left) and healthy reconstituted human respiratory epithelia MucilAir TM (right) were infected with the recombinant hMPV virus AG-C-85473 at MOI (multiplicity of infection). 0.1 and 0.65, respectively. The photos were taken after 3, 5, 7, 12 and 17 days post-infection for the respiratory epithelium.
  • FIG. 3c The viral secretion at the apical pole of the infected epithelia was evaluated by RT-qPCR (number of copies of the viral gene N) from washings on the apical surface carried out on days 5, 7, 12 and 17 post-infection.
  • the viral replication of the attenuated recombinant viruses ASH-C-85473 and AG-C-85473 was compared with that of a wild-type recombinant virus C-85473 produced in DuckCelt®-T17 cells.
  • the detection threshold by RT-qPCR is 10 copies of viral N gene.
  • FIG. 3d Viral replication within infected epithelia was evaluated by RT-qPCR (number of copies of viral gene N) from lysates of epithelium to 17 th day post-infection.
  • the viral replication of the attenuated recombinant viruses ASH-C-85473 and AG-C-85473 was compared with that of a wild recombinant virus WT C-85473 produced in DuckCelt®-T17 cells.
  • the detection threshold by
  • RT-qPCR is 10 1 copies of viral N gene.
  • FIG. 4 BALB / c mice from 4 to 6 weeks of age were infected intranasally with 5 ⁇ 10 5 TCID 50 of the vaccine candidates ASH-C-85473 or AG-C-
  • the present invention relates to the use of the immortalized cell line ECACC 09070703, deposited on July 7, 2009 with the European Collection of Cell Cultures (ECACC, Salisbury, United Kingdom) under the number 09070703, for the production of a viral vaccine consisting of an attenuated viral strain derived from a human metapneumovirus.
  • the present invention relates to a new use of the DuckCelt®-T17 cell line, deposited with the European Collection of Cell Cultures (ECACC) under the access number 09070703, and previously described in the literature, in particular in applications WO 2007/077256, WO 2009/004016 and WO 2012/001075.
  • ECACC European Collection of Cell Cultures
  • the term “immortalized cell line” designates cells capable of growing in culture in vitro during at least 35 subcultures (dilution of the cells in a new culture medium), without losing their functional characteristics.
  • the cell lines described in WO 2012/001075, deposited with the ECACC under the numbers 09070701, 09070702 and 09070703 originate from duck embryonic cells (cairina moschata), and have been immortalized by introduction of the following nucleotide sequences:
  • dTERT duck telomerase reverse transcriptase
  • viruses such as poxviruses, adenoviruses, retroviruses, herpes viruses and influenza viruses.
  • Attenuated viral strains of human metapneumovirus Significant research is underway to produce a viral vaccine to prevent and / or treat infections with human metapneumorvirus and / or respiratory syncytial virus.
  • Attenuated viral strains derived from human metapneumovirus virus have been prepared and offered as vaccines.
  • the strain NL 00-1 belonging to the genotype A1
  • CAN 97-83 strain belonging to genotype A2
  • CAN 98-75 strain belonging to genotype B2.
  • a virus and "a viral strain” are used interchangeably to designate a particular viral strain, as identified previously.
  • derived strain means a recombinant viral strain obtained by the introduction of genetic modifications into the genome of a viral strain called "original strain".
  • the original strain is advantageously a wild strain, for example a clinical isolate.
  • the virulence of a viral strain corresponds to the degree of rapidity of multiplication of a virus in a given organism, therefore its speed of invasion.
  • attenuating virulence we mean reducing the speed at which a virus invades an organism.
  • This attenuation may take the form of a reduction in the replication capacities of the viral strain, a reduction in its capacity for infecting target cells, or even a reduction in the pathology induced by viral infection of the virus. 'organization.
  • Viral strains are considered to be attenuated in vitro when they have a reduced replicative capacity compared to the wild virus (WT), and / or when these viral strains cause the formation of infectious foci, in particular of syncytia (adjacent cells fusing more to viral infection), more restricted.
  • WT wild virus
  • attenuated viral strains replicate at a lower maximum titer and / or induce a less severe pathology (in terms of weight loss or inflammatory profile or histopathological damage) than the wild viral strain.
  • Attenuated viral strain is meant, within the meaning of the invention, a recombinant virus whose virulence is reduced compared to that of the original viral strain, that is to say less than that of the original viral strain.
  • tests in vitro, ex vivo or in vivo can be carried out, such as for example tests of replicative capacity in vitro (measured by viral titration TCID50 / ml or quantification of viral genome by quantitative PCR ), monitoring by microscopic observation of the evolution of cytopathic effects in vitro and ex vivo (in 3D model of human respiratory epithelium reconstituted and cultured at the air-liquid interface for example), or monitoring clinical signs of pathology and measurement of pulmonary viral titers in an in vivo infection model.
  • Tables 1, 2 and 3 below list the different approaches under development to obtain live attenuated vaccines from wild-type hMPV strains.
  • Table 1 List of candidate live attenuated vaccines based on a strain of hMPV virus presenting one or more mutations, developed or under development
  • V indicates that the cells used are susceptible / permissive to viral infection by said viral strain.
  • M Mouse
  • H hamster
  • CR Cotton Rat
  • CM Cynomolgus Macaque
  • AGM African Green Monkey
  • Ch Chimpanzee
  • Rh Rh for Rhesus Monkey
  • SCID Severe Combinée! ImmunoDeficiency.
  • aa denote amino acids
  • aa172 denotes the amino acid at position 172 in the protein sequence.
  • Table 2 List of live attenuated vaccine candidates developed or in development, comprising a strain of hMPV virus having a complete deletion of at least one gene
  • TM transmembrane domain
  • PIV Parainfluenza virus
  • SeV Sendai virus.
  • the international application WO 2005/014626 relates to several strains of hMPV virus, designated by the following names: CAN 97-83, CAN 98-75 and HMPV 00-1.
  • This application describes a recombinant hMPV virus strain, designated CAN 97-83, genetically modified to reduce its virulence.
  • the proposed modifications relate in particular to the total deletion of the genes coding for the G and / or SH proteins.
  • US Patent 8,841,433 further describes other isolated hMPV strains and their use for the preparation of vaccines.
  • attenuated strains derived from the clinical strain C-85473 of human metapneumovirus, comprising the genomic sequence represented by the sequence SEQ ID NO. 1 have been described and proposed as vaccine candidates.
  • These attenuated strains comprise one or more genetic modifications of said sequence SEQ ID NO.1, in particular the inactivation of the gene coding for the SH protein and / or of the gene coding for the G protein of said strain of metapneumovirus.
  • Attenuated viral strains derived from human metapneumovirus are candidate vaccines which are capable of being developed industrially to produce, on a large scale, vaccines intended to be administered to numerous patients, for a preventive and / or therapeutic aim.
  • EB66® and AGE1.CR.plX® did not allow sufficient replication of different viral strains derived from human metapneumovirus.
  • the present invention aims to meet this need, by having identified an immortalized cell line, having functional characteristics suitable for production of viruses on an industrial scale, for the replication of such attenuated strains derived from human metapneumovirus.
  • said attenuated strain has been genetically modified by inactivation of the gene coding for the SH protein and / or of the gene coding for the G protein of metapneumovirus.
  • Genetic modifications designate, within the meaning of the invention, all modifications of an original nucleotide sequence such as the deletion of one or more nucleotides, the addition of one or more nucleotides, and the replacement of one or more nucleotides. These modifications include in particular all the modifications making it possible to shift the genetic reading frame, or to introduce a stop codon in the middle of a coding sequence.
  • the inactivation of a gene designates the fact that this gene is modified so that the gene product is no longer expressed, or expressed in a non-active form, or expressed in an amount low that the activity of this protein is nonexistent.
  • This inactivation of a gene can be carried out by any technique well known to those skilled in the art.
  • the inactivation of a gene can be obtained by the introduction of a point mutation in the gene, by the partial or total deletion of the coding sequences of the gene, or by modification of the promoter of the gene.
  • Attenuated viral strains of human metapneumoviruses have been obtained by deletion of the genes coding for the accessory proteins SH, G and / or M2-2 (see Table 2).
  • SH protein is a type II membrane protein, whose functions are not yet fully characterized.
  • the deletion of the gene coding for the SH protein generates a recombinant virus capable of reproducing in vitro, and the virulence of which is attenuated in the upper respiratory tract of mice, but not in the lower part of said tract ( Bukreyev et al., 1997).
  • the functions of the SH protein are still being evaluated.
  • Protein G is also a type II membrane protein, its C-terminal end being outside the cell. This protein is not essential for the assembly of viral constituents, and for replication in vitro.
  • the deletion of the gene encoding this protein has been shown to attenuate the virulence of the strain during infection of the respiratory tract of mice (Teng et al., 2001).
  • the functions of the G protein are still being evaluated.
  • the attenuated viral strain is characterized in that the genetic modifications include the inactivation of the two genes coding for the G protein and the SH protein.
  • the inactivation of the two genes corresponds to the complete deletion of one or the other or of the two genes coding for the G and SH proteins.
  • said attenuated strain has been genetically modified by the introduction of at least one exogenous gene.
  • This exogenous gene could in particular be a gene coding for a viral antigen.
  • viral antigen means a protein element or of another nature, expressed by a virus, than the immunological system of an individual. recognizes as foreign and which provokes an immune response in said individual, in particular the production of specific antibodies.
  • the viral antigens may in particular be selected from the antigens expressed by at least one influenza virus, or by at least one virus of the pneumovirus family, such as the hVRS virus, or by at least one virus of the Paramyxoviridae family, such than the parainfluenza virus.
  • said viral antigen can be chosen from all or part of the F protein of the hVRS virus, and all or part of the hemagglutinin of the influenza or parainfluenza viruses.
  • said viral antigen is the F protein of the hVRS virus, in its stabilized pre-fusion conformation as described in the article (Krarup A et al. 2015).
  • Such an attenuated viral strain further comprising an exogenous viral antigen will, when administered to a patient, generate a multiple immune response, both against the expressed exogenous viral antigen and against the hMPV virus.
  • Such a strain making it possible to obtain a combined immune response against several viruses, following a single administration, is very advantageous.
  • said attenuated strain is derived from a human metapneumovirus comprising the genomic sequence represented by the sequence SEQ ID NO. 1.
  • said attenuated strain is derived from a human metapneumovirus viral strain, named C-85473, which was isolated from a patient sample in Canada. This strain belongs to the A1 subgroup of metapneumoviruses.
  • the C-85473 strain is characterized by large fusogenic capacities, allowing it to penetrate into target cells at a high frequency and / or a high degree of infection (Dubois et al., 2017).
  • the large fusogenic capacity of this strain makes it possible to generate syncytia, i.e. giant multinucleated cells, particularly large, made up of a very large number of cell nuclei.
  • the attenuated viral strain is derived from this strain C-85473 comprising the genomic sequence represented by the sequence SEQ ID NO. 1.
  • the genetic modifications introduced into this strain C-85473 to obtain a so-called “derivative of” strain are intended to attenuate the virulence of said original strain, and not to modify the identity of its genome.
  • the peptide sequence of the F protein of the original rC-85473 strain is not modified, and therefore has the same peptide sequence as the original strain.
  • the attenuated viral strain is chosen from:
  • a viral strain illustrating the implementation (i) is in particular the strain used in the examples of the present application, comprising the nucleotide sequence as shown in SEQ ID NO. 2.
  • a viral strain illustrating implementation (ii) is in particular the strain used in the examples of the present application, comprising the nucleotide sequence as shown in SEQ ID NO. 3.
  • the nucleotide sequence of the attenuated viral strain C-85473 can be, moreover, genetically modified by the introduction of at least one exogenous gene.
  • the attenuated viral strain C-85473 has a genomic sequence which comprises at least one exogenous gene.
  • This exogenous gene could in particular be a gene coding for a viral antigen.
  • Said viral antigen may in particular be selected from the antigens expressed by at least one influenza virus, or by at least one virus of the family of Pneumoviridae, such as the hRSV virus, or by at least one virus of the Paramyxoviridae family, such as the parainfluenza virus.
  • said viral antigen may be chosen from all or part of the protein F of the hRSV virus, and all or part of the hemagglutinin of the influenza or parainfluenza viruses.
  • said viral antigen is the F protein of the hVRS virus, preferably in its stabilized pre-fusion conformation as described in the article (Krarup A et al., 2015).
  • the attenuated viral strains used in the implementation of the present invention can come from various origins.
  • the attenuated viral strain may have been isolated from a patient suffering from a viral infection by pneumovirus, in particular by an hMPV or an hVRS.
  • certain infectious viral strains can exhibit a spontaneously attenuated character.
  • the attenuated viral strain may also have been genetically modified, from an unattenuated viral strain.
  • the attenuated viral strain can be obtained by reproduction of said virus on cells in culture. Frozen samples of the infectious viral particles thus produced may in particular be supplied by academic laboratories or hospitals.
  • the attenuated viral strain can be obtained from DNA sequences using reverse genetic technology, described in particular in the articles (Biacchesi et al., 2004) and (Aerts et al., 2015 ).
  • the principle of this technology which allows the production of recombinant hMPV viruses, is based for example on the use of a hamster kidney cell line (BHK-21) modified to constitutively express the RNA polymerase of bacteriophage T7 (BHK cells -T7 or BSR-T7 / 5).
  • the genomic elements are divided into five plasmid elements: a plasmid coding for the antigenome of the hMPV virus and 4 “satellite” plasmids, coding for the viral proteins of the transcription machinery (L, P, N and M2-1).
  • RNA strand corresponding to the viral genomic strand is transcribed by T7polymerase from its promoter.
  • RNA-dependent RNA polymerase RdRP
  • This functional viral polymerase thus transcribes genomic RNA into viral mRNA and then replicates it into new viral genomic RNA molecules, via transcription of template strands.
  • the translation and assembly of viral proteins with genomic RNA thus allows budding of infectious hMPV particles from the cytoplasmic membrane of transfected BHK-T7 cells. Then, the amplification of the recombinant viruses is allowed thanks to the addition in co-culture of LLC-MK2 cells (ATCC CCL-7), permissive to infection.
  • the present invention relates to a method for producing a viral vaccine as defined above, comprising the following steps:
  • step (a) Culture of said cells infected in step (a) for a period of between 2 and 14 days in a suitable medium;
  • the attenuated viral strain used in step (a) will have been obtained in particular by one of the technologies described above.
  • this process may include additional steps, optional and not indicated here. Furthermore, according to a particular implementation, this process could consist exactly of the three successive steps (a), (b) and (c) mentioned above.
  • the infection step (a) will be carried out under appropriate conditions, such as for example under the following conditions:
  • the infection medium may be the OptiPRO TM SFM culture medium (Gibco TM) suitable for the DuckCelt®-T17 cell line and supplemented with 4mM L-Glutamine, 0.1% to 0.5% of Pluronic®, and trypsin from 0.1 pg / ml to 3pg / ml of final volume. Trypsin is supplemented in the middle during infection but also every 2 to 3 days for the duration of viral production;
  • the cell density of the cells will be between 0.5 ⁇ 10 6 and 5 ⁇ 10 6 cells / ml;
  • infection with the attenuated viral strain will be carried out at a multiplicity of infection (MOI) of between 1 and 0.0001.
  • MOI multiplicity of infection
  • Step (b) of culturing the infected cells will be carried out under conditions suitable for normal growth of the cells, well known to those skilled in the art.
  • conditions suitable for normal growth of the cells well known to those skilled in the art.
  • the bioproduction equipment for cells in suspension may be of the TubeSpin® type or a flask of 50 ml to 200 ml on a Kühner type shaking tray incubator, or a 500 ml to 2 liter bioreactor of the miniBioReactor Applikon BioTechnology type, or of the UniVessel type SU Sartorius Stedim Biotech; and the temperature of the culture medium will be between 33 and 37 ° C; the pH between 7 and 7.4; agitation between 100 and 200rpm and the oxygen content between 40 and 60%.
  • the cell culture stage can last from 2 to 14 days, depending on cell growth and the replicative capacities of the virus.
  • the culture step may in particular be carried out for a period of 3 to 12 days, or from 4 to 10 days, or again from 5 to 9 days, or from 6 to 8 days.
  • Stage (c) of harvesting the infectious viral particles will be carried out by any technique well known to those skilled in the art, such as clarification of the production culture medium, followed by purification, concentration and quantification stages of the viral particles .
  • the present invention relates to a viral vaccine capable of being obtained by the method described above.
  • Said viral vaccine consists of infectious viral particles collected in step (c) of the method described.
  • the present invention relates to a viral vaccine obtained by the method described above.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising said viral vaccine, and at least one pharmaceutically acceptable vehicle.
  • the term “pharmaceutically acceptable vehicle” means vehicles or excipients, that is to say “inactive” compounds, having no therapeutic properties. These vehicles or excipients can be administered to an individual or an animal without risk of significant deleterious effects or unhealthy undesirable effects.
  • compositions may be present in said composition: for example, adjuvants and / or excipients.
  • composition according to the invention comprises at least one effective amount of the viral vaccine.
  • an amount of attenuated viral strain sufficient to trigger an immune reaction in the organism to which it is administered.
  • the present pharmaceutical composition can also be designated as being a vaccine composition.
  • compositions according to the present invention are especially suitable for oral, sublingual, or inhalation administration.
  • the pharmaceutical composition according to the invention is suitable for administration by inhalation, that is to say by the nasal and / or buccal routes.
  • Inhalation refers to absorption through the respiratory tract. It is in particular a method of absorption of compounds for therapeutic purposes, of certain substances in the form of gases, micro-droplets or powder in suspension.
  • compositions are in the form of powders
  • administration by nebulization when the compositions are in the form of aerosols (suspensions) or in the form of solutions, for example aqueous solutions, pressurized.
  • a nebulizer or a sprayer will then be recommended for administering the pharmaceutical composition.
  • the pharmaceutical form of the pharmaceutical composition considered here is therefore advantageously chosen from: a powder, an aqueous suspension of droplets or a solution under pressure.
  • the pharmaceutical composition according to the invention is suitable for administration by the nasal route, in particular by inhalation.
  • composition can be used as a preventive vaccine, that is to say intended to stimulate a specific immune response before infection of an organism by a pathogenic virus.
  • composition can also be used as a therapeutic vaccine, that is to say intended to stimulate a specific immune response concomitantly with the infection of an organism by said pathogenic virus.
  • the present invention also relates to the viral vaccine as described above, or to the pharmaceutical composition as described, for their use as a medicament, in other words for their therapeutic use.
  • this viral vaccine or this pharmaceutical composition will be used in therapy for the treatment and / or prevention of viral infections.
  • Treatment of viral infections means fighting a virus infection in an organism. The goal is to obtain a decrease in the rate of viral infection (infectious titer) in the body, and preferably to obtain a complete eradication of the virus from the body.
  • treatment also refers to the action of alleviating the symptoms associated with viral infection (respiratory syndrome, kidney failure, fever, etc.).
  • prevention of viral infections designates preventing, or at least reducing the risk of an infection in an organism. Thanks to this preventive action, the cells of said organism become less permissive to viral infection, and are therefore more resistant to infection by said virus. In addition, the organism will advantageously have developed specific immune cells, allowing a specific fight against the aforementioned virus, thus limiting its entry into the cells of the body.
  • the invention relates to the viral vaccine or the pharmaceutical composition as described above, for their use in the prevention of viral infections, in particular infections by pneumovirus, and in particular by human metapneumovirus and / or human respiratory syncytial virus.
  • said viral vaccine or said pharmaceutical composition is used in the prevention of infections by pneumoviruses.
  • said viral vaccine or said pharmaceutical composition is used in the prevention of infections with a human metapneumovirus.
  • said viral vaccine or said pharmaceutical composition is used in the prevention of infections by an orthopneumovirus, in particular by the human respiratory syncytial virus.
  • the invention relates to the viral vaccine or the pharmaceutical composition as described above, for their use in the treatment of viral infections, in particular infections by pneumovirus, and more particularly by human metapneumovirus and / or respiratory virus human syncytial.
  • said viral vaccine or pharmaceutical composition comprising it may be used, in certain cases and under certain conditions, in a therapeutic approach, in individuals already infected with one of these viruses, in particular in adult individuals.
  • the present invention also relates to a method for preventing a viral infection in humans, in particular an infection with pneumoviruses, more particularly with a human metapneumovirus and / or with a human respiratory syncytial virus, comprising administration to individuals susceptible to be infected with such a virus with an effective amount of a viral vaccine as described above, or a pharmaceutical composition comprising it.
  • Said vaccine or said composition for their use in the prevention and / or treatment of viral infections are intended for all types of individuals, both newborns and elderly adults.
  • said vaccine or said composition for their use in the prevention and / or treatment of viral infections are intended for pediatric use, that is to say are intended to be administered to a pediatric population.
  • a pediatric population designates a population of individuals made up of individuals aged less than 18 years, and more specifically young children aged less than 5 years, and infants.
  • viruses of the Pneumoviridae family mainly infect these individuals, who tend to exhibit so-called "naive" immunity, and therefore less strong, than older individuals.
  • kits for implementing the process for preparing a viral vaccine comprising:
  • the immortalized cell line ECACC 09070703;
  • An attenuated viral strain derived from a human metapneumovirus comprising the genomic sequence represented by the sequence SEQ ID NO. 1.
  • Said attenuated viral strain may in particular have been genetically modified, in particular by inactivation of the gene coding for the SH protein and / or of the gene coding for the G protein of said metapneumovirus strain.
  • said attenuated viral strain may have a genomic sequence which comprises at least one exogenous gene.
  • This exogenous gene may in particular be a gene coding for a viral antigen originating from another virus, such as for example all or part of the protein F of the hRSV virus, and / or all or part of the hemagglutinin of the influenza or parainfluenza viruses .
  • said viral strain will in particular be one of the strains presented in the examples of the present application:
  • the viral strain comprising the nucleotide sequence as represented in SEQ ID NO. 2, optionally further comprising at least one exogenous gene; or
  • the viral strain comprising the nucleotide sequence as represented in SEQ ID NO. 3, optionally further comprising at least one exogenous gene.
  • This kit may also include other elements, such as for example culture medium suitable for the growth of the cell line, and / or a manual specifying the ideal conditions for the preparation of the live attenuated viral vaccine.
  • Example 1 Use of the DuckCelt®-T17 Cell Line for the Replication of Wild Viral Strains of Subgroup A1 (C-85473 and CAN99-81), of Subgroup B1 (CAN97-82) and of Subgroup B2 (CAN98-75)
  • DuckCelt®-T17 cells are cultured in OptiPro + L-glutamine 4mM final medium in TubeSpin 50ml in Kuhner shaker at a speed of 175 rpm, at 37 ° C with 5% C02 and 85% hygrometry, and diluted to 1 x 10 6 cells / ml in 10 ml of medium. They were infected at a multiplicity of infection (MOI) of 0.01 by wild viral strains (non-GFP) of the A1 subgroup (C-85473 and CAN99-81), of the B1 subgroup (CAN97-82 ) and of subgroup B2 (CAN98-75) in the presence of trypsin (T6763 Sigma) at
  • MOI multiplicity of infection
  • Viral production is measured by titration of the number of infectious particles per ml in the culture medium (expressed in TCID50 / ml) from samples taken every 2 to 3 days up to 14 days post-infection. The results are presented in Figure 1b.
  • the kinetics of viral replication are stopped when cell death reaches more than 50%, that is to say 8 days post-infection for the viral strain C-85473 and 14 days post infection for the viral strains CAN99-81, CAN97-82 and CAN98 -75.
  • the CAN98-75 virus demonstrates a low viral production from 4 to 9 days post-infection while the CAN99-81 and CAN97-82 viruses are detectable at levels below the initial inoculum or below the detection thresholds up to 14 days post infection.
  • the viral strain C-85473 has a replication capacity on DuckCelt®-T17 cells very significantly greater than that of other hMPV viral strains.
  • the cell death rate observed from 8 days post-infection indicates that the infection capacities of this strain on this cell line are significant.
  • Example 2 Use of the DuckCelt®-T17 cell line for the replication of the wild strain C-85473 WT, which is recombinant because it expresses with the Green Fluorescent Protein (GFP), and of the recombinant viral strains ASH-C-85473 (GFP) and AG- C- 85473 (GFP).
  • the viral strains used in this example have the following genomic sequences:
  • DuckCelt®-T17 cells are maintained in culture in OptiPro + L-glutamine 4mM final medium in 50ml TubeSpin in Kuhner shaker at a speed of 175 rpm, at 37 ° C with 5% CO2 and 85% humidity.
  • the cells are diluted to 1 ⁇ 10 6 cells / ml in 10 ml of culture medium and then are infected with recombinant wild hMPV viruses (C-85473 WT), or deleted from the genomic sequence coding for the SH protein ( ASH-C-85473) or deleted from the genomic sequence coding for protein G (AG-C-85473), at a multiplicity of infection (MOI) of 0.01 in the presence of trypsin (T6763 Sigma) at 0.5pg / ml.
  • the "Mock" cells are cells which have not been infected and constitute the negative control of the experiment.
  • the kinetics of viral replication are stopped when cell death reaches more than 50%, that is to say after 14 days on average.
  • Viral production is measured by titration of the number of infectious particles per ml of culture medium (expressed in TCID50 / ml) from samples taken every 2 to 3 days during the 14 days of kinetics. The results obtained are presented in FIG. 2C.
  • the peak of viral production for the three viral strains is 11 days post infection.
  • the results indicate that the DuckCelt®-T17 line is "permissive", that it can be infected with the recombinant viruses C-85473 and in particular live attenuated viruses ASH-C-85473 and AG-C-85473, and allow the production of viral particles.
  • This example relates to the measurement of the replicative capacities of the recombinant viruses ASH-C-85473 and AG-C-85473 produced on DuckCelt®-T17 cells, in comparison with a recombinant virus C-85473 WT:
  • a cell mat of LLC-MK2 cells and healthy reconstituted human respiratory epithelia MucilAir TM were infected with:
  • RT-qPCR number of copies of viral gene N
  • the results obtained indicate that the attenuated live viruses ASH-C-85473 and AG-C-85473 produced on DuckCelt®-T17 cells are functional and retain their capacity to infect LLC-MK2 cells and in particular the 3D model of reconstituted human pulmonary epithelium (MucilAir TM, Epithelix).
  • Example 4 The recombinant viruses ASH-C-85473 and AG-C-85473 produced on DuckCelt®-T17 cells retain their attenuated character in vivo.
  • mice aged 4 to 6 weeks were infected intranasally with:
  • mice infected with the live attenuated viruses ASH-C-85473 or AG-C- 85473 produced on DuckCelt®-T17 cells show no sign of pathology or mortality, thus demonstrating the attenuation character of these viruses produced on DuckCelt®-T17 cells.
  • Petiot E Proust A, Traversier A, Durous L, Dappozze F, Gras M, Guillard C, Balloul JM, Rosa-Calatrava M. Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17. Vaccinated. 2018 May 24; 36 (22): 3101 -31 1 1.
  • Herfst S de Graaf M, Schrauwen EJ, Sprong L, Hussain K, van den Hoogen BG, Osterhaus AD, Fouchier RA. Generation of temperature-sensitive human metapneumovirus strains that provide protective immunity in hamsters. J Gen Virol. 2008 Jul; 89 (Pt 7): 1553-62.
  • HMPV human metapneumovirus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • General Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The invention relates to the use of the immortalised cell line ECACC 09070703, filed on 7 July 2009 with the European Collection Of Cell Cultures (ECACC, Salisbury, United Kingdom) under the number 09070703, for the production of a viral vaccine consisting of an attenuated strain derived from a human metapneumovirus.

Description

PRODUCTION DE VACCINS VIRAUX SUR UNE LIGNEE CELLULAIRE AVIAIRE PRODUCTION OF VIRAL VACCINES ON AN AVIAN CELL LINE
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
La présente invention concerne l'utilisation d’une lignée cellulaire aviaire immortalisée pour la production d’un virus de type pneumovirus, et de vaccins viraux constitués de souches virales atténuées vivantes. The present invention relates to the use of an immortalized avian cell line for the production of a pneumovirus type virus, and of viral vaccines consisting of live attenuated viral strains.
ETAT DE LA TECHNIQUE STATE OF THE ART
Les pneumovirus Pneumoviruses
Les pneumovirus sont des virus responsables d’infections aiguës des voies respiratoires telles que des bronchiolites, des bronchites ou des pneumonies, principalement chez les populations à risques que sont les jeunes enfants de moins de 5 ans, les personnes âgées et les personnes immunodéprimées. Pneumoviruses are viruses responsible for acute respiratory tract infections such as bronchiolitis, bronchitis or pneumonia, mainly in the at-risk populations of young children under 5, the elderly and the immunocompromised.
La famille des Pneumoviridae, dont les membres étaient précédemment inclus dans la famille des Paramyxoviridae, comprend des virus enveloppés à ARN simple brin de polarité négative, dont : The family Pneumoviridae, whose members were previously included in the family Paramyxoviridae, includes enveloped viruses with negative-polarity single-stranded RNA, including:
le virus respiratoire syncytial humain (hVRS), représentant de la sous-famille des orthopneumovirus, et human respiratory syncytial virus (hVRS), representative of the orthopneumovirus subfamily, and
le métapneumovirus humain (hMPV), représentant de la sous-famille des metapneumovirus (selon le Rapport du Comité International sur la Taxonomie des Virus (ICTV)). human metapneumovirus (hMPV), representative of the metapneumovirus subfamily (according to the Report of the International Committee on Virus Taxonomy (ICTV)).
Il n’y a aujourd’hui aucun vaccin disponible sur le marché, ni traitement spécifique et efficace, contre ces virus hMPV et/ou hVRS. There is currently no vaccine available on the market, nor specific and effective treatment, against these hMPV and / or hVRS viruses.
Le virus hVRS est la cause la plus fréquente d'infections respiratoires des jeunes enfants. Très contagieux, ce virus infecte principalement les nourrissons âgés de moins de deux ans. The hVRS virus is the most common cause of respiratory infections in young children. Very contagious, this virus mainly infects infants under two years of age.
Le virus hMPV est également une des causes majeures de bronchiolite pédiatrique, responsable de 5 à 15% des hospitalisations imputables aux infections des voies respiratoires basses aiguës chez les jeunes enfants. L’âge moyen des enfants hospitalisés des suites d’une infection par le hMPV est de 6 à 12 mois, soit plus tard que celle provoquée par le hVRS, qui survient principalement entre 0 et 3 mois. The hMPV virus is also one of the major causes of pediatric bronchiolitis, responsible for 5 to 15% of hospitalizations attributable to acute lower respiratory tract infections in young children. The average age of children hospitalized as a result of hMPV infection is 6 to 12 months, later than that caused by hVRS, which mainly occurs between 0 and 3 months.
Ces deux virus sont également les agents étiologiques responsables de 12 à 15% des consultations pour infections des voies respiratoires hautes et basses des enfants non-hospitalisés. En termes de traitement, la ribavirine, non exempt d’effets indésirables, ou encore les immunoglobulines intraveineuses, très onéreuses, peuvent être utilisées ponctuellement pour le traitement de cas graves d’infections par hMPV, tout comme par hVRS. These two viruses are also the etiological agents responsible for 12 to 15% of consultations for upper and lower respiratory tract infections in non-hospitalized children. In terms of treatment, ribavirin, which is not free from adverse effects, or very expensive intravenous immunoglobulins, can be used occasionally for the treatment of severe cases of hMPV infections, as well as hVRS.
D’autres types de traitements sont en cours de développement et/ou de caractérisation tels que les peptides inhibiteurs de fusion, les glycosaminoglycanes sulfate, les ARN inhibiteurs et certains immunomodulateurs. Other types of treatment are under development and / or characterization such as fusion inhibitor peptides, glycosaminoglycans sulfate, inhibitory RNAs and certain immunomodulators.
La démarche clinique usuelle et largement privilégiée aujourd’hui consiste à traiter surtout les symptômes de l’infection, en mettant les patients sous assistance respiratoire (administration d’oxygène ou ventilation mécanisée) et en leur administrant des bronchodilatateurs, corticostéroides et/ou antibiotiques pour prévenir et/ou traiter les surinfections bactériennes. The usual clinical approach, widely favored today, consists mainly of treating the symptoms of the infection, by putting patients on respiratory assistance (administration of oxygen or mechanized ventilation) and by administering bronchodilators, corticosteroids and / or antibiotics for them. prevent and / or treat secondary bacterial infections.
Stratégies de vaccination développées pour la prévention des infections à pneumovirus Vaccination strategies developed for the prevention of pneumovirus infections
En ce qui concerne la vaccination, les principales populations ciblées par le hMPV étant les nourrissons, les jeunes enfants et les personnes âgées, il est crucial de pouvoir disposer de vaccins efficaces et sécuritaires, afin de réduire les atteintes respiratoires sévères qui ont un impact dramatique dans ces tranches d’âge. Regarding vaccination, the main populations targeted by hMPV being infants, young children and the elderly, it is crucial to have effective and safe vaccines, in order to reduce severe respiratory infections which have a dramatic impact. in these age groups.
La mise au point de vaccins contre des pneumovirus tels que le hMPV et/ou le hVRS représente donc non seulement un enjeu sanitaire majeur, mais également un réel enjeu socio-économique avec l’objectif de (i) réduire les coûts importants des traitements et d’hospitalisations associés à ces infections, et (ii) diminuer l’utilisation d’antibiotiques dans le contexte des surinfections bactériennes, et ainsi limiter l’émergence de résistances. The development of vaccines against pneumoviruses such as hMPV and / or hVRS therefore represents not only a major health issue, but also a real socio-economic issue with the objective of (i) reducing the significant costs of treatments and hospitalizations associated with these infections, and (ii) reduce the use of antibiotics in the context of secondary bacterial infections, and thus limit the emergence of resistance.
Différentes stratégies vaccinales ont été développées à ce jour (Mazur et al., 2018). Different vaccine strategies have been developed to date (Mazur et al., 2018).
Par exemple, la société Novavax a développé un candidat vaccin « non vivant à nanoparticule ». Ce vaccin est composé de nanoparticules présentant une protéine F du virus hVRS, modifiée génétiquement afin d’augmenter son immunogénicité. Ce candidat vaccin est à destination des femmes enceintes, il serait ainsi utilisé pour générer une immunisation transitoire de l’enfant à naitre in utero. For example, the company Novavax has developed a “non-living nanoparticle” vaccine candidate. This vaccine is made up of nanoparticles with an F protein from the hVRS virus, genetically modified to increase its immunogenicity. This vaccine candidate is intended for pregnant women, it would be used to generate transient immunization of the unborn child in utero.
La société GSK développe également un vaccin à destination des femmes enceintes pour immuniser le foetus in utero, basé sur des antigènes recombinants dérivés de la protéine F du virus hVRS. GSK is also developing a vaccine for pregnant women to immunize the fetus in utero, based on recombinant antigens derived from the F protein of the hVRS virus.
Une autre approche consiste à utiliser des vecteurs viraux non pathogènes, tels que des adénovirus, en leur faisant exprimer des antigènes de pneumovirus. Un candidat vaccin à destination des nouveau-nés, composé d’un adénovirus codant pour 3 antigènes majeurs du pneumovirus (protéines F, N et M2.1 ) est actuellement en cours de développement par la société GSK. Another approach is to use non-pathogenic viral vectors, such as adenoviruses, by making them express pneumovirus antigens. A candidate vaccine for newborns, composed of an adenovirus encoding 3 major pneumovirus antigens (proteins F, N and M2.1) is currently being developed by the company GSK.
Ces approches vaccinales se basent sur l’injection ou l’expression de protéines recombinantes, sous différentes formes. Or, l’inconvénient de ces approches est la faible immunogénicité inhérente à ces protéines, qui par nature n’induisent que peu de réponse immunitaire. L’ajout d’adjuvants potentiellement nocifs, tels que des sels d’aluminium, doit donc être envisagé dans la plupart des cas. These vaccine approaches are based on the injection or expression of recombinant proteins in different forms. However, the disadvantage of these approaches is the low immunogenicity inherent in these proteins, which by nature induce little immune response. Adding potentially harmful adjuvants, such as aluminum salts, should therefore be considered in most cases.
En conséquence, les approches basées sur l’utilisation de vaccins dits « vivants atténués », constitués de souches virales atténuées, sont à privilégier. En effet, les vaccins vivants atténués présentent de nombreux avantages : Consequently, approaches based on the use of so-called “live attenuated” vaccines, made up of attenuated viral strains, are to be preferred. Indeed, live attenuated vaccines have many advantages:
ils peuvent être administrés par voie intra-nasale et mimer la voie d’entrée naturelle des virus sauvages, induisant ainsi une réponse immunitaire assez similaire de celle physiologiquement observée après une infection hMPV et/ou hVRS ; they can be administered intra-nasally and mimic the natural route of entry of wild viruses, thus inducing an immune response quite similar to that physiologically observed after an hMPV and / or hVRS infection;
c’est une stratégie qui n’a jamais été décrite comme étant associée à une réaction inflammatoire exagérée (comme cela peut être observé après administration de vaccins inactivés) ; it is a strategy that has never been described as being associated with an exaggerated inflammatory reaction (as can be seen after administration of inactivated vaccines);
cette stratégie vaccinale ne nécessite par l’ajout d’adjuvants, le vaccin vivant atténué étant par nature suffisamment immunogénique pour générer une réaction immunitaire satisfaisante. this vaccination strategy does not require the addition of adjuvants, the live attenuated vaccine being by nature sufficiently immunogenic to generate a satisfactory immune reaction.
Ces approches sont particulièrement intéressantes pour la vaccination des enfants à partir de 6 mois. These approaches are particularly interesting for the vaccination of children from 6 months.
Difficultés liées à la préparation de vaccins viraux vivants atténués à une échelle industrielle Difficulties in preparing live attenuated viral vaccines on an industrial scale
Ces vaccins viraux sont produits par une étape de réplication virale sur des cellules hôtes du virus, cultivées in vitro. Le choix de ces cellules est primordial : elles doivent être à la fois : These viral vaccines are produced by a step of viral replication on virus host cells, cultured in vitro. The choice of these cells is essential: they must be both:
(i) des cellules hôtes dudit virus, c’est-à-dire permissives vis-à-vis de l’infection par le virus et de la réplication dudit virus, et (i) host cells of said virus, that is to say permissive with respect to the infection by the virus and the replication of said virus, and
(ii) des cellules « industrialisâmes » c’est-à-dire conformes à la réglementation en vigueur pour la production de vaccins à l’échelle industrielle. (ii) “industrialized” cells, that is to say in accordance with the regulations in force for the production of vaccines on an industrial scale.
Il n’y a à ce jour aucune lignée cellulaire industrielle enregistrée qui présente des capacités de permissivité et de production de candidats vaccins vivants atténués contre les infections à pneumovirus. Des lignées cellulaires de laboratoire, dans leur forme « adhérente » en culture, telles que : To date, there is no registered industrial cell line which has the capacity for permissiveness and production of live attenuated vaccine candidates against pneumovirus infections. Laboratory cell lines, in their “adherent” form in culture, such as:
la lignée cellulaire MDCK, une lignée cellulaire canine, the MDCK cell line, a canine cell line,
la lignée cellulaire Vero, une lignée de cellules de rein de singe vert africain, couramment utilisée en culture cellulaire pour tester divers virus, the Vero cell line, an African green monkey kidney cell line, commonly used in cell culture to test various viruses,
la lignée cellulaire PERC6, une lignée cellulaire d’origine humaine, et the PERC6 cell line, a cell line of human origin, and
la lignée cellulaire LLC-MK2, une lignée cellulaire issue de cellules de rein de singe rhésus, disponible à l’ATCC sous le numéro CCL-7, et couramment utilisée pour des tests d’infection par divers virus, the LLC-MK2 cell line, a cell line derived from rhesus monkey kidney cells, available from ATCC under the number CCL-7, and commonly used for tests of infection by various viruses,
ont été utilisées pour le développement expérimental de certains candidats vaccins (voir tableaux 1 à 3) ; toutefois, ces lignées cellulaires adhérentes ne présentaient pas les caractéristiques nécessaires pour être utilisées à une échelle industrielle. have been used for the experimental development of certain vaccine candidates (see Tables 1 to 3); however, these adherent cell lines did not have the characteristics necessary to be used on an industrial scale.
Pour la production des vaccins ayant une réplication de type viral, des lignées cellulaires « industrialisâmes », c’est-à-dire stables (« robustes »), non adhérentes, pouvant être cultivées en absence de sérum (par exemple), et conformes aux exigences règlementaires pour la production de vaccins viraux destinés à être administrés à l’être humain ou aux animaux, ont été établies. For the production of vaccines having a replication of the viral type, “industrialized” cell lines, that is to say stable (“robust”), nonadherent, which can be cultured in the absence of serum (for example), and conform regulatory requirements for the production of viral vaccines for use in humans or animals have been established.
Deux types de lignées cellulaires sont notamment classiquement utilisées : Two types of cell lines are notably conventionally used:
La lignée cellulaire EB66® développée par VALNEVA est une lignée dérivée de cellules embryonnaires de canard ; elle a déjà permis le développement de plusieurs vaccins viraux. The EB66® cell line developed by VALNEVA is a line derived from duck embryonic cells; it has already enabled the development of several viral vaccines.
Les lignées cellulaires AGE1.CR® distribuées par ProBioGen sont issues de plusieurs types cellulaires, issus de gallinacées ou d’humains. En particulier la lignée AGE1.CR.plX® est dérivée de cellules de canard musqué (Jordan et al., 2009). Cette lignée très stable permet la production, à une échelle industrielle, de vecteurs issus de génomes d’alphavirus et de paramyxovirus, ainsi que pour la croissance des poxvirus. The AGE1.CR® cell lines distributed by ProBioGen come from several cell types, from gallinaceae or humans. In particular, the AGE1.CR.plX® line is derived from musk duck cells (Jordan et al., 2009). This very stable line allows the production, on an industrial scale, of vectors from alphavirus and paramyxovirus genomes, as well as for the growth of poxviruses.
Toutefois, à ce jour, la production des virus hVRS et hMPV n’a pu être réalisée sur ces lignées cellulaires établies, bien connues de l’Homme de l’art. However, to date, the production of hVRS and hMPV viruses has not been possible on these established cell lines, well known to those skilled in the art.
La présente invention est relative à l’identification d’une lignée cellulaire de canard immortalisée industrialisable permettant la réplication de vecteurs viraux issus des virus hMPV et/ou hVRS, notamment la réplication de vaccins viraux vivants atténués issus d’une souche virale spécifique de hMPV. EXPOSE DE L'INVENTION The present invention relates to the identification of an industrialized immortalized duck cell line allowing the replication of viral vectors derived from hMPV and / or hVRS viruses, in particular the replication of live attenuated viral vaccines derived from a specific viral strain of hMPV . STATEMENT OF THE INVENTION
A l’heure actuelle, il n’existe pas de vaccins permettant de prévenir les infections par les pneumovirus, responsables d’infections aiguës des voies respiratoires. Ceci est en partie dû au fait que la reproduction de ces virus in vitro est difficile. En particulier, ces virus n’ont pas été décrits comme pouvant se multiplier sur les lignées cellulaires industrialisables connues et bien établies, telles que les lignées EB66® et AGE1.CR®. Currently, there are no vaccines to prevent infections with pneumoviruses, which are responsible for acute respiratory tract infections. This is partly due to the fact that the reproduction of these viruses in vitro is difficult. In particular, these viruses have not been described as being able to multiply on known and well-established industrializable cell lines, such as the EB66® and AGE1.CR® lines.
La présente invention est relative à l’identification d’une lignée cellulaire « industrialisable », qui permet la réplication de vaccins viraux vivants atténués destinés à prévenir les infections par hMPV et/ou hVRS. The present invention relates to the identification of an "industrializable" cell line which allows the replication of live attenuated viral vaccines intended to prevent infections by hMPV and / or hVRS.
Plus spécifiquement, la présente invention concerne l’utilisation de la lignée cellulaire immortalisée ECACC 09070703, déposée auprès de l’European Collection of Cell Cultures (ECACC, Salisbury, Royaume Uni) sous le numéro 09070703 le 7 juillet 2009, pour la production d’un vaccin viral constitué par une souche atténuée dérivée d’un metapneumovirus humain. More specifically, the present invention relates to the use of the immortalized cell line ECACC 09070703, deposited with the European Collection of Cell Cultures (ECACC, Salisbury, United Kingdom) under the number 09070703 on July 7, 2009, for the production of a viral vaccine consisting of an attenuated strain derived from a human metapneumovirus.
Ledit vaccin viral pourra notamment être une souche atténuée dérivée d’un metapneumovirus humain comprenant la séquence génomique représentée par la séquence SEQ ID NO. 1. Said viral vaccine may in particular be an attenuated strain derived from a human metapneumovirus comprising the genomic sequence represented by the sequence SEQ ID NO. 1.
Selon une mise en oeuvre particulière, ledit vaccin viral est une souche virale atténuée qui a été modifiée génétiquement par introduction d’au moins un gène exogène, notamment un gène codant pour un antigène issu du virus hVRS, telle que la protéine de fusion F par exemple. According to a particular implementation, said viral vaccine is an attenuated viral strain which has been genetically modified by the introduction of at least one exogenous gene, in particular a gene coding for an antigen derived from the hVRS virus, such as the fusion protein F by example.
La présente invention est également relative à un procédé de production d’un vaccin viral constitué par une souche atténuée dérivée d’un metapneumovirus humain, comprenant les étapes suivantes : The present invention also relates to a process for the production of a viral vaccine constituted by an attenuated strain derived from a human metapneumovirus, comprising the following steps:
a) Infection de cellules en culture de la lignée déposée auprès de l’ECACC sous le numéro d’accès 09070703, par une souche virale atténuée dérivée d’un metapneumovirus humain ; a) Infection of cells in culture of the line deposited with the ECACC under the access number 09070703, with an attenuated viral strain derived from a human metapneumovirus;
b) Culture desdites cellules infectées à l’étape (a) pendant une durée comprise entre 2 et 14 jours, dans un milieu adapté ; b) Culture of said infected cells in step (a) for a period of between 2 and 14 days, in a suitable medium;
c) Récolte du vaccin viral constitué des particules virales infectieuses de ladite souche virale atténuée produites pendant l’étape (b). c) Harvesting of the viral vaccine consisting of infectious viral particles of said attenuated viral strain produced during step (b).
La présente invention concerne également un vaccin viral tel qu’obtenu par le procédé décrit ci-dessus, ainsi qu’une composition pharmaceutique comprenant ledit vaccin viral, et au moins un véhicule pharmaceutiquement acceptable. Selon un autre aspect, la présente invention est relative audit vaccin viral ou à ladite composition pharmaceutique, pour leur utilisation en tant que médicament. The present invention also relates to a viral vaccine as obtained by the method described above, as well as a pharmaceutical composition comprising said viral vaccine, and at least one pharmaceutically acceptable vehicle. According to another aspect, the present invention relates to said viral vaccine or to said pharmaceutical composition, for their use as a medicament.
Plus spécifiquement, la présente invention est relative audit vaccin viral ou à ladite composition pharmaceutique, pour leur utilisation dans la prévention ou le traitement des infections virales, notamment des infections par pneumovirus, et plus particulièrement par metapneumovirus humain et/ou virus respiratoire syncytial humain. More specifically, the present invention relates to said viral vaccine or to said pharmaceutical composition, for their use in the prevention or treatment of viral infections, in particular infections by pneumovirus, and more particularly by human metapneumovirus and / or human respiratory syncytial virus.
La présente invention concerne également un kit pour la mise en oeuvre du procédé de production d’un vaccin viral, comprenant au moins: The present invention also relates to a kit for implementing the process for producing a viral vaccine, comprising at least:
La lignée cellulaire immortalisée ECACC 09070703 ; et The immortalized cell line ECACC 09070703; and
- Une souche virale atténuée dérivée d’un metapneumovirus humain comprenant la séquence génomique représentée par la séquence SEQ ID NO. 1 , et en particulier une souche virale atténuée comprenant l’une des séquences génomiques représentées en SEQ ID NO. 2 ou NO.3. - An attenuated viral strain derived from a human metapneumovirus comprising the genomic sequence represented by the sequence SEQ ID NO. 1, and in particular an attenuated viral strain comprising one of the genomic sequences represented in SEQ ID NO. 2 or NO.3.
DESCRIPTION DES FIGURES DESCRIPTION OF THE FIGURES
Figure 1. Capacité réplicative de la souche virale sauvage C-85473 en cellules DuckCelt®-T17, en comparaison avec les capacités réplicatives des souches sauvages CAN98-75, CAN97-82 et CAN99-81. La cinétique est arrêtée (*) lorsque plus de 50% des cellules sont mortes. Figure 1. Replicative capacity of wild viral strain C-85473 in DuckCelt®-T17 cells, in comparison with the replicative capacities of wild strains CAN98-75, CAN97-82 and CAN99-81. The kinetics are stopped ( * ) when more than 50% of the cells are dead.
[Fig. 1 a] Suivi de la quantité de cellules en fonction des jours post-infection virale [Fig. 1 a] Monitoring of the quantity of cells according to the days post-viral infection
[Fig. 1 b] Suivi du titre viral (TCID50/ml) en fonction des jours post-infection virale[Fig. 1b] Monitoring of the viral titer (TCID50 / ml) according to the days post-viral infection
Figure 2. Capacités réplicatives des virus recombinants sauvage C-85473 WT (GFP) et atténués ASH- C-85473 (GFP) et AG- C-85473 (GFP) en cellules DuckCelt®-T17. Figure 2. Replicative capacities of the recombinant wild-type viruses C-85473 WT (GFP) and attenuated ASH-C-85473 (GFP) and AG-C-85473 (GFP) in DuckCelt®-T17 cells.
[Fig. 2a] Croissance cellulaire après infection. Les cellules Mock n’ont pas été infectées. [Fig. 2a] Cell growth after infection. Mock cells were not infected.
[Fig. 2b] Infectivité des virus recombinants C-85473 WT (GFP), ASH- C-85473 (GFP) et AG- C-85473 (GFP). Le pourcentage de cellules infectées est évalué par cytométrie de flux (détection de l’expression de GFP exprimée par ces virus recombinants) pendant les 14 jours de la cinétique virale. [Fig. 2b] Infectivity of the recombinant viruses C-85473 WT (GFP), ASH-C-85473 (GFP) and AG- C-85473 (GFP). The percentage of infected cells is evaluated by flow cytometry (detection of the expression of GFP expressed by these recombinant viruses) during the 14 days of viral kinetics.
[Fig. 2c] Réplication virale des virus recombinants C-85473 WT (GFP), ASH- C- [Fig. 2c] Viral replication of the recombinant viruses C-85473 WT (GFP), ASH- C-
85473 (GFP) et AG- C-85473 (GFP). La production virale est mesurée par titration du nombre de particules infectieuses par ml de milieu de culture (exprimé en TCID50/ml) à partir d’échantillons prélevés tous les 2 à 3 jours pendant les 14 jours de cinétique. Figure 3. Capacités réplicatives en cellules LLC-MK2 et en modèle 3D d’épithélium respiratoire humain reconstitué et cultivé à l’interface air-liquide (MucilAir™) des virus recombinants ASH- C-85473 (GFP) et AG- C-85473 (GFP) produits en cellules DuckCelt®-T17. 85473 (GFP) and AG-C-85473 (GFP). The viral production is measured by titration of the number of infectious particles per ml of culture medium (expressed in TCID 50 / ml) from samples taken every 2 to 3 days during the 14 days of kinetics. Figure 3. Replicative capacities in LLC-MK2 cells and in a 3D model of human respiratory epithelium reconstituted and cultured at the air-liquid interface (MucilAir ™) of the recombinant viruses ASH-C-85473 (GFP) and AG-C-85473 (GFP) produced in DuckCelt®-T17 cells.
[Fig. 3a] Un tapis cellulaire de cellules LLC-MK2 (à gauche) et des épithéliums respiratoires humains reconstitués sains MucilAir™ (à droite) ont été infectés par le virus hMPV recombinant ASH-C-85473 à des MOI (multiplicité d’infection) de 0.01 et de 0.1 , respectivement. Les photos ont été prises après 3, 5, 7, 12 et 17 jours post-infection pour l’épithélium respiratoire. [Fig. 3a] A cell mat of LLC-MK2 cells (left) and healthy reconstituted human respiratory epithelia MucilAir ™ (right) were infected with the recombinant hMPV virus ASH-C-85473 at MOI (multiplicity of infection) 0.01 and 0.1, respectively. The photos were taken after 3, 5, 7, 12 and 17 days post-infection for the respiratory epithelium.
[Fig. 3b] Un tapis cellulaire de cellules LLC-MK2 (à gauche) et des épithéliums respiratoires humains reconstitués sains MucilAir™ (à droite) ont été infectés par le virus hMPV recombinant AG-C-85473 à des MOI (multiplicité d’infection) de 0.1 et de 0.65, respectivement. Les photos ont été prises après 3, 5, 7, 12 et 17 jours post-infection pour l’épithélium respiratoire. [Fig. 3b] A cell mat of LLC-MK2 cells (left) and healthy reconstituted human respiratory epithelia MucilAir ™ (right) were infected with the recombinant hMPV virus AG-C-85473 at MOI (multiplicity of infection). 0.1 and 0.65, respectively. The photos were taken after 3, 5, 7, 12 and 17 days post-infection for the respiratory epithelium.
[Fig. 3c] La sécrétion virale au pôle apical des épithéliums infectés a été évaluée par RT-qPCR (nombre de copies du gène viral N) à partir de lavages en surface apicale réalisés aux jours 5, 7, 12 et 17 post-infection. La réplication virale des virus recombinants atténués ASH- C-85473 et AG- C-85473 a été comparée à celle d’un virus recombinant C-85473 sauvage produit en cellules DuckCelt®-T17. Le seuil de détection par RT-qPCR est à 10 copies de gène viral N. [Fig. 3c] The viral secretion at the apical pole of the infected epithelia was evaluated by RT-qPCR (number of copies of the viral gene N) from washings on the apical surface carried out on days 5, 7, 12 and 17 post-infection. The viral replication of the attenuated recombinant viruses ASH-C-85473 and AG-C-85473 was compared with that of a wild-type recombinant virus C-85473 produced in DuckCelt®-T17 cells. The detection threshold by RT-qPCR is 10 copies of viral N gene.
[Fig. 3d] La réplication virale au sein des épithéliums infectés a été évaluée par RT-qPCR (nombre de copies du gène viral N) à partir de lysats d’épithélium au 17eme jour post-infection. La réplication virale des virus recombinants atténués ASH- C-85473 et AG- C-85473 a été comparée à celle d’un virus recombinant WT C-85473 sauvage produit en cellules DuckCelt®-T17. Le seuil de détection par[Fig. 3d] Viral replication within infected epithelia was evaluated by RT-qPCR (number of copies of viral gene N) from lysates of epithelium to 17 th day post-infection. The viral replication of the attenuated recombinant viruses ASH-C-85473 and AG-C-85473 was compared with that of a wild recombinant virus WT C-85473 produced in DuckCelt®-T17 cells. The detection threshold by
RT-qPCR est à 101 copies de gène viral N. RT-qPCR is 10 1 copies of viral N gene.
Figure 4. Les virus recombinants ASH- C-85473 (GFP) et AG- C-85473 (GFP) produits sur cellules DuckCelt®-T17 conservent leur caractère d’atténuation in vivo. Figure 4. The recombinant ASH-C-85473 (GFP) and AG-C-85473 (GFP) viruses produced on DuckCelt®-T17 cells retain their attenuation character in vivo.
[Fig. 4] Des souris BALB/c de 4 à 6 semaines ont été infectées par voie intranasale avec 5x105 TCID50 des candidats vaccinaux ASH-C-85473 ou AG-C-[Fig. 4] BALB / c mice from 4 to 6 weeks of age were infected intranasally with 5 × 10 5 TCID 50 of the vaccine candidates ASH-C-85473 or AG-C-
85473 produits sur cellules DuckCelt®-T17, ou du milieu de culture (mock) comme contrôle. Un suivi quotidien du poids et de la mortalité des souris infectées a été effectué pendant 9 jours après infection et comparé aux souris non infectées (mock). DESCRIPTION DETAILLEE DE L'INVENTION 85473 produced on DuckCelt®-T17 cells, or culture medium (mock) as a control. Daily monitoring of the weight and mortality of the infected mice was carried out for 9 days after infection and compared with the uninfected mice. DETAILED DESCRIPTION OF THE INVENTION
La présente invention concerne l’utilisation de la lignée cellulaire immortalisée ECACC 09070703, déposée le 7 juillet 2009 auprès de l’European Collection of Cell Cultures (ECACC, Salisbury, Royaume Uni) sous le numéro 09070703, pour la production d’un vaccin viral constitué par une souche virale atténuée dérivée d’un metapneumovirus humain. The present invention relates to the use of the immortalized cell line ECACC 09070703, deposited on July 7, 2009 with the European Collection of Cell Cultures (ECACC, Salisbury, United Kingdom) under the number 09070703, for the production of a viral vaccine consisting of an attenuated viral strain derived from a human metapneumovirus.
Lignée cellulaire de l’ECACC N° 09070703 ECACC cell line N ° 09070703
Ainsi, la présente invention concerne une nouvelle utilisation de la lignée cellulaire DuckCelt®-T17, déposée auprès de l’European Collection of Cell Cultures (ECACC) sous le numéro d’accès 09070703, et préalablement décrite dans la littérature, notamment dans les demandes internationales WO 2007/077256, WO 2009/004016 et WO 2012/001075. Thus, the present invention relates to a new use of the DuckCelt®-T17 cell line, deposited with the European Collection of Cell Cultures (ECACC) under the access number 09070703, and previously described in the literature, in particular in applications WO 2007/077256, WO 2009/004016 and WO 2012/001075.
Ces demandes sont relatives à la préparation de lignées cellulaires aviaires immortalisées, et à leur utilisation pour la reproduction de virus. These requests relate to the preparation of immortalized avian cell lines, and to their use for the reproduction of viruses.
Le terme « lignée cellulaire immortalisée » désigne des cellules capables de croître en culture in vitro pendant au moins 35 repiquages (dilution des cellules dans un nouveau milieu de culture), sans perdre leurs caractéristiques fonctionnelles. The term “immortalized cell line” designates cells capable of growing in culture in vitro during at least 35 subcultures (dilution of the cells in a new culture medium), without losing their functional characteristics.
Brièvement, les lignées cellulaires décrites dans WO 2012/001075, déposées auprès de l’ECACC sous les numéros 09070701 , 09070702 et 09070703 sont issues de cellules embryonnaires de canard ( cairina moschata), et ont été immortalisées par introduction des séquences nucléotidiques suivantes : Briefly, the cell lines described in WO 2012/001075, deposited with the ECACC under the numbers 09070701, 09070702 and 09070703 originate from duck embryonic cells (cairina moschata), and have been immortalized by introduction of the following nucleotide sequences:
- la séquence nucléotidique de la région E1A issue du génome d’un adénovirus, codant pour les ARN 12S et 13S ; et - the nucleotide sequence of the E1A region originating from the genome of an adenovirus, coding for the 12S and 13S RNAs; and
- le gène codant pour la transcriptase reverse télomérase de canard (dTERT). - the gene coding for duck telomerase reverse transcriptase (dTERT).
La destination principale de ces lignées cellulaires est leur utilisation pour la réplication de virus, tels que des poxvirus, adénovirus, rétrovirus, virus de l’herpès et virus influenza. The main destination of these cell lines is their use for the replication of viruses, such as poxviruses, adenoviruses, retroviruses, herpes viruses and influenza viruses.
Récemment, Petiot et ses collaborateurs (Petiot et al., 2018) ont mis en évidence le fait que la lignée cellulaire aviaire DuckCelt®-T17, déposée auprès de l’ECACC sous le numéro 09070703, pouvait être avantageusement utilisée pour la production de particules infectieuses de virus Influenza de différentes origines (humaine, aviaire, porcine). Recently, Petiot and his collaborators (Petiot et al., 2018) highlighted the fact that the avian cell line DuckCelt®-T17, deposited with the ECACC under the number 09070703, could be advantageously used for the production of particles infectious influenza virus of different origins (human, avian, swine).
Souches virales atténuées de metapneumovirus humain D’importantes recherches ont lieu actuellement dans le but de produire un vaccin viral permettant de prévenir et/ou traiter les infections par metapneumorvirus et/ou virus respiratoire syncytial humain. Attenuated viral strains of human metapneumovirus Significant research is underway to produce a viral vaccine to prevent and / or treat infections with human metapneumorvirus and / or respiratory syncytial virus.
En particulier, des souches virales atténuées dérivées de virus metapneumovirus humain ont été préparées et proposées comme vaccins. In particular, attenuated viral strains derived from human metapneumovirus virus have been prepared and offered as vaccines.
L’analyse génétique de souches cliniques du hMPV a permis de définir deux groupes majeurs (génotypes A et B) et quatre sous-groupes « mineurs » (A1 , A2, B1 et B2), basés principalement sur la variabilité de séquence des glycoprotéines de surface d’attachement (G) et de fusion (F). Il a ensuite été montré que ces groupes pouvaient encore être sous-divisés en sous-lignées telles que A2a, A2b et A2c (Huck et al., 2006 ; Nidaira et al. , 2012). Genetic analysis of clinical strains of hMPV made it possible to define two major groups (genotypes A and B) and four “minor” subgroups (A1, A2, B1 and B2), based mainly on the variability of the glycoprotein sequence. attachment (G) and fusion (F) surface. It was then shown that these groups could still be subdivided into sublines such as A2a, A2b and A2c (Huck et al., 2006; Nidaira et al., 2012).
Parmi les souches virales largement étudiées, on peut citer la souche NL 00-1 , appartenant au génotype A1 ; la souche CAN 97-83 appartenant au génotype A2 ; et la souche CAN 98-75, appartenant au génotype B2. Among the viral strains widely studied, there may be mentioned the strain NL 00-1, belonging to the genotype A1; CAN 97-83 strain belonging to genotype A2; and the CAN 98-75 strain, belonging to genotype B2.
Dans la présente demande, les termes « un virus » et « une souche virale » sont utilisés indifféremment pour désigner une souche virale particulière, telle qu’identifiée précédemment. In the present application, the terms "a virus" and "a viral strain" are used interchangeably to designate a particular viral strain, as identified previously.
Au sens de l’invention, on entend par « souche dérivée » une souche virale recombinante obtenue par l’introduction de modifications génétiques dans le génome d’une souche virale dite « souche d’origine ». La souche d’origine est avantageusement une souche sauvage, par exemple un isolat clinique. For the purposes of the invention, the term "derived strain" means a recombinant viral strain obtained by the introduction of genetic modifications into the genome of a viral strain called "original strain". The original strain is advantageously a wild strain, for example a clinical isolate.
La virulence d’une souche virale correspond au degré de rapidité de multiplication d'un virus dans un organisme donné, donc à sa vitesse d'envahissement. Par « atténuer la virulence », on entend donc diminuer la vitesse d’envahissement d’un virus dans un organisme. The virulence of a viral strain corresponds to the degree of rapidity of multiplication of a virus in a given organism, therefore its speed of invasion. By "attenuating virulence", we mean reducing the speed at which a virus invades an organism.
Cette atténuation peut prendre la forme d’une diminution des capacités de réplication de la souche virale, d’une diminution de sa capacité d’infection des cellules cibles, ou encore d’une diminution de la pathologie induite par l’infection virale de l’organisme. This attenuation may take the form of a reduction in the replication capacities of the viral strain, a reduction in its capacity for infecting target cells, or even a reduction in the pathology induced by viral infection of the virus. 'organization.
Des souches virales sont considérées comme étant atténuées in vitro lorsque celles- ci présentent une capacité réplicative diminuée par rapport au virus sauvage (WT), et/ou lorsque ces souches virales entraînent la formation de foyers infectieux, notamment de syncytia (cellules adjacentes fusionnant suite à l’infection virale), plus restreints. In vivo, les souches virales atténuées se répliquent à un titre maximal plus faible et/ou induisent une pathologie moins sévère (en termes de perte de poids ou de profil inflammatoire ou d’atteintes histo-pathologiques) que la souche virale sauvage. Viral strains are considered to be attenuated in vitro when they have a reduced replicative capacity compared to the wild virus (WT), and / or when these viral strains cause the formation of infectious foci, in particular of syncytia (adjacent cells fusing more to viral infection), more restricted. In vivo, attenuated viral strains replicate at a lower maximum titer and / or induce a less severe pathology (in terms of weight loss or inflammatory profile or histopathological damage) than the wild viral strain.
Ainsi, par « souche virale atténuée » on entend, au sens de l’invention, un virus recombinant dont la virulence est diminuée par rapport à celle de la souche virale d’origine, c’est-à-dire inférieure à celle de la souche virale d’origine. Thus, by “attenuated viral strain” is meant, within the meaning of the invention, a recombinant virus whose virulence is reduced compared to that of the original viral strain, that is to say less than that of the original viral strain.
Pour mesurer la virulence d’une souche virale, des tests in vitro, ex vivo ou in vivo peuvent être réalisés, comme par exemple des tests de capacité réplicative in vitro (mesurée par titration virale TCID50/ml ou quantification de génome viral par PCR quantitative), le suivi par observation microscopique de l’évolution des effets cytopathiques in vitro et ex vivo (en modèle 3D d’épithélium respiratoire humain reconstitué et cultivé à l’interface air-liquide par exemple), ou le suivi des signes cliniques de la pathologie et la mesure de titres viraux pulmonaires dans un modèle d’infection in vivo. To measure the virulence of a viral strain, tests in vitro, ex vivo or in vivo can be carried out, such as for example tests of replicative capacity in vitro (measured by viral titration TCID50 / ml or quantification of viral genome by quantitative PCR ), monitoring by microscopic observation of the evolution of cytopathic effects in vitro and ex vivo (in 3D model of human respiratory epithelium reconstituted and cultured at the air-liquid interface for example), or monitoring clinical signs of pathology and measurement of pulmonary viral titers in an in vivo infection model.
Les tableaux 1 , 2 et 3 ci-dessous listent les différentes approches en cours de développement pour obtenir des vaccins vivants atténués à partir de souches virales sauvages de hMPV. Tables 1, 2 and 3 below list the different approaches under development to obtain live attenuated vaccines from wild-type hMPV strains.
Tableau 1. Liste des candidats vaccins vivants atténués sur la base d’une souche de virus hMPV présentant une ou des mutations, développés ou en cours de développement Table 1. List of candidate live attenuated vaccines based on a strain of hMPV virus presenting one or more mutations, developed or under development
Le symbole V indique que les cellules utilisées sont susceptibles / permissives à l’infection virale par ladite souche virale. Les abréviations suivantes sont utilisées pour les modèles d’études in vivo : M pour Mouse ; H pour hamster; CR pour Cotton Rat ; CM pour Cynomolgus Macaque; AGM pour African Green Monkey; Ch pour Chimpanzé; Rh pour Singe Rhésus; et SCID pour Severe Combinée! ImmunoDeficiency. The symbol V indicates that the cells used are susceptible / permissive to viral infection by said viral strain. The following abbreviations are used for in vivo study models: M for Mouse; H for hamster; CR for Cotton Rat; CM for Cynomolgus Macaque; AGM for African Green Monkey; Ch for Chimpanzee; Rh for Rhesus Monkey; and SCID for Severe Combinée! ImmunoDeficiency.
Les abréviations « aa » désignent des acides aminés, « aa172 » désignant l’acide aminé en position 172 dans la séquence protéique. The abbreviations "aa" denote amino acids, "aa172" denotes the amino acid at position 172 in the protein sequence.
Les mutations ponctuelles sont représentées selon la nomenclature connue de l’Homme du métier. The point mutations are represented according to the nomenclature known to the skilled person.
Tableau 2. Liste des candidats vaccins vivants atténués développés ou en développement, comprenant une souche de virus hMPV présentant une délétion complète d’au moins un gène Table 2. List of live attenuated vaccine candidates developed or in development, comprising a strain of hMPV virus having a complete deletion of at least one gene
Toutes les souches virales atténuées développées et décrites dans ce tableau 2 sont dérivées de la souche sauvage CAN97-83 du sous-groupe A2. All the attenuated viral strains developed and described in this table 2 are derived from the wild strain CAN97-83 of the subgroup A2.
Les abréviations suivantes sont utilisées : The following abbreviations are used:
D : délétion totale du gène. 0 = pas d’atténuation ou d’avantage réplicatif. Tableau 3. Liste des candidats vaccins vivants atténués développés ou en développement, basés sur une souche de virus hMPV chimérique D: total deletion of the gene. 0 = no attenuation or replicative advantage. Table 3. List of candidate live attenuated vaccines developed or in development, based on a strain of chimeric hMPV virus
Les abréviations suivantes sont utilisées : The following abbreviations are used:
TM = domaine transmembranaire ; PIV = Virus Parainfluenza; SeV = Virus Sendai. TM = transmembrane domain; PIV = Parainfluenza virus; SeV = Sendai virus.
D’autres souches atténuées dérivées de hMPV ont été décrites dans les demandes ou brevets résumés ci-dessous. Other attenuated strains derived from hMPV have been described in the applications or patents summarized below.
La demande internationale WO 2005/014626 est relative à plusieurs souches de virus hMPV, désignées par les dénominations suivantes : CAN 97-83, CAN 98-75 and HMPV 00-1. Cette demande décrit une souche de virus hMPV recombinante, désignée CAN 97-83, modifiée génétiquement pour atténuer sa virulence. Les modifications proposées concernent notamment la délétion totale des gènes codant pour les protéines G et/ou SH. The international application WO 2005/014626 relates to several strains of hMPV virus, designated by the following names: CAN 97-83, CAN 98-75 and HMPV 00-1. This application describes a recombinant hMPV virus strain, designated CAN 97-83, genetically modified to reduce its virulence. The proposed modifications relate in particular to the total deletion of the genes coding for the G and / or SH proteins.
Le brevet US 8,841 ,433 décrit encore d’autres souches de hMPV isolées et leur utilisation pour la préparation de vaccins. Dans la demande de brevet FR1856801 , des souches atténuées dérivées de la souche clinique C-85473 de metapneumovirus humain, comprenant la séquence génomique représentée par la séquence SEQ ID NO. 1 , ont été décrites et proposées comme candidats vaccins. Ces souches atténuées comprennent une ou plusieurs modifications génétiques de ladite séquence SEQ ID NO.1 , notamment l’inactivation du gène codant pour la protéine SH et/ou du gène codant pour la protéine G de ladite souche de metapneumovirus. US Patent 8,841,433 further describes other isolated hMPV strains and their use for the preparation of vaccines. In patent application FR1856801, attenuated strains derived from the clinical strain C-85473 of human metapneumovirus, comprising the genomic sequence represented by the sequence SEQ ID NO. 1, have been described and proposed as vaccine candidates. These attenuated strains comprise one or more genetic modifications of said sequence SEQ ID NO.1, in particular the inactivation of the gene coding for the SH protein and / or of the gene coding for the G protein of said strain of metapneumovirus.
Toutes ces souches virales atténuées dérivées de metapneumovirus humain sont des vaccins candidats qui sont susceptibles d’être développés de manière industrielle pour produire, à grande échelle, des vaccins destinés à être administrés à de nombreux patients, dans un but préventif et/ou thérapeutique. All these attenuated viral strains derived from human metapneumovirus are candidate vaccines which are capable of being developed industrially to produce, on a large scale, vaccines intended to be administered to numerous patients, for a preventive and / or therapeutic aim.
Toutefois, pour atteindre cet objectif, il est nécessaire d’identifier un support cellulaire qui permettra aux souches virales atténuées identifiées d’être répliquées à une échelle industrielle. However, to achieve this objective, it is necessary to identify a cellular support which will allow the identified attenuated viral strains to be replicated on an industrial scale.
Les essais réalisés sur des lignées cellulaires industrielles, telles que les lignées Tests carried out on industrial cell lines, such as the lines
EB66® et AGE1.CR.plX®, n’ont pas permis d’obtenir une réplication suffisante de différentes souches virales dérivées de métapneumovirus humain. EB66® and AGE1.CR.plX®, did not allow sufficient replication of different viral strains derived from human metapneumovirus.
La présente invention vise à répondre à ce besoin, en ayant identifié une lignée cellulaire immortalisée, présentant des caractéristiques fonctionnelles convenant à une production de virus à l’échelle industrielle, pour la réplication de telles souches atténuées dérivées de metapneumovirus humain. The present invention aims to meet this need, by having identified an immortalized cell line, having functional characteristics suitable for production of viruses on an industrial scale, for the replication of such attenuated strains derived from human metapneumovirus.
Selon une mise en oeuvre de l’invention, ladite souche atténuée a été modifiée génétiquement par inactivation du gène codant pour la protéine SH et/ou du gène codant pour la protéine G du metapneumovirus. According to an implementation of the invention, said attenuated strain has been genetically modified by inactivation of the gene coding for the SH protein and / or of the gene coding for the G protein of metapneumovirus.
Les modifications génétiques désignent, au sens de l’invention, toutes les modifications d’une séquence nucléotidique originale telles que la délétion d’un ou plusieurs nucléotides, l’ajout d’un ou plusieurs nucléotides, et le remplacement d’un ou plusieurs nucléotides. Ces modifications comprennent notamment toutes les modifications permettant de décaler le cadre de lecture génétique, ou d’introduire un codon stop au milieu d’une séquence codante. Genetic modifications designate, within the meaning of the invention, all modifications of an original nucleotide sequence such as the deletion of one or more nucleotides, the addition of one or more nucleotides, and the replacement of one or more nucleotides. These modifications include in particular all the modifications making it possible to shift the genetic reading frame, or to introduce a stop codon in the middle of a coding sequence.
Parmi les modifications génétiques destinées à atténuer la virulence d’une souche virale, on connaît notamment les modifications génétiques permettant d’inactiver voire de supprimer un ou plusieurs gènes codant pour des protéines non essentielles pour la croissance du virus en culture. Au sens de l’invention, l’inactivation d’un gène désigne le fait que ce gène est modifié de telle sorte que le produit du gène n’est plus exprimé, ou exprimé sous une forme non active, ou exprimé en une quantité si faible que l’activité de cette protéine est inexistante. Cette inactivation d’un gène peut être effectuée par toutes les techniques bien connues de l’Homme du métier. En particulier, l’inactivation d’un gène peut être obtenue par l’introduction d’une mutation ponctuelle dans le gène, par la délétion partielle ou totale des séquences codantes du gène, ou encore par modification du promoteur du gène. Ces différentes modifications génétiques seront effectuées selon l’une quelconque des techniques de biologie moléculaire bien connues de l’Homme du métier. Among the genetic modifications intended to attenuate the virulence of a viral strain, we know in particular the genetic modifications making it possible to inactivate or even to suppress one or more genes coding for proteins not essential for the growth of the virus in culture. In the sense of the invention, the inactivation of a gene designates the fact that this gene is modified so that the gene product is no longer expressed, or expressed in a non-active form, or expressed in an amount low that the activity of this protein is nonexistent. This inactivation of a gene can be carried out by any technique well known to those skilled in the art. In particular, the inactivation of a gene can be obtained by the introduction of a point mutation in the gene, by the partial or total deletion of the coding sequences of the gene, or by modification of the promoter of the gene. These various genetic modifications will be carried out according to any of the molecular biology techniques well known to those skilled in the art.
Par exemple, des souches virales atténuées de metapneumovirus humains ont été obtenues par délétion des gènes codant pour les protéines accessoires SH, G et/ou M2-2 (voir tableau 2). For example, attenuated viral strains of human metapneumoviruses have been obtained by deletion of the genes coding for the accessory proteins SH, G and / or M2-2 (see Table 2).
La protéine SH est une protéine membranaire de type II, dont les fonctions ne sont pas encore complètement caractérisées. Dans le cas du virus hVRS, la délétion du gène codant pour la protéine SH génère un virus recombinant capable de se reproduire in vitro, et dont la virulence est atténuée dans le tractus respiratoire supérieur des souris, mais non dans la partie inférieure dudit tractus (Bukreyev et al., 1997). Dans le cas du virus hMPV, les fonctions de la protéine SH sont encore en cours d’évaluation. SH protein is a type II membrane protein, whose functions are not yet fully characterized. In the case of the hVRS virus, the deletion of the gene coding for the SH protein generates a recombinant virus capable of reproducing in vitro, and the virulence of which is attenuated in the upper respiratory tract of mice, but not in the lower part of said tract ( Bukreyev et al., 1997). In the case of the hMPV virus, the functions of the SH protein are still being evaluated.
La protéine G est également une protéine membranaire de type II, son extrémité C- terminale étant à l’extérieur de la cellule. Cette protéine est non essentielle pour l’assemblage des constituants viraux, et pour la réplication in vitro. Pour le virus hVRS, il a été montré que la délétion du gène codant cette protéine atténuait la virulence de la souche lors de l’infection de tractus respiratoires de souris (Teng et al., 2001 ). Pour le virus hMPV, les fonctions de la protéine G sont encore en cours d’évaluation. Protein G is also a type II membrane protein, its C-terminal end being outside the cell. This protein is not essential for the assembly of viral constituents, and for replication in vitro. For the hVRS virus, the deletion of the gene encoding this protein has been shown to attenuate the virulence of the strain during infection of the respiratory tract of mice (Teng et al., 2001). For the hMPV virus, the functions of the G protein are still being evaluated.
Selon une mise en oeuvre de l’invention, la souche virale atténuée est caractérisée en ce que les modifications génétiques comprennent l’inactivation des deux gènes codant pour la protéine G et la protéine SH. According to an implementation of the invention, the attenuated viral strain is characterized in that the genetic modifications include the inactivation of the two genes coding for the G protein and the SH protein.
Selon une autre mise en oeuvre particulière, l’inactivation des deux gènes correspond à la délétion complète de l’un ou de l’autre ou des deux gènes codant pour les protéines G et SH. According to another particular implementation, the inactivation of the two genes corresponds to the complete deletion of one or the other or of the two genes coding for the G and SH proteins.
Selon une mise en oeuvre de l’invention, ladite souche atténuée a été modifiée génétiquement par introduction d’au moins un gène exogène. According to an implementation of the invention, said attenuated strain has been genetically modified by the introduction of at least one exogenous gene.
Ce gène exogène pourra en particulier être un gène codant pour un antigène viral. This exogenous gene could in particular be a gene coding for a viral antigen.
Au sens de l’invention, on entend par « antigène viral » un élément protéique ou d’une autre nature, exprimé par un virus, que le système immunologique d’un individu reconnaît comme étranger et qui provoque une réponse immunitaire chez ledit individu, notamment la production d’anticorps spécifiques. For the purposes of the invention, the term “viral antigen” means a protein element or of another nature, expressed by a virus, than the immunological system of an individual. recognizes as foreign and which provokes an immune response in said individual, in particular the production of specific antibodies.
Les antigènes viraux pourront en particulier être sélectionnés parmi les antigènes exprimés par au moins un virus influenza, ou par au moins un virus de la famille des pneumovirus, tel que le virus hVRS, ou par au moins un virus de la famille des Paramyxoviridae, tel que le virus parainfluenza. The viral antigens may in particular be selected from the antigens expressed by at least one influenza virus, or by at least one virus of the pneumovirus family, such as the hVRS virus, or by at least one virus of the Paramyxoviridae family, such than the parainfluenza virus.
Plus particulièrement, ledit antigène viral pourra être choisi parmi tout ou partie de la protéine F du virus hVRS, et tout ou partie de l’hémagglutinine des virus influenza ou parainfluenza. Selon une autre mise en oeuvre, ledit antigène viral est la protéine F du virus hVRS, dans sa conformation stabilisée de pré-fusion telle que décrite dans l’article (Krarup A ét al. 2015). More particularly, said viral antigen can be chosen from all or part of the F protein of the hVRS virus, and all or part of the hemagglutinin of the influenza or parainfluenza viruses. According to another implementation, said viral antigen is the F protein of the hVRS virus, in its stabilized pre-fusion conformation as described in the article (Krarup A et al. 2015).
Une telle souche virale atténuée comprenant de plus un antigène viral exogène permettra, lors de son administration à un patient, de générer une réponse immunitaire multiple, à la fois contre l’antigène viral exogène exprimé et contre le virus hMPV. Une telle souche permettant d’obtenir une réponse immunitaire combinée contre plusieurs virus, à la suite d’une seule administration, est très avantageuse. Such an attenuated viral strain further comprising an exogenous viral antigen will, when administered to a patient, generate a multiple immune response, both against the expressed exogenous viral antigen and against the hMPV virus. Such a strain making it possible to obtain a combined immune response against several viruses, following a single administration, is very advantageous.
Souche virale de hMPV C-85473 HMPV virus strain C-85473
Selon une mise en oeuvre préférée de l’invention, ladite souche atténuée est dérivée d’un metapneumovirus humain comprenant la séquence génomique représentée par la séquence SEQ ID NO. 1. According to a preferred implementation of the invention, said attenuated strain is derived from a human metapneumovirus comprising the genomic sequence represented by the sequence SEQ ID NO. 1.
Préférentiellement, ladite souche atténuée est dérivée d’une souche virale de metapneumovirus humain, dénommée C-85473, qui a été isolée à partir d’un échantillon de patient au Canada. Cette souche appartient au sous-groupe A1 des metapneumovirus. Preferably, said attenuated strain is derived from a human metapneumovirus viral strain, named C-85473, which was isolated from a patient sample in Canada. This strain belongs to the A1 subgroup of metapneumoviruses.
La séquence génomique complète de cette souche virale C-85473, comprenant 13394 nucléotides, a été divulguée pour la première fois dans la demande de brevet The complete genomic sequence of this viral strain C-85473, comprising 13394 nucleotides, was disclosed for the first time in the patent application
FR1856801. Elle est ici représentée dans la liste des séquences sous la référence SEQ ID NO. 1. FR1856801. It is represented here in the list of sequences under the reference SEQ ID NO. 1.
La souche C-85473 se caractérise par de grandes capacités fusogènes, lui permettant de pénétrer dans les cellules cibles à une haute fréquence et/ou un haut degré d’infection (Dubois et al., 2017). La grande capacité fusogénique de cette souche permet de générer des syncytia, i.e. cellules géantes multinucléées, particulièrement étendus, constitués d’un très grand nombre de noyaux cellulaires. The C-85473 strain is characterized by large fusogenic capacities, allowing it to penetrate into target cells at a high frequency and / or a high degree of infection (Dubois et al., 2017). The large fusogenic capacity of this strain makes it possible to generate syncytia, i.e. giant multinucleated cells, particularly large, made up of a very large number of cell nuclei.
Selon une mise en oeuvre préférée de l’invention, la souche virale atténuée est dérivée de cette souche C-85473 comprenant la séquence génomique représentée par la séquence SEQ ID NO. 1. Les modifications génétiques introduites dans cette souche C-85473 pour obtenir une souche dite « dérivée de » ont pour objet d’atténuer la virulence de ladite souche d’origine, et non de modifier l’identité de son génome. According to a preferred implementation of the invention, the attenuated viral strain is derived from this strain C-85473 comprising the genomic sequence represented by the sequence SEQ ID NO. 1. The genetic modifications introduced into this strain C-85473 to obtain a so-called “derivative of” strain are intended to attenuate the virulence of said original strain, and not to modify the identity of its genome.
En particulier, ces modifications génétiques ne concernent que des gènes codant pour des protéines non essentielles pour la croissance du virus, autrement dites « protéines accessoires », telles que les protéines SH et G. In particular, these genetic modifications only concern genes coding for proteins which are not essential for the growth of the virus, in other words “accessory proteins”, such as the SH and G proteins.
Avantageusement, dans cette souche modifiée génétiquement afin de devenir « atténuée », la séquence peptidique de la protéine F de la souche rC-85473 d’origine n’est pas modifiée, et présente donc la même séquence peptidique que la souche d’origine. Advantageously, in this strain genetically modified in order to become “attenuated”, the peptide sequence of the F protein of the original rC-85473 strain is not modified, and therefore has the same peptide sequence as the original strain.
De manière tout à fait préférée, la souche virale atténuée est choisie parmi : Most preferably, the attenuated viral strain is chosen from:
(i) Une souche virale dérivée de la souche C-85473, modifiée génétiquement par inactivation du gène codant pour la protéine SH ; (i) A viral strain derived from the C-85473 strain, genetically modified by inactivation of the gene coding for the SH protein;
(ii) Une souche virale dérivée de la souche C-85473, modifiée génétiquement par inactivation du gène codant pour la protéine G ; et (ii) A viral strain derived from the C-85473 strain, genetically modified by inactivation of the gene coding for the G protein; and
(iii) Une souche virale dérivée de la souche C-85473, modifiée génétiquement par inactivation du gène codant pour la protéine SH et du gène codant pour la protéine G. (iii) A viral strain derived from the C-85473 strain, genetically modified by inactivation of the gene coding for the SH protein and of the gene coding for the protein G.
Une souche virale illustrant la mise en oeuvre (i) est en particulier la souche utilisée dans les exemples de la présente demande, comprenant la séquence nucléotidique telle que représentée en SEQ ID NO. 2. A viral strain illustrating the implementation (i) is in particular the strain used in the examples of the present application, comprising the nucleotide sequence as shown in SEQ ID NO. 2.
Une souche virale illustrant la mise en oeuvre (ii) est en particulier la souche utilisée dans les exemples de la présente demande, comprenant la séquence nucléotidique telle que représentée en SEQ ID NO. 3. A viral strain illustrating implementation (ii) is in particular the strain used in the examples of the present application, comprising the nucleotide sequence as shown in SEQ ID NO. 3.
Selon une mise en oeuvre de l’invention, la séquence nucléotidique de la souche virale C-85473 atténuée pourra être, de plus, modifiée génétiquement par l’introduction d’au moins un gène exogène. According to an implementation of the invention, the nucleotide sequence of the attenuated viral strain C-85473 can be, moreover, genetically modified by the introduction of at least one exogenous gene.
Ainsi, la souche virale C-85473 atténuée présente une séquence génomique qui comprend au moins un gène exogène. Ce gène exogène pourra en particulier être un gène codant pour un antigène viral. Thus, the attenuated viral strain C-85473 has a genomic sequence which comprises at least one exogenous gene. This exogenous gene could in particular be a gene coding for a viral antigen.
Ledit antigène viral pourra en particulier être sélectionné parmi les antigènes exprimés par au moins un virus influenza, ou par au moins un virus de la famille des Pneumoviridae, tel que le virus hRSV, ou par au moins un virus de la famille des Paramyxoviridae, tel que le virus parainfluenza. Said viral antigen may in particular be selected from the antigens expressed by at least one influenza virus, or by at least one virus of the family of Pneumoviridae, such as the hRSV virus, or by at least one virus of the Paramyxoviridae family, such as the parainfluenza virus.
Plus particulièrement, ledit antigène viral pourra être choisi parmi tout ou partie de la protéine F du virus hRSV, et tout ou partie de l’hémagglutinine des virus influenza ou parainfluenza. More particularly, said viral antigen may be chosen from all or part of the protein F of the hRSV virus, and all or part of the hemagglutinin of the influenza or parainfluenza viruses.
Selon une autre mise en oeuvre, ledit antigène viral est la protéine F du virus hVRS, de préférence dans sa conformation stabilisée de pré-fusion telle que décrite dans l’article (Krarup A et al., 2015). According to another implementation, said viral antigen is the F protein of the hVRS virus, preferably in its stabilized pre-fusion conformation as described in the article (Krarup A et al., 2015).
D’autres caractéristiques de ces souches atténuées dérivées de la souche C-85473 comprenant la séquence génomique représentée par la séquence SEQ ID NO. 1 sont présentées dans la demande de brevet FR1856801 et la demande internationale PCT/FR2019/051759. Other characteristics of these attenuated strains derived from the strain C-85473 comprising the genomic sequence represented by the sequence SEQ ID NO. 1 are presented in patent application FR1856801 and international application PCT / FR2019 / 051759.
Origine des souches virales atténuées Origin of attenuated viral strains
Les souches virales atténuées utilisées dans la mise en oeuvre de la présente invention peuvent être issues de diverses origines. The attenuated viral strains used in the implementation of the present invention can come from various origins.
La souche virale atténuée pourra avoir été isolée chez un patient souffrant d’une infection virale par pneumovirus, notamment par un hMPV ou un hVRS. En effet, certaines souches virales infectieuses peuvent présenter un caractère atténué de manière spontanée. The attenuated viral strain may have been isolated from a patient suffering from a viral infection by pneumovirus, in particular by an hMPV or an hVRS. In fact, certain infectious viral strains can exhibit a spontaneously attenuated character.
La souche virale atténuée peut également avoir été modifiée génétiquement, à partir d’une souche virale non atténuée. The attenuated viral strain may also have been genetically modified, from an unattenuated viral strain.
Selon une première mise en oeuvre, la souche virale atténuée pourra être obtenue par reproduction dudit virus sur des cellules en culture. Des échantillons congelés des particules virales infectieuses ainsi produites pourront notamment être fournis par des laboratoires académiques ou des hôpitaux. According to a first implementation, the attenuated viral strain can be obtained by reproduction of said virus on cells in culture. Frozen samples of the infectious viral particles thus produced may in particular be supplied by academic laboratories or hospitals.
Selon une seconde mise en oeuvre, la souche virale atténuée pourra être obtenue à partir de séquences d’ADN grâce à la technologie de génétique inverse, décrite notamment dans les articles (Biacchesi ét al., 2004) et (Aerts ét al., 2015). According to a second implementation, the attenuated viral strain can be obtained from DNA sequences using reverse genetic technology, described in particular in the articles (Biacchesi et al., 2004) and (Aerts et al., 2015 ).
Le principe de cette technologie, qui permet la production de virus hMPV recombinants, repose par exemple sur l’utilisation d’une lignée cellulaire de rein de hamster (BHK-21 ) modifiée pour exprimer constitutivement l’ARN polymérase du bactériophage T7 (cellules BHK-T7 ou BSR-T7/5). Les éléments génomiques sont répartis dans cinq éléments plasmidiques : un plasmide codant l’antigénome du virus hMPV et 4 plasmides « satellite », codant pour les protéines virales de la machinerie de transcription (L, P, N et M2-1 ). The principle of this technology, which allows the production of recombinant hMPV viruses, is based for example on the use of a hamster kidney cell line (BHK-21) modified to constitutively express the RNA polymerase of bacteriophage T7 (BHK cells -T7 or BSR-T7 / 5). The genomic elements are divided into five plasmid elements: a plasmid coding for the antigenome of the hMPV virus and 4 “satellite” plasmids, coding for the viral proteins of the transcription machinery (L, P, N and M2-1).
Après co-transfection du plasmide antigénomique hMPV et des quatre plasmides « satellite » dans ces cellules, un brin d’ARN correspondant au brin génomique viral (brin d’ARN négatif), est transcrit par la T7polymérase à partir de son promoteur. After co-transfection of the hMPV antigenomic plasmid and the four "satellite" plasmids in these cells, a RNA strand corresponding to the viral genomic strand (negative RNA strand) is transcribed by T7polymerase from its promoter.
Les quatre protéines impliquées dans la transcription virale du hMPV sont en effet exprimées par les cellules hôtes transfectées pour constituer un complexe RNA- dependant RNA polymerase (RdRP) actif. Cette polymérase virale fonctionnelle transcrit ainsi l’ARN génomique en ARNm viral puis le réplique en de nouvelles molécules d’ARN génomique viral, via la transcription de brins matrice. The four proteins involved in the viral transcription of hMPV are in fact expressed by the transfected host cells to constitute an active RNA-dependent RNA polymerase (RdRP) complex. This functional viral polymerase thus transcribes genomic RNA into viral mRNA and then replicates it into new viral genomic RNA molecules, via transcription of template strands.
La traduction et l’assemblage des protéines virales avec l’ARN génomique permettent ainsi le bourgeonnement de particules infectieuses hMPV à partir de la membrane cytoplasmique des cellules BHK-T7 transfectées. Ensuite, l’amplification des virus recombinants est permise grâce à l’ajout en co-culture de cellules LLC-MK2 (ATCC CCL-7), permissives à l’infection. The translation and assembly of viral proteins with genomic RNA thus allows budding of infectious hMPV particles from the cytoplasmic membrane of transfected BHK-T7 cells. Then, the amplification of the recombinant viruses is allowed thanks to the addition in co-culture of LLC-MK2 cells (ATCC CCL-7), permissive to infection.
Ainsi, à partir des séquences décrites dans la présente demande, et de ces cellules hôtes appropriées, l’Homme du métier est en mesure de créer un virus enveloppé recombinant fonctionnel comprenant l’une de ces séquences. Thus, from the sequences described in the present application, and from these appropriate host cells, a person skilled in the art is able to create a functional recombinant enveloped virus comprising one of these sequences.
Procédé de production d’un vaccin viral Method for producing a viral vaccine
Selon un autre aspect, la présente invention concerne un procédé de production d’un vaccin viral tel que défini ci-dessus, comprenant les étapes suivantes : According to another aspect, the present invention relates to a method for producing a viral vaccine as defined above, comprising the following steps:
a) Infection de cellules en culture de la lignée ECACC 09070703 par une souche virale atténuée dérivée d’un metapneumovirus humain ; a) Infection of cells in culture of the ECACC 09070703 line with an attenuated viral strain derived from a human metapneumovirus;
b) Culture desdites cellules infectées à l’étape (a) pendant une durée comprise entre 2 et 14 jours dans un milieu adapté ; b) Culture of said cells infected in step (a) for a period of between 2 and 14 days in a suitable medium;
c) Récolte du vaccin viral constitué des particules virales infectieuses de ladite souche virale atténuée produites pendant l’étape (b). c) Harvesting of the viral vaccine consisting of infectious viral particles of said attenuated viral strain produced during step (b).
La souche virale atténuée utilisée à l’étape (a) aura été obtenue notamment par l’une des technologies décrites ci-dessus. The attenuated viral strain used in step (a) will have been obtained in particular by one of the technologies described above.
Il est entendu que ce procédé pourra comprendre des étapes supplémentaires, optionnelles et non indiquées ici. Par ailleurs, selon une mise en oeuvre particulière, ce procédé pourra consister exactement en les trois étapes (a), (b) et (c) successives citées ci-dessus. It is understood that this process may include additional steps, optional and not indicated here. Furthermore, according to a particular implementation, this process could consist exactly of the three successive steps (a), (b) and (c) mentioned above.
L’étape (a) d’infection sera réalisée dans des conditions appropriées, comme par exemple dans les conditions suivantes: The infection step (a) will be carried out under appropriate conditions, such as for example under the following conditions:
- le milieu d’infection pourra être le milieu de culture OptiPRO™ SFM (Gibco™) adapté à la lignée cellulaire DuckCelt®-T17 et complémenté avec 4mM de L- Glutamine, 0,1 % à 0,5% de Pluronic®, et de trypsine de 0,1 pg/ml à 3pg/ml de volume final. La trypsine est supplémentée au milieu lors de l’infection mais aussi tous les 2 à 3 jours pendant la durée de la production virale ; the infection medium may be the OptiPRO ™ SFM culture medium (Gibco ™) suitable for the DuckCelt®-T17 cell line and supplemented with 4mM L-Glutamine, 0.1% to 0.5% of Pluronic®, and trypsin from 0.1 pg / ml to 3pg / ml of final volume. Trypsin is supplemented in the middle during infection but also every 2 to 3 days for the duration of viral production;
- la densité cellulaire des cellules sera comprise entre 0,5x106 et 5x106 cellules/ml ; et - the cell density of the cells will be between 0.5 × 10 6 and 5 × 10 6 cells / ml; and
l’infection par la souche virale atténuée sera réalisée à une multiplicité d’infection (MOI) comprise entre 1 et 0,0001. infection with the attenuated viral strain will be carried out at a multiplicity of infection (MOI) of between 1 and 0.0001.
L’étape (b) de culture des cellules infectées sera effectuée dans les conditions appropriées pour une croissance normale des cellules, bien connues de l’Homme du métier. En particulier : Step (b) of culturing the infected cells will be carried out under conditions suitable for normal growth of the cells, well known to those skilled in the art. In particular :
l’équipement de bioproduction de cellules en suspension pourra être de type TubeSpin® ou une flasque de 50ml à 200 ml sur incubateur à plateau agitant de type Kühner, ou un bioréacteur de 500ml à 2 litres de type miniBioReactor Applikon BioTechnology, ou de type UniVessel SU Sartorius Stedim Biotech ; et la température du milieu de culture sera comprise entre 33 et 37°C ; le pH entre 7 et 7,4 ; l’agitation entre 100 et 200rpm et la teneur en oxygène entre 40 et 60%. the bioproduction equipment for cells in suspension may be of the TubeSpin® type or a flask of 50 ml to 200 ml on a Kühner type shaking tray incubator, or a 500 ml to 2 liter bioreactor of the miniBioReactor Applikon BioTechnology type, or of the UniVessel type SU Sartorius Stedim Biotech; and the temperature of the culture medium will be between 33 and 37 ° C; the pH between 7 and 7.4; agitation between 100 and 200rpm and the oxygen content between 40 and 60%.
L’étape de culture des cellules pourra durer de 2 à 14 jours, en fonction de la croissance cellulaire et des capacités réplicatives du virus. L’étape de culture pourra en particulier être réalisée pendant une durée de 3 à 12 jours, ou de 4 à 10 jours, ou encore de 5 à 9 jours, ou de 6 à 8 jours. The cell culture stage can last from 2 to 14 days, depending on cell growth and the replicative capacities of the virus. The culture step may in particular be carried out for a period of 3 to 12 days, or from 4 to 10 days, or again from 5 to 9 days, or from 6 to 8 days.
L’étape (c) de récolte des particules virales infectieuses sera effectuée par toute technique bien connue de l’Homme du métier, telle que la clarification du milieu de culture de production, suivie d’étapes de purification, concentration et quantification des particules virales. Stage (c) of harvesting the infectious viral particles will be carried out by any technique well known to those skilled in the art, such as clarification of the production culture medium, followed by purification, concentration and quantification stages of the viral particles .
Selon un autre aspect, la présente invention concerne un vaccin viral susceptible d’être obtenu par le procédé décrit ci-dessus. Ledit vaccin viral est constitué des particules virales infectieuses récoltées à l’étape (c) du procédé décrit. Selon une autre mise en oeuvre, la présente invention concerne un vaccin viral obtenu par le procédé décrit ci-dessus. According to another aspect, the present invention relates to a viral vaccine capable of being obtained by the method described above. Said viral vaccine consists of infectious viral particles collected in step (c) of the method described. According to another implementation, the present invention relates to a viral vaccine obtained by the method described above.
Composition pharmaceutique Pharmaceutical composition
Selon un autre aspect, la présente invention concerne une composition pharmaceutique comprenant ledit vaccin viral, et au moins un véhicule pharmaceutiquement acceptable. According to another aspect, the present invention relates to a pharmaceutical composition comprising said viral vaccine, and at least one pharmaceutically acceptable vehicle.
On entend au sens de l’invention par « véhicule pharmaceutiquement acceptable » des véhicules ou des excipients, c'est à dire des composés « inactifs », ne présentant pas de propriétés thérapeutiques. Ces véhicules ou excipients peuvent être administrés à un individu ou à un animal sans risque d'effets délétères significatifs ou d’effets indésirables rédhibitoires. For the purposes of the invention, the term “pharmaceutically acceptable vehicle” means vehicles or excipients, that is to say “inactive” compounds, having no therapeutic properties. These vehicles or excipients can be administered to an individual or an animal without risk of significant deleterious effects or unhealthy undesirable effects.
D’autres composés actifs, habituellement utilisés dans les compositions pharmaceutiques, pourront être présents dans ladite composition : par exemple, des adjuvants et/ou des excipients. Other active compounds, usually used in pharmaceutical compositions, may be present in said composition: for example, adjuvants and / or excipients.
Il est entendu que la composition pharmaceutique selon l’invention comprend au moins une quantité efficace du vaccin viral. It is understood that the pharmaceutical composition according to the invention comprises at least one effective amount of the viral vaccine.
Par « quantité efficace », on entend au sens de l’invention une quantité de souche virale atténuée suffisante pour déclencher une réaction immunitaire dans l’organisme auquel elle est administrée. By "effective amount" is meant within the meaning of the invention an amount of attenuated viral strain sufficient to trigger an immune reaction in the organism to which it is administered.
La présente composition pharmaceutique peut également être désignée comme étant une composition vaccinale. The present pharmaceutical composition can also be designated as being a vaccine composition.
Les compositions pharmaceutiques selon la présente invention sont notamment adaptées pour une administration orale, sublinguale, ou par inhalation. The pharmaceutical compositions according to the present invention are especially suitable for oral, sublingual, or inhalation administration.
Selon une mise en oeuvre particulière, la composition pharmaceutique selon l’invention est adaptée pour une administration par inhalation, c’est-à-dire par les voies nasale et/ou buccale. According to a particular implementation, the pharmaceutical composition according to the invention is suitable for administration by inhalation, that is to say by the nasal and / or buccal routes.
L’inhalation désigne l'absorption par les voies respiratoires. C’est en particulier une méthode d'absorption de composés à des fins thérapeutiques, de certaines substances sous forme de gaz, de micro-gouttelettes ou de poudre en suspension. Inhalation refers to absorption through the respiratory tract. It is in particular a method of absorption of compounds for therapeutic purposes, of certain substances in the form of gases, micro-droplets or powder in suspension.
On distingue deux types d’administration par inhalation : There are two types of administration by inhalation:
l'administration par insufflation lorsque les compositions sont sous la forme de poudres, et l'administration par nébulisation lorsque les compositions sont sous la forme d'aérosols (suspensions) ou sous la forme de solutions, par exemple de solutions aqueuses, mises sous pression. L’utilisation d’un nébuliseur ou d’un pulvérisateur sera alors recommandée pour administrer la composition pharmaceutique. administration by insufflation when the compositions are in the form of powders, and administration by nebulization when the compositions are in the form of aerosols (suspensions) or in the form of solutions, for example aqueous solutions, pressurized. The use of a nebulizer or a sprayer will then be recommended for administering the pharmaceutical composition.
La forme galénique de la composition pharmaceutique considérée ici est donc avantageusement choisie parmi : une poudre, une suspension aqueuse de gouttelettes ou une solution sous pression. The pharmaceutical form of the pharmaceutical composition considered here is therefore advantageously chosen from: a powder, an aqueous suspension of droplets or a solution under pressure.
Selon une mise en oeuvre préférée, la composition pharmaceutique selon l’invention est adaptée pour une administration par voie nasale, notamment par inhalation. According to a preferred implementation, the pharmaceutical composition according to the invention is suitable for administration by the nasal route, in particular by inhalation.
Une telle composition pourra être utilisée en tant que vaccin préventif, c’est-à-dire destiné à stimuler une réponse immunitaire spécifique avant l’infection d’un organisme par un virus pathogène. Such a composition can be used as a preventive vaccine, that is to say intended to stimulate a specific immune response before infection of an organism by a pathogenic virus.
Une telle composition pourra également être utilisée en tant que vaccin thérapeutique, c’est-à-dire destiné à stimuler une réponse immunitaire spécifique de manière concomitante avec l’infection d’un organisme par ledit virus pathogène. Such a composition can also be used as a therapeutic vaccine, that is to say intended to stimulate a specific immune response concomitantly with the infection of an organism by said pathogenic virus.
Utilisation thérapeutique Therapeutic use
La présente invention est également relative au vaccin viral tel que décrit ci-dessus, ou à la composition pharmaceutique telle que décrite, pour leur utilisation en tant que médicament, autrement dit pour leur utilisation thérapeutique. The present invention also relates to the viral vaccine as described above, or to the pharmaceutical composition as described, for their use as a medicament, in other words for their therapeutic use.
Avantageusement, ce vaccin viral ou cette composition pharmaceutique seront utilisés en thérapie pour le traitement et/ou la prévention d’infections virales. Advantageously, this viral vaccine or this pharmaceutical composition will be used in therapy for the treatment and / or prevention of viral infections.
L’expression « traitement d’infections virales» désigne le fait de combattre une infection par un virus dans un organisme. Le but est d’obtenir une diminution du taux d’infection virale (titre infectieux) dans l’organisme, et de préférence d’obtenir une éradication complète du virus de l’organisme. Le terme « traitement» désigne aussi l’action d’atténuer les symptômes associés à l’infection virale (syndrome respiratoire, défaillance rénale, fièvre, etc...). "Treatment of viral infections" means fighting a virus infection in an organism. The goal is to obtain a decrease in the rate of viral infection (infectious titer) in the body, and preferably to obtain a complete eradication of the virus from the body. The term "treatment" also refers to the action of alleviating the symptoms associated with viral infection (respiratory syndrome, kidney failure, fever, etc.).
L’expression « prévention d’infections virales » désigne le fait d’empêcher, ou du moins de diminuer le risque d’apparition, d’une infection dans un organisme. Grâce à cette action de prévention, les cellules dudit organisme deviennent moins permissives à l’infection virale, et sont ainsi plus résistantes à l’infection par ledit virus. De plus, l’organisme aura avantageusement développé des cellules immunitaires spécifiques, permettant de lutter de manière spécifique contre le virus susmentionné, limitant ainsi son entrée dans les cellules de l’organisme. The expression “prevention of viral infections” designates preventing, or at least reducing the risk of an infection in an organism. Thanks to this preventive action, the cells of said organism become less permissive to viral infection, and are therefore more resistant to infection by said virus. In addition, the organism will advantageously have developed specific immune cells, allowing a specific fight against the aforementioned virus, thus limiting its entry into the cells of the body.
Plus spécifiquement, l’invention concerne le vaccin viral ou la composition pharmaceutique tels que décrits ci-dessus, pour leur utilisation dans la prévention des infections virales, notamment des infections par pneumovirus, et notamment par metapneumovirus humain et/ou virus respiratoire syncytial humain. More specifically, the invention relates to the viral vaccine or the pharmaceutical composition as described above, for their use in the prevention of viral infections, in particular infections by pneumovirus, and in particular by human metapneumovirus and / or human respiratory syncytial virus.
Selon une première mise en oeuvre, ledit vaccin viral ou ladite composition pharmaceutique est utilisé dans la prévention des infections par des pneumovirus. According to a first implementation, said viral vaccine or said pharmaceutical composition is used in the prevention of infections by pneumoviruses.
Selon une deuxième mise en oeuvre, ledit vaccin viral ou ladite composition pharmaceutique est utilisé dans la prévention des infections par un metapneumovirus humain. According to a second implementation, said viral vaccine or said pharmaceutical composition is used in the prevention of infections with a human metapneumovirus.
Selon une troisième mise en oeuvre, ledit vaccin viral ou ladite composition pharmaceutique est utilisé dans la prévention des infections par un orthopneumovirus, en particulier par le virus respiratoire syncytial humain. According to a third implementation, said viral vaccine or said pharmaceutical composition is used in the prevention of infections by an orthopneumovirus, in particular by the human respiratory syncytial virus.
Selon un autre aspect, l’invention concerne le vaccin viral ou la composition pharmaceutique tels que décrits ci-dessus, pour leur utilisation dans le traitement des infections virales, notamment des infections par pneumovirus, et plus particulièrement par metapneumovirus humain et/ou virus respiratoire syncytial humain. According to another aspect, the invention relates to the viral vaccine or the pharmaceutical composition as described above, for their use in the treatment of viral infections, in particular infections by pneumovirus, and more particularly by human metapneumovirus and / or respiratory virus human syncytial.
En effet, ledit vaccin viral ou composition pharmaceutique le comprenant pourront être utilisés, dans certains cas et sous certaines conditions, dans une démarche thérapeutique, chez des individus déjà infectés par l’un de ces virus, notamment chez des individus adultes. Indeed, said viral vaccine or pharmaceutical composition comprising it may be used, in certain cases and under certain conditions, in a therapeutic approach, in individuals already infected with one of these viruses, in particular in adult individuals.
La présente invention concerne également une méthode pour prévenir une infection virale chez l’Homme, notamment une infection par des pneumovirus, plus particulièrement par un metapneumovirus humain et/ou par un virus respiratoire syncytial humain, comprenant l’administration à des individus susceptibles d’être infectés par un tel virus d’une quantité efficace d’un vaccin viral tel que décrit ci-dessus, ou d’une composition pharmaceutique le comprenant. The present invention also relates to a method for preventing a viral infection in humans, in particular an infection with pneumoviruses, more particularly with a human metapneumovirus and / or with a human respiratory syncytial virus, comprising administration to individuals susceptible to be infected with such a virus with an effective amount of a viral vaccine as described above, or a pharmaceutical composition comprising it.
Ledit vaccin ou ladite composition pour leur utilisation dans la prévention et/ou le traitement d’infections virales sont destinés à tout type d’individus, aussi bien à des nouveau-nés qu’à des individus adultes âgés. Said vaccine or said composition for their use in the prevention and / or treatment of viral infections are intended for all types of individuals, both newborns and elderly adults.
Selon une mise en oeuvre préférée de l’invention, ledit vaccin ou ladite composition pour leur utilisation dans la prévention et/ou le traitement d’infections virales sont destinés à une utilisation pédiatrique, c’est-à-dire sont destinés à être administrés à une population pédiatrique. Au sens de l’invention, une population pédiatrique désigne une population d’individus constituée d’individus âgés de moins de 18 ans, et plus spécifiquement de jeunes enfants âgés de moins de 5 ans, et de nourrissons. According to a preferred implementation of the invention, said vaccine or said composition for their use in the prevention and / or treatment of viral infections are intended for pediatric use, that is to say are intended to be administered to a pediatric population. Within the meaning of the invention, a pediatric population designates a population of individuals made up of individuals aged less than 18 years, and more specifically young children aged less than 5 years, and infants.
En effet, les virus de la famille des Pneumoviridae infectent principalement ces individus, qui ont tendance à présenter une immunité dite « naïve », et donc moins forte, que des individus plus âgés. In fact, viruses of the Pneumoviridae family mainly infect these individuals, who tend to exhibit so-called "naive" immunity, and therefore less strong, than older individuals.
Enfin, la présente demande est également relative à un kit pour la mise en oeuvre du procédé de préparation d’un vaccin viral, comprenant : Finally, the present application also relates to a kit for implementing the process for preparing a viral vaccine, comprising:
La lignée cellulaire immortalisée ECACC 09070703 ; et The immortalized cell line ECACC 09070703; and
- Une souche virale atténuée dérivée d’un metapneumovirus humain comprenant la séquence génomique représentée par la séquence SEQ ID NO. 1. - An attenuated viral strain derived from a human metapneumovirus comprising the genomic sequence represented by the sequence SEQ ID NO. 1.
Ladite souche virale atténuée pourra notamment avoir été modifiée génétiquement, notamment par inactivation du gène codant pour la protéine SH et/ou du gène codant pour la protéine G de ladite souche de metapneumovirus. Said attenuated viral strain may in particular have been genetically modified, in particular by inactivation of the gene coding for the SH protein and / or of the gene coding for the G protein of said metapneumovirus strain.
De plus, ladite souche virale atténuée pourra présenter une séquence génomique qui comprend au moins un gène exogène. Ce gène exogène pourra en particulier être un gène codant pour un antigène viral issu d’un autre virus, comme par exemple tout ou partie de la protéine F du virus hRSV, et/ou tout ou partie de l’hémagglutinine des virus influenza ou parainfluenza. In addition, said attenuated viral strain may have a genomic sequence which comprises at least one exogenous gene. This exogenous gene may in particular be a gene coding for a viral antigen originating from another virus, such as for example all or part of the protein F of the hRSV virus, and / or all or part of the hemagglutinin of the influenza or parainfluenza viruses .
Selon un aspect préféré, ladite souche virale sera en particulier l’une des souches présentées dans les exemples de la présente demande : According to a preferred aspect, said viral strain will in particular be one of the strains presented in the examples of the present application:
i) La souche virale comprenant la séquence nucléotidique telle que représentée en SEQ ID NO. 2, optionnellement comprenant de plus au moins un gène exogène ; ou i) The viral strain comprising the nucleotide sequence as represented in SEQ ID NO. 2, optionally further comprising at least one exogenous gene; or
ii) La souche virale comprenant la séquence nucléotidique telle que représentée en SEQ ID NO. 3, optionnellement comprenant de plus au moins un gène exogène. ii) The viral strain comprising the nucleotide sequence as represented in SEQ ID NO. 3, optionally further comprising at least one exogenous gene.
Ce kit pourra également inclure d’autres éléments, comme par exemple du milieu de culture adapté pour la croissance de la lignée cellulaire, et/ou un mode d’emploi précisant les conditions idéales pour la préparation du vaccin viral vivant atténué. EXEMPLES This kit may also include other elements, such as for example culture medium suitable for the growth of the cell line, and / or a manual specifying the ideal conditions for the preparation of the live attenuated viral vaccine. EXAMPLES
Exemple 1. Utilisation de la lignée cellulaire DuckCelt®-T17 pour la réplication des souches virales sauvages du sous-groupe A1 (C-85473 et CAN99-81 ), du sous-groupe B1 (CAN97-82) et du sous-groupe B2 (CAN98-75) Example 1. Use of the DuckCelt®-T17 Cell Line for the Replication of Wild Viral Strains of Subgroup A1 (C-85473 and CAN99-81), of Subgroup B1 (CAN97-82) and of Subgroup B2 (CAN98-75)
Les cellules DuckCelt®-T17 sont cultivées en milieu OptiPro + L-glutamine 4mM final en TubeSpin 50ml en agitateur Kuhner à la vitesse de 175 rpm, à 37°C avec 5% C02 et 85% d’hygrométrie, et diluées à 1 x 106 cellules/ml dans 10ml de milieu. Elles ont été infectées à une multiplicité d’infection (MOI) de 0,01 par des souches virales sauvages (non GFP) du sous-groupe A1 (C-85473 et CAN99-81 ), du sous-groupe B1 (CAN97-82) et du sous-groupe B2 (CAN98-75) en présence de trypsine (T6763 Sigma) àDuckCelt®-T17 cells are cultured in OptiPro + L-glutamine 4mM final medium in TubeSpin 50ml in Kuhner shaker at a speed of 175 rpm, at 37 ° C with 5% C02 and 85% hygrometry, and diluted to 1 x 10 6 cells / ml in 10 ml of medium. They were infected at a multiplicity of infection (MOI) of 0.01 by wild viral strains (non-GFP) of the A1 subgroup (C-85473 and CAN99-81), of the B1 subgroup (CAN97-82 ) and of subgroup B2 (CAN98-75) in the presence of trypsin (T6763 Sigma) at
0,5pg/ml. 0.5pg / ml.
Les cellules sont comptées en bleu trypan tous les 2 à 3 jours pour évaluer la croissance cellulaire ainsi que la mortalité cellulaire au cours de l’infection virale. Les résultats sont présentés en figure 1a. Cells are counted in trypan blue every 2 to 3 days to assess cell growth and cell mortality during viral infection. The results are presented in Figure 1a.
La production virale est mesurée par titration du nombre de particules infectieuses par ml dans le milieu de culture (exprimé en TCID50/ml) à partir d’échantillons prélevés tous les 2 à 3 jours jusqu’à 14 jours post-infection. Les résultats sont présentés en figure 1 b. Viral production is measured by titration of the number of infectious particles per ml in the culture medium (expressed in TCID50 / ml) from samples taken every 2 to 3 days up to 14 days post-infection. The results are presented in Figure 1b.
La cinétique de réplication virale est arrêtée lorsque la mort cellulaire atteint plus de 50%, soit à 8 jours post-infection pour la souche virale C-85473 et à 14 jours post infection pour les souches virales CAN99-81 , CAN97-82 et CAN98-75. The kinetics of viral replication are stopped when cell death reaches more than 50%, that is to say 8 days post-infection for the viral strain C-85473 and 14 days post infection for the viral strains CAN99-81, CAN97-82 and CAN98 -75.
Les résultats montrent que seul le virus C-85473 s’amplifie lors de l’infection des cellules DuckCelt®-T17 avec une augmentation du titre viral de plus de 2 Iog10 en 7 jours. Le virus CAN98-75 démontre une faible production virale de 4 à 9 jours post- infection alors que les virus CAN99-81 et CAN97-82 sont détectables à des niveaux inférieurs à l’inoculum initial ou en dessous des seuils de détection jusqu’à 14 jours post infection. The results show that only the C-85473 virus amplifies upon infection of DuckCelt®-T17 cells with an increase in viral titer of more than 2 Iog10 in 7 days. The CAN98-75 virus demonstrates a low viral production from 4 to 9 days post-infection while the CAN99-81 and CAN97-82 viruses are detectable at levels below the initial inoculum or below the detection thresholds up to 14 days post infection.
En conclusion, la souche virale C-85473 présente une capacité de réplication sur cellules DuckCelt®-T17 très significativement supérieure à celles d’autres souches virales hMPV. En particulier, le taux de mort cellulaire observé dès 8 jours post-infection indique que les capacités d’infection de cette souche sur cette lignée cellulaire sont significatives. In conclusion, the viral strain C-85473 has a replication capacity on DuckCelt®-T17 cells very significantly greater than that of other hMPV viral strains. In particular, the cell death rate observed from 8 days post-infection indicates that the infection capacities of this strain on this cell line are significant.
Exemple 2. Utilisation de la lignée cellulaire DuckCelt®-T17 pour la réplication de la souche sauvage C-85473 WT, recombinante car exprimant à la Green Fluorescent Protein (GFP), et des souches virales recombinantes ASH- C-85473 (GFP) et AG- C- 85473 (GFP). Les souches virales utilisées dans cet exemple présentent les séquences génomiques suivantes : Example 2. Use of the DuckCelt®-T17 cell line for the replication of the wild strain C-85473 WT, which is recombinant because it expresses with the Green Fluorescent Protein (GFP), and of the recombinant viral strains ASH-C-85473 (GFP) and AG- C- 85473 (GFP). The viral strains used in this example have the following genomic sequences:
La séquence de C-85473 WT - GFP est représentée en SEQ ID NO. 4 ; The sequence of C-85473 WT - GFP is shown in SEQ ID NO. 4;
La séquence de ASH- C-85473 - GFP est représentée en SEQ ID NO. 5 ; The sequence of ASH-C-85473 - GFP is shown in SEQ ID NO. 5;
- La séquence de AG- C-85473 - GFP est représentée en SEQ ID NO. 6. - The sequence of AG-C-85473 - GFP is represented in SEQ ID NO. 6.
Les cellules DuckCelt®-T17 sont maintenues en culture en milieu OptiPro + L- glutamine 4mM final en TubeSpin 50ml en agitateur Kuhner à la vitesse de 175 rpm, à 37°C avec 5% C02 et 85% d’hygrométrie. DuckCelt®-T17 cells are maintained in culture in OptiPro + L-glutamine 4mM final medium in 50ml TubeSpin in Kuhner shaker at a speed of 175 rpm, at 37 ° C with 5% CO2 and 85% humidity.
Avant l’infection, les cellules sont diluées à 1 x 106 cellules/ml dans 10ml de milieu de culture puis sont infectées par les virus recombinants hMPV sauvage (C-85473 WT), ou délété de la séquence génomique codant la protéine SH (ASH-C-85473) ou délété de la séquence génomique codant la protéine G (AG-C-85473), à une multiplicité d’infection (MOI) de 0,01 en présence de trypsine (T6763 Sigma) à 0,5pg/ml. Les cellules « Mock » sont des cellules qui n’ont pas été infectées et constituent le témoin négatif de l’expérimentation. Before infection, the cells are diluted to 1 × 10 6 cells / ml in 10 ml of culture medium and then are infected with recombinant wild hMPV viruses (C-85473 WT), or deleted from the genomic sequence coding for the SH protein ( ASH-C-85473) or deleted from the genomic sequence coding for protein G (AG-C-85473), at a multiplicity of infection (MOI) of 0.01 in the presence of trypsin (T6763 Sigma) at 0.5pg / ml. The "Mock" cells are cells which have not been infected and constitute the negative control of the experiment.
Les cellules sont comptées en bleu trypan tous les 2 à 3 jours après l’infection pour évaluer la croissance cellulaire au cours de l’infection. Les résultats obtenus sont présentés en figure 2a. Cells are counted in trypan blue every 2 to 3 days after infection to assess cell growth during infection. The results obtained are presented in Figure 2a.
La cinétique de réplication virale est arrêtée lorsque la mort cellulaire atteint plus de 50%, soit après 14 jours en moyenne. The kinetics of viral replication are stopped when cell death reaches more than 50%, that is to say after 14 days on average.
Le pourcentage de cellules infectées est évalué par cytométrie de flux (détection de l’expression de GFP exprimée par les virus recombinants) pendant les 14 jours de la cinétique virale. Les résultats obtenus sont présentés en figure 2b. The percentage of infected cells is evaluated by flow cytometry (detection of the expression of GFP expressed by the recombinant viruses) during the 14 days of viral kinetics. The results obtained are presented in Figure 2b.
La production virale est mesurée par titration du nombre de particules infectieuses par ml de milieu de culture (exprimé en TCID50/ml) à partir d’échantillons prélevés tous les 2 à 3 jours pendant les 14 jours de cinétique. Les résultats obtenus sont présentés en figure 2C. Viral production is measured by titration of the number of infectious particles per ml of culture medium (expressed in TCID50 / ml) from samples taken every 2 to 3 days during the 14 days of kinetics. The results obtained are presented in FIG. 2C.
Les résultats obtenus représentent quatre expériences indépendantes. The results obtained represent four independent experiments.
Ces résultats montrent que, dans ces conditions de culture et d’infection virale, les cellules DuckCelt®-T17 (i) parviennent à leur concentration maximale à 7 jours après l’infection ; (ii) sont infectées par la souche virale sauvage et les souches virales modifiées ASH-C-85473 et AG-C-85473 à plus de 80%, entre 9 et 11 jours post-infection. These results show that, under these culture and viral infection conditions, the DuckCelt®-T17 (i) cells reach their maximum concentration at 7 days after infection; (ii) are infected with the wild viral strain and the modified viral strains ASH-C-85473 and AG-C-85473 more than 80%, between 9 and 11 days post-infection.
Le pic de production virale pour les trois souches virales se situe à 11 jours post infection. En conclusion, les résultats indiquent que la lignée DuckCelt®-T17 est « permissive », qu’elle peut être infectée par les virus recombinants C-85473 et en particulier des virus vivants atténués ASH- C-85473 et AG- C-85473, et permettre la production de particules virales. The peak of viral production for the three viral strains is 11 days post infection. In conclusion, the results indicate that the DuckCelt®-T17 line is "permissive", that it can be infected with the recombinant viruses C-85473 and in particular live attenuated viruses ASH-C-85473 and AG-C-85473, and allow the production of viral particles.
Exemple 3. Caractérisation des particules virales obtenues selon le procédé de culture de l’exemple 2 Example 3. Characterization of the viral particles obtained according to the culture method of Example 2
Cet exemple est relatif à la mesure des capacités réplicatives des virus recombinants ASH- C-85473 et AG- C-85473 produits sur des cellules DuckCelt®-T17, en comparaison à un virus recombinant C-85473 WT : This example relates to the measurement of the replicative capacities of the recombinant viruses ASH-C-85473 and AG-C-85473 produced on DuckCelt®-T17 cells, in comparison with a recombinant virus C-85473 WT:
(i) en cellules épithéliales de reins de singe LLC-MK2 (ATCC-CCL7) et (i) in monkey kidney epithelial cells LLC-MK2 (ATCC-CCL7) and
(ii) en modèle 3D d’épithélium pulmonaire humain reconstitué (MucilAir™, (ii) in a 3D model of reconstituted human pulmonary epithelium (MucilAir ™,
Epithelix) et cultivé à l’interface air-liquide. Epithelix) and grown at the air-liquid interface.
Un tapis cellulaire de cellules LLC-MK2 et des épithéliums respiratoires humains reconstitués sains MucilAir™ ont été infectés par : A cell mat of LLC-MK2 cells and healthy reconstituted human respiratory epithelia MucilAir ™ were infected with:
- le virus hMPV recombinants ASH-C-85473 à des MOI (multiplicité d’infection) de - the recombinant hMPV virus ASH-C-85473 with MOI (multiplicity of infection) of
0.01 et de 0.1 , respectivement ; 0.01 and 0.1, respectively;
le virus hMPV recombinants AG-C-85473 à des MOI (multiplicité d’infection) de 0.01 et de 0.65, respectivement. AG-C-85473 recombinant hMPV virus with MOIs (multiplicity of infection) of 0.01 and 0.65, respectively.
Les photos des cellules infectées prises à 3, 5, 7, 12 et 17 jours post-infection sont présentées en figures 3a (ASH-C-85473) et 3b (AG-C-85473). The photos of the infected cells taken at 3, 5, 7, 12 and 17 days post-infection are presented in Figures 3a (ASH-C-85473) and 3b (AG-C-85473).
A partir de 5 jours d’infection, la réplication virale au sein des épithéliums infectés et la sécrétion virale à leur pôle apical a été évaluée par RT-qPCR (nombre de copies du gène viral N) à partir de lysats d’épithélium et de lavages en surface apicale, respectivement. From 5 days of infection, viral replication within infected epithelia and viral secretion at their apical pole was evaluated by RT-qPCR (number of copies of viral gene N) from epithelium lysates and apical surface washes, respectively.
Les résultats sont présentés en figures 3c (lavages en surface) et 3D (lysats d’épithélium). The results are presented in Figures 3c (surface washes) and 3D (epithelium lysates).
Les résultats obtenus indiquent que les virus vivants atténués ASH- C-85473 et AG- C-85473 produits sur les cellules DuckCelt®-T17 sont fonctionnels et conservent leur capacité d’infecter les cellules LLC-MK2 et en particulier le modèle 3D d’épithélium pulmonaire humain reconstitué (MucilAir™, Epithelix). The results obtained indicate that the attenuated live viruses ASH-C-85473 and AG-C-85473 produced on DuckCelt®-T17 cells are functional and retain their capacity to infect LLC-MK2 cells and in particular the 3D model of reconstituted human pulmonary epithelium (MucilAir ™, Epithelix).
Il est à noter que les souches atténuées ASH-C-85473 et AG-C-85473 se répliquent peu, et de manière moins soutenue au cours du temps, dans le modèle d’épithélium humain par rapport à un virus C-85473 sauvage, comme cela est présenté en figure 3d ; alors que leur taux de réplication sur les cellules DuckCelt®-T17 (et accessoirement LLC- MK2) est très satisfaisant. It should be noted that the attenuated strains ASH-C-85473 and AG-C-85473 replicate little, and in a less sustained manner over time, in the model of human epithelium compared to a wild C-85473 virus, as shown in Figure 3d; while their replication rate on DuckCelt®-T17 cells (and incidentally LLC-MK2) is very satisfactory.
Ces deux caractéristiques en font d’excellents candidats vaccins, ces souches virales atténuées pouvant être produites aisément in vitro mais ne présentant qu’un risque très modéré lorsque introduites dans un organisme vivant, au regard des résultats obtenus dans ce modèle d’infection humain physiologiquement proche des conditions d’un organisme. These two characteristics make them excellent vaccine candidates, these attenuated viral strains being able to be produced easily in vitro but presenting only a very moderate risk when introduced into a living organism, in view of the results obtained in this physiologically human infection model. close to the conditions of an organization.
Exemple 4. Les virus recombinants ASH- C-85473 et AG- C-85473 produits sur cellules DuckCelt®-T17 conservent leur caractère atténué in vivo. Example 4. The recombinant viruses ASH-C-85473 and AG-C-85473 produced on DuckCelt®-T17 cells retain their attenuated character in vivo.
Des souris BALB/c de 4 à 6 semaines ont été infectées par voie intranasale avec : BALB / c mice aged 4 to 6 weeks were infected intranasally with:
5x105 TCID50 des candidats vaccinaux ASH-C-85473 ou AG-C-85473 produits sur cellules DuckCelt®-T17 et concentrés par ultracentrifugation, ou 5x10 5 TCID50 of vaccine candidates ASH-C-85473 or AG-C-85473 produced on DuckCelt®-T17 cells and concentrated by ultracentrifugation, or
du milieu de culture Optimem (mock) comme contrôle (10 souris par groupe). Optimem culture medium (mock) as a control (10 mice per group).
Un suivi quotidien du poids et de la mortalité des souris a été effectué pendant 9 jours après infection. Les résultats sont présentés en figure 4. Les résultats obtenus indiquent que les souris infectées par les virus vivants atténués ASH-C-85473 ou AG-C- 85473 produits sur cellules DuckCelt®-T17, ne présentent aucun signe de pathologie ni de mortalité, démontrant ainsi le caractère d’atténuation de ces virus produits sur cellules DuckCelt®-T17. Daily monitoring of the weight and mortality of the mice was carried out for 9 days after infection. The results are presented in FIG. 4. The results obtained indicate that the mice infected with the live attenuated viruses ASH-C-85473 or AG-C- 85473 produced on DuckCelt®-T17 cells, show no sign of pathology or mortality, thus demonstrating the attenuation character of these viruses produced on DuckCelt®-T17 cells.
Tableau 4. Récapitulatif des séquences présentées dans le listage de séquence Table 4. Summary of the sequences presented in the sequence listing
REFERENCES BREVETS PATENT REFERENCES
WO 2007/077256 WO 2007/077256
WO 2009/004016 WO 2009/004016
WO 2012/001075 WO 2012/001075
WO 2005/014626 WO 2005/014626
US 8,841 ,433 US 8,841,433
FR1856801 FR1856801
LITTERATURE SCIENTIFIQUE SCIENTIFIC LITERATURE
Références bibliographiques par ordre de citation dans le texte Bibliographic references in order of citation in the text
Mazur NI, Higgins D, Nunes MC, Melero JA, Langedijk AC, Horsley N, Buchholz UJ, Openshaw PJ, McLellan JS, Englund JA, Mejias A, Karron RA, Simôes EA, Knezevic I, Ramilo O, Piedra PA, Chu HY, Falsey AR, Nair H, Kragten-Tabatabaie L, Greenough A, Baraldi E, Papadopoulos NG, Vekemans J, Polack FP, Powell M, Satav A, Walsh EE, Stein RT, Graham BS, Bont LJ; Respiratory Syncytial Virus Network (ReSViNET) Foundation. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. Lancet Infect Dis. 2018 Jun 15. Mazur NI, Higgins D, Nunes MC, Melero JA, Langedijk AC, Horsley N, Buchholz UJ, Openshaw PJ, McLellan JS, Englund JA, Mejias A, Karron RA, Simôes EA, Knezevic I, Ramilo O, Piedra PA, Chu HY , Falsey AR, Nair H, Kragten-Tabatabaie L, Greenough A, Baraldi E, Papadopoulos NG, Vekemans J, Polack FP, Powell M, Satav A, Walsh EE, Stein RT, Graham BS, Bont LJ; Respiratory Syncytial Virus Network (ReSViNET) Foundation. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. Lancet Infect Dis. 2018 Jun 15.
Jordan I, Vos A, Beilfuss S, Neubert A, Breul S, Sandig V. An avian cell line designed for production of highly attenuated viruses. Vaccine. 2009 Jan 29;27(5):748-56. Jordan I, Vos A, Beilfuss S, Neubert A, Breul S, Sandig V. An avian cell line designed for production of highly attenuated viruses. Vaccinated. 2009 Jan 29; 27 (5): 748-56.
Petiot E, Proust A, Traversier A, Durous L, Dappozze F, Gras M, Guillard C, Balloul JM, Rosa-Calatrava M. Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17. Vaccine. 2018 May 24;36(22):3101 -31 1 1. Petiot E, Proust A, Traversier A, Durous L, Dappozze F, Gras M, Guillard C, Balloul JM, Rosa-Calatrava M. Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17. Vaccinated. 2018 May 24; 36 (22): 3101 -31 1 1.
Huck B, Scharf G, Neumann-Haefelin D, Puppe W, Weigl J, Falcone V. Novel human metapneumovirus sublineage. Emerg Infect Dis. 2006 Jan;12(1 ):147-50. Huck B, Scharf G, Neumann-Haefelin D, Puppe W, Weigl J, Falcone V. Novel human metapneumovirus sublineage. Emerg Infect Dis. 2006 Jan; 12 (1): 147-50.
Nidaira M, Taira K, Hamabata H, Kawaki T, Gushi K, Mahoe Y, Maeshiro N, Azama Y, Okano S, Kyan H, Kudaka J, Tsukagoshi H, Noda M, Kimura H. Molecular epidemiology of human metapneumovirus from 2009 to 2011 in Okinawa, Japan. Jpn J Infect Dis. 2012 Jul;65(4):337-40. Nidaira M, Taira K, Hamabata H, Kawaki T, Gushi K, Mahoe Y, Maeshiro N, Azama Y, Okano S, Kyan H, Kudaka J, Tsukagoshi H, Noda M, Kimura H. Molecular epidemiology of human metapneumovirus from 2009 to 2011 in Okinawa, Japan. Jpn J Infect Dis. 2012 Jul; 65 (4): 337-40.
Herfst S, de Graaf M, Schrauwen EJ, Sprong L, Hussain K, van den Hoogen BG, Osterhaus AD, Fouchier RA. Génération of temperature-sensitive human metapneumovirus strains that provide protective immunity in hamsters. J Gen Virol. 2008 Jul;89(Pt 7):1553-62. Wei Y, Zhang Y, Cai H, Mirza AM, lorio RM, Peeples ME, Niewiesk S, Li J. Rôles of the putative integrin-binding motif of the human metapneumovirus fusion (f) protein in cell-cell fusion, viral infectivity, and pathogenesis. J Virol. 2014 Apr;88(8):4338-52. Herfst S, de Graaf M, Schrauwen EJ, Sprong L, Hussain K, van den Hoogen BG, Osterhaus AD, Fouchier RA. Generation of temperature-sensitive human metapneumovirus strains that provide protective immunity in hamsters. J Gen Virol. 2008 Jul; 89 (Pt 7): 1553-62. Wei Y, Zhang Y, Cai H, Mirza AM, lorio RM, Peeples ME, Niewiesk S, Li J. Roles of the putative integrin-binding motif of the human metapneumovirus fusion (f) protein in cell-cell fusion, viral infectivity, and pathogenesis. J Virol. 2014 Apr; 88 (8): 4338-52.
Yu CM, Li RP, Chen X, Liu P, Zhao XD. Réplication and pathogenicity of attenuated human metapneumovirus F mutants in severe combined immunodeficiency mice. Vaccine. 2012 Jan 5;30(2):231-6. Yu CM, Li RP, Chen X, Liu P, Zhao XD. Replication and pathogenicity of attenuated human metapneumovirus F mutants in severe combined immunodeficiency mice. Vaccinated. 2012 Jan 5; 30 (2): 231-6.
Liu P, Shu Z, Qin X, Dou Y, Zhao Y, Zhao X. A live attenuated human metapneumovirus vaccine strain provides complété protection against homologous viral infection and cross- protection against heterologous viral infection in BALB/c mice. Clin Vaccine Immunol. 2013 Aug;20(8):1246-54. Liu P, Shu Z, Qin X, Dou Y, Zhao Y, Zhao X. A live attenuated human metapneumovirus vaccine strain providesomplete protection against homologous viral infection and cross- protection against heterologous viral infection in BALB / c mice. Clin Vaccine Immunol. 2013 Aug; 20 (8): 1246-54.
Zhang Y, Wei Y, Zhang X, Cai H, Niewiesk S, Li J. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase. J Virol. 2014 Oct;88(19):1 1411-29 Zhang Y, Wei Y, Zhang X, Cai H, Niewiesk S, Li J. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase. J Virol. 2014 Oct; 88 (19): 1 1411-29
Biacchesi S, Skiadopoulos MH, Tran KC, Murphy BR, Collins PL, Buchholz UJ. Recovery of human metapneumovirus from cDNA: optimization ofgrowth in vitro and expression of additional genes. Virology. 2004;321 (2):247-59 Biacchesi S, Skiadopoulos MH, Tran KC, Murphy BR, Collins PL, Buchholz UJ. Recovery of human metapneumovirus from cDNA: optimization ofgrowth in vitro and expression of additional genes. Virology. 2004; 321 (2): 247-59
Biacchesi S, Pham QN, Skiadopoulos MH, Murphy BR, Collins PL, Buchholz UJ. Infection of nonhuman primates with recombinant human metapneumovirus lacking the SH, G, or M2-2 protein categorizes each as a nonessential accessory protein and identifies vaccine candidates. Journal of virology. 2005;79(19):12608-13. Biacchesi S, Pham QN, Skiadopoulos MH, Murphy BR, Collins PL, Buchholz UJ. Infection of nonhuman primates with recombinant human metapneumovirus lacking the SH, G, or M2-2 protein categorizes each as a nonessential accessory protein and identifies vaccine candidates. Journal of virology. 2005; 79 (19): 12608-13.
Buchholz UJ, Biacchesi S, Pham QN, Tran KC, Yang L, Luongo CL, Skiadopoulos MH, Murphy BR, Collins PL. Délétion of M2 gene open reading frames 1 and 2 of human metapneumovirus: effects on RNA synthesis, atténuation, and immunogenicity. J Virol. 2005 Jun;79(11 ):6588-97. Buchholz UJ, Biacchesi S, Pham QN, Tran KC, Yang L, Luongo CL, Skiadopoulos MH, Murphy BR, Collins PL. Deletion of M2 gene open reading frames 1 and 2 of human metapneumovirus: effects on RNA synthesis, attenuation, and immunogenicity. J Virol. 2005 Jun; 79 (11): 6588-97.
Schickli JH, Kaur J, Macphail M, Guzzetta JM, Spaete RR, Tang RS. Délétion of human metapneumovirus M2-2 increases mutation frequency and atténuâtes growth in hamsters. Virol J. 2008 Jun 3;5:69. Schickli JH, Kaur J, Macphail M, Guzzetta JM, Spaete RR, Tang RS. Deletion of human metapneumovirus M2-2 increases mutation frequency and attenuates growth in hamsters. Virol J. 2008 Jun 3; 5: 69.
Pham QN, Biacchesi S, Skiadopoulos MH, Murphy BR, Collins PL, Buchholz UJ. Chimeric recombinant human metapneumoviruses with the nucleoprotein or phosphoprotein open reading frame replaced by that of avi an metapneumovirus exhibit improved growth in vitro and atténuation in vivo. J Virol. 2005 Dec;79(24):151 14-22. Pham QN, Biacchesi S, Skiadopoulos MH, Murphy BR, Collins PL, Buchholz UJ. Chimeric recombinant human metapneumoviruses with the nucleoprotein or phosphoprotein open reading frame replaced by that of avi an metapneumovirus exhibit improved growth in vitro and attenuation in vivo. J Virol. 2005 Dec; 79 (24): 151 14-22.
Karron RA, San Mateo J, Wanionek K, Collins PL, Buchholz UJ. Evaluation of a Live Attenuated Human Metapneumovirus Vaccine in Adults and Children. J Pédiatrie. Infect Dis Soc. 2018 Feb 19;7(1 ):86-89 Tang RS, Schickli JH, MacPhail M, Fernandes F, Bicha L, Spaete J, Fouchier RA, Osterhaus AD, Spaete R, Haller AA. Effects of human metapneumovirus and respiratory syncytial virus antigen insertion in two 3' proximal genome positions of bovine/human parainfluenza virus type 3 on virus réplication and immunogenicity. J Virol. 2003 Oct;77(20): 10819-28. Karron RA, San Mateo J, Wanionek K, Collins PL, Buchholz UJ. Evaluation of a Live Attenuated Human Metapneumovirus Vaccine in Adults and Children. J Pediatrics. Infect Dis Soc. 2018 Feb 19; 7 (1): 86-89 Tang RS, Schickli JH, MacPhail M, Fernandes F, Bicha L, Spaete J, Fouchier RA, Osterhaus AD, Spaete R, Haller AA. Effects of human metapneumovirus and respiratory syncytial virus antigen insertion in two 3 'proximal genome positions of bovine / human parainfluenza virus type 3 on virus replication and immunogenicity. J Virol. 2003 Oct; 77 (20): 10819-28.
Tang RS, Mahmood K, Macphail M, Guzzetta JM, Haller AA, Liu H, Kaur J, Lawlor HA, Stillman EA, Schickli JH, Fouchier RA, Osterhaus AD, Spaete RR. A host-range restricted parainfluenza virus type 3 (PIV3) expressing the human metapneumovirus(hMPV) fusion protein elicits protective immunity in African green monkeys. Vaccine. 2005 Feb 25;23(14):1657-67. Tang RS, Mahmood K, Macphail M, Guzzetta JM, Haller AA, Liu H, Kaur J, Lawlor HA, Stillman EA, Schickli JH, Fouchier RA, Osterhaus AD, Spaete RR. A host-range restricted parainfluenza virus type 3 (PIV3) expressing the human metapneumovirus (hMPV) fusion protein elicits protective immunity in African green monkeys. Vaccinated. 2005 Feb 25; 23 (14): 1657-67.
Russell CJ, Jones BG, Sealy RE, Surman SL, Mason JN, Hayden RT, Tripp RA, Takimoto T, Hurwitz JL. A Sendai virus recombinant vaccine expressing a gene for truncated human metapneumovirus (hMPV) fusion protein protects cotton rats from hMPV challenge. Virology. 2017 Sep;509:60-66. Russell CJ, Jones BG, Sealy RE, Surman SL, Mason JN, Hayden RT, Tripp RA, Takimoto T, Hurwitz JL. A Sendai virus recombinant vaccine expressing a gene for truncated human metapneumovirus (hMPV) fusion protein protects cotton rats from hMPV challenge. Virology. 2017 Sep; 509: 60-66.
Bukreyev A, Whitehead SS, Murphy BR, Collins PL. Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific atténuation in the respiratory tract of the mouse. J Virol. 1997 Dec;71 (12):8973-82. Bukreyev A, Whitehead SS, Murphy BR, Collins PL. Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse. J Virol. 1997 Dec; 71 (12): 8973-82.
Teng MN, Whitehead SS, Collins PL. Contribution of the respiratory syncytial virus G glycoprotein and its secreted and membrane-bound forms to virus réplication in vitro and in vivo. Virology. 2001 Oct 25;289(2):283-96. Teng MN, Whitehead SS, Collins PL. Contribution of the respiratory syncytial virus G glycoprotein and its secreted and membrane-bound forms to virus replication in vitro and in vivo. Virology. 2001 Oct 25; 289 (2): 283-96.
Dubois J, Cavanagh MH, Terrier O, Hamelin ME, Lina B, Shi R, et al. Mutations in the fusion protein heptad repeat domains of human metapneumovirus impact on the formation of syncytia. The Journal of general virology. 2017;98(6):1 174-80. Dubois J, Cavanagh MH, Terrier O, Hamelin ME, Lina B, Shi R, et al. Mutations in the fusion protein heptad repeat domains of human metapneumovirus impact on the formation of syncytia. The Journal of general virology. 2017; 98 (6): 1 174-80.
Krarup A, Truan D, Furmanova-Hollenstein P, Bogaert L, Bouchier P, Bisschop IJ, Widjojoatmodjo MN, Zahn R, Schuitemaker H, McLellan JS, Langedijk JP. A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat Commun. 2015 Sep 3;6:8143. Krarup A, Truan D, Furmanova-Hollenstein P, Bogaert L, Bouchier P, Bisschop IJ, Widjojoatmodjo MN, Zahn R, Schuitemaker H, McLellan JS, Langedijk JP. A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat Commun. 2015 Sep 3; 6: 8143.
Aerts L, Rhéaume C, Carbonneau J, Lavigne S, Couture C, Hamelin MÈ, Boivin G. Adjuvant effect of the human metapneumovirus (HMPV) matrix protein in HMPV subunit vaccines. J Gen Virol. 2015 Apr;96(Pt 4):767-74. Aerts L, Rhéaume C, Carbonneau J, Lavigne S, Couture C, Hamelin MÈ, Boivin G. Adjuvant effect of the human metapneumovirus (HMPV) matrix protein in HMPV subunit vaccines. J Gen Virol. 2015 Apr; 96 (Pt 4): 767-74.
Aerts L, Cavanagh MH, Dubois J, Carbonneau J, Rheaume C, Lavigne S, et al. Effect of in vitro syncytium formation on the severity of human metapneumovirus disease in a murine model. PloS one. 2015;10(3):e0120283. Aerts L, Cavanagh MH, Dubois J, Carbonneau J, Rheaume C, Lavigne S, et al. Effect of in vitro syncytium formation on the severity of human metapneumovirus disease in a murine model. PloS one. 2015; 10 (3): e0120283.

Claims

REVENDICATIONS
1. Utilisation de la lignée cellulaire immortalisée ECACC 09070703, déposée le 7 juillet 2009 auprès de l’European Collection of Cell Cultures (ECACC, Salisbury, Royaume Uni) sous le numéro 09070703, pour la production d’un vaccin viral constitué par une souche virale atténuée dérivée d’un metapneumovirus humain.1. Use of the immortalized cell line ECACC 09070703, deposited on July 7, 2009 with the European Collection of Cell Cultures (ECACC, Salisbury, United Kingdom) under the number 09070703, for the production of a viral vaccine consisting of a strain attenuated viral derived from a human metapneumovirus.
2. Utilisation selon la revendication 1 , caractérisée en ce que ladite souche atténuée a été modifiée génétiquement par inactivation du gène codant pour la protéine SH et/ou du gène codant pour la protéine G du metapneumovirus. 2. Use according to claim 1, characterized in that said attenuated strain has been genetically modified by inactivation of the gene coding for the SH protein and / or of the gene coding for the G protein of metapneumovirus.
3. Utilisation selon la revendication 1 ou 2, caractérisée en ce que ladite souche atténuée a été modifiée génétiquement par introduction d’au moins un gène exogène. 3. Use according to claim 1 or 2, characterized in that said attenuated strain has been genetically modified by the introduction of at least one exogenous gene.
4. Utilisation selon l’une des revendications 1 à 3, caractérisée en ce que ladite souche atténuée est dérivée d’un metapneumovirus humain comprenant la séquence génomique représentée par la séquence SEQ ID NO. 1. 4. Use according to one of claims 1 to 3, characterized in that said attenuated strain is derived from a human metapneumovirus comprising the genomic sequence represented by the sequence SEQ ID NO. 1.
5. Procédé de production d’un vaccin viral tel que défini dans les revendications 1 à 4, comprenant les étapes suivantes : 5. Method for producing a viral vaccine as defined in claims 1 to 4, comprising the following steps:
a) Infection de cellules en culture de la lignée ECACC 09070703 par une souche virale atténuée dérivée d’un metapneumovirus humain ; a) Infection of cells in culture of the ECACC 09070703 line with an attenuated viral strain derived from a human metapneumovirus;
b) Culture desdites cellules infectées à l’étape (a) pendant une durée comprise entre 2 et 14 jours dans un milieu adapté ; b) Culture of said cells infected in step (a) for a period of between 2 and 14 days in a suitable medium;
c) Récolte du vaccin viral constitué des particules virales infectieuses de ladite souche virale atténuée produites pendant l’étape (b). c) Harvesting of the viral vaccine consisting of infectious viral particles of said attenuated viral strain produced during step (b).
6. Vaccin viral obtenu par le procédé selon la revendication 5. 6. Viral vaccine obtained by the method according to claim 5.
7. Composition pharmaceutique comprenant le vaccin viral selon la revendication 6, et au moins un véhicule pharmaceutiquement acceptable. 7. Pharmaceutical composition comprising the viral vaccine according to claim 6, and at least one pharmaceutically acceptable vehicle.
8. Composition pharmaceutique selon la revendication 7, adaptée pour une administration par voie nasale. 8. Pharmaceutical composition according to claim 7, suitable for administration by the nasal route.
9. Vaccin selon la revendication 6 ou composition selon l’une des revendications 7 ou 8, pour son utilisation thérapeutique. 9. Vaccine according to claim 6 or composition according to one of claims 7 or 8, for its therapeutic use.
10. Vaccin selon la revendication 6 ou composition selon l’une des revendications 7 ou 8, pour son utilisation dans la prévention des infections virales, notamment des infections par pneumovirus, et en particulier par metapneumovirus humain et/ou virus respiratoire syncytial humain. 10. Vaccine according to claim 6 or composition according to one of claims 7 or 8, for its use in the prevention of viral infections, in particular infections by pneumovirus, and in particular by human metapneumovirus and / or human respiratory syncytial virus.
1 1. Vaccin ou composition pour leur utilisation selon l’une des revendications 9 ou 10, caractérisé en ce qu’il/elle est destiné(e) à une utilisation pédiatrique. 1 1. Vaccine or composition for their use according to one of claims 9 or 10, characterized in that he / she is intended (e) for pediatric use.
12. Kit pour la mise en oeuvre du procédé selon la revendication 5, comprenant : 12. Kit for implementing the method according to claim 5, comprising:
- La lignée cellulaire immortalisée ECACC 09070703 ; et - The immortalized ECACC 09070703 cell line; and
- Une souche virale atténuée dérivée d’un metapneumovirus humain comprenant la séquence génomique représentée par la séquence SEQ ID NO. 1. - An attenuated viral strain derived from a human metapneumovirus comprising the genomic sequence represented by the sequence SEQ ID NO. 1.
EP19842600.9A 2018-12-14 2019-12-12 Production of viral vaccines on an avian cell line Withdrawn EP3893928A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1872957A FR3089789B1 (en) 2018-12-14 2018-12-14 PRODUCTION OF VIRAL VACCINES ON AN AVIAN CELL LINE
PCT/FR2019/053036 WO2020120910A1 (en) 2018-12-14 2019-12-12 Production of viral vaccines on an avian cell line

Publications (1)

Publication Number Publication Date
EP3893928A1 true EP3893928A1 (en) 2021-10-20

Family

ID=66776438

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19842600.9A Withdrawn EP3893928A1 (en) 2018-12-14 2019-12-12 Production of viral vaccines on an avian cell line

Country Status (8)

Country Link
US (1) US20220054618A1 (en)
EP (1) EP3893928A1 (en)
JP (1) JP2022514261A (en)
CN (1) CN113490507A (en)
BR (1) BR112021011362A2 (en)
CA (1) CA3123105A1 (en)
FR (1) FR3089789B1 (en)
WO (1) WO2020120910A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166079A1 (en) 2022-03-02 2023-09-07 Vaxxel Vaccine composition against two respiratory viruses

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072719A2 (en) 2002-02-21 2003-09-04 Medimmune Vaccines, Inc. Metapneumovirus strains and their use in vaccine formulations and as vector for expression of antigenic sequences
AU2004262624B2 (en) 2003-02-28 2009-11-19 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Recombinant human metapneumovirus and its use
AU2007204024B2 (en) 2006-01-05 2012-01-19 Transgene S.A. Avian telomerase reverse transcriptase
US8357531B2 (en) * 2007-07-03 2013-01-22 Transgene S.A. Immortalized avian cell lines
BRPI0811787B1 (en) 2007-07-03 2018-10-09 Transgene Sa Uses an Immortalized Cell and Process to Immortalize an Avian Cell
WO2009062532A1 (en) * 2007-11-16 2009-05-22 Vironovative Bv Live attenuated metapneumovirus strains and their use in vaccine formulations and chimeric metapneumovirus strains
FR3084079A1 (en) * 2018-07-23 2020-01-24 Universite Claude Bernard Lyon 1 NEW MITIGATED VIRAL STRAIN AND ITS USE AS A VACCINE

Also Published As

Publication number Publication date
US20220054618A1 (en) 2022-02-24
FR3089789B1 (en) 2022-05-27
JP2022514261A (en) 2022-02-10
CA3123105A1 (en) 2020-06-18
WO2020120910A1 (en) 2020-06-18
CN113490507A (en) 2021-10-08
FR3089789A1 (en) 2020-06-19
BR112021011362A2 (en) 2021-08-31

Similar Documents

Publication Publication Date Title
Widjojoatmodjo et al. A highly attenuated recombinant human respiratory syncytial virus lacking the G protein induces long-lasting protection in cotton rats
Susta et al. Expression of chicken interleukin-2 by a highly virulent strain of Newcastle disease virus leads to decreased systemic viral load but does not significantly affect mortality in chickens
Mok et al. Venezuelan equine encephalitis virus replicon particles encoding respiratory syncytial virus surface glycoproteins induce protective mucosal responses in mice and cotton rats
Burke et al. Illumination of parainfluenza virus infection and transmission in living animals reveals a tissue-specific dichotomy
Tang et al. Development of a PIV-vectored RSV vaccine: preclinical evaluation of safety, toxicity, and enhanced disease and initial clinical testing in healthy adults
US10329584B2 (en) Modified Sendai virus vaccine and imaging vector
JP2003516148A (en) Use of recombinant PIV as a vector to protect against infections and diseases caused by parainfluenza virus (PIV) and human pathogens
Sawada et al. AIK-C measles vaccine expressing fusion protein of respiratory syncytial virus induces protective antibodies in cotton rats
Bayon et al. Recent developments with live‐attenuated recombinant paramyxovirus vaccines
Ogonczyk Makowska et al. Engineering of live chimeric vaccines against human metapneumovirus
EP3826671B1 (en) New attenuated virus strain and use thereof as a vaccine
EP3893928A1 (en) Production of viral vaccines on an avian cell line
CN1922309B (en) A respiratory syncytial virus with a genomic deficiency complemented in trans
Saleh et al. Safety and immunogenicity evaluation of inactivated whole-virus-SARS-COV-2 as emerging vaccine development in Egypt
Hu et al. Development of a reverse genetics system for respiratory syncytial virus long strain and an immunogenicity study of the recombinant virus
TW202208399A (en) Chimeric rsv and coronavirus proteins, immunogenic compositions, and methods of use
US10323231B2 (en) Attenuated influenza vaccines and uses thereof
Jenkins Cleavage-preventing mutations in the RSV G protein and their effects on vaccine infectivity and immune response
Lederhofer Toward a virosomal respiratory syncytial virus vaccine with a built-in lipophilic adjuvant: A vaccine candidate for the elderly and pregnant women
WO2024167866A2 (en) Modified piv5 vaccine vectors: methods of making and uses
Wiegand et al. Genome Replication-Incompetent Sendai Virus Vaccine Vector Against Respiratory Viral Infections That Is Capable of Eliciting a Broad Spectrum of Specific Immune Response
CN116490515A (en) Chimeric RSV and coronavirus proteins, immunogenic compositions and methods of use
Aerts Investigation of viral and host factors contributing to the pathogenesis of human metapneumovirus infection and development of a subunit vaccine
Widjojoatmodjo et al. Research A highly attenuated recombinant human respiratory syncytial virus lacking the G protein induces long-lasting protection in cotton rats
Oshansky-Weilnau Suppressor of cytokine signaling protein regulation of respiratory syncytial virus infection and evaluating avian influenza infection of human bronchial epithelial cells

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230701