EP3887670A1 - Method for introducing a rotor blade belt into a rotor blade shell, belt mold, rotor blade and wind turbine - Google Patents

Method for introducing a rotor blade belt into a rotor blade shell, belt mold, rotor blade and wind turbine

Info

Publication number
EP3887670A1
EP3887670A1 EP19809453.4A EP19809453A EP3887670A1 EP 3887670 A1 EP3887670 A1 EP 3887670A1 EP 19809453 A EP19809453 A EP 19809453A EP 3887670 A1 EP3887670 A1 EP 3887670A1
Authority
EP
European Patent Office
Prior art keywords
rotor blade
belt
elements
belt shape
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19809453.4A
Other languages
German (de)
French (fr)
Inventor
Enno Eyb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Gamesa Renewable Energy Service GmbH
Original Assignee
Siemens Gamesa Renewable Energy Service GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Gamesa Renewable Energy Service GmbH filed Critical Siemens Gamesa Renewable Energy Service GmbH
Publication of EP3887670A1 publication Critical patent/EP3887670A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/84Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by moulding material on preformed parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/12Moulds or cores; Details thereof or accessories therefor with incorporated means for positioning inserts, e.g. labels
    • B29C33/14Moulds or cores; Details thereof or accessories therefor with incorporated means for positioning inserts, e.g. labels against the mould wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5326Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/61Joining from or joining on the inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/681Component parts, details or accessories; Auxiliary operations
    • B29C70/682Preformed parts characterised by their structure, e.g. form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • B29D99/0028Producing blades or the like, e.g. blades for turbines, propellers, or wings hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/748Joining plastics material to non-plastics material to natural products or their composites, not provided for in groups B29C66/742 - B29C66/746
    • B29C66/7487Wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for introducing a rotor blade belt into a rotor blade shell for a rotor blade of a wind energy installation, a belt shape for producing a rotor blade belt for a rotor blade of a wind energy installation, a rotor blade with such a belt and a wind energy installation with such a rotor blade.
  • Rotor blades for wind turbines are often composed of two rotor blade shells manufactured separately from one another.
  • One or more belts can be provided in the interior of the rotor blade, which run essentially along a longitudinal axis of the rotor blade from the rotor blade root to the rotor blade tip and confer additional stability or influence elastic properties of the rotor blade.
  • strip-shaped belt parts are placed loosely in a provided rotor blade shell, optionally pressed onto the rotor blade shell by application of a vacuum, and fixed, for example by means of a resin infusion, to the rotor blade shell. Due to the curvature of the rotor blade shell, the belt parts can break when pressed. But even if there is no breakage, the assembled belt and thus the entire rotor blade may be under tension.
  • This object is achieved by a method for introducing a rotor blade belt into a rotor blade shell, a rotor blade and a wind energy plant in accordance with the independent claims.
  • a method for introducing a rotor blade belt into a rotor blade shell for a rotor blade of a wind power plant which comprises a rotor blade extending from a rotor blade root to a rotor blade tip.
  • Longitudinal blade axis at least two strip-shaped belt elements, in particular one above the other and / or side by side, arranged on at least one substantially flat belt shape surface of a belt shape.
  • the at least one belt shape surface extends along a longitudinal direction of the belt shape corresponding to the longitudinal axis of the rotor blade.
  • the belt elements arranged on the at least one belt shape surface along the longitudinal direction are connected to one another to form the rotor blade belt.
  • the connected belt elements are removed from the belt shape, inserted into the rotor blade shell and connected to the rotor blade shell.
  • a belt shape for producing a rotor blade belt for a rotor blade of a wind turbine has at least two essentially flat belt shape surfaces for receiving at least two strip-shaped belt elements.
  • the at least two belt shape surfaces extend along a longitudinal direction of the belt shape, which corresponds to a longitudinal axis of the rotor blade extending from a rotor blade root to a rotor blade tip, lie next to one another in a transverse direction of the belt shape running perpendicular to the longitudinal direction, and are inclined in the transverse direction relative to one another.
  • a rotor blade for a wind power installation has at least one rotor blade shell, into which a rotor blade belt produced using the method according to the first aspect of the invention and / or using a belt shape according to the second aspect of the invention is inserted.
  • a wind turbine has at least one rotor blade according to the third aspect of the invention.
  • Preferred aspects of the invention are based on the approach, for example, by means of a continuous drawing method of prefabricating strip-shaped belt elements of the rotor blade belt not only in the rotor blade shell, but also in a belt shape prior to introduction into the rotor blade shell and connecting them there to form the rotor blade belt.
  • the belt shape used here has one or more flat belt shape surfaces on which the strip-shaped belt elements, in particular according to their desired arrangement in the rotor blade shell, can be deposited, for example along a longitudinal direction which corresponds to a longitudinal axis of the rotor blade.
  • the rotor blade belt can be composed of the same or different types of elements.
  • the belt elements are preferably fiber composites (so-called pultrudates), for example carbon composites, which are produced by means of a strand drawing process.
  • Belt elements can, however, be formed by stiffening elements, which are preferably obtained in sandwich construction and e.g. have a core layer of foam or balsa wood surrounded by cover layers. Such stiffening elements can e.g. arranged on, under or between the extruded fiber composites and connected to them to form the rotor blade belt.
  • the method according to the invention also has the advantage that technically simple and / or particularly economical belt elements can be used to assemble the rotor belt in the belt shape. It is conceivable, for example, to use belt elements with cross sections which, because of their deformability, can be inserted separately into the rotor blade shell would be unsuitable or at least disadvantageous. In addition to reducing the overall weight, this also enables high precision in the manufacture of the belt elements and thus the rotor blade belt. In addition, a rotor blade having the rotor blade shell with such a rotor blade belt can withstand higher thermal and / or mechanical loads.
  • the introduction of rotor blade belts into rotor blade shells is improved by the invention.
  • the stability of a composite of rotor blade shell and rotor blade belt can be increased by the invention, in particular stresses in the rotor blade belt can be reduced.
  • At least two of the strip-shaped belt elements are arranged next to one another on at least two substantially flat belt-shaped surfaces which are inclined relative to one another in a transverse direction perpendicular to the longitudinal direction.
  • the inclination of the belt shaped surfaces relative to one another is preferably matched to a curvature of the rotor blade shell with respect to a rotor blade transverse axis running perpendicular to the longitudinal axis of the rotor blade.
  • a cavity that forms when the connected belt elements are inserted into the rotor blade shell between the connected belt elements and the rotor blade shell can be reduced in this way, so that, for example, the stability of the rotor blade is increased and / or less resin is required to fill this cavity and to reliably connect the connected belt elements to the rotor blade shell.
  • the at least two strip-shaped belt elements are arranged on a surface of the belt shape formed by the at least two belt surfaces which are inclined relative to one another, the surface in cross section perpendicular to the longitudinal direction following a polygonal curve which relates to a curvature of the rotor blade shell reproduces or approximates to a rotor blade transverse axis perpendicular to the longitudinal axis of the rotor blade.
  • a polygon course corresponding to the curvature of the rotor blade shell can easily be determined, for example by means of mathematical optimization methods, for example from a model of the rotor blade.
  • the connecting paths of the polygon course preferably correspond to sections of the rotor blade shell, wherein each connecting section runs essentially parallel, but at least tangentially, to the rotor blade shell in the corresponding section.
  • the rotor blade belt can therefore, in particular with respect to the predetermined width of its belt elements, be optimally adapted to the curvature of the rotor blade shell, so that no stresses are generated in the rotor blade belt when inserted into the rotor blade shell.
  • the at least two strip-shaped belt elements in the belt mold are connected to one another by a resin infusion and, after at least partial curing of the resin, are removed from the belt mold and introduced into the rotor blade shell.
  • This also has the advantage that the bending stiffness of the rotor blade belt introduced into the rotor blade shell is increased compared to individually inserted belt elements. Thus e.g. the risk of unintentionally deforming the rotor blade belt when it is introduced into the rotor blade shell can also be reduced.
  • a deformable filling material is inserted into the rotor blade shell.
  • the belt elements connected to each other are placed on the deformable filler material.
  • the deformable filling material can in particular be made compressible, for example from a foam. It can thereby be prevented that, when the rotor blade belt made of interconnected belt elements and the rotor blade shell are connected, resin inserted into cavities formed between the belt elements and the rotor blade shell. In addition to saving material, this also offers the possibility of influencing the elastic properties of the composite comprising the rotor blade belt and the rotor blade shell.
  • the deformable filling material can also be designed as a fiber material.
  • the fiber material is preferably impregnated with resin. This allows the connection to take place Made of pure resin with a fiber-reinforced plastic, so that the connection is stronger and more durable.
  • At least one of the at least two strip-shaped belt elements is a stiffening element which, together with the at least one further belt element, is arranged on the at least one belt shape surface of the belt shape and is connected to form the rotor blade belt.
  • core materials and cover layers can also be inserted into the rotor blade belt in order to enable a sandwich-like structure of the rotor blade belt with particularly high bending rigidity.
  • the stiffening element can be arranged in particular in areas of the belt elements in which the rotor blade belt is formed from only one of the belt elements, e.g. in the case of belt elements arranged next to one another or, if a plurality of belt elements of different lengths are arranged one above the other, in the end region of the belt elements.
  • the strip-shaped belt elements arranged on the at least one belt shape surface have an essentially rectangular cross section with a thickness between 2 mm and 6 mm and / or a width between 50 mm and 300 mm.
  • Such, e.g. Gur tiata manufactured by means of a continuous drawing process are particularly economical.
  • belt elements with such a cross-section can already have a bending stiffness which, when a plurality of such belt elements are connected in the belt shape, accumulates to form an overall stiffness which, even when pretensioned by the introduction into the rotor blade shell, intercepts the action of further thermal and / or mechanical loads .
  • the belt shape is designed in such a way that a surface of the belt shape formed by the belt shape surfaces inclined relative to one another follows a polygonal cross section perpendicular to the longitudinal direction, which curvature of a rotor blade shell of the rotor blade with respect to a rotor blade transverse axis perpendicular to the longitudinal axis of the rotor blade reproduces or approximates.
  • a polygon course corresponding to the curvature of the rotor blade shell can easily be determined, for example by means of mathematical optimization methods, for example from a model of the rotor blade.
  • the connec tion paths of the polygon course correspond in a preferred manner with sections of the rotor blade shell, each connecting path running essentially parallel, but at least tangentially, to the rotor blade shell in the corresponding section.
  • the belt shape therefore allows the manufacture of a rotor blade belt which, in particular with respect to the predetermined width of its belt elements, is optimally adapted to the curvature of the rotor blade shell, so that no stresses are generated in the rotor blade belt when inserted into the rotor blade shell.
  • FIG. 1 shows an example of a belt shape for producing a rotor blade belt for a rotor blade of a wind turbine in a cross section
  • FIG. 2 shows an example of a rotor blade shell, into which a rotor blade belt made of belt elements connected to one another is introduced.
  • FIG. 1 shows an example of a belt shape 1 for producing a rotor blade belt for a rotor blade of a wind turbine in a cross section along a transverse direction Q of the belt shape 1.
  • the belt shape 1 has three adjacent, essentially flat belt shape surfaces 2 in the transverse direction Q.
  • Each of the belt shaped surfaces 2 is designed to receive and / or support a strip-shaped belt element 3 of the rotor blade belt.
  • the belt elements 3 deposited on the belt shape surfaces 2 extend along a longitudinal direction of the belt shape 1 which is perpendicular to the transverse direction Q and thus to the plane of the zei.
  • This longitudinal direction corresponds to a longitudinal axis of the rotor blade extending from a rotor blade root to a rotor blade tip, so that the belt elements 3 arranged on the belt shaped surfaces 2 are connected to one another, removed from the belt shape 1 and can be arranged as a rotor blade belt along the longitudinal axis of the rotor blade in the rotor blade.
  • the belt shape surfaces 2 are formed, for example, by a surface of the belt shape 1 which is segmented according to the belt shape surfaces 2.
  • the belt-shaped surfaces 2 are inclined relative to one another, so that the surface in the cross section shown follows a polygon train that simulates or approximates a curvature of the rotor blade or a rotor blade shell of the rotor blade along a rotor blade transverse axis perpendicular to the longitudinal axis of the rotor blade.
  • the belt shape 1 therefore causes an arrangement of the belt elements 3, with the Curvature of the rotor blade corresponds, so that in the belt shape 1, belt elements 3 connected to one another, for example by a resin infusion, do not have to be deformed and thus put under tension in order to adapt to the shape of the rotor blade.
  • FIG. 2 shows an example of a rotor blade shell 4 of a rotor blade, into which a rotor blade belt comprising three belt elements 3, in particular using the belt shape shown in FIG. 1, is introduced.
  • the arrangement of the belt elements 3 essentially corresponds to the curvature of the rotor blade shell 4, so that the belt elements 3 are essentially free of tension.
  • the tension in the belt elements 3 can also be reduced by stacking further belt elements 3 or further stiffening materials on the three belt elements 3 (not shown) and connecting them, since this increases the bending stiffness.
  • the rotor blade shell 4 is produced in a rotor blade shape 5 which has an upper side, the shape of which defines the curvature of the rotor blade shell along a transverse transverse axis q of the rotor blade running from a leading edge (nose) to a trailing edge of the rotor blade.
  • a deformable filler material 6 is arranged between the interconnected belt elements 3 and the rotor blade shell 4 and adapts to the shape of the rotor blade shell 4 and / or the interconnected belt elements 3 in the direction of the rotor blade cross axis q.
  • the deformable filler 6 fills in particular the space between the interconnected belt elements 3 and the rotor blade shell 4, which arises since the curvature reproduced by the mutually adjacent and inclined belt elements te 3 only approximates the actual curvature of the rotor blade shell 4.
  • the interconnected belt elements 3 are preferably connected to the rotor blade shell 4 with the aid of a resin infusion.
  • the deformable filler material 6 is impregnated with resin and forms a solid fiber-reinforced plastic in the space between the belt elements 3 and the rotor blade shell 4.

Abstract

The invention relates to a method for introducing a rotor blade belt into a rotor blade shell (4) for a rotor blade of a wind turbine, a belt mold (1) for producing a rotor blade belt, a rotor blade having such a belt and a wind turbine having such a rotor blade. At least two strip-shaped belt elements (3) are arranged on at least one substantially flat belt mold surface (2) of the belt mold (1). The at least one belt mold surface (2) extends along a longitudinal direction of the belt mold (1) corresponding to a rotor blade longitudinal axis. The belt elements (3) arranged on the at least one belt mold surface (2) along the longitudinal direction are connected to each other to form the rotor blade belt. The belt elements (3) connected to each other are removed from the belt mold (1), introduced into the rotor blade shell (4) and connected to the rotor blade shell (4).

Description

Verfahren zum Einbringen eines Rotorblattgurts in eine Rotorblattschale, Method for inserting a rotor blade belt into a rotor blade shell,
Gurtform, Rotorblatt sowie Windenergieanlage Belt shape, rotor blade and wind turbine
Die Erfindung betrifft ein Verfahren zum Einbringen eines Rotorblattgurtes in eine Rotorblatt schale für ein Rotorblatt einer Windenergieanlage, eine Gurtform zum Herstellen eines Ro- torblattgurts für ein Rotorblatt einer Windenergieanlage, ein Rotorblatt mit einem solchen Gurt sowie eine Windenergieanlage mit einem solchen Rotorblatt. The invention relates to a method for introducing a rotor blade belt into a rotor blade shell for a rotor blade of a wind energy installation, a belt shape for producing a rotor blade belt for a rotor blade of a wind energy installation, a rotor blade with such a belt and a wind energy installation with such a rotor blade.
Rotorblätter für Windenergieanlagen werden häufig aus zwei separat voneinander hergestell ten Rotorblattschalen zusammengesetzt. Im Inneren des Rotorblattes können ein oder meh rere Gurte vorgesehen sein, welche im Wesentlichen entlang einer Längsachse des Rotor- blatts von der Rotorblattwurzel zur Rotorblattspitze verlaufen und zusätzliche Stabilität ver leihen bzw. elastische Eigenschaften des Rotorblatts beeinflussen. Rotor blades for wind turbines are often composed of two rotor blade shells manufactured separately from one another. One or more belts can be provided in the interior of the rotor blade, which run essentially along a longitudinal axis of the rotor blade from the rotor blade root to the rotor blade tip and confer additional stability or influence elastic properties of the rotor blade.
Bei der Herstellung solcher Rotorblätter werden im Allgemeinen vorgefertigte, streifenförmige Gurtteile lose in eine bereitgestellte Rotorblattschale gelegt, gegebenenfalls durch Applizie ren eines Vakuums an die Rotorblattschale gedrückt und, etwa mittels einer Harzinfusion, an der Rotorblattschale fixiert. Aufgrund der Krümmung der Rotorblattschale kann es beim An drücken zum Bruch der Gurtteile kommen. Aber auch wenn kein Bruch auftritt, steht der zu sammengefügte Gurt und damit gegebenenfalls das gesamte Rotorblatt unter Spannung. In the manufacture of such rotor blades, generally prefabricated, strip-shaped belt parts are placed loosely in a provided rotor blade shell, optionally pressed onto the rotor blade shell by application of a vacuum, and fixed, for example by means of a resin infusion, to the rotor blade shell. Due to the curvature of the rotor blade shell, the belt parts can break when pressed. But even if there is no breakage, the assembled belt and thus the entire rotor blade may be under tension.
Es ist Aufgabe der Erfindung, ein Verfahren zum verbesserten Einbringen eines Rotorblatt gurts in eine Rotorblattschale, eine Gurtform zum Herstellen eines Rotorblattgurts, ein Ro- torblatt sowie eine entsprechende Windenergieanlage anzugeben. Es ist insbesondere eine Aufgabe der Erfindung, die Stabilität eines Verbunds aus Rotorblattschale und Rotorblattgurt zu erhöhen und/oder Spannungen im Rotorblattgurt zu verringern. It is an object of the invention to provide a method for the improved introduction of a rotor blade belt into a rotor blade shell, a belt shape for producing a rotor blade belt, a rotor blade and a corresponding wind energy installation. It is in particular an object of the invention to increase the stability of a composite of rotor blade shell and rotor blade belt and / or to reduce tensions in the rotor blade belt.
Diese Aufgabe wird durch ein Verfahren zum Einbringen eines Rotorblattgurts in eine Rotor blattschale, ein Rotorblatt sowie eine Windenergieanlage gemäß den unabhängigen Ansprü- chen gelöst. This object is achieved by a method for introducing a rotor blade belt into a rotor blade shell, a rotor blade and a wind energy plant in accordance with the independent claims.
Gemäß einem ersten Aspekt der Erfindung werden bei einem Verfahren zum Einbringen eines Rotorblattgurtes in eine Rotorblattschale für ein Rotorblatt einer Windenergieanlage, welches eine sich von einer Rotorblattwurzel zu einer Rotorblattspitze erstreckende Rotor- blattlängsachse aufweist, wenigstens zwei streifenförmige Gurtelemente, insbesondere übereinander und/oder nebeneinander, auf wenigstens einer im Wesentlichen ebenen Gurt formfläche einer Gurtform angeordnet. Dabei erstreckt sich die wenigstens eine Gurtformflä che entlang einer mit der Rotorblattlängsachse korrespondierenden Längsrichtung der Gurt form. Die auf der wenigstens einen Gurtformfläche entlang der Längsrichtung angeordneten Gurtelemente werden miteinander zum Rotorblattgurt verbunden. Die miteinander verbunde nen Gurtelemente werden aus der Gurtform entnommen, in die Rotorblattschale eingebracht und mit der Rotorblattschale verbunden. According to a first aspect of the invention, in a method for introducing a rotor blade belt into a rotor blade shell for a rotor blade of a wind power plant, which comprises a rotor blade extending from a rotor blade root to a rotor blade tip. Longitudinal blade axis, at least two strip-shaped belt elements, in particular one above the other and / or side by side, arranged on at least one substantially flat belt shape surface of a belt shape. The at least one belt shape surface extends along a longitudinal direction of the belt shape corresponding to the longitudinal axis of the rotor blade. The belt elements arranged on the at least one belt shape surface along the longitudinal direction are connected to one another to form the rotor blade belt. The connected belt elements are removed from the belt shape, inserted into the rotor blade shell and connected to the rotor blade shell.
Gemäß einem zweiten Aspekt der Erfindung weist eine Gurtform zur Herstellung eines Ro torblattgurts für ein Rotorblatt einer Windenergieanlage wenigstens zwei im Wesentlichen ebene Gurtformflächen zur Aufnahme von wenigstens zwei streifenförmigen Gurtelementen auf. Die wenigstens zwei Gurtformflächen erstrecken sich entlang einer Längsrichtung der Gurtform, die mit einer sich von einer Rotorblattwurzel zu einer Rotorblattspitze erstrecken den Rotorblattlängsachse des Rotorblatts korrespondiert, liegen in einer senkrecht zur Längsrichtung verlaufenden Querrichtung der Gurtform nebeneinander und sind in der Quer richtung relativ zueinander geneigt. According to a second aspect of the invention, a belt shape for producing a rotor blade belt for a rotor blade of a wind turbine has at least two essentially flat belt shape surfaces for receiving at least two strip-shaped belt elements. The at least two belt shape surfaces extend along a longitudinal direction of the belt shape, which corresponds to a longitudinal axis of the rotor blade extending from a rotor blade root to a rotor blade tip, lie next to one another in a transverse direction of the belt shape running perpendicular to the longitudinal direction, and are inclined in the transverse direction relative to one another.
Gemäß einem dritten Aspekt der Erfindung weist ein Rotorblatt für eine Windenergieanlage wenigstens eine Rotorblattschale auf, in die ein mit dem Verfahren nach dem ersten Aspekt der Erfindung und/oder unter Verwendung einer Gurtform nach dem zweiten Aspekt der Er findung hergestellter Rotorblattgurt eingebracht ist. According to a third aspect of the invention, a rotor blade for a wind power installation has at least one rotor blade shell, into which a rotor blade belt produced using the method according to the first aspect of the invention and / or using a belt shape according to the second aspect of the invention is inserted.
Gemäß einem vierten Aspekt der Erfindung weist eine Windenergieanlage mindestens ein Rotorblatt nach dem dritten Aspekt der Erfindung auf. According to a fourth aspect of the invention, a wind turbine has at least one rotor blade according to the third aspect of the invention.
Bevorzugte Aspekte der Erfindung basieren auf dem Ansatz, z.B. mittels eines Strangzieh verfahrens vorgefertigte streifenförmige Gurtelemente des Rotorblattgurts nicht erst in der Rotorblattschale, sondern bereits vor dem Einbringen in die Rotorblattschale in einer Gurt form anzuordnen und dort zum Rotorblattgurt zu verbinden. Die dabei verwendete Gurtform weist eine oder mehrere ebene Gurtformflächen auf, auf welchen die streifenförmigen Gur telemente, insbesondere entsprechend ihrer gewünschten Anordnung in der Rotorblattscha le, abgelegt werden können, z.B. entlang einer Längsrichtung, die mit einer Rotorblattlängs achse korrespondiert. Aufgrund der erhöhten Biegesteifigkeit der verbundenen Gurtelemente gegenüber der Biegesteifigkeit einzelner Gurtelemente ist es möglich, Spannungen beim Verbinden des Gurtes mit der Rotorblattschale zu vermeiden oder zumindest zu reduzieren. Zusätzlich kann dadurch auch der Widerstand der miteinander verbundenen Gurtelemente gegen eine, z.B. durch Applikation eines Vakuums erzeugte, Deformierung erhöht werden. Preferred aspects of the invention are based on the approach, for example, by means of a continuous drawing method of prefabricating strip-shaped belt elements of the rotor blade belt not only in the rotor blade shell, but also in a belt shape prior to introduction into the rotor blade shell and connecting them there to form the rotor blade belt. The belt shape used here has one or more flat belt shape surfaces on which the strip-shaped belt elements, in particular according to their desired arrangement in the rotor blade shell, can be deposited, for example along a longitudinal direction which corresponds to a longitudinal axis of the rotor blade. Due to the increased bending stiffness of the connected belt elements compared to the bending stiffness of individual belt elements, it is possible to avoid or at least reduce stresses when connecting the belt to the rotor blade shell. In addition, this can also increase the resistance of the belt elements connected to one another against deformation, for example caused by application of a vacuum.
Dabei ist es beispielsweise möglich, zwei oder mehr streifenförmige Gurtelemente, gegebe nenfalls unterschiedlicher Länge, übereinander auf einer einzigen Gurtformfläche anzuord nen, d.h. zu stapeln, etwa mittels einer Harzinfusion miteinander zu verbinden und anschlie ßend aus der Gurtform zu entnehmen und in die Rotorblattschale einzulegen. Dies ist z.B. vorteilhaft, wenn die Gurtelemente bereits eine Breite aufweisen, welche einer gewünschten Breite des Rotorblattgurts entspricht. It is possible, for example, to arrange two or more strip-shaped belt elements, if necessary of different lengths, one above the other on a single belt shape surface, i.e. to be stacked, for example by means of a resin infusion, and then removed from the belt shape and inserted into the rotor blade shell. This is e.g. advantageous if the belt elements already have a width which corresponds to a desired width of the rotor blade belt.
Alternativ oder zusätzlich ist es auch möglich, zwei oder mehr streifenförmige Gurtelemente, insbesondere gleicher Länge, nebeneinander auf zwei oder mehr nebeneinander liegenden Gurtformflächen anzuordnen. Dies ist z.B. vorteilhaft, wenn die gewünschte Breite des Ro torblattgurts größer ist als die Breite der einzelnen Gurtelemente. Alternatively or additionally, it is also possible to arrange two or more strip-shaped belt elements, in particular of the same length, next to one another on two or more belt-shaped surfaces lying next to one another. This is e.g. advantageous if the desired width of the ro torblattgurts is greater than the width of the individual belt elements.
Der Rotorblattgurt kann dabei aus gleichartigen oder aber auch aus verschiedenartigen Gur telementen zusammengesetzt werden. Vorzugsweise handelt es sich bei den Gurtelementen um mittels eines Strangziehverfahrens hergestellte Faserverbunde (sog. Pultrudate), etwa Kohlenstoffverbunde. Gurtelemente können aber durch Versteifungselemente gebildet wer den, die vorzugsweise in Sandwichbauweise erhalten werden und z.B. eine von Abdeckla gen umgebene Kernschicht aus Schaumstoff oder Balsaholz aufweisen. Solche Verstei fungselemente können in der Gurtform z.B. auf, unter oder zwischen den stranggezogenen Faserverbunden angeordnet und mit diesen zum Rotorblattgurt verbunden werden. Es ist insbesondere vorteilhaft, ein solches Versteifungselement in einem mit einer Rotorblattspitze korrespondierenden Bereich der Gurtform auf nur einem stranggezogenen Faserverbund anzuordnen, um die Biegesteifigkeit des Rotorblattgurts an der Blattspitze des Rotorblatts zu erhöhen. The rotor blade belt can be composed of the same or different types of elements. The belt elements are preferably fiber composites (so-called pultrudates), for example carbon composites, which are produced by means of a strand drawing process. Belt elements can, however, be formed by stiffening elements, which are preferably obtained in sandwich construction and e.g. have a core layer of foam or balsa wood surrounded by cover layers. Such stiffening elements can e.g. arranged on, under or between the extruded fiber composites and connected to them to form the rotor blade belt. It is particularly advantageous to arrange such a stiffening element in a region of the belt shape corresponding to a rotor blade tip on only one strand-drawn fiber composite in order to increase the bending stiffness of the rotor blade belt at the blade tip of the rotor blade.
Das erfindungsgemäße Verfahren hat auch den Vorteil, dass technisch einfach zu fertigende und/oder besonders wirtschaftliche Gurtelemente zum Zusammensetzen des Rotorgurts in der Gurtform verwendet werden können. Es ist beispielsweise denkbar, Gurtelemente mit Querschnitten zu verwenden, die aufgrund ihrer Deformierbarkeit zum separaten Einlegen in die Rotorblattschale ungeeignet oder zumindest nachteilig wären. Dies ermöglicht neben einer Verringerung des Gesamtgewichts auch eine hohe Präzision in der Fertigung der Gur telemente und damit des Rotorblattgurts. Zudem kann ein die Rotorblattschale mit einem solchen Rotorblattgurt aufweisendes Rotorblatt höheren thermischen und/oder mechani schen Belastungen standhalten. The method according to the invention also has the advantage that technically simple and / or particularly economical belt elements can be used to assemble the rotor belt in the belt shape. It is conceivable, for example, to use belt elements with cross sections which, because of their deformability, can be inserted separately into the rotor blade shell would be unsuitable or at least disadvantageous. In addition to reducing the overall weight, this also enables high precision in the manufacture of the belt elements and thus the rotor blade belt. In addition, a rotor blade having the rotor blade shell with such a rotor blade belt can withstand higher thermal and / or mechanical loads.
Insgesamt wird durch die Erfindung das Einbringen von Rotorblattg urten in Rotorblattschalen verbessert. Insbesondere kann durch die Erfindung die Stabilität eines Verbunds aus Rotor blattschale und Rotorblattgurt erhöht, insbesondere Spannungen im Rotorblattgurt verringert, werden. Overall, the introduction of rotor blade belts into rotor blade shells is improved by the invention. In particular, the stability of a composite of rotor blade shell and rotor blade belt can be increased by the invention, in particular stresses in the rotor blade belt can be reduced.
In einer bevorzugten Ausführungsform werden wenigstens zwei der streifenförmigen Gur telemente nebeneinander auf wenigstens zwei im Wesentlichen ebenen Gurtformflächen, die in einer senkrecht zur Längsrichtung verlaufenden Querrichtung relativ zueinander geneigt sind, angeordnet. Dabei ist die Neigung der Gurtformflächen relativ zueinander vorzugsweise auf eine Krümmung der Rotorblattschale in Bezug auf eine senkrecht zur Rotorblattlängs achse verlaufende Rotorblattquerachse abgestimmt. Auf diese Weise kann ein Rotorblattgurt aus streifenförmigen Gurtelementen, insbesondere mit rechteckigem Querschnitt, hergestellt werden, der eine durch die relativ zueinander geneigten Gurtformflächen zumindest angenä herte Krümmung aufweist. Ein sich beim Einlegen der verbundenen Gurtelemente in die Ro torblattschale zwischen den verbundenen Gurtelemente und der Rotorblattschale bildender Hohlraum kann auf diese Weise verringert werden, so dass beispielsweise die Stabilität des Rotorblatts erhöht wird und/oder weniger Harz notwendig ist, um diesen Hohlraum zu füllen und die verbundenen Gurtelemente zuverlässig mit der Rotorblattschale zu verbinden. In a preferred embodiment, at least two of the strip-shaped belt elements are arranged next to one another on at least two substantially flat belt-shaped surfaces which are inclined relative to one another in a transverse direction perpendicular to the longitudinal direction. The inclination of the belt shaped surfaces relative to one another is preferably matched to a curvature of the rotor blade shell with respect to a rotor blade transverse axis running perpendicular to the longitudinal axis of the rotor blade. In this way, a rotor blade belt can be produced from strip-shaped belt elements, in particular with a rectangular cross section, which has a curvature which is at least approximately approximated by the belt shape surfaces which are inclined relative to one another. A cavity that forms when the connected belt elements are inserted into the rotor blade shell between the connected belt elements and the rotor blade shell can be reduced in this way, so that, for example, the stability of the rotor blade is increased and / or less resin is required to fill this cavity and to reliably connect the connected belt elements to the rotor blade shell.
In einer weiteren bevorzugten Ausführungsform werden die wenigstens zwei streifenförmi gen Gurtelemente auf einer durch die wenigstens zwei relativ zueinander geneigten Gurt formflächen gebildeten Oberfläche der Gurtform angeordnet, wobei die Oberfläche im Quer schnitt senkrecht zur Längsrichtung einem Polygonzug folgt, der eine Krümmung der Rotor blattschale in Bezug auf eine zur Rotorblattlängsachse senkrechte Rotorblattquerachse nachbildet oder annähert. Ein solcher mit der Krümmung der Rotorblattschale korrespondie render Polygonzug lässt sich, etwa mittels mathematischer Optimierungsverfahren, leicht ermitteln, z.B. aus einem Modell des Rotorblatts. Die Verbindungsstrecken des Polygonzugs korrespondieren dabei in bevorzugter Weise mit Abschnitten der Rotorblattschale, wobei jede Verbindungstrecke jeweils im Wesentlichen parallel, zumindest jedoch tangential, zur Rotorblattschale im entsprechenden Abschnitt verläuft. In a further preferred embodiment, the at least two strip-shaped belt elements are arranged on a surface of the belt shape formed by the at least two belt surfaces which are inclined relative to one another, the surface in cross section perpendicular to the longitudinal direction following a polygonal curve which relates to a curvature of the rotor blade shell reproduces or approximates to a rotor blade transverse axis perpendicular to the longitudinal axis of the rotor blade. Such a polygon course corresponding to the curvature of the rotor blade shell can easily be determined, for example by means of mathematical optimization methods, for example from a model of the rotor blade. The connecting paths of the polygon course preferably correspond to sections of the rotor blade shell, wherein each connecting section runs essentially parallel, but at least tangentially, to the rotor blade shell in the corresponding section.
Der Rotorblattgurt kann daher, insbesondere in Bezug auf die vorgegebene Breite seiner Gurtelemente, optimal an die Krümmung der Rotorblattschale angepasst werden, so dass beim Einlegen in die Rotorblattschale keinerlei Spannungen im Rotorblattgurt erzeugt wer den. The rotor blade belt can therefore, in particular with respect to the predetermined width of its belt elements, be optimally adapted to the curvature of the rotor blade shell, so that no stresses are generated in the rotor blade belt when inserted into the rotor blade shell.
In einer weiteren bevorzugten Ausführungsform werden die wenigstens zwei streifenförmi gen Gurtelemente in der Gurtform durch eine Harzinfusion miteinander verbunden und nach einem zumindest teilweisen Aushärten des Harzes aus der Gurtform entnommen und in die Rotorblattschale eingebracht. Dadurch kann sichergestellt werden, dass die Gurtelemente die gewünschte, insbesondere mit der Krümmung der Rotorblattschale korrespondierende, Anordnung beim Einbringen in die Rotorblattschale beibehalten, also z.B. ein Verrutschen zuverlässig verhindert wird. In a further preferred embodiment, the at least two strip-shaped belt elements in the belt mold are connected to one another by a resin infusion and, after at least partial curing of the resin, are removed from the belt mold and introduced into the rotor blade shell. This can ensure that the belt elements maintain the desired arrangement, in particular corresponding to the curvature of the rotor blade shell, when they are introduced into the rotor blade shell, i.e., e.g. slipping is reliably prevented.
Dies hat auch den Vorteil, dass die Biegesteifigkeit des in die Rotorblattschale eingebrachten Rotorblattgurts gegenüber einzeln eingebrachten Gurtelementen erhöht ist. Somit kann z.B. auch das Risiko, den Rotorblattgurt beim Einbringen in die Rotorblattschale unbeabsichtigt zu deformieren, verringert werden. This also has the advantage that the bending stiffness of the rotor blade belt introduced into the rotor blade shell is increased compared to individually inserted belt elements. Thus e.g. the risk of unintentionally deforming the rotor blade belt when it is introduced into the rotor blade shell can also be reduced.
In einer weiteren bevorzugten Ausführungsform wird ein deformierbares Füllmaterial in die Rotorblattschale eingelegt. Die miteinander verbundenen Gurtelemente werden dabei auf dem deformierbaren Füllmaterial abgelegt. Das deformierbare Füllmaterial kann insbesonde re komprimierbar ausgebildet sein, beispielsweise aus einem Schaumstoff. Dadurch kann verhindert werden, dass beim Verbinden des aus miteinander verbundenen Gurtelementen hergestellten Rotorblattgurts und der Rotorblattschale eingesetztes Harz in zwischen den Gurtelementen und der Rotorblattschale gebildete Hohlräume eindringt. Neben einer Materi- alersparnis bietet sich dadurch auch die Möglichkeit, die elastischen Eigenschaften des Ver bunds aus Rotorblattgurt und Rotorblattschale zu beeinflussen. In a further preferred embodiment, a deformable filling material is inserted into the rotor blade shell. The belt elements connected to each other are placed on the deformable filler material. The deformable filling material can in particular be made compressible, for example from a foam. It can thereby be prevented that, when the rotor blade belt made of interconnected belt elements and the rotor blade shell are connected, resin inserted into cavities formed between the belt elements and the rotor blade shell. In addition to saving material, this also offers the possibility of influencing the elastic properties of the composite comprising the rotor blade belt and the rotor blade shell.
Alternativ kann das deformierbare Füllmaterial auch als Fasermaterial ausgebildet sein. Beim Verbinden der miteinander verbundenen Gurtelemente mit der Rotorblattschale wird das Fasermaterial dabei vorzugsweise mit Harz getränkt. Dadurch kann die Verbindung anstelle von reinem Harz mit einem faserverstärkten Kunststoff hergestellt werden, so dass die Ver bindung fester und haltbarer wird. Alternatively, the deformable filling material can also be designed as a fiber material. When connecting the interconnected belt elements to the rotor blade shell, the fiber material is preferably impregnated with resin. This allows the connection to take place Made of pure resin with a fiber-reinforced plastic, so that the connection is stronger and more durable.
In einer weiteren bevorzugten Ausführungsform ist wenigstens eines der wenigstens zwei streifenförmigen Gurtelementen ein Versteifungselement, welches zusammen mit dem we nigstens einen weiteren Gurtelement auf der wenigstens einen Gurtformfläche der Gurtform angeordnet und zum Rotorblattgurt verbunden wird. Beispielsweise können in dieser Weise Kernmaterialien und Decklagen mit in den Rotorblattgurt eingefügt werden, um einen sand wichartigen Aufbau des Rotorblattgurts mit besonders hoher Biegesteifigkeit zu ermöglichen. Das Versteifungselement kann dabei insbesondere in Bereichen der Gurtelemente angeord net werden, in denen der Rotorblattgurt nur aus einem einzigen der Gurtelemente gebildet wird, z.B. bei nebeneinander angeordneten Gurtelemente oder, falls mehrere Gurtelemente unterschiedlicher Länge übereinander angeordnet werden, im Endbereich der Gurtelemente. In a further preferred embodiment, at least one of the at least two strip-shaped belt elements is a stiffening element which, together with the at least one further belt element, is arranged on the at least one belt shape surface of the belt shape and is connected to form the rotor blade belt. In this way, for example, core materials and cover layers can also be inserted into the rotor blade belt in order to enable a sandwich-like structure of the rotor blade belt with particularly high bending rigidity. The stiffening element can be arranged in particular in areas of the belt elements in which the rotor blade belt is formed from only one of the belt elements, e.g. in the case of belt elements arranged next to one another or, if a plurality of belt elements of different lengths are arranged one above the other, in the end region of the belt elements.
In einer weiteren bevorzugten Ausführungsform weisen die auf der wenigstens einen Gurt formfläche angeordneten streifenförmigen Gurtelemente einen im Wesentlichen rechteckigen Querschnitt mit einer Dicke zwischen 2 mm und 6 mm und/oder einer Breite zwischen 50 mm und 300 mm auf. Solche, z.B. mittels eines Strangziehverfahrens hergestellten Gur telemente, sind besonders wirtschaftlich. Gleichzeitig können Gurtelemente mit einem sol chen Querschnitt bereits eine Biegesteifigkeit aufweisen, die bei der Verbindung mehrerer solcher Gurtelemente in der Gurtform zu einer Gesamtsteifigkeit kumuliert, die selbst bei einer durch das Einbringen in die Rotorblattschale bewirkten Vorspannung das Einwirken weiterer thermischer und/oder mechanischer Belastungen abfängt. In a further preferred embodiment, the strip-shaped belt elements arranged on the at least one belt shape surface have an essentially rectangular cross section with a thickness between 2 mm and 6 mm and / or a width between 50 mm and 300 mm. Such, e.g. Gur telemente manufactured by means of a continuous drawing process are particularly economical. At the same time, belt elements with such a cross-section can already have a bending stiffness which, when a plurality of such belt elements are connected in the belt shape, accumulates to form an overall stiffness which, even when pretensioned by the introduction into the rotor blade shell, intercepts the action of further thermal and / or mechanical loads .
In einer weiteren bevorzugten Ausführungsform ist die Gurtform in der Weise ausgebildet, dass eine durch die relativ zueinander geneigten Gurtformflächen gebildete Oberfläche der Gurtform im Querschnitt senkrecht zur Längsrichtung einem Polygonzug folgt, der eine Krümmung einer Rotorblattschale des Rotorblatts in Bezug auf eine zur Rotorblattlängsach se senkrechte Rotorblattquerachse nachbildet oder annähert. Ein solcher mit der Krümmung der Rotorblattschale korrespondierender Polygonzug lässt sich, etwa mittels mathematischer Optimierungsverfahren, leicht ermitteln, z.B. aus einem Modell des Rotorblatts. Die Verbin dungsstrecken des Polygonzugs korrespondieren dabei in bevorzugter Weise mit Abschnit ten der Rotorblattschale, wobei jede Verbindungstrecke jeweils im Wesentlichen parallel, zumindest jedoch tangential, zur Rotorblattschale im entsprechenden Abschnitt verläuft. Die Gurtform erlaubt daher das Herstellen eines Rotorblattgurts, der, insbesondere in Bezug auf die vorgegebene Breite seiner Gurtelemente, optimal an die Krümmung der Rotorblatt schale angepasst ist, so dass beim Einlegen in die Rotorblattschale keinerlei Spannungen im Rotorblattgurt erzeugt werden. Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung er geben sich aus der nachfolgenden Beschreibung in Zusammenhang mit den Figuren. Es zeigen: In a further preferred embodiment, the belt shape is designed in such a way that a surface of the belt shape formed by the belt shape surfaces inclined relative to one another follows a polygonal cross section perpendicular to the longitudinal direction, which curvature of a rotor blade shell of the rotor blade with respect to a rotor blade transverse axis perpendicular to the longitudinal axis of the rotor blade reproduces or approximates. Such a polygon course corresponding to the curvature of the rotor blade shell can easily be determined, for example by means of mathematical optimization methods, for example from a model of the rotor blade. The connec tion paths of the polygon course correspond in a preferred manner with sections of the rotor blade shell, each connecting path running essentially parallel, but at least tangentially, to the rotor blade shell in the corresponding section. The belt shape therefore allows the manufacture of a rotor blade belt which, in particular with respect to the predetermined width of its belt elements, is optimally adapted to the curvature of the rotor blade shell, so that no stresses are generated in the rotor blade belt when inserted into the rotor blade shell. Further advantages, features and possible applications of the present invention emerge from the following description in connection with the figures. Show it:
Fig. 1 ein Beispiel einer Gurtform zur Herstellung eines Rotorblattgurts für ein Rotorblatt einer Windenergieanlage in einem Querschnitt; und Fig. 2 ein Beispiel einer Rotorblattschale, in die ein Rotorblattgurt aus miteinander verbun denen Gurtelementen eingebracht ist. 1 shows an example of a belt shape for producing a rotor blade belt for a rotor blade of a wind turbine in a cross section; and FIG. 2 shows an example of a rotor blade shell, into which a rotor blade belt made of belt elements connected to one another is introduced.
Figur 1 zeigt ein Beispiel einer Gurtform 1 zur Herstellung eines Rotorblattgurts für ein Ro torblatt einer Windenergieanlage in einem Querschnitt entlang einer Querrichtung Q der Gurtform 1. Die Gurtform 1 weist in Querrichtung Q drei nebeneinanderliegende, im Wesent- liehen ebene Gurtformflächen 2 auf. Jede der Gurtformflächen 2 ist dabei dazu eingerichtet, ein streifenförmiges Gurtelement 3 des Rotorblattgurts aufzunehmen und/oder abzustützen. Die auf den Gurtformflächen 2 abgelegten Gurtelemente 3 erstrecken sich dabei entlang einer Längsrichtung der Gurtform 1 , die senkrecht zur Querrichtung Q und damit zur Zei chenebene verläuft. Diese Längsrichtung korrespondiert mit einer von einer Rotorblattwurzel bis zu einer Rotorblattspitze verlaufenden Rotorblattlängsachse, so dass die auf den Gurt formflächen 2 angeordneten Gurtelemente 3 miteinander verbunden, aus der Gurtform 1 entnommen und als Rotorblattgurt entlang der Rotorblattlängsachse im Rotorblatt angeord net werden können. FIG. 1 shows an example of a belt shape 1 for producing a rotor blade belt for a rotor blade of a wind turbine in a cross section along a transverse direction Q of the belt shape 1. The belt shape 1 has three adjacent, essentially flat belt shape surfaces 2 in the transverse direction Q. Each of the belt shaped surfaces 2 is designed to receive and / or support a strip-shaped belt element 3 of the rotor blade belt. The belt elements 3 deposited on the belt shape surfaces 2 extend along a longitudinal direction of the belt shape 1 which is perpendicular to the transverse direction Q and thus to the plane of the zei. This longitudinal direction corresponds to a longitudinal axis of the rotor blade extending from a rotor blade root to a rotor blade tip, so that the belt elements 3 arranged on the belt shaped surfaces 2 are connected to one another, removed from the belt shape 1 and can be arranged as a rotor blade belt along the longitudinal axis of the rotor blade in the rotor blade.
Die Gurtformflächen 2 werden dabei beispielsweise durch eine Oberfläche der Gurtform 1 gebildet, die entsprechend der Gurtformflächen 2 segmentiert ist. Die Gurtformflächen 2 sind relativ zueinander geneigt, so dass die Oberfläche im gezeigten Querschnitt einem Polygon zug folgt, der eine Krümmung des Rotorblatts oder einer Rotorblattschale des Rotorblatts entlang einer zur Rotorblattlängsachse senkrechten Rotorblattquerachse nachbildet oder annähert. Die Gurtform 1 bewirkt daher eine Anordnung der Gurtelemente 3, die mit der Krümmung des Rotorblatts korrespondiert, so dass in der Gurtform 1 etwa durch eine Harz infusion miteinander verbundene Gurtelemente 3 nicht deformiert und damit unter Spannung gesetzt werden müssen, um sich der Form des Rotorblatts anzupassen. The belt shape surfaces 2 are formed, for example, by a surface of the belt shape 1 which is segmented according to the belt shape surfaces 2. The belt-shaped surfaces 2 are inclined relative to one another, so that the surface in the cross section shown follows a polygon train that simulates or approximates a curvature of the rotor blade or a rotor blade shell of the rotor blade along a rotor blade transverse axis perpendicular to the longitudinal axis of the rotor blade. The belt shape 1 therefore causes an arrangement of the belt elements 3, with the Curvature of the rotor blade corresponds, so that in the belt shape 1, belt elements 3 connected to one another, for example by a resin infusion, do not have to be deformed and thus put under tension in order to adapt to the shape of the rotor blade.
Figur 2 zeigt ein Beispiel einer Rotorblattschale 4 eines Rotorblatts, in die ein Rotorblattgurt aus drei, insbesondere unter Verwendung der in Figur 1 gezeigten Gurtform, miteinander verbundenen Gurtelementen 3 eingebracht ist. Die Anordnung der Gurtelemente 3 entspricht dabei im Wesentlichen der Krümmung der Rotorblattschale 4, so dass die Gurtelemente 3 im Wesentlichen spannungsfrei sind. Die Spannung in den Gurtelementen 3 kann auch redu ziert werden, indem weitere Gurtelemente 3 oder weitere Versteifungsmaterialien auf die drei Gurtelemente 3 gestapelt (nicht gezeigt) und mit diesen verbunden werden, da sich auf diese Weise die Biegesteifigkeit erhöht. FIG. 2 shows an example of a rotor blade shell 4 of a rotor blade, into which a rotor blade belt comprising three belt elements 3, in particular using the belt shape shown in FIG. 1, is introduced. The arrangement of the belt elements 3 essentially corresponds to the curvature of the rotor blade shell 4, so that the belt elements 3 are essentially free of tension. The tension in the belt elements 3 can also be reduced by stacking further belt elements 3 or further stiffening materials on the three belt elements 3 (not shown) and connecting them, since this increases the bending stiffness.
Die Rotorblattschale 4 wird in einer Rotorblattform 5 hergestellt, welche eine Oberseite auf weist, deren Form die Krümmung der Rotorblattschale entlang einer von einer Rotorblattvor derkante (Nase) bis zu einer Rotorblatthinterkante verlaufenden Rotorblattquerachse q defi- niert. The rotor blade shell 4 is produced in a rotor blade shape 5 which has an upper side, the shape of which defines the curvature of the rotor blade shell along a transverse transverse axis q of the rotor blade running from a leading edge (nose) to a trailing edge of the rotor blade.
Zwischen den miteinander verbundenen Gurtelementen 3 und der Rotorblattschale 4 ist ein deformierbares Füllmaterial 6 angeordnet, welches sich der Form der Rotorblattschale 4 und/oder der miteinander verbundenen Gurtelemente 3 in Richtung der Rotorblattquerach se q anpasst. Das deformierbare Füllmaterial 6 füllt insbesondere den Zwischenraum zwi- sehen den miteinander verbundenen Gurtelementen 3 und der Rotorblattschale 4, der ent steht, da die durch die nebeneinander angeordneten und zueinander geneigten Gurtelemen te 3 nachgebildete Krümmung die tatsächliche Krümmung der Rotorblattschale 4 nur annä hert. A deformable filler material 6 is arranged between the interconnected belt elements 3 and the rotor blade shell 4 and adapts to the shape of the rotor blade shell 4 and / or the interconnected belt elements 3 in the direction of the rotor blade cross axis q. The deformable filler 6 fills in particular the space between the interconnected belt elements 3 and the rotor blade shell 4, which arises since the curvature reproduced by the mutually adjacent and inclined belt elements te 3 only approximates the actual curvature of the rotor blade shell 4.
Die miteinander verbundenen Gurtelemente 3 werden vorzugsweise mithilfe einer Harzinfu sion mit der Rotorblattschale 4 verbunden. Das deformierbare Füllmaterial 6 tränkt sich hier bei mit Harz und bildet einen festen faserverstärkten Kunststoff im Zwischenraum zwischen den Gurtelementen 3 und der Rotorblattschale 4. The interconnected belt elements 3 are preferably connected to the rotor blade shell 4 with the aid of a resin infusion. The deformable filler material 6 is impregnated with resin and forms a solid fiber-reinforced plastic in the space between the belt elements 3 and the rotor blade shell 4.

Claims

Patentansprüche Claims
1. Verfahren zum Einbringen eines Rotorblattgurtes in eine Rotorblattschale (4) für ein Rotorblatt einer Windenergieanlage, welches eine sich von einer Rotorblattwurzel zu einer Rotorblattspitze erstreckende Rotorblattlängsachse aufweist, wobei 1. A method for introducing a rotor blade belt into a rotor blade shell (4) for a rotor blade of a wind power plant, which has a longitudinal axis of the rotor blade extending from a rotor blade root to a rotor blade tip, wherein
-wenigstens zwei streifenförmige Gurtelemente (3) auf wenigstens einer im Wesent lichen ebenen Gurtformfläche (2) einer Gurtform (1 ) angeordnet werden, wobei sich die wenigstens eine Gurtformfläche (2) entlang einer mit der Rotorblattlängsachse korrespondierenden Längsrichtung der Gurtform (1 ) erstreckt, at least two strip-shaped belt elements (3) are arranged on at least one substantially flat belt shape surface (2) of a belt shape (1), the at least one belt shape surface (2) extending along a longitudinal direction of the belt shape (1) corresponding to the longitudinal axis of the rotor blade,
-die auf der wenigstens einen Gurtformfläche (2) angeordneten Gurtelemente (3) miteinander zu einem Rotorblattgurt verbunden werden, und -The belt elements (3) arranged on the at least one belt shaping surface (2) are connected to one another to form a rotor blade belt, and
-die miteinander verbundenen Gurtelemente (3) aus der Gurtform (1 ) entnommen, in die Rotorblattschale (4) eingebracht und mit der Rotorblattschale (4) verbunden werden. - The belt elements (3) connected to one another are removed from the belt shape (1), introduced into the rotor blade shell (4) and connected to the rotor blade shell (4).
2. Verfahren nach Anspruch 1 , wobei wenigstens zwei der streifenförmigen Gurtelemen- te (3) nebeneinander auf wenigstens zwei im Wesentlichen ebenen Gurtformflä chen (2), die in einer senkrecht zur Längsrichtung verlaufenden Querrichtung (Q) re lativ zueinander geneigt sind, angeordnet werden. 2. The method according to claim 1, wherein at least two of the strip-shaped belt elements (3) are arranged side by side on at least two substantially flat belt shape surfaces (2) which are inclined relatively to one another in a transverse direction (Q) running perpendicular to the longitudinal direction .
3. Verfahren nach Anspruch 2, wobei die wenigstens zwei streifenförmigen Gurtelemen te (3) auf einer durch die wenigstens zwei relativ zueinander geneigten Gurtformflä- chen (2) gebildeten Oberfläche der Gurtform (1 ) angeordnet werden, wobei die Ober fläche im Querschnitt senkrecht zur Längsrichtung einem Polygonzug folgt, der eine Krümmung der Rotorblattschale (4) in Bezug auf eine zur Rotorblattlängsachse senk rechte Rotorblattquerachse (q) nachbildet oder annähert. 3. The method according to claim 2, wherein the at least two strip-shaped belt elements (3) are arranged on a surface of the belt mold (1) formed by the at least two mutually inclined belt mold surfaces (2), the upper surface being perpendicular to the cross section In the longitudinal direction, a polygon follows, which simulates or approximates a curvature of the rotor blade shell (4) with respect to a right transverse rotor blade axis (q) perpendicular to the longitudinal axis of the rotor blade.
4. Verfahren nach einem der vorangehenden Ansprüche, wobei die wenigstens zwei streifenförmigen Gurtelemente (3) in der Gurtform (1 ) durch eine Harzinfusion mitei nander verbunden und nach einem zumindest teilweisen Aushärten des Harzes aus der Gurtform (1 ) entnommen und in die Rotorblattschale (4) eingebracht werden. 4. The method according to any one of the preceding claims, wherein the at least two strip-shaped belt elements (3) in the belt mold (1) connected to each other by a resin infusion and after an at least partial curing of the resin removed from the belt mold (1) and into the rotor blade shell ( 4) can be introduced.
5. Verfahren nach einem der vorangehenden Ansprüche, wobei ein deformierbares Füllmaterial (6) in die Rotorblattschale (4) eingelegt und die miteinander verbundenen Gurtelemente (3) auf dem deformierbaren Füllmaterial (6) abgelegt werden. 5. The method according to any one of the preceding claims, wherein a deformable filler material (6) is inserted into the rotor blade shell (4) and the interconnected belt elements (3) are placed on the deformable filler material (6).
6. Verfahren nach einem der vorangehenden Ansprüche, wobei wenigstens eines der wenigstens zwei streifenförmigen Gurtelementen (3) ein Versteifungselement ist, welches zusammen mit dem wenigstens einen weiteren Gurtelement (3) auf der we nigstens einen Gurtformfläche (2) der Gurtform (1 ) angeordnet und zum Rotorblatt gurt verbunden wird. 6. The method according to any one of the preceding claims, wherein at least one of the at least two strip-shaped belt elements (3) is a stiffening element, which together with the at least one further belt element (3) on which we arranged at least one belt shape surface (2) of the belt shape (1) and is connected to the rotor blade belt.
7. Verfahren nach einem der vorangehenden Ansprüche, wobei die auf der wenigstens einen Gurtformfläche (2) angeordneten streifenförmigen Gurtelemente (3) einen im7. The method according to any one of the preceding claims, wherein the strip-shaped belt elements (3) arranged on the at least one belt-shaped surface (2) have an im
Wesentlichen rechteckigen Querschnitt mit einer Dicke zwischen 2 mm und 6 mm und/oder einer Breite zwischen 50 mm und 300 mm aufweisen. Have an essentially rectangular cross section with a thickness between 2 mm and 6 mm and / or a width between 50 mm and 300 mm.
8. Gurtform (1 ) zur Herstellung eines Rotorblattgurts für ein Rotorblatt einer Windener gieanlage, wobei die Gurtform (1 ) wenigstens zwei im Wesentlichen ebene Gurtform- flächen (2) zur Aufnahme von wenigstens zwei streifenförmigen Gurtelementen (3) aufweist und wobei sich die wenigstens zwei Gurtformflächen (3) entlang einer Längsrichtung, die mit einer sich von einer Rotorblattwurzel zu einer Rotorblattspitze erstreckenden Rotorblattlängsachse des Rotorblatts korrespondiert, der Gurtform (1 ) erstrecken und in einer senkrecht zur Längsrichtung verlaufenden Querrichtung (Q) der Gurtform (1 ) nebeneinander liegen und relativ zueinander geneigt sind. 8. Belt shape (1) for producing a rotor blade belt for a rotor blade of a wind energy system, wherein the belt shape (1) has at least two essentially flat belt shape surfaces (2) for receiving at least two strip-shaped belt elements (3) and wherein the at least two belt shape surfaces (3) along a longitudinal direction, which correspond to a longitudinal axis of the rotor blade extending from a rotor blade root to a rotor blade tip, extend the belt shape (1) and lie next to one another in a transverse direction (Q) of the belt shape (1) perpendicular to the longitudinal direction and are inclined relative to each other.
9. Gurtform (1 ) nach Anspruch 8, wobei die Gurtform (1 ) in der Weise ausgebildet ist, dass eine durch die relativ zueinander geneigten Gurtformflächen (2) gebildete Ober fläche der Gurtform (1 ) im Querschnitt senkrecht zur Längsrichtung einem Polygon zug folgt, der eine Krümmung einer Rotorblattschale (4) des Rotorblatts in Bezug auf eine zur Rotorblattlängsachse senkrechte Rotorblattquerachse (q) nachbildet oder annähert. 9. belt shape (1) according to claim 8, wherein the belt shape (1) is designed in such a way that an upper surface of the belt shape (1) formed by the relatively inclined belt shape surfaces (2) follows a polygon in cross section perpendicular to the longitudinal direction , which simulates or approximates a curvature of a rotor blade shell (4) of the rotor blade with respect to a rotor blade transverse axis (q) perpendicular to the longitudinal axis of the rotor blade.
10. Rotorblatt für eine Windenergieanlage mit wenigstens einer Rotorblattschale (4), in die ein mit dem Verfahren nach einem der Ansprüche 1 bis 7 und/oder unter Verwen- düng einer Gurtform (1 ) nach einem der Ansprüche 8 oder 9 hergestellter Rotorblatt gurt eingebracht ist. 10. rotor blade for a wind power plant with at least one rotor blade shell (4), in which one with the method according to one of claims 1 to 7 and / or with use Fertilizing a belt shape (1) according to one of claims 8 or 9 manufactured rotor blade belt is introduced.
1 1. Windenergieanlage mit mindestens einem Rotorblatt nach Anspruch 10. 1 1. Wind turbine with at least one rotor blade according to claim 10.
EP19809453.4A 2018-11-28 2019-11-25 Method for introducing a rotor blade belt into a rotor blade shell, belt mold, rotor blade and wind turbine Withdrawn EP3887670A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018009339.6A DE102018009339A1 (en) 2018-11-28 2018-11-28 Method for inserting a rotor blade belt into a rotor blade shell, belt shape, rotor blade and wind power plant
PCT/EP2019/082400 WO2020109220A1 (en) 2018-11-28 2019-11-25 Method for introducing a rotor blade belt into a rotor blade shell, belt mold, rotor blade and wind turbine

Publications (1)

Publication Number Publication Date
EP3887670A1 true EP3887670A1 (en) 2021-10-06

Family

ID=68696426

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19809453.4A Withdrawn EP3887670A1 (en) 2018-11-28 2019-11-25 Method for introducing a rotor blade belt into a rotor blade shell, belt mold, rotor blade and wind turbine

Country Status (5)

Country Link
US (1) US20220024161A1 (en)
EP (1) EP3887670A1 (en)
CN (1) CN113167220A (en)
DE (1) DE102018009339A1 (en)
WO (1) WO2020109220A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102433672B1 (en) * 2021-05-04 2022-08-18 두산에너빌리티 주식회사 Fablicating method of wind turbine blade

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235496B4 (en) * 2002-08-02 2015-07-30 General Electric Co. Method for producing a rotor blade, rotor blade and wind energy plant
DE10336461A1 (en) * 2003-08-05 2005-03-03 Aloys Wobben Method for producing a rotor blade of a wind energy plant
US7976282B2 (en) * 2007-01-26 2011-07-12 General Electric Company Preform spar cap for a wind turbine rotor blade
DE102008045601A1 (en) * 2008-06-27 2009-12-31 Repower Systems Ag Rotor blade for a wind energy plant and method and production form for its production
DE102008055771C5 (en) * 2008-11-04 2018-06-14 Senvion Gmbh Rotorblattgurt
ES2583015T3 (en) * 2011-09-07 2016-09-16 Nordex Energy Gmbh Procedure for manufacturing a wind blade installation rotor blade component with a prefabricated main beam
DE102012219226A1 (en) * 2012-10-22 2014-04-24 Repower Systems Se Apparatus and method for manufacturing a rotor blade belt
DE102014018498A1 (en) * 2014-12-16 2016-06-16 Senvion Gmbh Arrangement of pultruded rods
DE102016006632A1 (en) * 2016-06-03 2017-12-07 Senvion Gmbh Method for determining a positioning of a rotor blade belt, rotor blade and wind energy plant
DE102016013064A1 (en) * 2016-11-03 2018-05-03 Senvion Gmbh Rotor blade with curved pultrudates
DE102017113769A1 (en) * 2017-06-21 2018-12-27 Nordex Energy Gmbh Pultruded profile with tear-off fabric

Also Published As

Publication number Publication date
DE102018009339A1 (en) 2020-05-28
WO2020109220A1 (en) 2020-06-04
CN113167220A (en) 2021-07-23
US20220024161A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
EP2363599B2 (en) Rotor blade for a wind turbine, wind turbine and method for manufacturing a rotor blade
DE102011078951C5 (en) Method for producing a rotor blade for a wind energy plant
EP2904262B1 (en) Composite component for a rotor blade
EP2755815B1 (en) Mould and method for producing a web, and web for a rotor blade of a wind turbine
EP3114348B1 (en) Method for producing a rotor blade of a wind turbine, a rotor blade and a wind turbine
WO2005011964A1 (en) Bearing structure
EP3018342B1 (en) Method for producing a rotor blade of a wind turbine
DE102008007304A1 (en) Rotor blade for wind turbines
EP3496936A1 (en) Spar cap made of prefabricated elements with laid fabric and method for producing same
DE102013220209B4 (en) Method for producing a node structure and node structure
DE102011079240A1 (en) Device and method for manufacturing a component
EP2815861B1 (en) Method and forming tool for producing a chord segment for a wind energy plant rotor blade
DE102015007289A1 (en) Rotor blade, rotor blade belt and method for producing a rotor blade
DE102011003560A1 (en) Semi-finished product for the production of a fiber-reinforced component of a wind turbine, in particular rotor blade belt
EP3486476B1 (en) Shear web for a rotor blade of a wind turbine and method for producing a shear web
EP3551438B1 (en) Trailing edge spar cap of a rotor blade of a wind turbine, rotor blade and method for producing a trailing edge spar cap
WO2020109220A1 (en) Method for introducing a rotor blade belt into a rotor blade shell, belt mold, rotor blade and wind turbine
EP3564523A1 (en) Flange fitting for a wind energy assembly rotor blade, reinforcement layer for a flange fitting, flange inserter, wind energy assembly rotor blade, wind turbine and method for producing a flange fitting
EP3015702B1 (en) Rotor blade for a wind turbine and method for producing a rotor blade
DE102017126273A1 (en) Wind turbine rotor blade with web-belt connection

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS GAMESA RENEWABLE ENERGY SERVICE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20220803