EP3877699B1 - Injector nozzle for turbomachine comprising a primary fuel circuit arranged around a secondary fuel circuit - Google Patents

Injector nozzle for turbomachine comprising a primary fuel circuit arranged around a secondary fuel circuit Download PDF

Info

Publication number
EP3877699B1
EP3877699B1 EP19848993.2A EP19848993A EP3877699B1 EP 3877699 B1 EP3877699 B1 EP 3877699B1 EP 19848993 A EP19848993 A EP 19848993A EP 3877699 B1 EP3877699 B1 EP 3877699B1
Authority
EP
European Patent Office
Prior art keywords
fuel
primary
injector nose
fuel circuit
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19848993.2A
Other languages
German (de)
French (fr)
Other versions
EP3877699A1 (en
Inventor
Christophe CHABAILLE
Clément Yves Emile BERNARD
Sébastien Christophe LOVAL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3877699A1 publication Critical patent/EP3877699A1/en
Application granted granted Critical
Publication of EP3877699B1 publication Critical patent/EP3877699B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00016Preventing or reducing deposit build-up on burner parts, e.g. from carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00004Preventing formation of deposits on surfaces of gas turbine components, e.g. coke deposits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances

Definitions

  • the invention relates to the general field of fuel injectors which equip the combustion chamber of a turbomachine, in particular a turbomachine of the type intended for the propulsion of aircraft.
  • the combustion chambers of turbomachines are generally equipped with fuel injectors associated with premixing systems, commonly referred to as “injection systems”, generally comprising one or more swirls (axial and/or radial), also referred to as “swirls ”, which use the air coming from a compressor arranged upstream of the combustion chamber to spray the fuel into the combustion chamber.
  • injection systems generally comprising one or more swirls (axial and/or radial), also referred to as “swirls ”, which use the air coming from a compressor arranged upstream of the combustion chamber to spray the fuel into the combustion chamber.
  • aerodynamic injectors which mainly use the pressure and air velocity at the compressor outlet to rotate the fuel at the outlet of the injector nose
  • aeromechanical injectors which use primarily fuel pressure inside the injector nose to spin up and atomize the fuel
  • the nozzles of the dual fuel circuit injectors comprise a primary fuel circuit, also called the pilot circuit, comprising a primary fuel swirl supplying a primary injector (also called the pilot injector) arranged on an axis of the injector nose, and a secondary fuel circuit, also called the main circuit, comprising a secondary fuel swirl feeding a secondary injector (also called the main injector) arranged around the primary injector.
  • a primary fuel circuit also called the pilot circuit
  • a secondary fuel circuit also called the main circuit
  • secondary fuel circuit also called the main circuit
  • secondary fuel circuit also called the main circuit
  • secondary injector also called the main injector
  • These may be aero-mechanical injectors or a combination of an aeromechanical primary injector and an aerodynamic secondary injector.
  • the primary circuit is generally intended to supply the combustion chamber with fuel at all speeds, in particular during the ignition and winding phases, that is to say propagation of the flame to neighboring sectors.
  • the secondary circuit is intended to supply the engine at speeds ranging from cruising flight to takeoff.
  • the nozzles of the injectors are generally subjected to the high temperatures of the combustion chamber, which causes a risk of coking of the stagnant fuel within the secondary fuel circuit at the speeds of the turbomachine at which the secondary injector does not is not in operation.
  • a known solution consists in arranging a cooling air circuit on the periphery of the injector nose in order to provide thermal protection and thermal cooling of the entire injector nose.
  • the injector nozzles presented in these documents do not, however, allow the injection of air between the primary and secondary injectors.
  • the object of the invention is in particular to remedy this problem while limiting the radial size of the injector nose.
  • an injector nose for a turbomachine comprising a primary fuel circuit terminated by a fuel ejection nozzle opening onto an injection axis, and a secondary fuel circuit comprising a fuel ejection terminal part of annular shape arranged around the fuel ejection nozzle, and in which an upstream part of the primary fuel circuit, housed in the injector nose, comprises an annular channel extending around the secondary fuel circuit and delimited by an outer wall of the injector nose.
  • the injector nose further comprises air inlet channels extending through the annular channel of the primary fuel circuit and having respective inlets opening in the outer wall and respective outlets opening into an annular air injection channel arranged radially inward with respect to the fuel ejection terminal part, around the fuel ejection nozzle, and cooperating with the fuel ejection terminal part to form an aerodynamic secondary injector.
  • the upstream part of the primary circuit thus makes it possible to provide thermal protection and cooling of the injector nose, in particular of the secondary circuit around which extends the upstream part of the primary circuit.
  • air inlet channels which extend through the annular channel of the primary fuel circuit and have respective inlets opening in the outer wall and respective outlets opening into an annular channel air injector arranged radially inward relative to the fuel ejection terminal part, allows the injection of air intended to mix with the fuel of the secondary fuel circuit within the injector nose , in a particularly compact manner, especially in the radial direction.
  • the primary fuel circuit comprises primary connecting channels connecting the upstream part of the primary fuel circuit to the fuel ejection nozzle and comprising respective inlets and respective outlets, the respective inlets being arranged radially towards the external to the respective outputs.
  • the secondary fuel circuit comprises a tubular channel centered on the injection axis and which is divided, at a downstream end, into several secondary connection channels each shaped to move away from the injection axis in a direction from upstream to downstream, and each arranged between two consecutive primary connection channels.
  • the annular channel of the upstream part of the primary fuel circuit is arranged around the tubular channel and around the secondary connecting channels of the secondary fuel circuit.
  • the secondary fuel circuit comprises a secondary fuel swirl formed of swirl channels having respective upstream ends, and having respective downstream ends opening into the terminal fuel ejection part.
  • the secondary fuel circuit comprises a secondary plenum chamber of annular shape to which the respective upstream ends of the swirl channels forming the secondary fuel swirl are connected.
  • the annular channel of the upstream part of the primary fuel circuit extends downstream beyond the primary connecting channels so as to form a terminal annular chamber surrounding the secondary fuel swirl.
  • each swirl channel has a passage section which is reduced in a direction going from the upstream end towards the downstream end of the swirl channel.
  • the secondary fuel circuit comprises a secondary plenum chamber of annular shape to which the respective upstream ends of the swirl channels forming the secondary fuel swirl are connected.
  • the invention also relates to an injection module for a turbomachine, comprising an injection system, and an injector nose of the type described above, in which the injection system comprises, from upstream to downstream , a socket in which is mounted the injector nose, at least one air intake swirl opening downstream of the injector nose, and a bowl.
  • the invention also relates to a turbomachine, comprising at least one injector nose of the type described above, or at least one injection module of the type described above.
  • the figure 1 illustrates a turbomachine 10 for an aircraft of a known type, generally comprising a fan 12 intended for the suction of an air flow which is divided downstream of the fan into a primary flow circulating in a flow channel of primary flow, hereinafter referred to as primary stream PF, within a core of the turbomachine, and a secondary flow bypassing this core in a secondary flow flow channel, hereinafter referred to as secondary stream SF.
  • primary stream PF a flow channel of primary flow
  • secondary stream SF secondary flow bypassing this core in a secondary flow flow channel
  • the turbomachine is for example of the double-flow, double-body type.
  • the heart of the turbomachine thus generally comprises a low pressure compressor 14, a high pressure compressor 16, a combustion chamber 18, a high pressure turbine 20 and a low pressure turbine 22.
  • the turbomachine is streamlined by a nacelle 24 surrounding the secondary stream SF. Furthermore, the rotors of the turbine engine are rotatably mounted around a longitudinal axis 28 of the turbine engine.
  • the longitudinal direction X is the direction of the longitudinal axis 28.
  • the radial direction R is at all points a direction orthogonal to the longitudinal axis 28 and passing through the latter
  • the circumferential or tangential direction C is at all points a direction orthogonal to the radial direction R and to the longitudinal axis 28.
  • the terms “internal” and “external” respectively refer to a relative proximity, and a relative remoteness, of an element with respect to the longitudinal axis 28.
  • the “Upstream” and “downstream” directions are defined by reference to the general direction of gas flow in the primary PF and secondary SF streams of the turbomachine.
  • the picture 2 represents the combustion chamber 18 of the turbomachine 10 of the figure 1 and its immediate environment.
  • this combustion chamber which is for example of the annular type, comprises two coaxial annular walls, respectively radially internal 32 and radially external 34, which extend from upstream to downstream, in the direction 36 d flow of the primary gas flow in the turbomachine, around the longitudinal axis 28 of the turbomachine.
  • These internal 32 and external 34 annular walls are interconnected at their upstream end by an annular chamber bottom wall 40 which extends substantially radially around the longitudinal axis 28.
  • This annular chamber bottom wall 40 is equipped with injection systems 42 distributed around the longitudinal axis 28, one of which is visible on the picture 2 , each receiving an injector nose 43 mounted at the end of an injector rod 45, to allow the injection of a premixture of air and fuel centered along a respective injection axis 44.
  • each injection system 42 comprises a sleeve 46, commonly referred to as a “sliding bushing”, in which the corresponding injector nose 43 is mounted with a sliding faculty to allow differential thermal expansions in operation.
  • the sleeve 46 internally delimits a single air intake swirl 48, for example of the axial type, formed within the injection system 42.
  • Each injection system 42 further comprises a divergent bowl 49 arranged at the outlet of the air intake swirl 48 and opening into the combustion chamber 18.
  • the assembly formed by an injection system 42 and the corresponding injector nose 43 constitutes an injection module, in the terminology of the present invention.
  • part 50 of an air flow 52 coming from a diffuser 54 and coming from the high pressure compressor 16 supplies the injection systems 42, while another part 56 of the air flow 52 supplies air inlets 58 formed in the walls 32 and 34 of the combustion chamber, in a well-known manner.
  • the radial direction R' is at all points a direction orthogonal to the injection axis 44 and passing through the latter
  • the circumferential or tangential direction C' is at all points a direction orthogonal to the radial direction R' and to the injection axis 44.
  • the terms “internal” and “external” respectively refer to a relative proximity, and a relative remoteness, of an element with respect to the injection axis 44.
  • the directions “upstream” and “downstream” are defined by reference to the general direction of air and fuel flow in the injector nose 43.
  • a transverse plane is defined as a plane orthogonal to the injection axis 44
  • an axial plane is defined as the plane containing the injection axis 44.
  • FIG. 3 illustrate in more detail an injector nose 43 according to a preferred embodiment of the invention.
  • the injector nose 43 comprises a body 60, preferably in one piece, comprising an end piece 61 ( figure 3 and 5 ) by which the injector nose 43 is intended to be connected to an injector rod 45 as on the figure 2 .
  • a primary circuit 62 Within the body 60 are arranged two fuel circuits, namely a primary circuit 62 and a secondary circuit 64 ( picture 3 ).
  • the primary circuit 62 ends with a central fuel ejection nozzle 66 of the aeromechanical type, while the secondary circuit 64 has a terminal fuel ejection part 68 of the aerodynamic type arranged around the fuel ejection nozzle 66 ( figures 3-6 ), as will become clearer in the following.
  • the primary circuit 62 comprises an annular channel 70 defined between an outer wall 72, of generally annular shape, of the body 60 ( figures 3-7 ) which delimits the latter on the outside, and an internal envelope 74 which is generally annular and of complex shape, shown isolated on the figure 8 .
  • the primary circuit 62 further comprises primary connection channels 76 ( figures 3, 4 and 8 ) which connect the annular channel 70 to an inlet chamber 78 ( figures 3 and 4 ) of the fuel ejection nozzle 66.
  • the channels of primary connections 76 are for example four in number and are preferably regularly distributed around the injection axis 44.
  • the inlet chamber 78 is arranged in the injection axis 44, radially inward with respect to the annular channel 70.
  • the primary connection channels 76 thus have respective inlets connected to the annular channel 70, and respective outlets connected to the inlet chamber 78.
  • the respective inlets of the primary connection channels 76 are arranged radially outwards with respect to their respective outputs.
  • the primary connecting channels 76 extend along respective directions substantially orthogonal to the injection axis 44, for example substantially radial.
  • the annular channel 70 extends downstream beyond the primary connection channels 76 so as to form a terminal annular chamber 79.
  • the fuel ejection nozzle 66 comprises a core 80 which forms part of the body 60 and which is centered on the injection axis 44 and arranged at a downstream end of the inlet chamber 78 ( figures 3 to 6 ).
  • the core 80 has an upstream part 82 which extends downstream into an annular surface 84 which internally delimits a primary plenum chamber 86 of annular shape within the fuel ejection nozzle 66.
  • Supply channels 87 inclined with respect to the injection axis 44 and with respect to the radial direction R' connect the inlet chamber 78 to the primary plenum chamber 86.
  • Ortho-radial injection channels 88 ( figure 4 and 6 ), that is to say orthogonal to the injection axis 44 and not intersecting with the latter, connect a downstream end of the primary plenum chamber 86 to a converging swirl chamber 90 ( picture 3 ).
  • the orientation of the injection channels 88 makes it possible to promote the gyration of the fuel within the swirl chamber 90.
  • the primary circuit 62 and more particularly the fuel ejection nozzle 66, comprises a terminal fitting 92 ( figure 3 and 5 ) which is mounted on a downstream end of the body 60 and which externally delimits the primary plenum chamber 86 and the swirl chamber 90.
  • This end piece 92 comprises a upstream part of cylindrical shape of revolution externally delimiting the primary plenum chamber 86, and a downstream part of frustoconical shape externally delimiting the swirl chamber 90 and terminated by a fuel ejection orifice 93 ( picture 3 ) intended to diffuse the fuel from the swirl chamber 90 in the form of a spray.
  • the secondary circuit 64 will now be described with reference to the figures 3-6 and 9 .
  • the figure 9 shows the internal volume of the secondary circuit 64, that is to say the space occupied by the fuel in operation.
  • the walls delimiting the various parts of the secondary circuit 64 which will be described are visible as reliefs within the internal envelope 74 of the primary circuit 62, visible on the figure 8 .
  • the secondary circuit 64 comprises a tubular channel 100 (of which only one end part is shown in the figures), centered on the injection axis 44, and delimited on the outside by a cylindrical wall 102 (of which only one end part is shown in the figures). figures), which internally delimits an upstream part of the annular channel 70 of the primary circuit (and which therefore forms an upstream part of the aforementioned internal casing 74).
  • the tubular channel 100 is divided, at its downstream end, into four secondary connection channels 104 regularly distributed around the injection axis 44 and each shaped to s move away from the injection axis 44 in the direction going from upstream to downstream.
  • Each of the secondary connection channels 104 is for example inscribed in a respective axial plane.
  • the secondary connecting channels 104 have respective downstream ends opening onto an upstream end surface 106 of a secondary plenum chamber 108 of annular shape, centered on the injection axis 44.
  • This secondary plenum chamber 108 is delimited downstream by a downstream end surface 110 into which open respective upstream ends 111 of auger channels 112 forming a secondary fuel auger 114.
  • the auger channels 112 have respective downstream ends 115 ( figure 4 , 6 and 9 ) opening into an annular space constituting the terminal ejection part 68 of the secondary circuit 64. As shown by the figures 3, 4 and 6 , this annular space is delimited externally by an annular outer lip 116 of the body 60 having a free end 117, and is delimited internally by an annular inner lip 118 of the body 60 having a free end 119.
  • the secondary plenum chamber 108 and the spin channels 112 extend around an annular wall 120 which extends downstream forming the inner lip 118, and which has an inner radius R1 which is for example greater than an outer radius R2 of the cylindrical wall 102 which internally delimits the upstream part of the annular channel 70 of the primary circuit.
  • the secondary connection channels 104 each form, with the injection axis 44, an angle ⁇ which is preferably between 30 degrees and 60 degrees, and which is for example equal to 45 degrees ( figure 4 ).
  • the secondary connection channels 104 delimit between them, two-by-two, spaces respectively forming the primary connection channels 76 belonging to the primary circuit 62.
  • the secondary fuel swirl 114 is surrounded by the terminal annular chamber 79 which extends the annular channel 70 of the primary circuit 62.
  • the injector nose 43 also incorporates an air inlet twist 122 ( figure 4 , 5 and 8 ) and an annular air injection channel 124 cooperating with the terminal ejection part 68 of the secondary circuit 64 to form an aerodynamic secondary injector.
  • the air inlet swirl 122 is formed of air inlet channels 126, for example four in number, having respective inlets 128 ( figure 7 ) opening into the outer wall 72 of the body 60, and respective outlets 130 ( figures 4-6 ) opening into the annular air injection channel 124, preferably in a substantially orthoradial manner in order to promote the gyration of the air around the injection axis 44.
  • the air inlet channels 126 extend through the annular channel 70 of the primary circuit 62, between the secondary connecting channels 104 ( figure 8 ).
  • the annular air injection channel 124 is delimited externally by the annular wall 120, and internally by the fuel ejection nozzle 66, in particular by the end fitting 92 ( figures 3 and 4 ).
  • the annular air injection channel 124 is thus arranged radially inside with respect to the fuel ejection terminal part 68 and is arranged around the fuel ejection nozzle 66.
  • an upstream part of the primary circuit 62 housed in the injector nose 43, and formed in this case by the annular channel 70 and the terminal annular chamber 79, extends around the secondary circuit 64.
  • This upstream part of the primary circuit 62 is delimited on the outside by the outer wall 72 of the body 60 of the injector nose, so that the upstream part of the primary circuit 62 extends around the periphery of the injector nose.
  • the upstream part of the primary circuit 62 thus makes it possible to provide thermal protection and cooling of the injector nose 43.
  • the terminal annular chamber 79 makes it possible to ensure the thermal protection and cooling effect of the injector nose 43 beyond the primary connecting channels 76, in the downstream direction, and in particular makes it possible to provide thermal protection and cooling of the secondary fuel swirl 114.
  • the swirl channels 112 each extend along a respective plane P forming an acute angle ⁇ with the direction D of the injection axis, preferably between 40 degrees and 60 degrees, and for example equal to 50 degrees.
  • each of the swirl channels 112, forming the secondary fuel swirl 114 has an evolving passage section, which is reduced in the direction going from the upstream end 111 towards the downstream end 115 of the channel.
  • the reduction in cross section between the upstream end and the downstream end of each of the auger channels 112 is preferably between 10 and 50 percent of the cross section at the upstream end of the channel.
  • each of the twist channels 112 Reducing the passage section of each of the twist channels 112 makes it possible to increase the pressure drop between the inlet and the outlet of the secondary fuel twist 114 and in particular thus to accelerate the fuel within the secondary twist. fuel 114, while allowing lower fuel flow rates at equal pressure at the inlet of the secondary spin.
  • the passage section at the inlet of each of the auger channels 112 is for example equal to 0.2 mm 2 .
  • each of the swirl channels 112 is curved in the corresponding plane P, so that a direction D1 tangent to a mean line L of the channel at the level of the downstream end 115 of the latter makes an angle ⁇ with a direction D2 tangent to the mean line L of the channel at the level of the upstream end 111 of the latter.
  • the angle ⁇ is preferably between 5 degrees and 15 degrees, and is for example equal to 8 degrees. Due to its curvature, each of the swirl channels 112 extends substantially at a constant distance from the injection axis 44, from the upstream end to the downstream end of the channel 112.
  • the body 60 is preferably made by additive manufacturing. In the example illustrated, this body 60 forms the entirety of the injector nose 43 with the exception of the end piece 92. Additive manufacturing techniques are in fact particularly advantageous for producing the body 60 due to the geometry complex of the latter.
  • fuel circulates in the primary circuit 62 and is ejected in the form of a jet at the outlet of the fuel ejection nozzle 66, whatever the speed of the turbomachine.
  • fuel also circulates in the secondary circuit 64. This fuel is rotated and accelerated by crossing the spin channels 112 forming the secondary spin of fuel 114, and forms, at the outlet thereof, a film of swirling fuel within the terminal ejection part 68 of the secondary circuit 64.

Description

DOMAINE TECHNIQUETECHNICAL AREA

L'invention se rapporte au domaine général des injecteurs de carburant qui équipent la chambre de combustion d'une turbomachine, en particulier une turbomachine du type destinée à la propulsion des aéronefs.The invention relates to the general field of fuel injectors which equip the combustion chamber of a turbomachine, in particular a turbomachine of the type intended for the propulsion of aircraft.

ÉTAT DE LA TECHNIQUE ANTÉRIEUREPRIOR ART

Les chambres de combustion des turbomachines sont en général équipées d'injecteurs de carburant associés à des systèmes de prémélange, couramment dénommés « systèmes d'injection », comportant en général une ou plusieurs vrilles (axiales et/ou radiales), également dénommées « tourbillonneurs », qui utilisent l'air provenant d'un compresseur agencé en amont de la chambre de combustion pour pulvériser le carburant dans la chambre de combustion.The combustion chambers of turbomachines are generally equipped with fuel injectors associated with premixing systems, commonly referred to as "injection systems", generally comprising one or more swirls (axial and/or radial), also referred to as "swirls ”, which use the air coming from a compressor arranged upstream of the combustion chamber to spray the fuel into the combustion chamber.

Deux catégories d'injecteurs sont couramment utilisées : les injecteurs aérodynamiques, qui utilisent principalement la pression et la vitesse de l'air en sortie de compresseur pour mettre en rotation le carburant en sortie du nez de l'injecteur, et les injecteurs aéromécaniques qui utilisent principalement la pression du carburant à l'intérieur du nez de l'injecteur pour mettre en rotation et pulvériser le carburant.Two categories of injectors are commonly used: aerodynamic injectors, which mainly use the pressure and air velocity at the compressor outlet to rotate the fuel at the outlet of the injector nose, and aeromechanical injectors which use primarily fuel pressure inside the injector nose to spin up and atomize the fuel.

Par ailleurs, les nez des injecteurs à double circuit de carburant comprennent un circuit primaire de carburant, également appelé circuit pilote, comportant une vrille primaire de carburant alimentant un injecteur primaire (également appelé injecteur pilote) agencé sur un axe du nez d'injecteur, et un circuit secondaire de carburant, également appelé circuit principal, comportant une vrille secondaire de carburant alimentant un injecteur secondaire (également appelé injecteur principal) agencé autour de l'injecteur primaire. Il peut s'agir d'injecteurs aéromécaniques ou d'une combinaison d'un injecteur primaire aéromécanique et d'un injecteur secondaire aérodynamique.Furthermore, the nozzles of the dual fuel circuit injectors comprise a primary fuel circuit, also called the pilot circuit, comprising a primary fuel swirl supplying a primary injector (also called the pilot injector) arranged on an axis of the injector nose, and a secondary fuel circuit, also called the main circuit, comprising a secondary fuel swirl feeding a secondary injector (also called the main injector) arranged around the primary injector. These may be aero-mechanical injectors or a combination of an aeromechanical primary injector and an aerodynamic secondary injector.

L'utilisation de ce type d'injecteurs s'est développée pour satisfaire des normes toujours plus contraignantes en matière d'émission de polluants.The use of this type of injector has developed to meet ever more stringent standards in terms of pollutant emissions.

Le circuit primaire est en général destiné à alimenter la chambre de combustion en carburant à tous les régimes, en particulier lors des phases d'allumage et d'enroulement, c'est-à-dire de propagation de la flamme aux secteurs voisins.The primary circuit is generally intended to supply the combustion chamber with fuel at all speeds, in particular during the ignition and winding phases, that is to say propagation of the flame to neighboring sectors.

Le circuit secondaire est destiné à alimenter le moteur aux régimes allant du vol croisière jusqu'au décollage.The secondary circuit is intended to supply the engine at speeds ranging from cruising flight to takeoff.

Les nez d'injecteurs sont d'une manière générale soumis aux températures élevées de la chambre de combustion, ce qui occasionne un risque de cokéfaction du carburant stagnant au sein du circuit secondaire de carburant aux régimes de la turbomachine auxquels l'injecteur secondaire n'est pas en fonctionnement.The nozzles of the injectors are generally subjected to the high temperatures of the combustion chamber, which causes a risk of coking of the stagnant fuel within the secondary fuel circuit at the speeds of the turbomachine at which the secondary injector does not is not in operation.

Une solution connue consiste à agencer un circuit d'air de refroidissement en périphérie du nez d'injecteur afin d'assurer la protection thermique et le refroidissement thermique de l'ensemble du nez d'injecteur.A known solution consists in arranging a cooling air circuit on the periphery of the injector nose in order to provide thermal protection and thermal cooling of the entire injector nose.

Toutefois, cette solution présente notamment l'inconvénient d'accroître l'encombrement du nez d'injecteur.However, this solution has the particular drawback of increasing the size of the injector nose.

Une autre solution, connue des documents US20160237911A1 , FR2896303 A1 et US20070068164A1 , consiste à agencer une partie amont du circuit primaire de carburant autour d'une partie amont du circuit secondaire de carburant.Another solution, known from the documents US20160237911A1 , FR2896303 A1 and US20070068164A1 , consists in arranging an upstream part of the primary fuel circuit around an upstream part of the secondary fuel circuit.

Les nez d'injecteurs présentés dans ces documents ne permettent toutefois pas l'injection d'air entre les injecteurs primaire et secondaire.The injector nozzles presented in these documents do not, however, allow the injection of air between the primary and secondary injectors.

EXPOSÉ DE L'INVENTIONDISCLOSURE OF THE INVENTION

L'invention a notamment pour but de remédier à ce problème tout en limitant l'encombrement radial du nez d'injecteur.The object of the invention is in particular to remedy this problem while limiting the radial size of the injector nose.

Elle propose à cet effet un nez d'injecteur pour turbomachine, comprenant un circuit primaire de carburant terminé par une buse d'éjection de carburant débouchant sur un axe d'injection, et un circuit secondaire de carburant comportant une partie terminale d'éjection de carburant de forme annulaire agencée autour de la buse d'éjection de carburant, et dans lequel une partie amont du circuit primaire de carburant, logée dans le nez d'injecteur, comporte un canal annulaire s'étendant autour du circuit secondaire de carburant et délimité par une paroi externe du nez d'injecteur.It proposes for this purpose an injector nose for a turbomachine, comprising a primary fuel circuit terminated by a fuel ejection nozzle opening onto an injection axis, and a secondary fuel circuit comprising a fuel ejection terminal part of annular shape arranged around the fuel ejection nozzle, and in which an upstream part of the primary fuel circuit, housed in the injector nose, comprises an annular channel extending around the secondary fuel circuit and delimited by an outer wall of the injector nose.

Selon l'invention, le nez d'injecteur comporte en outre des canaux d'entrée d'air s'étendant au travers du canal annulaire du circuit primaire de carburant et présentant des entrées respectives s'ouvrant dans la paroi externe et des sorties respectives débouchant dans un canal annulaire d'injection d'air agencé radialement vers l'intérieur par rapport à la partie terminale d'éjection de carburant, autour de la buse d'éjection de carburant, et coopérant avec la partie terminale d'éjection de carburant pour former un injecteur secondaire aérodynamique.According to the invention, the injector nose further comprises air inlet channels extending through the annular channel of the primary fuel circuit and having respective inlets opening in the outer wall and respective outlets opening into an annular air injection channel arranged radially inward with respect to the fuel ejection terminal part, around the fuel ejection nozzle, and cooperating with the fuel ejection terminal part to form an aerodynamic secondary injector.

Du fait que du carburant circule dans la partie amont du circuit primaire quel que soit le régime de fonctionnement de la turbomachine, la partie amont du circuit primaire permet ainsi d'assurer la protection thermique et le refroidissement du nez d'injecteur, en particulier du circuit secondaire autour duquel s'étend la partie amont du circuit primaire.Because fuel circulates in the upstream part of the primary circuit regardless of the operating speed of the turbomachine, the upstream part of the primary circuit thus makes it possible to provide thermal protection and cooling of the injector nose, in particular of the secondary circuit around which extends the upstream part of the primary circuit.

De plus, l'intégration de canaux d'entrée d'air, qui s'étendent au travers du canal annulaire du circuit primaire de carburant et présentent des entrées respectives s'ouvrant dans la paroi externe et des sorties respectives débouchant dans un canal annulaire d'injection d'air agencé radialement vers l'intérieur par rapport à la partie terminale d'éjection de carburant, permet l'injection d'air destiné à se mélanger avec le carburant du circuit secondaire de carburant au sein du nez d'injecteur, d'une manière particulièrement compacte, notamment dans la direction radiale.In addition, the integration of air inlet channels, which extend through the annular channel of the primary fuel circuit and have respective inlets opening in the outer wall and respective outlets opening into an annular channel air injector arranged radially inward relative to the fuel ejection terminal part, allows the injection of air intended to mix with the fuel of the secondary fuel circuit within the injector nose , in a particularly compact manner, especially in the radial direction.

De préférence, le circuit primaire de carburant comporte des canaux de raccordement primaires reliant la partie amont du circuit primaire de carburant à la buse d'éjection de carburant et comportant des entrées respectives et des sorties respectives, les entrées respectives étant agencées radialement vers l'extérieur par rapport aux sorties respectives.Preferably, the primary fuel circuit comprises primary connecting channels connecting the upstream part of the primary fuel circuit to the fuel ejection nozzle and comprising respective inlets and respective outlets, the respective inlets being arranged radially towards the external to the respective outputs.

De préférence, le circuit secondaire de carburant comporte un canal tubulaire centré sur l'axe d'injection et qui se divise, à une extrémité aval, en plusieurs canaux de raccordement secondaires conformés chacun pour s'éloigner de l'axe d'injection dans une direction allant de l'amont vers l'aval, et agencés chacun entre deux canaux de raccordement primaires consécutifs.Preferably, the secondary fuel circuit comprises a tubular channel centered on the injection axis and which is divided, at a downstream end, into several secondary connection channels each shaped to move away from the injection axis in a direction from upstream to downstream, and each arranged between two consecutive primary connection channels.

De préférence, le canal annulaire de la partie amont du circuit primaire de carburant est agencé autour du canal tubulaire et autour des canaux de raccordement secondaires du circuit secondaire de carburant.Preferably, the annular channel of the upstream part of the primary fuel circuit is arranged around the tubular channel and around the secondary connecting channels of the secondary fuel circuit.

De préférence, le circuit secondaire de carburant comporte une vrille secondaire de carburant formée de canaux de vrille présentant des extrémités amonts respectives, et présentant des extrémités aval respectives débouchant dans la partie terminale d'éjection de carburant.Preferably, the secondary fuel circuit comprises a secondary fuel swirl formed of swirl channels having respective upstream ends, and having respective downstream ends opening into the terminal fuel ejection part.

De préférence, le circuit secondaire de carburant comporte une chambre de tranquillisation secondaire de forme annulaire à laquelle sont raccordées les extrémités amont respectives des canaux de vrille formant la vrille secondaire de carburant.Preferably, the secondary fuel circuit comprises a secondary plenum chamber of annular shape to which the respective upstream ends of the swirl channels forming the secondary fuel swirl are connected.

De préférence, le canal annulaire de la partie amont du circuit primaire de carburant se prolonge vers l'aval au-delà des canaux de raccordement primaires de manière à former une chambre annulaire terminale entourant la vrille secondaire de carburant.Preferably, the annular channel of the upstream part of the primary fuel circuit extends downstream beyond the primary connecting channels so as to form a terminal annular chamber surrounding the secondary fuel swirl.

De préférence, chaque canal de vrille présente une section de passage qui se réduit dans une direction allant de l'extrémité amont vers l'extrémité aval du canal de vrille.Preferably, each swirl channel has a passage section which is reduced in a direction going from the upstream end towards the downstream end of the swirl channel.

De préférence, le circuit secondaire de carburant comporte une chambre de tranquillisation secondaire de forme annulaire à laquelle sont raccordées les extrémités amont respectives des canaux de vrille formant la vrille secondaire de carburant.Preferably, the secondary fuel circuit comprises a secondary plenum chamber of annular shape to which the respective upstream ends of the swirl channels forming the secondary fuel swirl are connected.

L'invention concerne également un module d'injection pour turbomachine, comprenant un système d'injection, et un nez d'injecteur du type décrit ci-dessus, dans lequel le système d'injection comporte, de l'amont vers l'aval, une douille dans laquelle est monté le nez d'injecteur, au moins une vrille d'admission d'air débouchant en aval du nez d'injecteur, et un bol.The invention also relates to an injection module for a turbomachine, comprising an injection system, and an injector nose of the type described above, in which the injection system comprises, from upstream to downstream , a socket in which is mounted the injector nose, at least one air intake swirl opening downstream of the injector nose, and a bowl.

L'invention concerne aussi une turbomachine, comprenant au moins un nez d'injecteur du type décrit ci-dessus, ou au moins un module d'injection du type décrit ci-dessus.The invention also relates to a turbomachine, comprising at least one injector nose of the type described above, or at least one injection module of the type described above.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF DRAWINGS

L'invention sera mieux comprise, et d'autres détails, avantages et caractéristiques de celle-ci apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :

  • la figure 1 est une vue schématique en coupe axiale d'une turbomachine selon un mode de réalisation préféré de l'invention ;
  • la figure 2 une vue schématique en section axiale d'une chambre de combustion de la turbomachine de la figure 1 ;
  • la figure 3 est une vue schématique en perspective et en coupe axiale d'un nez d'injecteur équipant la chambre de combustion de la figure 2 ;
  • la figure 4 est une vue schématique en perspective et en coupe axiale du nez d'injecteur de la figure 3 privé d'un embout terminal d'un circuit primaire de carburant, et vu sous un angle différent ;
  • la figure 5 est une vue schématique en perspective et en coupe oblique du nez d'injecteur de la figure 3 ;
  • la figure 6 est une vue schématique du nez d'injecteur de la figure 3, vu de face depuis l'aval ;
  • la figure 7 est une vue schématique en perspective du nez d'injecteur de la figure 3 ;
  • la figure 8 est une vue schématique partielle en perspective du circuit primaire de carburant du nez d'injecteur de la figure 3 ;
  • la figure 9 est une vue schématique partielle en perspective d'un circuit secondaire de carburant du nez d'injecteur de la figure 3 ;
  • la figure 9A est une vue à plus grande échelle d'une partie de la figure 9.
The invention will be better understood, and other details, advantages and characteristics thereof will appear on reading the following description given by way of non-limiting example and with reference to the appended drawings in which:
  • the figure 1 is a schematic view in axial section of a turbomachine according to a preferred embodiment of the invention;
  • the figure 2 a schematic view in axial section of a combustion chamber of the turbomachine of the figure 1 ;
  • the picture 3 is a schematic view in perspective and in axial section of an injector nose fitted to the combustion chamber of the picture 2 ;
  • the figure 4 is a schematic view in perspective and in axial section of the injector nose of the picture 3 deprived of a terminal fitting of a primary fuel circuit, and seen from a different angle;
  • the figure 5 is a schematic view in perspective and in oblique section of the injector nose of the picture 3 ;
  • the figure 6 is a schematic view of the injector nose of the picture 3 , seen from the front from downstream;
  • the figure 7 is a schematic perspective view of the injector nose of the picture 3 ;
  • the figure 8 is a partial schematic perspective view of the primary fuel circuit of the injector nose of the picture 3 ;
  • the figure 9 is a partial schematic perspective view of a secondary fuel circuit of the injector nose of the picture 3 ;
  • the figure 9A is a larger scale view of part of the figure 9 .

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉSDETAILED DISCUSSION OF PREFERRED EMBODIMENTS

La figure 1 illustre une turbomachine 10 pour aéronef d'un type connu, comportant de manière générale une soufflante 12 destinée à l'aspiration d'un flux d'air se divisant en aval de la soufflante en un flux primaire circulant dans un canal d'écoulement de flux primaire, ci-après dénommé veine primaire PF, au sein d'un cœur de la turbomachine, et un flux secondaire contournant ce cœur dans un canal d'écoulement de flux secondaire, ci-après dénommé veine secondaire SF.The figure 1 illustrates a turbomachine 10 for an aircraft of a known type, generally comprising a fan 12 intended for the suction of an air flow which is divided downstream of the fan into a primary flow circulating in a flow channel of primary flow, hereinafter referred to as primary stream PF, within a core of the turbomachine, and a secondary flow bypassing this core in a secondary flow flow channel, hereinafter referred to as secondary stream SF.

La turbomachine est par exemple du type à double flux et à double corps. Le cœur de la turbomachine comporte ainsi, de manière générale, un compresseur basse pression 14, un compresseur haute pression 16, une chambre de combustion 18, une turbine haute pression 20 et une turbine basse pression 22.The turbomachine is for example of the double-flow, double-body type. The heart of the turbomachine thus generally comprises a low pressure compressor 14, a high pressure compressor 16, a combustion chamber 18, a high pressure turbine 20 and a low pressure turbine 22.

Les rotors respectifs du compresseur haute pression et de la turbine haute pression sont reliés par un arbre dit « arbre haute pression », tandis que les rotors respectifs du compresseur basse pression et de la turbine basse pression sont reliés par un arbre dit « arbre basse pression », d'une manière bien connue.The respective rotors of the high-pressure compressor and of the high-pressure turbine are connected by a so-called "high-pressure shaft", while the respective rotors of the low-pressure compressor and of the low-pressure turbine are connected by a so-called "low-pressure shaft". in a well-known way.

La turbomachine est carénée par une nacelle 24 entourant la veine secondaire SF. Par ailleurs, les rotors de la turbomachine sont montés rotatifs autour d'un axe longitudinal 28 de la turbomachine.The turbomachine is streamlined by a nacelle 24 surrounding the secondary stream SF. Furthermore, the rotors of the turbine engine are rotatably mounted around a longitudinal axis 28 of the turbine engine.

Dans l'ensemble de cette description, la direction longitudinale X est la direction de l'axe longitudinal 28.Throughout this description, the longitudinal direction X is the direction of the longitudinal axis 28.

De plus, dans une première partie de cette description, la direction radiale R est en tout point une direction orthogonale à l'axe longitudinal 28 et passant par ce dernier, et la direction circonférentielle ou tangentielle C est en tout point une direction orthogonale à la direction radiale R et à l'axe longitudinal 28. Les termes « interne » et « externe » font respectivement référence à une relative proximité, et un relatif éloignement, d'un élément par rapport à l'axe longitudinal 28. Par ailleurs, les directions « amont » et « aval » sont définies par référence à la direction générale de l'écoulement des gaz dans les veines primaire PF et secondaire SF de la turbomachine.In addition, in a first part of this description, the radial direction R is at all points a direction orthogonal to the longitudinal axis 28 and passing through the latter, and the circumferential or tangential direction C is at all points a direction orthogonal to the radial direction R and to the longitudinal axis 28. The terms “internal” and “external” respectively refer to a relative proximity, and a relative remoteness, of an element with respect to the longitudinal axis 28. Furthermore, the “Upstream” and “downstream” directions are defined by reference to the general direction of gas flow in the primary PF and secondary SF streams of the turbomachine.

La figure 2 représente la chambre de combustion 18 de la turbomachine 10 de la figure 1 et son environnement immédiat.The picture 2 represents the combustion chamber 18 of the turbomachine 10 of the figure 1 and its immediate environment.

De manière classique, cette chambre de combustion, qui est par exemple de type annulaire, comprend deux parois annulaires coaxiales, respectivement radialement interne 32 et radialement externe 34, qui s'étendent de l'amont vers l'aval, selon le sens 36 d'écoulement du flux primaire de gaz dans la turbomachine, autour de l'axe longitudinal 28 de la turbomachine. Ces parois annulaires interne 32 et externe 34 sont reliées entre elles à leur extrémité amont par une paroi annulaire de fond de chambre 40 qui s'étend sensiblement radialement autour de l'axe longitudinal 28. Cette paroi annulaire de fond de chambre 40 est équipée de systèmes d'injection 42 répartis autour de l'axe longitudinal 28, dont l'un est visible sur la figure 2, recevant chacun un nez d'injecteur 43 monté à l'extrémité d'une canne d'injecteur 45, pour permettre l'injection d'un prémélange d'air et de carburant centré selon un axe d'injection 44 respectif.Conventionally, this combustion chamber, which is for example of the annular type, comprises two coaxial annular walls, respectively radially internal 32 and radially external 34, which extend from upstream to downstream, in the direction 36 d flow of the primary gas flow in the turbomachine, around the longitudinal axis 28 of the turbomachine. These internal 32 and external 34 annular walls are interconnected at their upstream end by an annular chamber bottom wall 40 which extends substantially radially around the longitudinal axis 28. This annular chamber bottom wall 40 is equipped with injection systems 42 distributed around the longitudinal axis 28, one of which is visible on the picture 2 , each receiving an injector nose 43 mounted at the end of an injector rod 45, to allow the injection of a premixture of air and fuel centered along a respective injection axis 44.

Plus précisément, chaque système d'injection 42 comporte une douille 46, couramment dénommée « traversée coulissante », dans laquelle le nez d'injecteur 43 correspondant est monté avec une faculté de coulissement pour permettre des dilatations thermiques différentielles en fonctionnement.More specifically, each injection system 42 comprises a sleeve 46, commonly referred to as a “sliding bushing”, in which the corresponding injector nose 43 is mounted with a sliding faculty to allow differential thermal expansions in operation.

Dans l'exemple illustré, la douille 46 délimite intérieurement une unique vrille d'admission d'air 48, par exemple du type axial, formée au sein du système d'injection 42.In the example illustrated, the sleeve 46 internally delimits a single air intake swirl 48, for example of the axial type, formed within the injection system 42.

Chaque système d'injection 42 comporte en outre un bol 49 divergent agencé en sortie de la vrille d'admission d'air 48 et débouchant dans la chambre de combustion 18.Each injection system 42 further comprises a divergent bowl 49 arranged at the outlet of the air intake swirl 48 and opening into the combustion chamber 18.

L'ensemble formé d'un système d'injection 42 et du nez d'injecteur 43 correspondant constitue un module d'injection, dans la terminologie de la présente invention.The assembly formed by an injection system 42 and the corresponding injector nose 43 constitutes an injection module, in the terminology of the present invention.

En fonctionnement, une partie 50 d'un flux d'air 52 issu d'un diffuseur 54 et provenant du compresseur haute pression 16 alimente les systèmes d'injection 42, tandis qu'une autre partie 56 du flux d'air 52 alimente des orifices d'entrée d'air 58 ménagés dans les parois 32 et 34 de la chambre de combustion, d'une manière bien connue.In operation, part 50 of an air flow 52 coming from a diffuser 54 and coming from the high pressure compressor 16 supplies the injection systems 42, while another part 56 of the air flow 52 supplies air inlets 58 formed in the walls 32 and 34 of the combustion chamber, in a well-known manner.

Dans la suite de la présente description, en référence aux figures 3 à 9, la direction radiale R' est en tout point une direction orthogonale à l'axe d'injection 44 et passant par ce dernier, et la direction circonférentielle ou tangentielle C' est en tout point une direction orthogonale à la direction radiale R' et à l'axe d'injection 44. Les termes « interne » et « externe » font respectivement référence à une relative proximité, et un relatif éloignement, d'un élément par rapport à l'axe d'injection 44. Par ailleurs, les directions « amont » et « aval » sont définies par référence à la direction générale de l'écoulement de l'air et du carburant dans le nez d'injecteur 43. De plus, un plan transversal est défini en tant que plan orthogonal à l'axe d'injection 44, tandis qu'un plan axial est défini en tant que plan contenant l'axe d'injection 44.In the remainder of this description, with reference to figures 3 to 9 , the radial direction R' is at all points a direction orthogonal to the injection axis 44 and passing through the latter, and the circumferential or tangential direction C' is at all points a direction orthogonal to the radial direction R' and to the injection axis 44. The terms “internal” and “external” respectively refer to a relative proximity, and a relative remoteness, of an element with respect to the injection axis 44. Furthermore, the directions "upstream" and "downstream" are defined by reference to the general direction of air and fuel flow in the injector nose 43. In addition, a transverse plane is defined as a plane orthogonal to the injection axis 44, while an axial plane is defined as the plane containing the injection axis 44.

Les figures 3 à 9 illustrent plus en détail un nez d'injecteur 43 selon un mode de réalisation préféré de l'invention.The figures 3 to 9 illustrate in more detail an injector nose 43 according to a preferred embodiment of the invention.

Le nez d'injecteur 43 comporte un corps 60, de préférence monobloc, comprenant un embout 61 (figures 3 et 5) par lequel le nez d'injecteur 43 est destiné à être raccordé à une canne d'injecteur 45 comme sur la figure 2.The injector nose 43 comprises a body 60, preferably in one piece, comprising an end piece 61 ( figure 3 and 5 ) by which the injector nose 43 is intended to be connected to an injector rod 45 as on the figure 2 .

Au sein du corps 60 sont ménagés deux circuits de carburant, à savoir un circuit primaire 62 et un circuit secondaire 64 (figure 3).Within the body 60 are arranged two fuel circuits, namely a primary circuit 62 and a secondary circuit 64 ( picture 3 ).

Le circuit primaire 62 se termine par une buse d'éjection de carburant 66 centrale de type aéromécanique, tandis que le circuit secondaire 64 présente une partie terminale d'éjection de carburant 68 de type aérodynamique agencée autour de la buse d'éjection de carburant 66 (figures 3-6), comme cela apparaîtra plus clairement dans ce qui suit.The primary circuit 62 ends with a central fuel ejection nozzle 66 of the aeromechanical type, while the secondary circuit 64 has a terminal fuel ejection part 68 of the aerodynamic type arranged around the fuel ejection nozzle 66 ( figures 3-6 ), as will become clearer in the following.

Le circuit primaire 62 comporte un canal annulaire 70 défini entre une paroi externe 72, de forme globalement annulaire, du corps 60 (figures 3-7) qui délimite extérieurement ce dernier, et une enveloppe interne 74 globalement annulaire et de forme complexe, représentée isolée sur la figure 8.The primary circuit 62 comprises an annular channel 70 defined between an outer wall 72, of generally annular shape, of the body 60 ( figures 3-7 ) which delimits the latter on the outside, and an internal envelope 74 which is generally annular and of complex shape, shown isolated on the figure 8 .

Le circuit primaire 62 comporte en outre des canaux de raccordement primaires 76 (figures 3, 4 et 8) qui raccordent le canal annulaire 70 à une chambre d'entrée 78 (figures 3 et 4) de la buse d'éjection de carburant 66. Les canaux de raccordement primaires 76 sont par exemple au nombre de quatre et sont de préférence régulièrement répartis autour de l'axe d'injection 44.The primary circuit 62 further comprises primary connection channels 76 ( figures 3, 4 and 8 ) which connect the annular channel 70 to an inlet chamber 78 ( figures 3 and 4 ) of the fuel ejection nozzle 66. The channels of primary connections 76 are for example four in number and are preferably regularly distributed around the injection axis 44.

La chambre d'entrée 78 est agencée dans l'axe d'injection 44, radialement vers l'intérieur par rapport au canal annulaire 70.The inlet chamber 78 is arranged in the injection axis 44, radially inward with respect to the annular channel 70.

Les canaux de raccordement primaires 76 présentent ainsi des entrées respectives raccordées au canal annulaire 70, et des sorties respectives raccordées à la chambre d'entrée 78. Les entrées respectives des canaux de raccordement primaires 76 sont agencées radialement vers l'extérieur par rapport à leurs sorties respectives. Dans l'exemple illustré, les canaux de raccordement primaires 76 s'étendent selon des directions respectives sensiblement orthogonales à l'axe d'injection 44, par exemple sensiblement radiales.The primary connection channels 76 thus have respective inlets connected to the annular channel 70, and respective outlets connected to the inlet chamber 78. The respective inlets of the primary connection channels 76 are arranged radially outwards with respect to their respective outputs. In the example illustrated, the primary connecting channels 76 extend along respective directions substantially orthogonal to the injection axis 44, for example substantially radial.

Le canal annulaire 70 se prolonge vers l'aval au-delà des canaux de raccordement primaires 76 de manière à former une chambre annulaire terminale 79.The annular channel 70 extends downstream beyond the primary connection channels 76 so as to form a terminal annular chamber 79.

La buse d'éjection de carburant 66 comporte un noyau 80 qui fait partie du corps 60 et qui est centré sur l'axe d'injection 44 et agencé à une extrémité aval de la chambre d'entrée 78 (figures 3 à 6). Le noyau 80 présente une partie amont 82 qui se prolonge vers l'aval en une surface annulaire 84 qui délimite intérieurement une chambre de tranquillisation primaire 86 de forme annulaire au sein de la buse d'éjection de carburant 66. Des canaux d'amenée 87 inclinés par rapport à l'axe d'injection 44 et par rapport à la direction radiale R' raccordent la chambre d'entrée 78 à la chambre de tranquillisation primaire 86. Des canaux d'injection 88 ortho-radiaux (figures 4 et 6), c'est-à-dire orthogonaux à l'axe d'injection 44 et non sécants avec ce dernier, raccordent une extrémité aval de la chambre de tranquillisation primaire 86 à une chambre de tourbillonnement 90 convergente (figure 3). L'orientation des canaux d'injection 88 permet de favoriser la giration du carburant au sein de la chambre de tourbillonnement 90.The fuel ejection nozzle 66 comprises a core 80 which forms part of the body 60 and which is centered on the injection axis 44 and arranged at a downstream end of the inlet chamber 78 ( figures 3 to 6 ). The core 80 has an upstream part 82 which extends downstream into an annular surface 84 which internally delimits a primary plenum chamber 86 of annular shape within the fuel ejection nozzle 66. Supply channels 87 inclined with respect to the injection axis 44 and with respect to the radial direction R' connect the inlet chamber 78 to the primary plenum chamber 86. Ortho-radial injection channels 88 ( figure 4 and 6 ), that is to say orthogonal to the injection axis 44 and not intersecting with the latter, connect a downstream end of the primary plenum chamber 86 to a converging swirl chamber 90 ( picture 3 ). The orientation of the injection channels 88 makes it possible to promote the gyration of the fuel within the swirl chamber 90.

Le circuit primaire 62, et plus particulièrement la buse d'éjection de carburant 66, comporte un embout terminal 92 (figures 3 et 5) qui est monté sur une extrémité aval du corps 60 et qui délimite extérieurement la chambre de tranquillisation primaire 86 et la chambre de tourbillonnement 90. Cet embout terminal 92 comporte une partie amont de forme cylindrique de révolution délimitant extérieurement la chambre de tranquillisation primaire 86, et une partie aval de forme tronconique délimitant extérieurement la chambre de tourbillonnement 90 et terminée par un orifice d'éjection de carburant 93 (figure 3) destiné à diffuser sous forme de spray le carburant issu de la chambre de tourbillonnement 90.The primary circuit 62, and more particularly the fuel ejection nozzle 66, comprises a terminal fitting 92 ( figure 3 and 5 ) which is mounted on a downstream end of the body 60 and which externally delimits the primary plenum chamber 86 and the swirl chamber 90. This end piece 92 comprises a upstream part of cylindrical shape of revolution externally delimiting the primary plenum chamber 86, and a downstream part of frustoconical shape externally delimiting the swirl chamber 90 and terminated by a fuel ejection orifice 93 ( picture 3 ) intended to diffuse the fuel from the swirl chamber 90 in the form of a spray.

Le circuit secondaire 64 va maintenant être décrit en référence aux figures 3-6 et 9. La figure 9 montre le volume intérieur du circuit secondaire 64, c'est-à-dire l'espace occupé par le carburant en fonctionnement. Les parois délimitant les différentes parties du circuit secondaire 64 qui vont être décrites sont visibles en tant que reliefs au sein de l'enveloppe interne 74 du circuit primaire 62, visible sur la figure 8.The secondary circuit 64 will now be described with reference to the figures 3-6 and 9 . The figure 9 shows the internal volume of the secondary circuit 64, that is to say the space occupied by the fuel in operation. The walls delimiting the various parts of the secondary circuit 64 which will be described are visible as reliefs within the internal envelope 74 of the primary circuit 62, visible on the figure 8 .

Le circuit secondaire 64 comporte un canal tubulaire 100 (dont seule une partie terminale est représentée sur les figures), centré sur l'axe d'injection 44, et délimité extérieurement par une paroi cylindrique 102 (dont seule une partie terminale est représentée sur les figures), qui délimite intérieurement une partie amont du canal annulaire 70 du circuit primaire (et qui forme donc une partie amont de l'enveloppe interne 74 précitée).The secondary circuit 64 comprises a tubular channel 100 (of which only one end part is shown in the figures), centered on the injection axis 44, and delimited on the outside by a cylindrical wall 102 (of which only one end part is shown in the figures). figures), which internally delimits an upstream part of the annular channel 70 of the primary circuit (and which therefore forms an upstream part of the aforementioned internal casing 74).

Comme cela apparaît plus clairement sur la figure 9 qui représente le circuit secondaire 64 isolé du reste du nez d'injecteur, le canal tubulaire 100 se divise, à son extrémité aval, en quatre canaux de raccordement secondaires 104 régulièrement répartis autour de l'axe d'injection 44 et conformés chacun pour s'éloigner de l'axe d'injection 44 dans la direction allant de l'amont vers l'aval.As it appears more clearly on the figure 9 which represents the secondary circuit 64 isolated from the rest of the injector nose, the tubular channel 100 is divided, at its downstream end, into four secondary connection channels 104 regularly distributed around the injection axis 44 and each shaped to s move away from the injection axis 44 in the direction going from upstream to downstream.

Chacun des canaux de raccordement secondaires 104 est par exemple inscrit dans un plan axial respectif. Les canaux de raccordement secondaires 104 présentent des extrémités aval respectives débouchant sur une surface d'extrémité amont 106 d'une chambre de tranquillisation secondaire 108 de forme annulaire, centrée sur l'axe d'injection 44. Cette chambre de tranquillisation secondaire 108 est délimitée en aval par une surface d'extrémité aval 110 dans laquelle s'ouvrent des extrémités amont 111 respectives de canaux de vrille 112 formant une vrille secondaire de carburant 114.Each of the secondary connection channels 104 is for example inscribed in a respective axial plane. The secondary connecting channels 104 have respective downstream ends opening onto an upstream end surface 106 of a secondary plenum chamber 108 of annular shape, centered on the injection axis 44. This secondary plenum chamber 108 is delimited downstream by a downstream end surface 110 into which open respective upstream ends 111 of auger channels 112 forming a secondary fuel auger 114.

Les canaux de vrille 112 présentent des extrémités aval 115 respectives (figures 4, 6 et 9) débouchant dans un espace annulaire constituant la partie terminale d'éjection 68 du circuit secondaire 64. Comme le montrent les figures 3, 4 et 6, cet espace annulaire est délimité extérieurement par une lèvre externe 116 annulaire du corps 60 présentant une extrémité libre 117, et est délimité intérieurement par une lèvre interne 118 annulaire du corps 60 présentant une extrémité libre 119.The auger channels 112 have respective downstream ends 115 ( figure 4 , 6 and 9 ) opening into an annular space constituting the terminal ejection part 68 of the secondary circuit 64. As shown by the figures 3, 4 and 6 , this annular space is delimited externally by an annular outer lip 116 of the body 60 having a free end 117, and is delimited internally by an annular inner lip 118 of the body 60 having a free end 119.

Comme le montre la figure 4, la chambre de tranquillisation secondaire 108 et les canaux de vrille 112 s'étendent autour d'une paroi annulaire 120 qui se prolonge vers l'aval en formant la lèvre interne 118, et qui présente un rayon intérieur R1 qui est par exemple supérieur à un rayon extérieur R2 de la paroi cylindrique 102 qui délimite intérieurement la partie amont du canal annulaire 70 du circuit primaire.As shown in figure 4 , the secondary plenum chamber 108 and the spin channels 112 extend around an annular wall 120 which extends downstream forming the inner lip 118, and which has an inner radius R1 which is for example greater than an outer radius R2 of the cylindrical wall 102 which internally delimits the upstream part of the annular channel 70 of the primary circuit.

Les canaux de raccordement secondaires 104 forment chacun, avec l'axe d'injection 44, un angle Ω qui est préférentiellement compris entre 30 degrés et 60 degrés, et qui est par exemple égal à 45 degrés (figure 4).The secondary connection channels 104 each form, with the injection axis 44, an angle Ω which is preferably between 30 degrees and 60 degrees, and which is for example equal to 45 degrees ( figure 4 ).

Comme cela apparaît sur la figure 8, les canaux de raccordement secondaires 104 délimitent entre eux, deux-à-deux, des espaces formant respectivement les canaux de raccordement primaires 76 appartenant au circuit primaire 62.As it appears on the figure 8 , the secondary connection channels 104 delimit between them, two-by-two, spaces respectively forming the primary connection channels 76 belonging to the primary circuit 62.

Par ailleurs, comme le montrent plus clairement les figures 3 et 8, la vrille secondaire de carburant 114 est entourée par la chambre annulaire terminale 79 qui prolonge le canal annulaire 70 du circuit primaire 62.Moreover, as more clearly shown by the figure 3 and 8 , the secondary fuel swirl 114 is surrounded by the terminal annular chamber 79 which extends the annular channel 70 of the primary circuit 62.

Le nez d'injecteur 43 intègre en outre une vrille d'entrée d'air 122 (figures 4, 5 et 8) et un canal annulaire d'injection d'air 124 coopérant avec la partie terminale d'éjection 68 du circuit secondaire 64 pour former un injecteur secondaire aérodynamique.The injector nose 43 also incorporates an air inlet twist 122 ( figure 4 , 5 and 8 ) and an annular air injection channel 124 cooperating with the terminal ejection part 68 of the secondary circuit 64 to form an aerodynamic secondary injector.

La vrille d'entrée d'air 122 est formée de canaux d'entrée d'air 126, par exemple au nombre de quatre, présentant des entrées respectives 128 (figure 7) s'ouvrant dans la paroi externe 72 du corps 60, et des sorties respectives 130 (figures 4-6) débouchant dans le canal annulaire d'injection d'air 124, préférentiellement de manière sensiblement orthoradiale afin de favoriser la giration de l'air autour de l'axe d'injection 44.The air inlet swirl 122 is formed of air inlet channels 126, for example four in number, having respective inlets 128 ( figure 7 ) opening into the outer wall 72 of the body 60, and respective outlets 130 ( figures 4-6 ) opening into the annular air injection channel 124, preferably in a substantially orthoradial manner in order to promote the gyration of the air around the injection axis 44.

Les canaux d'entrée d'air 126 s'étendent au travers du canal annulaire 70 du circuit primaire 62, entre les canaux de raccordement secondaires 104 (figure 8).The air inlet channels 126 extend through the annular channel 70 of the primary circuit 62, between the secondary connecting channels 104 ( figure 8 ).

Le canal annulaire d'injection d'air 124 est délimité extérieurement par la paroi annulaire 120, et intérieurement par la buse d'éjection de carburant 66, notamment par l'embout terminal 92 (figures 3 et 4). Le canal annulaire d'injection d'air 124 est ainsi agencé radialement à l'intérieur par rapport à la partie terminale d'éjection de carburant 68 et est agencé autour de la buse d'éjection de carburant 66.The annular air injection channel 124 is delimited externally by the annular wall 120, and internally by the fuel ejection nozzle 66, in particular by the end fitting 92 ( figures 3 and 4 ). The annular air injection channel 124 is thus arranged radially inside with respect to the fuel ejection terminal part 68 and is arranged around the fuel ejection nozzle 66.

Comme cela ressort de ce qui précède, une partie amont du circuit primaire 62, logée dans le nez d'injecteur 43, et formée en l'occurrence par le canal annulaire 70 et la chambre annulaire terminale 79, s'étend autour du circuit secondaire 64. Cette partie amont du circuit primaire 62 est délimitée extérieurement par la paroi externe 72 du corps 60 du nez d'injecteur, de sorte que la partie amont du circuit primaire 62 s'étend en périphérie du nez d'injecteur.As emerges from the foregoing, an upstream part of the primary circuit 62, housed in the injector nose 43, and formed in this case by the annular channel 70 and the terminal annular chamber 79, extends around the secondary circuit 64. This upstream part of the primary circuit 62 is delimited on the outside by the outer wall 72 of the body 60 of the injector nose, so that the upstream part of the primary circuit 62 extends around the periphery of the injector nose.

Du fait que du carburant circule dans la partie amont du circuit primaire 62 quel que soit le régime de fonctionnement de la turbomachine, la partie amont du circuit primaire 62 permet ainsi d'assurer la protection thermique et le refroidissement du nez d'injecteur 43.Because fuel circulates in the upstream part of the primary circuit 62 regardless of the operating speed of the turbomachine, the upstream part of the primary circuit 62 thus makes it possible to provide thermal protection and cooling of the injector nose 43.

En particulier, la chambre annulaire terminale 79 permet d'assurer l'effet de protection thermique et de refroidissement du nez d'injecteur 43 au-delà des canaux de raccordement primaires 76, en direction de l'aval, et permet en particulier d'assurer la protection thermique et le refroidissement de la vrille secondaire de carburant 114.In particular, the terminal annular chamber 79 makes it possible to ensure the thermal protection and cooling effect of the injector nose 43 beyond the primary connecting channels 76, in the downstream direction, and in particular makes it possible to provide thermal protection and cooling of the secondary fuel swirl 114.

En référence aux figures 9 et 9A, les canaux de vrille 112 s'étendent chacun selon un plan P respectif formant un angle aigu θ avec la direction D de l'axe d'injection, préférentiellement compris entre 40 degrés et 60 degrés, et par exemple égal à 50 degrés.With reference to figures 9 and 9A , the swirl channels 112 each extend along a respective plane P forming an acute angle θ with the direction D of the injection axis, preferably between 40 degrees and 60 degrees, and for example equal to 50 degrees.

À titre d'exemple, chacun des canaux de vrille 112, formant la vrille secondaire de carburant 114, présente une section de passage évolutive, qui se réduit dans la direction allant de l'extrémité amont 111 vers l'extrémité aval 115 du canal. La réduction de la section de passage entre l'extrémité amont et l'extrémité aval de chacun des canaux de vrille 112 est de préférence comprise entre 10 et 50 pourcents de la section de passage au niveau de l'extrémité amont du canal.By way of example, each of the swirl channels 112, forming the secondary fuel swirl 114, has an evolving passage section, which is reduced in the direction going from the upstream end 111 towards the downstream end 115 of the channel. The The reduction in cross section between the upstream end and the downstream end of each of the auger channels 112 is preferably between 10 and 50 percent of the cross section at the upstream end of the channel.

La réduction de la section de passage de chacun des canaux de vrille 112 permet d'augmenter la perte de charge entre l'entrée et la sortie de la vrille secondaire de carburant 114 et notamment d'accélérer ainsi le carburant au sein de la vrille secondaire de carburant 114, tout en autorisant des débits de carburant plus faibles à pression égale en entrée de la vrille secondaire.Reducing the passage section of each of the twist channels 112 makes it possible to increase the pressure drop between the inlet and the outlet of the secondary fuel twist 114 and in particular thus to accelerate the fuel within the secondary twist. fuel 114, while allowing lower fuel flow rates at equal pressure at the inlet of the secondary spin.

La section de passage en entrée de chacun des canaux de vrille 112 est par exemple égale à 0,2 mm2.The passage section at the inlet of each of the auger channels 112 is for example equal to 0.2 mm 2 .

De plus, chacun des canaux de vrille 112 est incurvé dans le plan P correspondant, de sorte qu'une direction D1 tangente à une ligne moyenne L du canal au niveau de l'extrémité aval 115 de ce dernier fasse un angle α avec une direction D2 tangente à la ligne moyenne L du canal au niveau de l'extrémité amont 111 de ce dernier. L'angle α est préférentiellement compris entre 5 degrés et 15 degrés, et est par exemple égal à 8 degrés. Du fait de sa courbure, chacun des canaux de vrille 112 s'étend sensiblement à une distance constante de l'axe d'injection 44, depuis l'extrémité amont jusqu'à l'extrémité aval du canal 112.In addition, each of the swirl channels 112 is curved in the corresponding plane P, so that a direction D1 tangent to a mean line L of the channel at the level of the downstream end 115 of the latter makes an angle α with a direction D2 tangent to the mean line L of the channel at the level of the upstream end 111 of the latter. The angle α is preferably between 5 degrees and 15 degrees, and is for example equal to 8 degrees. Due to its curvature, each of the swirl channels 112 extends substantially at a constant distance from the injection axis 44, from the upstream end to the downstream end of the channel 112.

Il est à noter que le corps 60 est de préférence réalisé par fabrication additive. Dans l'exemple illustré, ce corps 60 forme l'intégralité du nez d'injecteur 43 à l'exception de l'embout terminal 92. Les techniques de fabrication additive sont en effet particulièrement avantageuses pour réaliser le corps 60 du fait de la géométrie complexe de ce dernier.It should be noted that the body 60 is preferably made by additive manufacturing. In the example illustrated, this body 60 forms the entirety of the injector nose 43 with the exception of the end piece 92. Additive manufacturing techniques are in fact particularly advantageous for producing the body 60 due to the geometry complex of the latter.

En fonctionnement, du carburant circule dans le circuit primaire 62 et est éjecté sous la forme d'un jet en sortie de la buse d'éjection de carburant 66, quel que soit le régime de la turbomachine.In operation, fuel circulates in the primary circuit 62 and is ejected in the form of a jet at the outlet of the fuel ejection nozzle 66, whatever the speed of the turbomachine.

Aux régimes allant du vol de croisière jusqu'au décollage, du carburant circule également dans le circuit secondaire 64. Ce carburant est mis en rotation et accéléré en traversant les canaux de vrille 112 formant la vrille secondaire de carburant 114, et forme, en sortie de celle-ci, un film de carburant tourbillonnant au sein de la partie terminale d'éjection 68 du circuit secondaire 64.At speeds ranging from cruise flight to takeoff, fuel also circulates in the secondary circuit 64. This fuel is rotated and accelerated by crossing the spin channels 112 forming the secondary spin of fuel 114, and forms, at the outlet thereof, a film of swirling fuel within the terminal ejection part 68 of the secondary circuit 64.

À ces régimes de fonctionnement, le flux d'air mis en rotation par la vrille d'entrée d'air 122, et introduit dans le canal annulaire d'injection d'air 124, présente un débit suffisant pour cisailler le film de carburant au niveau de l'extrémité libre 119 de la lèvre interne 118 et de l'extrémité libre 117 de la lèvre externe 116.At these operating speeds, the flow of air set in rotation by the air inlet swirler 122, and introduced into the annular air injection channel 124, presents a sufficient flow rate to shear the film of fuel at the level of the free end 119 of the inner lip 118 and of the free end 117 of the outer lip 116.

Claims (11)

  1. Injector nose (43) for a turbomachine, comprising:
    - a primary fuel circuit (62) terminating in a fuel-ejection nozzle (66) emerging on an injection axis (44), and
    - a secondary fuel circuit (64) comprising an annular-shaped terminal fuel-ejection part (68) arranged around the fuel-ejection nozzle (66),
    wherein an upstream part of the primary fuel circuit (62), housed in the injector nose (43), comprises an annular channel (70) extending around the secondary fuel circuit (64), characterised in that the annular channel (70) extending around the secondary fuel circuit (64) is delimited by an external wall (72) of the injector nose,
    and in that the injector nose further comprises air inlet channels (126) extending through the annular channel (70) of the primary fuel circuit (62) and having respective inlets (128) opening in the external wall (72) and respective outlets (130) emerging in an annular air-injection channel (124) arranged radially to the inside with respect to the terminal fuel-ejection part (68), around the fuel-ejection nozzle (66), and cooperating with the terminal fuel-ejection part (68) in order to form an aerodynamic secondary injector.
  2. Injector nose according to claim 1, wherein the primary fuel circuit (62) comprises primary connection channels (76) connecting the upstream part of the primary fuel circuit (62) to the fuel-ejection nozzle (66) and comprising respective inlets and respective outlets, the respective inlets being arranged radially towards the outside with respect to the respective outlets.
  3. Injector nose according to claim 2, wherein the secondary fuel circuit (64) comprises a tubular channel (100) centred on the injection axis (44) and which divides, at a downstream end, into a plurality of secondary connection channels (104) each formed so as to move away from the injection channel (44) in a direction going from upstream to downstream, and each arranged between two consecutive primary connection channels (76).
  4. Injector nose according to claim 3, wherein the annular channel (70) of the upstream part of the primary fuel circuit (62) is arranged around the tubular channel (100) and around the secondary connection channels (104) of the secondary fuel circuit (64).
  5. Injector nose according to any one of claims 1 to 4, wherein the secondary fuel circuit (64) comprises a secondary fuel swirler (114) formed by swirler channels (112) having respective upstream ends (111), and having respective downstream ends (115) emerging in the terminal fuel-ejection part (68).
  6. Injector nose according to claim 5, wherein the secondary fuel circuit (64) comprises an annular-shaped secondary tranquilisation chamber (108) to which the respective upstream ends (111) of the swirler channels (112) forming the secondary fuel swirler (114) are connected.
  7. Injector nose according to claim 5 or 6, taken in combination with claim 2, wherein the annular channel (70) of the upstream part of the primary fuel circuit (62) is extended downstream beyond the primary connection channels (76) so as to form a terminal annular chamber (79) surrounding the secondary fuel swirler (114).
  8. Injector nose according to any one of claims 5 to 7, wherein each swirler channel (112) has a cross section of flow that decreases in a direction going from the upstream end (111) towards the downstream end (115) of the swirler channel (112).
  9. Injector nose according to any one of claims 1 to 8, wherein the terminal fuel-ejection part (68) is delimited externally by an external lip (116) and is delimited internally by an internal lip (118) that separates the terminal fuel-ejection part (68) from the annular air-injection channel (124).
  10. Injection module for a turbomachine, comprising an injection system (42), and an injector nose (43) according to any one of claims 1 to 9, wherein the injection system (42) comprises, from upstream to downstream, a bushing (46) into which the injector nose (43) is mounted, at least one air inlet swirler (48) emerging downstream of the injector nose (43), and a bowl (49).
  11. Turbomachine, comprising at least one injector nose (43) according to any one of claims 1 to 9, or at least one injection module according to claim 10.
EP19848993.2A 2018-12-27 2019-12-26 Injector nozzle for turbomachine comprising a primary fuel circuit arranged around a secondary fuel circuit Active EP3877699B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1874261A FR3091333B1 (en) 2018-12-27 2018-12-27 INJECTOR NOSE FOR TURBOMACHINE INCLUDING A PRIMARY FUEL CIRCUIT ARRANGED AROUND A SECONDARY FUEL CIRCUIT
PCT/FR2019/053302 WO2020136359A1 (en) 2018-12-27 2019-12-26 Injector nozzle for turbomachine comprising a primary fuel circuit arranged around a secondary fuel circuit

Publications (2)

Publication Number Publication Date
EP3877699A1 EP3877699A1 (en) 2021-09-15
EP3877699B1 true EP3877699B1 (en) 2022-11-23

Family

ID=66641117

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19848993.2A Active EP3877699B1 (en) 2018-12-27 2019-12-26 Injector nozzle for turbomachine comprising a primary fuel circuit arranged around a secondary fuel circuit

Country Status (6)

Country Link
US (1) US11788727B2 (en)
EP (1) EP3877699B1 (en)
CN (1) CN113227656B (en)
CA (1) CA3122612A1 (en)
FR (1) FR3091333B1 (en)
WO (1) WO2020136359A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423178A (en) * 1992-09-28 1995-06-13 Parker-Hannifin Corporation Multiple passage cooling circuit method and device for gas turbine engine fuel nozzle
FR2891314B1 (en) 2005-09-28 2015-04-24 Snecma INJECTOR ARM ANTI-COKEFACTION.
US7506510B2 (en) * 2006-01-17 2009-03-24 Delavan Inc System and method for cooling a staged airblast fuel injector
US20100263382A1 (en) * 2009-04-16 2010-10-21 Alfred Albert Mancini Dual orifice pilot fuel injector
US8726668B2 (en) * 2010-12-17 2014-05-20 General Electric Company Fuel atomization dual orifice fuel nozzle
EP2710298B1 (en) * 2011-05-17 2020-09-23 Safran Aircraft Engines Annular combustion chamber for a turbine engine
FR3011318B1 (en) * 2013-10-01 2018-01-05 Safran Aircraft Engines FUEL INJECTOR IN A TURBOMACHINE
US10451282B2 (en) * 2013-12-23 2019-10-22 General Electric Company Fuel nozzle structure for air assist injection
US10047959B2 (en) * 2015-12-29 2018-08-14 Pratt & Whitney Canada Corp. Fuel injector for fuel spray nozzle
US10563587B2 (en) * 2016-04-14 2020-02-18 Pratt & Whitney Canada Corp. Fuel nozzle with increased spray angle range
FR3051844B1 (en) 2016-05-31 2020-03-27 Safran Aircraft Engines CHAMBER BETWEEN AN ENTRY TIP AND A SHUTTER FOR A TURBOMACHINE INJECTOR
FR3091332B1 (en) 2018-12-27 2021-01-29 Safran Aircraft Engines Turbomachine injector nose comprising a secondary fuel spiral with progressive section

Also Published As

Publication number Publication date
FR3091333B1 (en) 2021-05-14
WO2020136359A1 (en) 2020-07-02
US11788727B2 (en) 2023-10-17
US20220113024A1 (en) 2022-04-14
EP3877699A1 (en) 2021-09-15
CA3122612A1 (en) 2020-07-02
CN113227656B (en) 2023-04-18
CN113227656A (en) 2021-08-06
FR3091333A1 (en) 2020-07-03

Similar Documents

Publication Publication Date Title
EP2026006B1 (en) Turbomachine with diffuser
CA2835361C (en) Annular combustion chamber for a turbomachine
EP2071242B1 (en) Device for injecting a mixture of air and fuel into a combustion chamber of a turbomachine
CA2589925A1 (en) Guidance device for an inlet air flow to a combustion chamber in a turbine engine
EP2761226B1 (en) Annular combustion chamber for a turbine engine
EP3039341B1 (en) Turbomachine combustion chamber comprising air deflection means for reducing wake created by igniter
FR2930591A1 (en) OPTIMIZING THE ANGULAR POSITIONING OF A TURBINE DISPENSER OUTSIDE A TURBOMACHINE COMBUSTION CHAMBER
FR3091332A1 (en) Injector nose for a turbomachine comprising a secondary fuel twist with progressive section
EP2462383B1 (en) Combustion chamber for a turbine engine having improved air inlets
EP3039342B1 (en) Combustion chamber for gas turbine with homogeneous air inlet through the fuel injection systems
FR2943119A1 (en) FUEL INJECTION SYSTEMS IN A TURBOMACHINE COMBUSTION CHAMBER
EP3877699B1 (en) Injector nozzle for turbomachine comprising a primary fuel circuit arranged around a secondary fuel circuit
EP3449185B1 (en) Turbomachine injection system comprising an aerodynamic deflector at its inlet and an air intake swirler
EP3771862A1 (en) Fuel injector nose for turbine engine comprising a chamber for internal rotation demarcated by a pin
EP4042070B1 (en) Pre-vaporisation tube for a turbine engine combustion chamber
FR3068732A1 (en) COOLING DEVICE
FR2957659A1 (en) Air and fuel injecting system for base of combustion annular chamber of turbine engine of aircraft, has fuel ejection opening with ejection axis passed in downstream of downstream end of partition wall with reference to flow of air stream
EP4327022A1 (en) Fuel injection device for a turbojet engine afterburner
EP3262348B1 (en) Combustion chamber of a turbine engine comprising a through-part with an opening
FR2975466A1 (en) Annular combustion chamber for e.g. turbojet of aircraft, has injection system comprising tailspin with air-passage channels, which includes sections, where axes of sections are oriented in direction as fuel passage channels
FR3040439A1 (en) DOUBLE FLOW TURBOREACTOR WITH CONFLUENCE WALL
FR3095003A1 (en) Turbine blade with platform cooling slot
FR3034142A1 (en) MICROJET EJECTION GRID DEVICE FOR REDUCING JET NOISE FROM A TURBOMACHINE

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220615

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1533338

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019022364

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221123

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1533338

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019022364

Country of ref document: DE

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221226

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221226

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

26N No opposition filed

Effective date: 20230824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231124

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 5

Ref country code: DE

Payment date: 20231121

Year of fee payment: 5