EP3873844B1 - Cheminement sans collision d'une charge suspendue à une corde - Google Patents

Cheminement sans collision d'une charge suspendue à une corde Download PDF

Info

Publication number
EP3873844B1
EP3873844B1 EP20704401.7A EP20704401A EP3873844B1 EP 3873844 B1 EP3873844 B1 EP 3873844B1 EP 20704401 A EP20704401 A EP 20704401A EP 3873844 B1 EP3873844 B1 EP 3873844B1
Authority
EP
European Patent Office
Prior art keywords
suspension point
control facility
crane
load
upper load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20704401.7A
Other languages
German (de)
English (en)
Other versions
EP3873844A1 (fr
Inventor
Uwe Ladra
Alois Recktenwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3873844A1 publication Critical patent/EP3873844A1/fr
Application granted granted Critical
Publication of EP3873844B1 publication Critical patent/EP3873844B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • B66C15/04Safety gear for preventing collisions, e.g. between cranes or trolleys operating on the same track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C2700/00Cranes
    • B66C2700/08Electrical assemblies or electrical control devices for cranes, winches, capstans or electrical hoists
    • B66C2700/084Protection measures

Definitions

  • the present invention is also based on a control program for a control device of a crane, the control program comprising machine code which can be executed by the control device, the execution of the machine code by the control device causing the control device to operate the crane in accordance with such an operating method.
  • the present invention is also based on a control device of a crane, the control device being programmed with such a control program such that the execution of the machine code by the control device causes the control device to operate the crane according to such an operating method.
  • a special case here is the manual operation of the crane.
  • manual operation the crane is operated by a crane driver or generally by an operator.
  • the operator has full responsibility for the crane and the load handled by the crane. In particular, the operator must ensure that the load does not collide with other objects (obstacles).
  • the operators of such cranes are generally well trained and are good at assessing situations that could lead to a collision.
  • the braking of the upper load suspension point acts on the load via the rope system. In some cases, this causes the load to move in an undesired pendulum motion that the operator cannot foresee. Due to the pendulum movement, a collision can occur despite or even precisely because of the emergency stop.
  • DE 10 2012 007940 A1 discloses an operating method for a crane, in particular a container crane, which has an upper load suspension point from which a load is suspended via a cable system, so that the load can swing about the upper load suspension point, with a control device of the crane controlling drives of the crane so that the upper load suspension point and with it the load are moved in accordance with the activation by the control device, with the control device using further information known to the control device checking whether an object other than the load enters the inner safety zone, and- with the control device as soon as a Object enters the internal safety zone, completes the top lifting point movement or gives a notification to an operator of the crane to stop the top lifting point movement, and otherwise keeps the top lifting point moving or does not give a notification to the end of the movement s of the upper load suspension point to the operator of the crane.
  • the object of the present invention is to reliably ensure collision protection even when the load can swing around the upper load suspension point.
  • This refinement makes it possible, in advance, before there is a risk of a collision, to carry out a corresponding reduction in the travel speed or to request that the travel speed be reduced.
  • the traversing movement can be carried out as such, but only at a reduced traversing speed. The movement is therefore not immediately aborted or such an abort is requested from the operator.
  • the extent to which the travel speed is reduced is determined in that, in the event that a safety stop occurs at the reduced travel speed, the upper load suspension point can be stopped without the risk of the load colliding with an obstacle. If necessary, several nested outer safety zones can also be determined, with the traversing speed—in relation to the various outer safety zones—being reduced more and more from the outside inwards.
  • control device it is possible for the control device to work in an automatic mode, in which the control device independently determines which displacement movement the upper load suspension point should carry out in each case.
  • control device preferably works in manual mode, in which the control device repeatedly receives travel commands for the upper load suspension point from the operator. In this case, the control device controls the drives at least when no object other than the load has entered the inner safety zone or the outer safety zone, in each case in accordance with the specified travel commands.
  • the control device preferably determines a braking distance of the upper load suspension point based on the instantaneous travel speed of the upper load suspension point and takes into account the braking distance of the upper load suspension point and a pendulum movement of the load around the upper load suspension point as part of the determination of the inner safety zone. This procedure allows the inner security zone to be estimated as accurately as possible. Intervention in the actually desired travel movement of the upper load suspension point is thus reduced to those cases in which it is actually necessary.
  • control device bases the determination of the braking distance of the upper load suspension point on a previously known, constant acceleration.
  • the state variables - in addition to the travel speed of the upper load suspension point and the effective pendulum length - include variables that are characteristic of the actual pendulum movement. This makes it possible for the control device to determine a maximum deflection of the pendulum movement for that point in time at which the upper load suspension point is stopped, and the determined maximum deflection of the pendulum movement is taken into account as part of the determination of the inner safety zone. As a result, the inner security zone can be determined very precisely according to the actual circumstances.
  • the state variables do not include the variables that are characteristic of the actual pendulum movement.
  • the control device can take the pendulum movement into account by taking a value from a pendulum table that depends on the travel speed of the upper load suspension point and the effective pendulum length, and taking this value into account when determining the inner safety zone.
  • a value is stored in the pendulum table, which in practice corresponds to the worst possible case. A worst-case scenario is therefore carried out. This enables the inner safety zone to be reliably determined even if the actual pendulum movement is not known.
  • the state variables additionally include a wind speed of a wind flowing around the load.
  • the control device can also take into account a deflection of the load due to the wind as part of the determination of the inner safety zone. This can further reduce the probability of collisions.
  • the wind speed can be given as a direction-independent amount or in the form of a vector.
  • the control device determines the deflection of the load by the wind by taking a value from a wind table that is dependent on the wind speed, a mass of the load and an attack surface of the load for the wind, and using this value to determine the deflection of the load by the wind wind detected. This procedure turns out to be particularly efficient.
  • a control program of the type mentioned at the outset is designed in such a way that the processing of the machine code by the control device causes the control device to operate the crane in accordance with an operating method according to the invention.
  • a control device having the features of claim 12.
  • a control device of the type mentioned at the beginning is programmed with a control program according to the invention, so that the control device operates the crane according to an operating method according to the invention.
  • control device of the crane is designed as a control device according to the invention.
  • a crane has an upper load suspension point 1.
  • a load 3 can be suspended from the upper load suspension point 1 via a cable system 2 . Due to the fact that the load 3 is thus a hanging load, the load 3 can be moved as shown in 3 swing around the upper load suspension point 1.
  • the load 3 can as shown in the 1 and 2 for example, be designed as a container. In this case the crane is a container crane.
  • the pendulum movement can be fully described by three variables. These three variables are the effective pendulum length l, the instantaneous deflection angle ⁇ 1 and the instantaneous angular velocity ⁇ . As is generally known, the instantaneous angular velocity ⁇ corresponds to the time derivative of the instantaneous deflection angle ⁇ 1.
  • the instantaneous deflection angle ⁇ 1 has a value of 0° when—within the vertical plane—the load 3 is located exactly below the upper load suspension point 1. The present invention will be explained below in connection with such an oscillating movement.
  • the upper load suspension point 1 and with it the load 3 can be moved by means of the drives 4a, 4b.
  • the crane as shown in the 1 and 2 have a basic structure 5, in the upper part of which a cross member 6 runs.
  • a trolley 7 can be arranged on the traverse 6, which can be moved in an x-direction by means of the drive 4a by specifying a corresponding setpoint value x*.
  • the upper load suspension point 1 is arranged on the trolley 7 in this case.
  • the basic framework 5 it is possible for the basic framework 5 to be moved as a whole in a y-direction by specifying a corresponding desired value y* by means of the drive 4b.
  • the x-direction and the y-direction are orthogonal to one another and are both (exactly or at least substantially) horizontal.
  • the crane also has a further drive 4c, which drives a hoist 8.
  • the load 3 can be raised and lowered by specifying a corresponding setpoint value l* and the effective pendulum length l can be set accordingly.
  • the crane can be designed, for example, as a gantry crane or as a gantry crane.
  • STS ship to shore
  • other configurations are also possible, for example as a gantry crane.
  • the load 3 does not necessarily have to be a container, even though this is often the case.
  • a control device 9 which controls the drives 4a, 4b, 4c of the crane. According to the control of the drives 4a, 4b, the upper load suspension point 1 and with it the load 3 are moved, according to the control of the drive 4c, the load 3 is raised or lowered.
  • the control device 9 is programmed with a control program 10 .
  • the control program 10 includes machine code 11 which can be executed by the control device 9 . Execution of the machine code 11 by the controller 9 causes the controller 9 to operate the crane according to an operating method which will be explained in more detail below.
  • control device accepts data from the load 3 in a step S1.
  • the data can in particular include the mass and the dimensions of the load 3 .
  • the control device 9 determines—even if only provisionally—control commands C for the drives 4a, 4b, 4c. In an automatic mode, the control device 9 determines the control commands C independently using its control program 10. In a manual mode, the control device 9 determines the control commands C on the basis of travel commands F from an operator 12. The control commands C particularly set the setpoint values x*, y* and l*. for the drives 4a, 4b, 4c.
  • control device 9 preferably works in manual mode, in which the control device 9 repeatedly receives the travel commands F from the operator 12 .
  • the travel commands F include, on the one hand, the travel commands for moving the upper load suspension point 1. On the other hand, they include the travel commands for lifting and lowering the load 3.
  • step S3 the control device 9 checks whether a safety stop has been triggered. If this is the case, the control device 9 goes to a step S4, in which the control device 9 ends the movement of the upper load suspension point 1 and with it the load 3 as quickly as possible (emergency stop). In a subsequent step S5, the control device 9 then checks whether a release for resuming the movement of the upper load suspension point 1 has been given to it again. The control device 9 repeats step S5 again and again until this occurs.
  • the control device 9 determines an inner safety zone 13 around the load 3 in a step S6 (see 6 ).
  • the inner safety zone 13 is determined in such a way that in the event of a sudden safety stop, the load 3 does not come into contact with objects 14 (see FIG 1 ) comes into contact if they are outside the inner security zone 13.
  • the inner security zone 13 extends horizontally over certain dimensions. This will be explained later. In the vertical direction, the inner safety zone 13, starting from the current position of the load 3 below the upper load suspension point 1, can in principle extend upwards indefinitely. Alternatively it is possible that it only extends upwards to a limited extent. Down the safety zone 13 is always limited, namely - based on the current height position of the load 3 - by the braking distance that is required to stop the hoist 8 when lowering the load 3.
  • the inner safety zone 13 is determined as a function of state variables of the crane. These are the state variables as they exist at the time when the safety stop is triggered.
  • the state variables include at least the position of the upper load suspension point 1, i.e. for example its x and y position, the travel speed v of the upper load suspension point 1 and the distance of the load 3 from the upper load suspension point 1, i.e. the result is the effective pendulum length l. It is assumed below that the corresponding actual values x, y, l are involved. Alternatively, however, it can also be the target values x*, y*, l*. The determination of the inner security zone 13 will be explained in more detail later.
  • the control device 9 receives information from the surroundings of the load 3.
  • the information can be made available to the control device 3 in various ways, possibly also in combination.
  • it can be information about stationary obstacles, such as building structures. Such information only has to be specified once for the control device 9 .
  • It can also be information about temporarily fixed obstacles, for example about other loads that have already been handled or are still to be handled.
  • Information about loads that have already been handled can be known to the control device 9 due to its operation in the past.
  • Information about loads still to be handled can be communicated to the control device 9 in some other way, for example by specifying a sequence to be processed for handling loads.
  • It can also be information about moving obstacles, such as vehicles or people. Such information can be made known to the control device 9, for example, via images from a camera or multiple cameras.
  • control device 9 checks in a step S8 whether one of the Last 3 different object 14 enters the inner security zone 13.
  • step S9 the control device 9 executes the control commands C determined in step S2. So it controls the drives 4a, 4b, 4c accordingly.
  • the upper load suspension point 1 and with it the load 3 are thus moved by the control device 9 according to the desired control.
  • the control device 9 thus retains the movement of the upper load suspension point 1.
  • a special message M to the operator 12 does not occur.
  • the control device 9 controls the drives 4a, 4b, 4c in this case in accordance with the specified travel commands F.
  • control device 9 If, on the other hand, the control device 9 has recognized in step S8 that an object 14 other than the load 3 has entered the inner safety zone 13, the control device 9 ends the process of the upper load suspension point 1 in a step S10. The process is also stopped in step S10 of the upper load suspension point 1 - as in step S4 - ended as quickly as possible. Alternatively or additionally, the control device 9 can output the mentioned special message M to the operator 12 in a step S11. The operator 12 is prompted by the special message M to end the process of the upper load suspension point 1 .
  • step S9 Both from step S9 and from step S10 or from step S11, the control device 9 returns to step S2.
  • the inner safety zone 13 is determined dynamically again and again when the upper load suspension point 1 is moved.
  • the acceleration a is - of course - directed in the opposite direction to the travel speed v.
  • the change in the pendulum length l i.e. the lifting speed at which the load 3 is raised or lowered
  • the acceleration with which the lifting speed is reduced to 0 can alternatively be load-independent or load-dependent.
  • the acceleration with which the lifting speed is reduced to 0 can be dependent on the mass m of the load and possibly also on the position of the trolley 7 on the traverse 6. If, on the other hand, the load 3 is just being lifted, the lifting speed can usually be lowered to 0 very quickly and independently of the mass of the load 3 and the position of the trolley 7 on the traverse 6 .
  • the inner safety zone 13 is not yet fully defined by the current position s0 and the braking distance s1. This is because the load 3 is oscillating when the safety stop is triggered. It is therefore necessary that the control device 9 in the context When determining the inner safety zone 13, not only the current position s0 and the braking distance s1 of the upper load suspension point 1 are taken into account. Rather, the control device 9 must also take into account the pendulum movement of the load 3 about the upper load suspension point 1 .
  • the pendulum movement can be described by the effective pendulum length l, the instantaneous deflection angle ⁇ 1 and the instantaneous angular velocity ⁇ .
  • the pendulum length l is always known to the control device 9 . It is possible that the instantaneous deflection angle ⁇ 1 and the instantaneous angular velocity ⁇ of the control device 9 are also known. However, it is also possible that the control device 9 does not know them.
  • Output variable ⁇ 2 of Table 15 is for the pendulum movement of the load 3 at the time when the upper load suspension point 1 is stopped, the maximum - not the instantaneous - deflection ⁇ 2 of the current pendulum movement, hereinafter referred to as maximum deflection ⁇ 2.
  • the table 15 is referred to as the first oscillation table 15 hereinafter.
  • the four input variables v, l, ⁇ 1 and ⁇ must be varied step by step.
  • the other parameters - for example the acceleration a - are constant and specified.
  • the respective maximum deflection ⁇ 2 be readily ascertained.
  • the equations of motion of the upper load suspension point 1 and the load 3 are known and can be easily solved—analytically or numerically.
  • the limits for the input variables v, l, ⁇ 1 and ⁇ of the first pendulum table 15 can be meaningfully determined without further ado.
  • the maximum possible value for the traversing speed v is known without further ado.
  • the travel speed v has a minimum value of 0.
  • a minimum value and a maximum value can be meaningfully determined without further ado.
  • Reasonable assumptions can be made for the pendulum motion of the load 3 at the time the safety stop is triggered. In particular, based on empirical empirical values, it can be known how strong the pendulum movement can be. For example, it can be empirically known that in actual operation there is a maximum oscillation of 5°. The empirical numerical value of 5° is, of course, purely exemplary. Furthermore, the empirical numerical value can depend in particular on the pendulum length l and possibly also on the travel speed v.
  • the various possible values for the travel speed v and the pendulum length l must be processed step by step (usually as an outer and next inner loop). Increments of these two loops can be determined as required. For each specific value of the displacement speed v and the pendulum length l, the associated empirically maximum possible pendulum angle—hereinafter provided with the reference symbol ⁇ —is then determined. Now, in a next inner loop, possible values—hereinafter provided with the reference symbol ⁇ —between 0 and the empirically maximum possible pendulum angle ⁇ are set and possible states are calculated in an innermost loop for the respective value ⁇ of the pendulum movement. The increments for these two loops can also be determined as required.
  • the variables v1, v2 and ⁇ v are used for the minimum value, the maximum value and the increment of the traversing speed v.
  • the quantities l1, l2 and ⁇ l are used for the minimum value, the maximum value and the increment of the pendulum length l.
  • the variable ⁇ is used for the increment when varying the maximum deflection ⁇ .
  • the variable ⁇ is used for the increment when considering the individual states of a specific pendulum motion.
  • a further table 16 can be determined on the basis of the first pendulum table 15 .
  • the rest of Table 16 is as shown in 8 only two-dimensional. It will be referred to as the second pendulum table 16 below.
  • Input variables for the second pendulum table 16 are—in each case related to the point in time at which the safety stop is triggered—the travel speed v and the effective pendulum length l.
  • Output variable ⁇ 3 of the second pendulum table 16 is the largest of the entries entered in the first pendulum table 15 for the respective travel speed v and the respective effective pendulum length as maximum deflection ⁇ 2.
  • the output variable ⁇ 3 of the second pendulum table 16 therefore gives a given traversing speed v and given effective pendulum length l, the maximum of the possible maximum deflections ⁇ 2.
  • the two pendulum tables 15, 16 are increased in terms of their input variables by one dimension (namely the lifting speed) or by two dimensions (namely the lifting speed and the acceleration with which the lifting speed is reduced to 0).
  • the basic procedure remains the same.
  • the control device 9 as shown in 9 receives the current values for the deflection angle ⁇ 1 and the angular velocity ⁇ in a step S21.
  • the corresponding values ⁇ 1, ⁇ are recorded using suitable measuring systems.
  • the angular velocity ⁇ can be determined by the control device 9 itself, if necessary by determining the time derivations of a plurality of deflection angles ⁇ 1 recorded one after the other.
  • the measuring systems can in particular be designed as safe measuring systems.
  • control device 9 can also receive other values which characterize the pendulum movement. In this case, the control device 9 can use the characteristic variables to determine the deflection angle ⁇ 1 and the angular velocity ⁇ .
  • the state variables on the basis of which the control device 9 determines the inner safety zone 13, ie in addition to the travel speed v and the effective pendulum length l, also include variables ⁇ 1, ⁇ that are characteristic of the actual pendulum movement.
  • the control device 9 is therefore not only able to determine the braking distance s1 in a step S22. Rather, the control device 9 is also able, in a step S23, to specifically determine the maximum deflection ⁇ 2 on the basis of the four values v, l, ⁇ 1 and ⁇ that are now specifically given. It is possible here for the control device 9 to carry out an analytical determination.
  • the determination has already been made in advance and is transmitted to the control device 9 in accordance with the illustration in FIG 4 provided in the form of the first pendulum table 15.
  • the maximum deflection ⁇ 2 can be an angle.
  • the control device 9 determines the inner safety zone 13.
  • the inner safety zone 13 thus results from the approach by taking into account the braking distance s1 and the longitudinal deflection s2.
  • control device 9 can also use other variables as part of the determination of the inner security zone 13 . In contrast to the variables mentioned, however, these variables do not change when the upper load suspension point 1 is moved. Examples of such quantities are the dimensions of the load 3 or maximum possible dimensions of the load 3. For example, if the load 3 is a container, it can be known that a maximum of 48-foot containers are handled. The associated length, width and height would correspond to maximum values for the dimensions of the load 3. If, for example, a 40-foot container or a 20-foot container is being handled, these values can also be used as an alternative.
  • control device 9 does not accept the current values for the deflection angle ⁇ 1 and the angular velocity ⁇ (or other values which characterize the actual pendulum movement). In this case, the control device 9 can only carry out a worst-case analysis.
  • a step S31 ( 10 ) can correspond 1:1 to step S22.
  • the control device 9 can, however, according to the illustration in 10 in a step S32 only determine the maximum ⁇ 3 of the possible maximum deflections ⁇ 2.
  • the control device 9 it is again possible here for the control device 9 to carry out an analytical determination.
  • the determination has preferably already been made in advance and is transmitted to the control device 9 in accordance with the illustration in FIG 4 provided in the form of the second pendulum table 16.
  • Analogous to the maximum deflection ⁇ 2, the maximum ⁇ 3 can be an angle.
  • step S33 the control device 9 then determines the inner security zone 13.
  • the step S33 corresponds to the step S24 of FIG 8 .
  • the procedure of 10 can be further developed. In particular, it is as shown in the FIG 4 and 11 It is possible that the control device 9 in a step S41 does not receive the deflection angle ⁇ 1 and the angular velocity ⁇ , but does receive a wind speed vW of a wind flowing around the load 3 .
  • the wind speed vW can be specified as a pure amount. However, it can also be specified as a vector quantity.
  • the state variables, based on which the inner safety zone 13 is determined can also include the wind speed vW.
  • the control device 9 is able to determine an additional deflection s3 in a step S42.
  • the additional deflection s3 corresponds to the static deflection of the load 3 caused by the wind speed vW. It depends on the effective pendulum length l, the force exerted by the wind on the load 3 and the mass m of the load 3. The force in turn depends on the wind speed vW. It is therefore possible, for example, as shown in 12 another table 17 to determine.
  • Table 17 can have the wind speed vW, the mass m of the load 3, an effective area A of the load 3 for the wind and the effective pendulum length l as input variables and supply the additional deflection s3 as the output variable.
  • an analytical determination is possible.
  • control device 9 determines the additional deflection s3
  • the control device 9 is able, in a step S43 when determining the inner safety zone 13, not only to determine the braking distance s1 and the longitudinal deflection s2, but also the additional deflection s3 must also be taken into account.
  • the present invention can also be configured in other ways. This is discussed below in connection with 13 explained in more detail.
  • step S51 the control device 9 determines at least one outer safety zone 18.
  • the outer safety zone 18 surrounds as shown in FIG 6 the inner security zone 13.
  • Step S51 is dynamically executed again and again by the control device 9--just like step S6.
  • the outer safety zone 18 is also determined as a function of the same state variables as the inner safety zone 13.
  • step S52 the control device 9 checks whether the object 14 enters the outer security zone 18. If this is not the case, the control device 9 goes to step S9. In manual operation in particular, the control device 9 controls the drives 4a, 4b, 4c in this case in accordance with the specified travel commands F. Any message M′ to reduce the displacement speed v is not output to the operator 12 . If, on the other hand, this is the case, the control device 9 goes to step S8.
  • step S8 If the control device 9 establishes in step S8 that the object 14 has entered the outer security zone 18 but not the inner security zone 13, the control device 9 goes to a step S53.
  • step S53 the control device 9 determines modified control commands C.
  • the control device 9 reduces the travel speed v of the upper load suspension point 1 in step S53.
  • it can output a corresponding message M' to the operator 12 that he should reduce the travel speed v .
  • a crane has an upper load suspension point 1 from which a load 3 is suspended via a cable system 2 so that the load 3 can swing about the upper load suspension point 1 .
  • a control device 9 of the crane controls drives 4a, 4b of the crane, so that the upper load suspension point 1 and with it the load 3 are moved in accordance with the control by the control device 9.
  • the control device 9 dynamically repeatedly determines an inner safety zone 13 around the load 3 as a function of state variables x, v, l, ⁇ 1, ⁇ , vW of the crane.
  • the state variables x, v, l, ⁇ 1, ⁇ , vW include at least a position x of the upper load suspension point 1, a travel speed v of the upper load suspension point 1 and an effective pendulum length l of the load 3 around the upper load suspension point 1.
  • the control device 9 checks using further information known to the control device 9 as to whether an object 14 different from the load 3 is entering the inner security zone 13 . As soon as an object 14 enters the inner safety zone 13, the control device 9 ends the movement of the upper load suspension point 1 or issues a message M to end the movement of the upper load suspension point 1 to an operator 12 of the crane. Otherwise, the control device 9 continues to move the upper load suspension point 1 or does not issue a message M to end the movement of the upper load suspension point 1 to the operator 12 of the crane.
  • the present invention has many advantages. In particular, it can be ensured in a simple and efficient manner that the load 3 does not collide with a sudden obstacle (object 14) even in the event of a sudden safety stop, although it can swing. This applies equally to manual operation and automated operation of the crane. This danger otherwise exists, although in normal operation a so-called sway control is often effective. Because when a safety stop is triggered, such a sway control loses its function, since the safety stop has priority. Furthermore can the present invention can also be used in cranes in which the effective pendulum length l can reach high values--sometimes over 50 m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)
  • Communication Cables (AREA)

Claims (13)

  1. Procédé pour faire fonctionner une grue, notamment une grue pour conteneurs, qui a un point (1) supérieur de suspension de charge, où une charge (3) est suspendue par un système (2) de câble, de manière à ce que la charge (3) puisse se balancer autour du point (1) supérieur de suspension de charge,
    - dans lequel un dispositif (9) de commande de la grue commande des entraînements (4a, 4b) de la grue, de manière à ce que le point (1) supérieur de suspension de charge et avec lui la charge (3) soient déplacés conformément à la commande par le dispositif (9) de commande,
    - dans lequel le dispositif (9) de commande détermine, lors du déplacement du point (1) supérieur de suspension de charge, en fonction de grandeurs (x, v, l, ϕ1, ω, vW) d'état de la grue, dynamiquement toujours à nouveau une zone (13) intérieure de sécurité autour de la charge (3),
    - dans lequel les grandeurs (x, v, l, ϕ1, ω, vW) d'état comprennent au moins une position (x) du point (1) supérieur de suspension de charge, une vitesse (v) de déplacement du point (1) supérieur de suspension de charge et une longueur (l) efficace de balancement de la charge (3) autour du point (1) supérieur de suspension de charge,
    - dans lequel le dispositif (9) de commande contrôle, à l'aide d'autres informations connues du dispositif (9) de commande, si un objet (14) différent de la charge (3) entre dans la zone (13) intérieure de sécurité, et
    - dans lequel le dispositif (9) de commande, dès qu'un objet (14) entre dans la zone (13) intérieure de sécurité, met fin au déplacement du point (1) supérieur de suspension de charge ou envoie à une personne (12) de service de la grue un message (M) de mettre fin au déplacement du point (1) supérieur de suspension de charge, et sinon conserve le déplacement du point (1) supérieur de suspension de charge ou n'envoie pas, à la personne (12) de service de la grue, de message (M) de mettre fin au déplacement du point (1) supérieur de suspension de charge.
  2. Procédé suivant la revendication 1,
    caractérisé
    - en ce que le dispositif (9) de commande détermine, en fonction des grandeurs (x, v, l, ϕ1, ω, vW) d'état respectives, dynamiquement au moins une zone (18) extérieure de sécurité entourant la zone (13) intérieure de sécurité,
    - en ce que le dispositif (9) de commande contrôle, à l'aide des autres informations, si un objet (14) différent de la charge (3) entre dans la zone (18) extérieure de sécurité, et
    - en ce que le dispositif (9) de commande, dès qu'un objet (14) entre dans la zone (18) extérieure de sécurité, réduit une vitesse (v) de déplacement du point (1) supérieur de suspension de charge ou envoie, à une personne (12) de service de la grue, un message (M') de réduction de la vitesse (v) de déplacement du point (1) supérieur de suspension de charge, et sinon conserve la vitesse (v) de déplacement du point (1) supérieur de suspension de charge ou n'envoie pas, à la personne (12) de la grue, de message (M') de réduction de la vitesse (v) de déplacement du point (1) supérieur de suspension de charge.
  3. Procédé suivant la revendication 2,
    caractérisé
    en ce que le dispositif (9) de commande travaille dans un fonctionnement manuel, dans lequel le dispositif (9) de commande reçoit de la personne (12) de service toujours à nouveau des instructions (F) de déplacement du point (1) supérieur de suspension de charge, et en ce que le dispositif (9) de commande effectue respectivement conformément aux instructions (F) de déplacement données à l'avance, la commande des entraînements (4a, 4b) au moins lorsqu'un objet (14) différent de la charge (3) n'a pas pénétré dans la zone (18) extérieure de sécurité.
  4. Procédé suivant la revendication 1 ou 2,
    caractérisé
    en ce que le dispositif (9) de commande travaille dans un mode de fonctionnement manuel, dans lequel le dispositif (9) de commande reçoit de la personne (12) de service toujours à nouveau des instructions (F) de déplacement du point (1) supérieur de suspension de charge, et en ce que le dispositif (9) de commande effectue, conformément aux instructions (F) de déplacement données à l'avance, la commande des entraînements (4a, 4b) au moins lorsqu'un objet (14) différent de la charge (3) n'a pas pénétré dans la zone (13) intérieure de sécurité.
  5. Procédé suivant l'une des revendications précédentes, caractérisé
    en ce que le dispositif (9) de commande détermine, à l'aide de la vitesse (v) de déplacement instantanée du point (1) supérieur de suspension de charge, un chemin (s1) de freinage du point (1) supérieur de suspension de charge, et en ce que le dispositif (9) de commande prend en compte, dans le cadre de la détermination de la zone (13) intérieure de sécurité, le chemin (s1) de freinage du point (1) supérieur de suspension de charge et un mouvement de balancement de la charge (3) autour du point (1) supérieur de suspension de charge.
  6. Procédé suivant la revendication 5,
    caractérisé
    en ce que le dispositif (9) de commande prend, pour base de la détermination du chemin (s1) de freinage du point (1) supérieur de suspension de charge, une accélération (a) constante connue à l'avance.
  7. Procédé suivant la revendication 5 ou 6,
    caractérisé
    en ce que les grandeurs (x, v, l, ϕ1, ω, vW) d'état comprennent en outre des grandeurs (ϕ1, ω) caractéristiques du mouvement de balancement réel, en ce que le dispositif (9) de commande détermine, à l'aide des grandeurs (ϕ1, ω) caractéristiques du mouvement de balancement réel, une excursion (s2) maximum du mouvement de basculement, et en ce que le dispositif (9) de commande prend en compte, dans le cadre de la détermination de la zone (13) intérieure de sécurité, l'excursion (s2) maximum déterminée du mouvement de balancement.
  8. Procédé suivant la revendication 5 ou 6,
    caractérisé
    en ce que le dispositif (9) de commande prend en compte le mouvement de balancement par le fait qu'il prend, dans une table (15, 16) de balancement, une valeur (ϕ2, ϕ3), qui dépend de la vitesse (v) de déplacement du point (1) supérieur de suspension de charge et de la longueur (1) efficace de balancement et prend en compte cette valeur (ϕ2, ϕ3) dans le cadre de la détermination de la zone (13) intérieure de sécurité.
  9. Procédé suivant la revendication 8,
    caractérisé
    en ce que les grandeurs (x, v, l, ϕ1, ω, vW) d'état comprennent en outre une vitesse (vW) d'un vent passant autour de la charge (3), et en ce que le dispositif (9) de commande prend en compte, dans le cadre de la détermination de la zone (13) intérieure de sécurité, en outre également une excursion (s3) de la charge (3) par le vent.
  10. Procédé suivant la revendication 9,
    caractérisé
    en ce que le dispositif (9) de commande détermine l'excursion de la charge (3) par le vent, en prenant dans une table (17) de vent, une valeur, qui dépend de la vitesse (vW) du vent, d'une masse (m) de la charge (3) et d'une surface (A) d'attaque de la charge (3) pour le vent et détermine, à l'aide de cette valeur (s3), l'excursion (s3) de la charge (3) par le vent
  11. Programme de commande d'un dispositif (9) de commande d'une grue, dans lequel le programme de commande comprend un code machine (11), qui peut être réalisé par le dispositif (9) de commande, dans lequel la réalisation du code machine (11) par le dispositif (9) de commande fait que le dispositif (9) de commande fait fonctionner la grue suivant un procédé de fonctionnement suivant l'une des revendications précédentes.
  12. Dispositif de commande d'une grue, dans lequel le dispositif de commande est programmé par un programme (10) de commande suivant la revendication 11, de manière à ce que la réalisation du code machine (11) par le dispositif de commande fait que le dispositif de commande de la grue fonctionne suivant un procédé de fonctionnement suivant l'une des revendications 1 à 10.
  13. Grue, notamment grue pour conteneurs,
    - dans laquelle la grue a un point (1) supérieur de suspension de charge, où une charge (3) peut être suspendue par un système (2) de câble, de manière à ce que la charge (3) puisse se balancer autour du point (1) supérieur de suspension de charge,
    - dans laquelle la grue a des entraînements (4a, 4b), au moyen desquels le point (1) supérieur de suspension de charge de la grue et avec lui la charge (3) peuvent être déplacés,
    - la grue a un dispositif (9) de commande, qui commande des entraînements (4a, 4b) de la grue, de manière à ce que le point (1) supérieur de suspension de charge et avec lui la charge (3) soient déplacés conformément à la commande par le dispositif (9) de commande,
    - dans laquelle le dispositif (9) de commande est constitué suivant la revendication 12.
EP20704401.7A 2019-02-04 2020-01-23 Cheminement sans collision d'une charge suspendue à une corde Active EP3873844B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19155318.9A EP3689807A1 (fr) 2019-02-04 2019-02-04 Cheminement sans collision d'une charge suspendue à une corde
PCT/EP2020/051574 WO2020160918A1 (fr) 2019-02-04 2020-01-23 Guidage sans collision d'une charge suspendue à un câble

Publications (2)

Publication Number Publication Date
EP3873844A1 EP3873844A1 (fr) 2021-09-08
EP3873844B1 true EP3873844B1 (fr) 2022-10-19

Family

ID=65279464

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19155318.9A Withdrawn EP3689807A1 (fr) 2019-02-04 2019-02-04 Cheminement sans collision d'une charge suspendue à une corde
EP20704401.7A Active EP3873844B1 (fr) 2019-02-04 2020-01-23 Cheminement sans collision d'une charge suspendue à une corde

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19155318.9A Withdrawn EP3689807A1 (fr) 2019-02-04 2019-02-04 Cheminement sans collision d'une charge suspendue à une corde

Country Status (6)

Country Link
US (1) US11390496B2 (fr)
EP (2) EP3689807A1 (fr)
KR (1) KR102422217B1 (fr)
CN (1) CN113396123B (fr)
ES (1) ES2935716T3 (fr)
WO (1) WO2020160918A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102499985B1 (ko) * 2022-10-04 2023-02-16 주식회사 쉐카이나 카메라를 이용한 크레인 안전관리 시스템

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2715391B1 (fr) * 1994-01-24 1996-03-22 Lorraine Laminage Dispositif et procédé d'anticollision pour un mobile.
JP3268932B2 (ja) * 1994-02-08 2002-03-25 鹿島建設株式会社 クレーンの動作領域監視装置
WO1997045359A1 (fr) * 1996-05-24 1997-12-04 Siemens Aktiengesellschaft Procede et dispositif pour la programmation automatisee, assistee par ordinateur, du parcours d'une charge suspendue a transporter au moyen d'un appareil de deplacement d'une telle charge
US6140930A (en) * 1997-02-27 2000-10-31 Shaw; Jack B. Crane safety devices and methods
RU2347736C2 (ru) * 2007-03-23 2009-02-27 Общество с ограниченной ответственностью Научно-производственное предприятие "Резонанс" Система управления грузоподъемного крана (варианты)
WO2013006625A2 (fr) * 2011-07-05 2013-01-10 Trimble Navigation Limited Assistance pour manœuvre de grue
FI20115922A0 (fi) * 2011-09-20 2011-09-20 Konecranes Oyj Nosturin ohjaus
DE102012007940A1 (de) * 2012-04-24 2013-10-24 Thyssenkrupp Millservices & Systems Gmbh Verfahren und Vorrichtung zum Schützen von gefährdeten Objekten im Bewegungsbereich einer Krananlage
FI126364B (fi) * 2012-05-25 2016-10-31 Konecranes Global Oy Nostolaitteen liikematkan määritys
GB201210057D0 (en) * 2012-06-07 2012-07-25 Jaguar Cars Crane and related method of operation
CN103030069B (zh) 2012-12-28 2014-10-01 上海红箭自动化设备有限公司 船坞起重设备自动防撞系统
US9302890B1 (en) * 2013-04-29 2016-04-05 TNV, Inc. Crane control system and method
US10822208B2 (en) * 2014-12-23 2020-11-03 Manitowoc Crane Companies, Llc Crane 3D workspace spatial techniques for crane operation in proximity of obstacles
JP6719807B2 (ja) 2016-05-18 2020-07-08 新東工業株式会社 天井クレーンによる液体タンクの搬送制御システムおよび天井クレーンにより液体タンクを搬送する方法
KR102012639B1 (ko) 2018-09-13 2019-08-21 반도호이스트크레인 주식회사 크레인의 안티스웨이 시스템
CN109095356B (zh) 2018-11-07 2024-03-01 江苏徐工国重实验室科技有限公司 工程机械及其作业空间动态防碰撞方法、装置和系统
US11618655B2 (en) * 2019-03-28 2023-04-04 International Business Machines Corporation Camera-assisted crane safety

Also Published As

Publication number Publication date
EP3873844A1 (fr) 2021-09-08
ES2935716T3 (es) 2023-03-09
US11390496B2 (en) 2022-07-19
CN113396123B (zh) 2022-08-05
WO2020160918A1 (fr) 2020-08-13
CN113396123A (zh) 2021-09-14
KR20210113418A (ko) 2021-09-15
EP3689807A1 (fr) 2020-08-05
KR102422217B1 (ko) 2022-07-15
US20220089417A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
EP1635107B1 (fr) Procédé et dispositif de commande d'une fonction de sécurité d'une machine
EP2698234B1 (fr) Dispositif et procédé de prélèvement automatisée de pièces agencées dans un récipient
EP1894882B1 (fr) Procédé de protection et de commande pour grue
DE102016008908B4 (de) Industrierobotersystem und Steuerverfahren dafür
EP3202612B1 (fr) Procédé de fonctionnement d'un dispositif de transport en forme de moteur linéaire à stator long
EP3303732B1 (fr) Manipulateur de grande taille présentant un mât articulé rapidement repliable et déployable
DE102017114789A1 (de) Kran und Verfahren zum Steuern eines solchen Krans
DE102012220037B4 (de) Passiv betätigtes Bremssystem
DE102015012232A1 (de) Mit Menschen kollaborierendes Robotersystem
AT520008B1 (de) Verfahren zum Dämpfen von Drehschwingungen eines Lastaufnahmeelements einer Hebeeinrichtung
EP3713867B1 (fr) Grue muni d'un dispositif anti-collision et procédé pour faire fonctionner plusieurs grues de ce type
DE102015100669A1 (de) Anti-pendel-steuerverfahren mit einstellbarer unterstützung für den transport einer schwebenden last
EP3873844B1 (fr) Cheminement sans collision d'une charge suspendue à une corde
EP3368462B1 (fr) Procédé pour faire fonctionner au moins deux appareils de levage en groupe, et ensemble comportant au moins deux appareils de levage
WO2018046267A1 (fr) Procédé de fonctionnement d'une installation de grutage, notamment d'une grue à conteneurs
WO2020088926A1 (fr) Procédé pour faire fonctionner un système d'assistance d'un véhicule, dispositif pour la mise en œuvre dudit procédé et véhicule
DE102015008740B4 (de) Robotersteuerungsvorrichtung, die in der lage ist, ein werkstück mit einem parameter zu befördern, der einen soll-werkstückparatmeter überschreitet
EP4186848B1 (fr) Planification de trajectoire avec fonctionnalité de replanification flexible - obstacle
EP4186847B1 (fr) Planification de trajectoire avec fonctionnalité de replanification flexible - point d'extrémité modifié
DE102005002192B4 (de) Verfahren zum Betrieb einer Krananlage, insbesondere eines Containerkrans, sowie Krananlage, insbesondere Containerkran
DE3924256C2 (de) Verfahren zur Unterdrückung von Pendelschwingungen
EP4141603A1 (fr) Dispositif barrière destiné au fonctionnement sécurisé d'un véhicule de transport automatique
EP4272907B1 (fr) Procédé d'amélioration d'un déroulement de mouvement préprogrammé pour la commande d'un robot
DE10233874A1 (de) Verfahren zum Steuern des Betriebs wenigstens einer längs einer Fahrbahn verfahrbaren Katze mit einem Fahrwerk und einem Hubwerk
EP3762324B1 (fr) Procédé de commande et en particulier de contrôle d'un actionneur, en particulier d'un treuil, d'un outil de levage ou d'une grue, et système de mise en ouvre d'un tel procédé

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210601

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220627

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001866

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1525443

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2935716

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230119

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230219

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020001866

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230421

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20230720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240102

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240318

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019