EP3877732B1 - Multicapteur vibronique - Google Patents

Multicapteur vibronique Download PDF

Info

Publication number
EP3877732B1
EP3877732B1 EP19729510.8A EP19729510A EP3877732B1 EP 3877732 B1 EP3877732 B1 EP 3877732B1 EP 19729510 A EP19729510 A EP 19729510A EP 3877732 B1 EP3877732 B1 EP 3877732B1
Authority
EP
European Patent Office
Prior art keywords
process variable
signal
reception signal
sensor unit
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19729510.8A
Other languages
German (de)
English (en)
Other versions
EP3877732A1 (fr
Inventor
Sergey Lopatin
Jan SCHLEIFERBRÖCK
Tobias Brengartner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of EP3877732A1 publication Critical patent/EP3877732A1/fr
Application granted granted Critical
Publication of EP3877732B1 publication Critical patent/EP3877732B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2966Acoustic waves making use of acoustical resonance or standing waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/006Determining flow properties indirectly by measuring other parameters of the system
    • G01N2011/0073Determining flow properties indirectly by measuring other parameters of the system acoustic properties

Definitions

  • the invention relates to a method for determining and/or monitoring at least two different process variables of a medium using a device comprising a sensor unit with at least one mechanically oscillatable unit and a first and a second piezoelectric element.
  • the invention also relates to a device which is designed to carry out a method according to the invention.
  • the medium is in a container, for example in a container or in a pipeline.
  • Vibronic sensors are widely used in process and/or automation technology.
  • they have at least one mechanically oscillatable unit, such as an oscillating fork, a single rod or a membrane.
  • a drive/receiver unit often in the form of an electromechanical converter unit, which in turn can be, for example, a piezoelectric drive or an electromagnetic drive.
  • Corresponding field devices are manufactured by the applicant in a large variety and sold, for example, under the name LIQUIPHANT or SOLIPHANT. The underlying measurement principles are known in principle from a large number of publications.
  • the drive/receiver unit excites the mechanically oscillatable unit to mechanical oscillations by means of an electrical excitation signal. Conversely, the drive/receiver unit can receive the mechanical vibrations of the mechanically oscillatable unit and convert them into an electrical reception signal. Accordingly, the drive/receiver unit is either a separate drive unit and a separate receiver unit, or a combined drive/receiver unit.
  • the drive/receiver unit is in many cases part of a feedback electrical oscillating circuit, by means of which the excitation of the mechanically oscillatable unit to mechanical oscillations takes place.
  • the oscillating circuit condition according to which the amplification factor is ⁇ 1 and all phases occurring in the oscillating circuit are a multiple of 360°, must be fulfilled.
  • a certain phase shift between the excitation signal and the received signal must be guaranteed in order to excite and fulfill the resonant circuit condition. For this reason, a predefinable value for the phase shift, that is to say a target value for the phase shift between the excitation signal and the received signal, is often set.
  • Both the excitation signal and the received signal are characterized by their frequency ⁇ , amplitude A and/or phase ⁇ .
  • changes in these variables are usually used to determine the respective process variable.
  • the process variable can be, for example, a fill level, a specified fill level, or the density or the viscosity of the medium, as well as the flow.
  • a vibronic point level switch for liquids for example, a distinction is made as to whether the oscillatable unit is covered by the liquid or is oscillating freely.
  • the density and/or viscosity can only be determined with such a measuring device if the oscillatable unit is covered by the medium.
  • different possibilities have also become known from the prior art, such as those in the documents DE10050299A1 , DE102007043811A1 , DE10057974A1 , DE102006033819A1 , DE102015102834A1 or DE102016112743A1 revealed.
  • the present invention is therefore based on the object of expanding the functionality of a vibronic sensor.
  • the sensor unit is part of a device for determining and/or monitoring at least two different process variables of a medium and includes a mechanically oscillatable unit and at least one first and one second piezoelectric element.
  • the mechanically oscillatable unit is, for example, a membrane, a single rod, an arrangement of at least two oscillating elements, or an oscillating fork.
  • the two piezoelectric elements can also serve at least partially as a drive/receiver unit for generating the mechanical oscillations of the mechanically oscillatable unit.
  • the transmission signal can also be emitted by one of the two piezoelectric elements and received by the other piezoelectric element in the form of the second reception signal.
  • the transmission signal runs through the medium at least temporarily and in sections and is influenced by the physical and/or chemical properties of the medium and can accordingly be used to determine a second process variable of the medium.
  • the sensor unit performs mechanical vibrations; a transmission signal is also sent out.
  • two reception signals are received and evaluated with regard to at least two different process variables.
  • the two received signals can advantageously be evaluated independently of one another. So according to the invention Number of determinable process variables are increased significantly, resulting in a higher functionality of the respective sensor or in an extended area of application.
  • the sensor unit is acted upon simultaneously by means of the excitation signal and by means of the transmission signal, with the excitation signal and the transmission signal being superimposed on one another.
  • the sensor unit can also be acted upon alternately by means of the excitation signal and by means of the transmission signal.
  • the excitation signal is an electrical signal with at least one definable frequency, in particular a sinusoidal or a square-wave signal.
  • the mechanically oscillatable unit is at least temporarily excited to oscillate in resonance.
  • the mechanical vibrations are influenced by the medium surrounding the oscillatable unit, so that conclusions about various properties of the medium are possible on the basis of a received signal representing the vibrations.
  • a further particularly preferred embodiment includes that the transmission signal is an ultrasonic signal, in particular a pulsed ultrasonic signal, in particular at least one ultrasonic pulse.
  • an ultrasound-based measurement is therefore carried out as the second measurement method used. At least part of the transmitted signal passes through the medium and its properties are influenced by it.
  • conclusions can also be drawn about different media on the basis of the respectively received second reception signal.
  • At least partially different process variables and/or parameters can be determined independently of one another with one device, so that a comprehensive analysis of the respective process is made possible using a single measuring device. Because the same sensor unit is used for both measurement methods, the accuracy of the measurements can also be significantly increased. In addition, the status of the device can be monitored using the two process variables. In this regard, numerous configurations are possible, some preferred variants of which are given below.
  • a particularly preferred embodiment includes that the first process variable is the density of the medium and the second process variable is the speed of sound within the medium or a variable derived therefrom. So it will be based on the first Received signal determines the density of the medium and based on the second received signal, the speed of sound within the medium.
  • a reference value for the density is determined using the speed of sound, and the reference value is compared using a value for the density determined from the first received signal.
  • a concentration of a reference substance dissolved in a reference medium in a predeterminable container is preferably determined on the basis of the speed of sound determined from the second received signal.
  • the reference value for the density of the reference medium can then be determined from the concentration.
  • a measured value for the density can be determined from the first received signal.
  • the two density values can then be compared to each other.
  • the value for the density determined from the first received signal can be adjusted using the reference value for the density determined from the second received signal. In this way, a disadvantageous influence of the geometry of the container used in each case on the vibronic determination of the density can be compensated.
  • the method determines on the basis of the first and second received signal and/or on the basis of the first and second process variable whether a deposit has formed on the sensor unit.
  • the two received signals usually behave differently depending on an approach in the area of the sensor unit. Accordingly, the presence of a build-up can be determined, for example, based on a time-based consideration of the two received signals and/or process variables.
  • a drift and/or an aging of the sensor unit is determined on the basis of the first and second received signal and/or on the basis of the first and second process variable.
  • the first and second received signals and/or the first and second process variables can be viewed over time.
  • a particularly preferred embodiment provides that the first and second received signal, the first and second process variable and / or a time profile of the first and second Received signal and / or the first and second process variable are compared. From the comparison, conclusions can then be drawn about the presence of a deposit, about a drift or an aging of the sensor unit. Since at least two received signals or process variables are accessible, a high level of accuracy can be achieved with regard to the statements made about build-up, drift or aging.
  • the realization according to the invention of two different measurements with a single sensor unit can correspondingly reliably detect the presence of deposits, or also a drift or aging of the sensor unit.
  • an influence of an onset of drift and/or aging of the sensor unit on the first and / or second reception signal reduced or compensated.
  • the influence of buildup, drift and/or aging of the sensor unit can therefore be taken into account when determining and/or monitoring the respective process variable, so that the respective process variable can be determined without relying on the presence of buildup, drift and/or aging.
  • a suitable algorithm can be stored, for example, which can be used to determine a value for the respective process variable that is not falsified by the influence of the approach, the drift and/or aging of the sensor unit. Improved measurement accuracy can thus be achieved.
  • Another particularly preferred embodiment includes that a first concentration of a first substance contained in the medium and a second concentration of a second substance contained in the medium are determined based on the first and second received signal and/or based on the first and second process variable.
  • a first concentration of a first substance contained in the medium and a second concentration of a second substance contained in the medium are determined based on the first and second received signal and/or based on the first and second process variable.
  • a preferred use of the method relates to the monitoring of a fermentation process.
  • sugar is converted into ethanol.
  • it is therefore necessary to determine the concentration of both sugar and ethanol. This is possible within the scope of the present invention.
  • the object on which the invention is based is also achieved by a device for determining and/or monitoring a first and a second process variable of a medium, which device is designed to carry out a method according to at least one of the described configurations.
  • the sensor unit comprises a mechanically oscillatable unit and at least a first, in particular at least a first and a second, piezoelectric element.
  • a first and a second, piezoelectric element there can also be more than two piezoelectric elements, which can be arranged at different positions relative to the oscillatable unit.
  • a preferred embodiment includes that the mechanically oscillatable unit is an oscillating fork with a first and a second oscillating element, the first piezoelectric element being at least partially arranged in one of the two oscillating elements, in particular the first piezoelectric element being at least partially in the first oscillating element and the second piezoelectric element is at least partially arranged in the second vibrating element.
  • Corresponding configurations of a sensor unit are, for example, in the documents DE102012100728A1 as well as in the previously unpublished German patent application with the file number DE102017130527A1 been described. Within the scope of the present invention, full reference is made to both applications.
  • the present invention is not limited to one of the possible configurations of the sensor unit described in the two documents. These are only examples of possible structural configurations of the sensor unit that are suitable for carrying out the method according to the invention.
  • the use of a single piezoelectric element, which can be arranged in one of the two oscillating elements, for example, is sufficient. It is also not absolutely necessary to arrange the piezoelectric elements exclusively in the area of the oscillating elements. Rather, individual piezoelectric elements used can also be arranged in the area of the membrane or in other oscillating elements not used for vibronic excitation, which are also applied to the membrane.
  • a vibronic sensor 1 with a sensor unit 2 is shown.
  • the sensor has a mechanically oscillatable unit 4 in the form of an oscillating fork, which is partially immersed in a medium M, which is located in a container 3 .
  • the oscillatable unit 4 is excited to mechanical oscillations by means of the excitation/reception unit 5, and can be, for example, by a piezoelectric stack or bimorph drive.
  • Other vibronic sensors have, for example, electromagnetic drive/receiver units 5. It is also possible to use a single drive/receiver unit 5, which is used to excite the mechanical vibrations and to detect them. However, it is also conceivable to implement a drive unit and a receiving unit. is shown in 1 furthermore, an electronic unit 6, by means of which the signal is recorded, evaluated and/or fed.
  • the mechanically oscillatable unit 4 shown comprises two oscillating elements 9a, 9b attached to a base 8, which are therefore also referred to as forks.
  • a paddle can also be formed on the end sides of the two oscillating elements 9a, 9b [not shown here].
  • each of the two oscillating elements 9a, 9b there is a cavity 10a, 10b, in particular a pocket-like cavity, in which at least one piezoelectric element 11a, 11b of the drive/receiver unit 5 is arranged.
  • the piezoelectric elements 11a and 11b are preferably potted within the cavities 10a and 10b.
  • the cavities 10a, 10b can be such that the two piezoelectric elements 11a, 11b are located completely or partially in the area of the two oscillating elements 9a, 9b DE102012100728A1 described in detail.
  • FIG. 2b A further exemplary possible configuration of a sensor unit 2 is shown in Figure 2b shown.
  • the mechanically oscillatable unit 4 has two oscillating elements 9a, 9b, which are aligned parallel to one another and are rod-shaped here and are attached to a disc-shaped element 12. Mechanical oscillations can be excited separately from one another and the oscillations can also be received and evaluated separately from one another .
  • Both oscillating elements 9a and 9b each have a cavity 10a and 10b, in which at least one piezoelectric element 11a and 11b is arranged in the area facing the disk-shaped element 12.
  • FIG. 2b refer again to the previously unpublished German patent application with the reference number DE102017130527A1 referred.
  • the sensor unit 2 is acted upon on the one hand by an excitation signal A in such a way that the oscillatable unit 4 is excited to mechanical oscillations.
  • the vibrations are generated by the two piezoelectric elements 11a and 11b. It is conceivable that both piezoelectric elements are acted upon by the same excitation signal A, and that the first oscillating element 11a is acted upon by a first excitation signal A 1 and the second oscillating element 11b by a second excitation signal A 2 . It is also conceivable that a first received signal EA is received on the basis of the mechanical vibrations, or that a separate received signal EA1 or EA2 is received from each oscillating element 9a, 9b.
  • the first piezoelectric element 11a emits a transmission signal S, which is received by the second piezoelectric element 11b in the form of a second reception signal E S . Since the two piezoelectric elements 11a and 11b are arranged at least in the area of the oscillating elements 9a and 9b, the transmission signal S passes through the medium M if the sensor unit 2 is in contact with the medium M and is influenced by the properties of the medium M accordingly.
  • the transmission signal S is preferably an ultrasonic signal, in particular a pulsed one, in particular at least one ultrasonic pulse.
  • the transmission signal S is emitted by the first piezoelectric element 11a in the region of the first oscillating element 9a and is reflected at the second oscillating element 9b.
  • the second reception signal Es is received by the first piezoelectric element 11a.
  • the transmission signal S runs through the medium M twice, which leads to a propagation time T of the transmission signal S being doubled.
  • a third piezoelectric element 11c is provided in the area of the membrane 12 here.
  • the third piezoelectric element 11c serves to generate the excitation signal A and to receive the first reception signal E 1 ; the first 11a and second piezoelectric element 11b are used to generate the transmission signal S and to receive the second reception signal E 2 .
  • the device 1 is the subject of Fig. 2d .
  • the device comprises Figure 2b a third 9c and a fourth vibrating element 9d.
  • a third 11c and fourth piezoelectric element 11d is arranged in each of the additional elements 9c, 9d.
  • the vibronic measurement is carried out using the first two piezoelectric elements 11a, 11b and the ultrasonic measurement is carried out using the other two piezoelectric elements 11c, 11d.
  • a piezoelectric element e.g. B. 11b and 11d are omitted.
  • the first E A and the second received signal Es basically result from different measurement methods and can be evaluated independently of one another with regard to different process variables P 1 and P 2 .
  • An advantageous embodiment of the method according to the invention includes the determination of the concentration of two different substances contained in the medium.
  • two different process variables or parameters In order to be able to determine a first concentration of a first substance and a second concentration of a second substance, both of which are contained in the same medium, two different process variables or parameters must be determined independently of one another.
  • the two necessary process variables or parameters can be separated from one another by means of two independent measuring methods, but can be determined using the same sensor unit. This leads to increased accuracy with regard to the determination of the two concentrations and.
  • a preferred application in this context is the monitoring of a fermentation process.
  • sugar is converted into ethanol.
  • An exemplary possibility for determining the two concentrations of sugar and ethanol is to determine the density ⁇ of the medium M using the first received signal and the speed of sound of the medium using the second received signal.
  • Another preferred application is monitoring a sugar inversion or an invert sugar. This involves monitoring the proportion of a sugar mixture, usually table sugar, that has been converted into glucose or fructose. In this case, too, the two concentrations of glucose and fructose can be determined using the first and second received signal.
  • F Med is the oscillation frequency of the oscillatable unit 4 in the medium M
  • F 0 is the reference frequency of the oscillatable unit 4 in a vacuum or in air
  • S describes the sensitivity of the sensor unit 2.
  • the oscillation frequency of the oscillatable unit 4 in the medium MF Med can be directly be determined based on the first received signal E A.
  • Figure 3a 1 shows a schematic drawing of an oscillatable unit 4 in the form of an oscillating fork with two oscillating elements 9a and 9b arranged at a distance L from one another.
  • an attachment of thickness h has formed in the area of the oscillating elements 9a and 9b.
  • Figure 3b shows the speed of sound v M calculated using the measured transit time T and using the distance L between the two oscillating elements 9a and 9b for a medium M with a density ⁇ of 2.0 g/cm3 at a temperature of 20°C.
  • the measured speed of sound vnn increases as the batch increases, or as the thickness h of the batch increases.
  • 3c again shows the density ⁇ calculated from the measured oscillation frequency f of the oscillatable unit 4 at a temperature of 20° C. as a function of the batch thickness h.
  • the density ⁇ also increases with increasing thickness h of the attachment, but the gradients of the density ⁇ and the speed of sound vnn are different depending on the thickness h of the attachment.
  • a preferred exemplary embodiment for compensating or reducing the influence of an approach on the determination of a process variable P 1 -P 3 is illustrated below.
  • the following considerations apply analogously to the case that a drift and/or aging of the sensor unit 2 occurs. It should also be pointed out that the compensation for the influence of approach described here is just one of many options for compensating for the influence of an approach. Accordingly, the present invention is in no way limited to the exemplary embodiment given below.
  • a variable FM derived from at least one process variable can be determined to compensate for the influence of a batch.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Fluid Mechanics (AREA)
  • Immunology (AREA)
  • Electromagnetism (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Thermal Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Claims (14)

  1. Procédé destiné à la détermination et/ou à la surveillance d'au moins deux grandeurs de process (P1, P2) différentes d'un produit (M), procédé pour lequel
    - une unité de capteur (2) comprend une unité apte à vibrer mécaniquement (4) et au moins un élément piézoélectrique (5), lequel élément est excité en vibrations mécaniques au moyen d'un signal d'excitation (A), le signal d'excitation (A) étant un signal électrique avec au moins une fréquence pouvant être prédéfinie,
    - les vibrations mécaniques sont reçues par l'unité de capteur (2) et sont converties en un premier signal de réception (EA) représentant les vibrations mécaniques, caractérisé en ce que
    - un signal d'émission (S) est émis et un deuxième signal de réception (Es) est reçu par la même unité de capteur (2), le signal d'émission (S) étant un signal ultrasonore, et
    - une première grandeur de process (P1) est déterminée à l'aide du premier signal de réception (EA) et une deuxième grandeur de process (P2) est déterminée à l'aide du deuxième signal de réception (Es).
  2. Procédé selon la revendication 1,
    pour lequel l'unité de capteur (2) est alimentée simultanément au moyen du signal d'excitation (A) et au moyen du signal d'émission (S), le signal d'excitation (A) et le signal d'émission (S) étant superposés l'un à l'autre, ou
    pour lequel l'unité de capteur (2) est alimentée alternativement au moyen du signal d'excitation (A) et au moyen du signal d'émission (S).
  3. Procédé selon au moins l'une des revendications précédentes,
    pour lequel la première grandeur de process (P1) est la densité (p) du produit (M) et la deuxième grandeur de process (P2) est la vitesse du son (vM) à l'intérieur du produit (M) ou une grandeur qui en est dérivée.
  4. Procédé selon la revendication précédente,
    pour lequel une valeur de référence pour la densité est déterminée à l'aide de la vitesse du son, et
    pour lequel la valeur de référence est comparée au moyen d'une valeur pour la densité déterminée à partir du premier signal de réception.
  5. Procédé selon au moins l'une des revendications précédentes,
    pour lequel au moins une troisième grandeur de process (P3), notamment la viscosité (η) du produit (M), est déterminée.
  6. Procédé selon au moins l'une des revendications précédentes,
    pour lequel on détermine, à l'aide du premier (EA) et du deuxième signal de réception (Es) et/ou à l'aide de la première (P1) et de la deuxième grandeur de process (P2), si un dépôt s'est formé sur l'unité de capteur (2).
  7. Procédé selon au moins l'une des revendications précédentes,
    pour lequel on détermine une dérive et/ou un vieillissement de l'unité de capteur (2) à l'aide du premier (EA) et du deuxième signal de réception (Es) et/ou à l'aide de la première (P1) et de la deuxième grandeur de process (P2).
  8. Procédé selon au moins l'une des revendications précédentes,
    pour lequel le premier (EA) et le deuxième signal de réception (Es), la première (P1) et la deuxième grandeur de process (P2) et/ou une évolution dans le temps du premier (EA) et du deuxième signal de réception (Es) et/ou de la première (P1) et de la deuxième grandeur de process (P2) sont comparés entre eux.
  9. Procédé selon l'une des revendications précédentes,
    pour lequel, lors de la détermination et/ou de la surveillance d'au moins une grandeur de process (P1-P3) ou lors de la détermination d'une grandeur dérivée d'au moins une grandeur de process (P1-P3) et/ou d'au moins un signal de réception (EA, Es), une influence d'une amorce de dérive et/ou d'un vieillissement de l'unité de capteur (2) sur le premier (EA) et/ou le deuxième signal de réception (Es) est réduite ou compensée.
  10. Procédé selon au moins l'une des revendications précédentes,
    pour lequel on détermine, à l'aide du premier (EA) et du deuxième signal de réception (Es) et/ou à l'aide de la première (P1) et de la deuxième grandeur de process (P2), une première concentration (Ca) d'une première substance (a) contenue dans le produit (M) et une deuxième concentration (Cb) d'une deuxième substance (b) contenue dans le produit (M).
  11. Utilisation du procédé selon au moins l'une des revendications précédentes, lequel procédé est destiné à la surveillance d'un process de fermentation ou à la surveillance d'une inversion de sucre.
  12. Dispositif (1) destiné à la détermination et/ou à la surveillance d'une première (P1) et d'une deuxième grandeur de process (P2) d'un produit (M), comprenant une unité de capteur (2) comportant une unité apte à vibrer mécaniquement (4) et au moins un élément piézoélectrique (5), lequel dispositif (1) est conçu pour mettre en oeuvre un procédé selon au moins l'une des revendications précédentes.
  13. Dispositif (1) selon la revendication 12,
    pour lequel l'unité de capteur (2) comprend une unité apte à vibrer mécaniquement (4), et au moins un premier (11a), notamment au moins un premier (11a) et un deuxième élément piézoélectrique (11b).
  14. Dispositif (1) selon la revendication 13,
    pour lequel l'unité apte à vibrer mécaniquement (4) est une fourche vibrante avec un premier (9a) et un deuxième élément vibrant (9b), et
    pour lequel le premier élément piézoélectrique (10a) est disposé au moins partiellement dans l'un des deux éléments vibrants (9a, 9b), le premier élément piézoélectrique (10a) étant notamment disposé au moins partiellement dans le premier élément vibrant (9a) et le deuxième élément piézoélectrique (10b) étant notamment disposé au moins partiellement dans le deuxième élément vibrant (9b).
EP19729510.8A 2018-11-05 2019-06-05 Multicapteur vibronique Active EP3877732B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018127526.9A DE102018127526A1 (de) 2018-11-05 2018-11-05 Vibronischer Multisensor
PCT/EP2019/064724 WO2020094266A1 (fr) 2018-11-05 2019-06-05 Multicapteur vibronique

Publications (2)

Publication Number Publication Date
EP3877732A1 EP3877732A1 (fr) 2021-09-15
EP3877732B1 true EP3877732B1 (fr) 2023-08-16

Family

ID=66810802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19729510.8A Active EP3877732B1 (fr) 2018-11-05 2019-06-05 Multicapteur vibronique

Country Status (5)

Country Link
US (1) US20210364347A1 (fr)
EP (1) EP3877732B1 (fr)
CN (1) CN112955717A (fr)
DE (1) DE102018127526A1 (fr)
WO (1) WO2020094266A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019116151A1 (de) 2019-06-13 2020-12-17 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102020104065A1 (de) 2020-02-17 2021-08-19 Endress+Hauser SE+Co. KG Vibronischer Sensor mit reduzierter Anfälligkeit für Gasblasenbildung
DE102020116278A1 (de) 2020-06-19 2021-12-23 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102020116299A1 (de) * 2020-06-19 2021-12-23 Endress+Hauser SE+Co. KG Symmetrierung eines vibronischen Sensors
DE102021103928A1 (de) 2021-02-18 2022-08-18 Endress+Hauser SE+Co. KG Überwachung und Steuerung einer Hefepropagation
US11761870B2 (en) * 2021-06-01 2023-09-19 The Government of the United States of America, as represented by the Secretary of Homeland Security Miniature wireless concentration meter
DE102021122533A1 (de) 2021-08-31 2023-03-02 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102021122534A1 (de) 2021-08-31 2023-03-02 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102021126092A1 (de) 2021-10-07 2023-04-13 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102021126093A1 (de) 2021-10-07 2023-04-13 Endress+Hauser SE+Co. KG Entkopplungseinheit für einen vibronischen Sensor
DE102021132835A1 (de) 2021-12-13 2023-06-15 Truedyne Sensors AG Messvorrichtung
DE102021132829A1 (de) 2021-12-13 2023-06-15 Truedyne Sensors AG Messvorrichtung
DE102022115592A1 (de) 2022-06-22 2023-12-28 Endress+Hauser SE+Co. KG Modularer vibronischer Multisensor
DE102022115594A1 (de) 2022-06-22 2023-12-28 Endress+Hauser SE+Co. KG Modularer vibronischer Multisensor
DE102022115591A1 (de) 2022-06-22 2023-12-28 Endress+Hauser SE+Co. KG Modularer vibronischer Multisensor

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3825422A1 (de) * 1988-07-27 1990-02-01 Wolf Juergen Prof Dipl Becker Vorrichtung zum messen der dichte von fluiden mittels akustischer signale
US5369600A (en) * 1991-12-24 1994-11-29 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus for measuring gas density and sugar content of a beverage within a sealed container and method of measuring the same
DE10050299A1 (de) 2000-10-10 2002-04-11 Endress Hauser Gmbh Co Vorrichtung zur Bestimmung und/oder Überwachung der Viskosität eines Mediums in einem Behälter
DE10057974A1 (de) 2000-11-22 2002-05-23 Endress Hauser Gmbh Co Verfahren und Vorrichtung zur Feststellung und/oder Überwachung des Füllstands eines Mediums in einem Behälter bzw. zur Ermittlung der Dichte eines Mediums in einem Behälter
DE10350084B4 (de) * 2003-10-27 2016-05-19 Continental Automotive Gmbh Sensoreinrichtung zum Erfassen eines Füllstands und Verfahren zum Betreiben der Sensoreinrichtung
DE10350086B4 (de) * 2003-10-27 2007-11-08 Siemens Ag Sensoreinrichtung zum Erfassen eines Füllstands oder einer Viskosität eines Fluids
DE102004018785A1 (de) * 2004-04-14 2005-11-03 Institut für Bioprozess- und Analysenmesstechnik e.V. Verfahren und Vorrichtung zur Bestimmung der akustischen Impedanz und der Dichte von Flüssigkeiten
DE102005015547A1 (de) 2005-04-04 2006-10-05 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE102005024134A1 (de) * 2005-05-23 2007-01-11 Endress + Hauser Flowtec Ag Verfahren zur Bestimmung und/oder Überwachung einer Prozessgröße
CN1815176A (zh) * 2006-02-10 2006-08-09 张超 在线监测液体粘度和颗粒量的压电传感器和测量方法
DE102006013809B3 (de) * 2006-03-22 2007-09-06 Elster-Instromet Systems Gmbh Verfahren und Vorrichtung zur Messung von Betriebsdichte und/oder Betriebsschallgeschwindigkeit in einem gasförmigen Medium
DE102006033819A1 (de) 2006-07-19 2008-01-24 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE102006034105A1 (de) * 2006-07-20 2008-01-24 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE102007013557A1 (de) 2006-08-02 2008-02-14 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE102006045654B3 (de) * 2006-09-27 2008-01-31 Siemens Ag Kombinationssensor und Verfahren zur Bestimmung von Zustand und Füllstand einer Füssigkeit in einem Behälter
EP2122389A1 (fr) * 2007-02-21 2009-11-25 Sensotech, Inc. Méthode de mesure du niveau d'un fluide et système associé
DE102007043811A1 (de) 2007-09-13 2009-03-19 Endress + Hauser Gmbh + Co. Kg Verfahren zur Bestimmung und/oder Überwachung der Viskosität und entsprechende Vorrichtung
PL2246688T3 (pl) * 2009-04-29 2012-02-29 Nest Int N V Urządzenie do mierzenia gęstości płynu
DE102009026685A1 (de) 2009-06-03 2010-12-09 Endress + Hauser Gmbh + Co. Kg Verfahren zur Bestimmung oder Überwachung eines vorbestimmten Füllstandes, einer Phasengrenze oder der Dichte eines Mediums
DE102009028022A1 (de) 2009-07-27 2011-02-03 Endress + Hauser Gmbh + Co. Kg Verfahren zur Bestimmung und/oder Überwachung mindestens einer pysikalischen Prozessgröße eines Mediums
CN201600312U (zh) * 2010-02-11 2010-10-06 国家粮食局科学研究院 利用粮堆中机械波传播过程检测粮堆密度的装置
CN101806776B (zh) * 2010-04-19 2012-01-11 南京航空航天大学 声板波虚拟阵列传感器系统及基于该系统的液体检测方法
DE102010030982A1 (de) 2010-07-06 2012-01-12 Endress + Hauser Gmbh + Co. Kg Verfahren zur Regelung der Phase in einem Schwingkreis
WO2013152302A1 (fr) * 2012-04-05 2013-10-10 Cidra Corporate Services Inc. Mesure de densité et/ou de vitesse du son à l'aide d'impédance acoustique
DE102012100728A1 (de) 2012-01-30 2013-08-01 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung mindestens einer Prozessgröße
DE102012105922A1 (de) * 2012-07-03 2014-01-09 Endress + Hauser Gmbh + Co. Kg Radiometrische Messanordnung und Verfahren zur Detektion von Ansatzbildung in einer radiometrischen Messanordnung
GB2522266B (en) * 2014-01-21 2020-03-04 Tendeka As Sensor system
DE102014119061A1 (de) * 2014-12-18 2016-06-23 Endress + Hauser Gmbh + Co. Kg Vibronischer Sensor
DE102015101891A1 (de) * 2015-02-10 2016-08-11 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße eines Mediums
DE102015102834A1 (de) 2015-02-27 2016-09-01 Endress + Hauser Gmbh + Co. Kg Vibronischer Sensor
CN104768113B (zh) * 2015-03-20 2018-05-18 南京航空航天大学 一种用于液体多参数传感的乐甫波器件结构及检测方法
CN104792655B (zh) * 2015-03-31 2017-10-20 安徽江南化工股份有限公司 一种密度检测系统
DE102015112055A1 (de) * 2015-07-23 2017-01-26 Endress + Hauser Gmbh + Co. Kg Vibronischer Sensor zur Bestimmung oder Überwachung einer Prozessgröße
DE102015112544A1 (de) * 2015-07-30 2017-02-02 Endress+Hauser Gmbh+Co. Kg Vorrichtung zur Bestimmung oder Überwachung einer Prozessgröße
DE102015112543A1 (de) * 2015-07-30 2017-02-02 Endress+Hauser Gmbh+Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße
DE102016109250A1 (de) * 2016-05-19 2017-11-23 Endress + Hauser Flowtec Ag Verfahren zur Konzentrationsbestimmung von zumindest einer oder mehreren Komponenten in einem mehrkomponentigen Stoffgemisch
DE102016112743A1 (de) 2016-07-12 2018-01-18 Endress+Hauser Gmbh+Co. Kg Vibronischer Sensor
DE102016114974A1 (de) * 2016-08-11 2018-02-15 Endress+Hauser Flowtec Ag Verfahren zum Bestimmen eines Gasvolumenanteils einer mit Gas beladenen Mediums
DE102017130527A1 (de) 2017-12-19 2019-06-19 Endress+Hauser SE+Co. KG Vibronischer Sensor

Also Published As

Publication number Publication date
DE102018127526A1 (de) 2020-05-07
CN112955717A (zh) 2021-06-11
WO2020094266A1 (fr) 2020-05-14
US20210364347A1 (en) 2021-11-25
EP3877732A1 (fr) 2021-09-15

Similar Documents

Publication Publication Date Title
EP3877732B1 (fr) Multicapteur vibronique
EP3983760B1 (fr) Multicapteur vibronique
EP3983762B1 (fr) Multicapteur vibronique
EP3983761B1 (fr) Multicapteur vibronique
EP4168757B1 (fr) Multicapteur vibronique
EP3329227B1 (fr) Dispositif pour déterminer et/ou surveiller au moins une grandeur de processus
EP4111144B1 (fr) Multi-capteur vibronique
EP3472578B1 (fr) Capteur vibronique et procédé de fonctionnement d'un capteur vibronique
EP3959515A1 (fr) Multi-capteur vibronique
EP3555575B1 (fr) Capteur du type vibronique avec compensation de signaux parasites
WO2021255105A1 (fr) Symétrisation d'un capteur vibronique
EP3314210B1 (fr) Appareil émetteur de champs doté d'un circuit de compensation pour l'élimination des impacts environnementaux
WO2023030755A1 (fr) Multicapteur vibronique
DE102021126093A1 (de) Entkopplungseinheit für einen vibronischen Sensor
EP4107494B1 (fr) Capteur vibronique
DE102021126092A1 (de) Vibronischer Multisensor
WO2023247153A1 (fr) Multicapteur vibronique modulaire
WO2023247152A1 (fr) Multicapteur vibronique modulaire
WO2023247156A1 (fr) Multicapteur vibronique modulaire
WO2023030754A1 (fr) Multicapteur vibronique
DE102019114174A1 (de) Vibronischer Multisensor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230417

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008965

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231031

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231218

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231116

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230816