EP3872503B1 - Monitoring device and method for monitoring the insulation of an unshielded electrical system with grounded liquid cooling - Google Patents
Monitoring device and method for monitoring the insulation of an unshielded electrical system with grounded liquid cooling Download PDFInfo
- Publication number
- EP3872503B1 EP3872503B1 EP21157668.1A EP21157668A EP3872503B1 EP 3872503 B1 EP3872503 B1 EP 3872503B1 EP 21157668 A EP21157668 A EP 21157668A EP 3872503 B1 EP3872503 B1 EP 3872503B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coupling
- measuring
- voltage
- current
- length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009413 insulation Methods 0.000 title claims description 73
- 238000012806 monitoring device Methods 0.000 title claims description 71
- 238000012544 monitoring process Methods 0.000 title claims description 25
- 238000001816 cooling Methods 0.000 title claims description 23
- 239000007788 liquid Substances 0.000 title claims description 19
- 238000000034 method Methods 0.000 title claims description 15
- 230000008878 coupling Effects 0.000 claims description 121
- 238000010168 coupling process Methods 0.000 claims description 121
- 238000005859 coupling reaction Methods 0.000 claims description 121
- 239000003507 refrigerant Substances 0.000 claims 16
- 238000005259 measurement Methods 0.000 description 90
- 239000002826 coolant Substances 0.000 description 55
- 238000010586 diagram Methods 0.000 description 15
- 238000013461 design Methods 0.000 description 6
- 230000009897 systematic effect Effects 0.000 description 5
- 239000004020 conductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002847 impedance measurement Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000000110 cooling liquid Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/025—Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/22—Measuring resistance of fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1263—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
- G01R31/1272—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/16—Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
- G01R27/18—Measuring resistance to earth, i.e. line to ground
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/081—Locating faults in cables, transmission lines, or networks according to type of conductors
- G01R31/085—Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1263—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
- G01R31/1281—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of liquids or gases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20218—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
- H05K7/20272—Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/20927—Liquid coolant without phase change
Definitions
- the invention relates to a monitoring device for monitoring an insulation resistance for an ungrounded electrical system, which has a liquid cooling system that is grounded with a coolant and has a feed line and a return line, with the feed line and the return line each being designed as an electrically conductive pipeline section connected to ground potential which is connected to the electrical system by an electrically insulated pipeline section with the pipeline length li.
- an unearthed electrical system In the case of increased requirements for operational, fire and contact safety, the network form of an unearthed electrical system is used, which is also referred to as an isolated system (French: Isole Terre - IT) or IT system. In this type of system, all active parts are isolated from the earth potential - with respect to earth.
- the advantage of such an unearthed electrical system is that the function of the electrical system is not impaired in the event of an insulation fault, since there is no closed impedance between the electrical system and ground due to the ideally infinitely large impedance value Circuit can form.
- the resistance of the unearthed electrical system to ground (insulation resistance) must be constantly monitored, since if another fault occurs, a fault loop could possibly arise and the fault current flowing in connection with an overcurrent protection device would result in the electrical system being switched off with operational standstill.
- insulation monitoring is carried out with an insulation monitoring device which is connected between an active conductor of the electrical system and earth, superimposes a measurement voltage as a measurement signal on the electrical system to be monitored and evaluates a fault current flowing through the insulation resistance to determine the insulation resistance.
- the heat generated in the electrical system is effectively dissipated via a liquid cooling system.
- Demineralized water is preferably used as the cooling liquid.
- the coolant circulation pump and the coolant conditioner are mainly fed from a power supply system with a grounded network form (grounded power supply system) and are therefore connected to ground potential. In most cases there is also a direct connection between the coolant system and the grounded drinking water pipe system in order to be able to quickly compensate for a loss of coolant.
- An ungrounded electrical system 2 represented here by way of example by a power converter with liquid-cooled power electronics, is connected to a liquid cooling system that is operated with grounding.
- the liquid cooling system includes a coolant drive 4, which is connected to the electrical system 2 to be cooled via a supply line 6 and a return line 8, in which the coolant 3 flows.
- Both the supply line 6 and the return line 8 each consist of an electrically conductive pipe section 10 which is connected to the ground potential PE.
- an electrically insulated pipeline section 12 adjoins the electrically conductive pipeline section 10 —in each case for the supply line 6 and the return line 8 —which opens out into the electrical system 2 .
- the electrical system 2 In order to monitor the insulation resistance Rf of the electrical system 2, the electrical system 2 is equipped with an insulation monitoring device 14 in accordance with the regulations.
- the electrolytic conductivity of the coolant is represented by the coolant resistance R K as a lumped element and is parallel to the insulation resistance R f . If the coolant resistance R K assumes an inadmissibly small value in comparison to the insulation resistance Rf when the conductivity of the coolant 3 is too high, standard-compliant monitoring of the electrical system 2 with the insulation monitoring device 14 is no longer reliably possible. Is the coolant resistance R K with quite normal values of a few k ⁇ in parallel with a (system) insulation resistance R f that has a high insulation level, e.g issue an alarm to meet the normative requirements.
- the present invention is therefore based on the object of proposing a monitoring device and a method for monitoring the insulation resistance for an ungrounded electrical system which is operated with a grounded liquid cooling system, which enable reliable and cost-efficient monitoring of the insulation resistance.
- the basic idea of the invention is that a measuring signal for determining the insulation resistance is fed in serially via the coolant resistance.
- the measurement signal is coupled to an active conductor to ground parallel to the coolant resistance R K
- the coolant resistance R K is not parallel to the insulation resistance Rf to be determined, but is related to it connected in series. This eliminates the systematic error described above.
- the monitoring device therefore has one or two low-impedance measurement signal sources, which each generate a measurement signal in the form of a measurement voltage, depending on the type of coupling of the measurement signal - a joint coupling via the supply line and the return line or a one-sided coupling only into the supply line or into the return line .
- the measuring signal source(s) is/are in contact with the electrically conductive pipeline section or generally with the earth potential via an earth potential connection.
- a coupling connection of the measurement signal source is connected to a conductive coupling-in tube element that makes contact with the coolant.
- a coupling current measuring sensor is arranged on the electrically insulated pipeline section.
- a fault current measuring sensor is connected downstream of the coupling current measuring sensor in the direction of the electrical system. This is used to measure a fault current, which is also formed in the coolant flowing through the electrically insulated pipeline section and is used to determine the insulation resistance.
- the (one-piece) coupling pipe element between the coupling current measuring sensor on the ground potential side and the fault current measuring sensor on the system side is arranged in such a way - or in the case of two-piece coupling, both coupling pipe elements are arranged in such a way - that the pipe length of the electrically insulated Pipe section is divided into a coupling length extending between the electrically conductive pipe section and the coupling-in pipe element and a resistance length extending from the coupling-in pipe element to the electrical system.
- the monitoring device has to calculate the insulation resistance from the measured voltage, the detected coupling current, the detected error current, the coupling length and the resistance length a computing unit, for example in the form of a microprocessor.
- the residual current measuring sensor has a residual current measuring current transformer, which together encloses the supply line and the return line.
- the coupling current measuring sensor also has a coupling current measuring current transformer, which together encloses the supply line and the return line.
- the coupling tube element is either made in one piece and connected to the measurement signal source, so that the measurement signal is coupled synchronously in common mode into the supply line and the return line, or the coupling tube element is made in two parts and consists of a supply line coupling tube element and a return line launch element.
- the latter two elements are each connected to one of the measurement signal sources and synchronously couple the respective measurement signals on one side into the supply line and the return line in common mode. The measurement signal is therefore always coupled into the supply line and the return line.
- the residual current measuring sensor has a residual current measuring current transformer and the coupling current measuring sensor has a coupling current measuring current transformer, the residual current measuring current transformer and the coupling current measuring current transformer both comprising the supply line on one side or both comprising the return line on one side.
- the use of the monitoring device according to the invention for monitoring the insulation resistance for an electrical system which is an ungrounded converter system is particularly advantageous.
- a remaining measurement uncertainty in the galvanically isolated current measurement via the fault current measuring sensor and the coupling current measuring sensor can be reduced by determining a measuring current via the voltage drop across a load resistor in the measuring voltage source.
- the monitoring device has a low-impedance measurement signal source for generating a measurement signal with a measurement voltage.
- the measurement signal source includes a ground potential connection, which is connected to the electrically conductive pipeline section, and a coupling connection.
- a conductive coupling pipe element, which contacts the coolant, is connected to this coupling connection of the measurement signal source and synchronously couples the measurement signal into the supply line and the return line in common mode.
- this embodiment of the monitoring device does not have a current measurement, but instead comprises a voltmeter and a conductive, coolant-contacting voltage measuring tube element for measuring a partial voltage on the electrically insulated pipeline section.
- a first voltage measurement input of the voltmeter is connected to the coupling connection of the measurement signal source, a second voltage measurement input of the voltmeter is connected to the voltage measurement tube element for detecting the partial voltage.
- the coupling pipe element is arranged on the electrically insulated pipe sections in such a way that there is a certain coupling length on the electrically insulated pipe sections between the system-side end of the electrically conductive pipe sections arranged on the ground potential side and the coupling pipe element. Then, in the direction of the electrical system, the voltage-measuring tube element is arranged on the electrically insulated pipeline sections in such a way that a distance with a defined voltage-measuring length is established between the coupling-in tube element and the voltage-measuring tube element. There is a defined resistance length on the electrically insulated pipe sections between the voltage measuring tube element and the electrical system.
- the monitoring device in this embodiment with voltage measurement also has a computing unit that is designed to calculate the insulation resistance from the measurement voltage, the measurement signal, an input measurement current, the partial voltage, the coupling length, the voltage measurement length and the resistance length.
- the monitoring device to monitor the insulation resistance for an ungrounded power converter system as an electrical system in order to meet the cooling requirements, particularly in the case of high-performance power converter systems.
- an extended monitoring device for monitoring a common insulation resistance of several ungrounded electrical subsystems fed by a common transformer is designed.
- the respective electrical subsystems correspond to the above-mentioned ungrounded electrical system, which in each case has a liquid cooling system that is grounded with a coolant and has a supply line and a return line.
- At least two of the unearthed electrical subsystems in the extended monitoring device are equipped with a monitoring device according to one of Claims 1 to 6.
- the expanded monitoring device also has a synchronization control device for synchronously coupling the measurement signals into the respective electrical subsystems to be monitored.
- the synchronization control device advantageously has an amplitude control device for controlling the measurement signal amplitudes of the measurement signals generated in the respective monitoring devices.
- the control of the measurement signal amplitudes in the respective monitoring devices assigned to the electrical subsystems is not absolutely necessary, but can be used in the case of very unequal geometric distribution of the coolant supply to adjust any leakage currents to earth or residual voltages to earth for each electrical subsystem as equally as possible. This avoids an unequal current and voltage load on individual electrical subsystems, because an extreme deviation in the leakage currents in the individual electrical subsystems can lead to an additional systematic measurement error due to the respective measurement signal sources and/or current sensors entering an unfavorable working range.
- the amplitude control device can be used to control the measurement signal amplitude for each electrical subsystem to be monitored, so that the overall operational measurement reliability of the insulation monitoring system is largely independent of expected process-related fluctuations in parameters of the coolant system (e.g. fluctuation in electrolytic conductivity) and the expected differences in the geometric design of the coolant circuit (e.g. different lengths of the coolant pipes).
- the power converted in an insulation monitoring device and its voltage load can also be reduced in medium-voltage applications.
- FIG. 1 1 shows an ungrounded electrical system 2 to illustrate the problem, which has a liquid cooling system operated with a coolant 3 grounded and having a feed line 6 and a return line 8 .
- An electrically conductive pipe section 10 is arranged on a coolant drive 4 (ground potential side) connected to the ground potential PE for the feed line 6 and the return line 8 of the coolant 3, to which (on the system side) an electrically insulated pipe section 12 is connected, which is connected to the ungrounded electrical System 2 opens.
- an insulation monitoring device 14 is connected between the unearthed electrical system 2 and earth PE.
- the electrical system 2 is not completely electrically isolated from ground PE. There is therefore an electrically conductive connection to earth PE, which is modeled here by the coolant resistance R K as a lumped element.
- This coolant resistance R K is parallel to that determined insulation resistance R f and has a significant influence on the measurement of the insulation resistance.
- FIG 3 shows a monitoring device 100 according to the invention with a common current measurement and one-piece measurement signal coupling in the application for one in the 1 illustrated ungrounded electrical system 2 with grounded operated liquid cooling.
- a coupling current measuring sensor 40 is arranged on the ground potential side of the electrically insulated pipeline section 12 with the pipeline length l i , whose coupling current measuring current transformer jointly encloses the supply line 6 and the return line 8 .
- the coupling current measuring sensor 40 detects a coupling current I AK which flows in the coolant 3 flowing through the electrically insulated pipeline section 12 .
- a fault current measuring sensor 42 Downstream from the coupling current measuring sensor 40 in the direction of the electrical system 2 is a fault current measuring sensor 42, which also encloses the feed line 6 and the return line 8 together and which detects a fault current I Ri which - in the illustration "above” the measurement signal coupling - in the coolant 3 flowing through the electrically insulated pipeline section 12 .
- the one-piece coupling tubular element 50 is connected to a measurement voltage source 30 via a coupling connection 32 .
- a ground potential connection 31 of the measurement signal source 30 is at ground potential PE, for example connected to the electrically conductive pipeline section 10.
- the monitoring device 100 has an arithmetic unit 60 which evaluates the output signals of the coupling current measuring sensor 40 , the residual current measuring sensor 42 and the measuring signal source 30 .
- FIG 4 shows an embodiment of the monitoring device 101 according to the invention with one-sided current measurement and one-piece measurement signal coupling.
- the coupling current measuring sensor 40 and the error current measuring sensor 42 are designed on one side, ie both measuring current transformers are arranged either on one side around the feed line 6 or both on one side around the return line 8 .
- the monitoring device 101 has in the same way as in 3
- the monitoring device 100 shown in FIG 4 arithmetic unit 60, not shown.
- FIG. 5 shows a further embodiment of the monitoring device 102 with common current measurement and two-part measurement signal coupling.
- the current is measured as in the in 3
- the monitoring device 100 shown has a coupling current measuring sensor 40 arranged on the ground potential side and a residual current measuring sensor 42 arranged on the system side, each of which encloses the supply line 6 and the return line 8 together.
- the coupling pipe element 50 is divided in two parts into a supply pipe element 52 and a return pipe element 54 .
- the feed line coupling-in tubular element 52 and the return line coupling-in tubular element 54 are each connected to a measurement signal source 30, the respective measurement signals being synchronously coupled into the feed line 6 and the return line 8 on one side in common mode.
- In 6 is a from the monitoring device 100 after 3 derived electrical equivalent circuit diagram for determining the insulation resistance Rf is shown.
- the modeled coolant resistance R K is represented here by a coupling resistance R AK and an internal resistance Ri.
- the coolant 3 flowing in the supply line 6 and the return line 8 is shown in its electrical effect as a (single) resistance Ri or a (single) coupling resistance R K .
- FIG. 7 shows a monitoring device 103 according to the invention with a voltage measurement.
- the current measurement described in the above embodiments is replaced by a voltage measurement using a voltmeter 70 .
- the measurement signal is coupled in, as in the above-mentioned embodiments, with a low-impedance measurement signal source 30 to which the Distance of a coupling length l AK1 - measured from the system-side end of the electrically conductive pipe section 10 - a arranged on the electrically insulated pipe section 12 coupling pipe element 50 is connected.
- voltmeter 70 To measure a partial voltage Ui, voltmeter 70 has a first voltage measuring input 72 connected to coupling connection 32 of measuring voltage source 30 and has a second voltage measuring input 74, which is connected to a conductive voltage measuring tube element 76 that contacts coolant 3.
- the voltage-measuring tubular element 76 is attached downstream of the coupling tubular element 50 at a distance of a voltage length l AK2 in the direction of the electrical system 2 .
- a resistance length l Ri remains in the direction of the electrical system 2, which together with the coupling length l AK1 and the voltage length l AK2 results in the pipeline length l i of the electrically insulated pipeline section 12.
- the arithmetic unit 60 determines the insulation resistance R f from the detected values.
- FIG. 9 shows an expanded monitoring device 110 according to the invention for three ungrounded electrical subsystems 16 fed by a common transformer 15.
- Each of the subsystems 16 to be monitored is followed by a monitoring device 102 according to the invention figure 5 assigned.
- the monitoring device 102 after figure 5 was selected here as an example—in principle, any one of the claimed monitoring devices 100, 101, 102, 103 can be assigned to each subsystem 16 to be monitored.
- the expanded monitoring device 110 has a synchronization control device 80, which enables the measurement signals to be coupled synchronously into the respective electrical subsystems 16 to be monitored.
- an amplitude control device 82 is integrated into the synchronization control device 80 and controls the measurement signal amplitudes of the measurement signals generated in the respective monitoring devices 102 .
- processing unit arranged in the individual monitoring devices 102 can be replaced by a common higher-level processing unit 61 .
- 10 1 shows an electrical equivalent circuit diagram for determining the insulation resistance Rf with an extended monitoring device 110 9 .
- the extended monitoring device 110 is suitable for an application of n (n ⁇ 2) electrical subsystems, the equivalent circuit diagram is generally valid for n electrical subsystems.
- the equivalent circuit diagram also shows a functional group consisting of the synchronization control device 80 and the amplitude control device 82, which are connected to the respective measurement signal sources 30.
- FIG. 11 shows an expanded monitoring device 111 for three commonly supplied electrical subsystems 16, each of these subsystems having a monitoring device 103 with voltage measurement according to the invention 7 Is provided.
- the expanded monitoring device 111 has a synchronization control device 80 , a common computing unit 61 and optionally an amplitude control unit 82 .
- FIG. 12 shows an electrical equivalent circuit diagram for the extended monitoring device with voltage measurement 11 .
- the measurement voltage sources U m of the individual electrical subsystems 16 must run synchronously with one another in order to prevent the measurement signals from interfering with one another.
- the measurement current I m impressed by a measurement signal source 30 cancels out with the measurement current I m impressed by another measurement signal source 30 .
- Optimum metrological operation is expected when the measurement signal amplitudes are set in such a way that the current through the insulation resistance Rf is approximately equally distributed among all measurement branches.
- the insulation resistance is calculated for each individual branch based on the known length ratios of the coolant supply, the known measuring voltage amplitudes U m , the values for Ui measured for each measuring branch and the measured current I m fed in in each case.
- the overall insulation value is then formed from the sum of the n individual values divided by n.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Thermal Sciences (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Description
Die Erfindung betrifft eine Überwachungsvorrichtung zur Überwachung eines Isolationswiderstands für ein ungeerdetes elektrisches System, welches eine mit einem Kühlmittel geerdet betriebene Flüssigkeitskühlung mit einer Zuleitung und einer Rückleitung aufweist, wobei die Zuleitung und die Rückleitung jeweils als ein mit Erdpotential verbundener elektrisch leitfähiger Rohrleitungsabschnitt ausgeführt sind, an den sich ein mit dem elektrischen System verbundener elektrisch isolierter Rohrleitungsabschnitt mit der Rohrleitungslänge li anschließt.The invention relates to a monitoring device for monitoring an insulation resistance for an ungrounded electrical system, which has a liquid cooling system that is grounded with a coolant and has a feed line and a return line, with the feed line and the return line each being designed as an electrically conductive pipeline section connected to ground potential which is connected to the electrical system by an electrically insulated pipeline section with the pipeline length li.
Bei erhöhten Anforderungen an die Betriebs-, Brand- und Berührungssicherheit kommt die Netzform eines ungeerdeten elektrischen Systems zum Einsatz, die auch als isoliertes System (frz. Isole Terre - IT) oder IT-System bezeichnet wird. Bei dieser Art des Systems sind sämtliche aktiven Teile von dem Erdpotential - gegenüber Erde - getrennt. Der Vorteil eines solchen ungeerdeten elektrischen Systems liegt darin, dass bei einem Isolationsfehler die Funktion des elektrischen Systems nicht beeinträchtigt wird, da sich wegen des im Idealfall unendlich großen Impedanzwertes zwischen dem elektrischen System und Erde kein geschlossener Stromkreis ausbilden kann. Allerdings muss der Widerstand des ungeerdeten elektrischen Systems gegen Erde (Isolationswiderstand) ständig überwacht werden, da bei Auftreten eines weiteren Fehlers möglicherweise eine Fehlerschleife entstehen könnte und der dabei fließende Fehlerstrom in Verbindung mit einer Überstromschutzeinrichtung eine Abschaltung des elektrischen Systems mit Betriebsstillstand zur Folge hätte.In the case of increased requirements for operational, fire and contact safety, the network form of an unearthed electrical system is used, which is also referred to as an isolated system (French: Isole Terre - IT) or IT system. In this type of system, all active parts are isolated from the earth potential - with respect to earth. The advantage of such an unearthed electrical system is that the function of the electrical system is not impaired in the event of an insulation fault, since there is no closed impedance between the electrical system and ground due to the ideally infinitely large impedance value Circuit can form. However, the resistance of the unearthed electrical system to ground (insulation resistance) must be constantly monitored, since if another fault occurs, a fault loop could possibly arise and the fault current flowing in connection with an overcurrent protection device would result in the electrical system being switched off with operational standstill.
Die Isolationsüberwachung wird dem Stand der Technik entsprechend mit einem Isolationsüberwachungsgerät durchgeführt, welches zwischen einen aktiven Leiter des elektrischen Systems und Erde geschaltet ist, dem zu überwachenden elektrischen System eine Messspannung als Messsignal überlagert und einen über den Isolationswiderstand fließenden Fehlerstrom zur Bestimmung des Isolationswiderstands auswertet.According to the state of the art, insulation monitoring is carried out with an insulation monitoring device which is connected between an active conductor of the electrical system and earth, superimposes a measurement voltage as a measurement signal on the electrical system to be monitored and evaluates a fault current flowing through the insulation resistance to determine the insulation resistance.
Umfassen die zu überwachenden elektrischen Systeme eine Leistungselektronik, wie das beispielsweise bei zahlreichen Stromrichteranwendungen mit ihren Leistungshalbleitern der Fall ist, so wird die in dem elektrischen System entstehende Wärme wirkungsvoll über ein Flüssigkeitskühlsystem abgeführt. Als Kühlflüssigkeit wird bevorzugt demineralisiertes Wasser eingesetzt. Die Kühlmittelumwälzpumpe und die Kühlmittelaufbereitung werden überwiegend von einem Stromversorgungssystem mit einer geerdeten Netzform (geerdetes Stromversorgungssystem) gespeist und sind daher mit Erdpotential verbunden. Meistens existiert auch eine direkte Verbindung des Kühlmittelsystems mit dem geerdeten Trinkwasserleitungssystem, um einen Kühlmittelverlust schnell ausgleichen zu können.If the electrical systems to be monitored include power electronics, as is the case, for example, in numerous power converter applications with their power semiconductors, the heat generated in the electrical system is effectively dissipated via a liquid cooling system. Demineralized water is preferably used as the cooling liquid. The coolant circulation pump and the coolant conditioner are mainly fed from a power supply system with a grounded network form (grounded power supply system) and are therefore connected to ground potential. In most cases there is also a direct connection between the coolant system and the grounded drinking water pipe system in order to be able to quickly compensate for a loss of coolant.
Um das kühlungsbedürftige elektrische System, beispielsweise einen Stromrichter, ungeerdet betreiben zu können und gleichzeitig das Flüssigkeitskühlsystem mit einem geerdeten Stromversorgungssystem versorgen zu können, ist es bekannt, das geerdete Kühlsystem von dem ungeerdeten elektrischen System über elektrisch isolierte Kühlmittelrohre oder Rohrleitungsabschnitte elektrisch zu separieren.In order to be able to operate the electrical system that requires cooling, for example a converter, ungrounded and at the same time to be able to supply the liquid cooling system with a grounded power supply system, it is known to electrically separate the grounded cooling system from the ungrounded electrical system by means of electrically insulated coolant pipes or pipe sections.
Eine vollständige galvanische Trennung zwischen dem ungeerdeten elektrischen System und der geerdet betriebenen Flüssigkeitskühlung ist allerdings wegen der praktisch immer vorhandenen und prozessbedingt schwankenden elektrolytischen Leitfähigkeit der Kühlflüssigkeit nicht gegeben. Diese unvollständige elektrische Trennung zwischen dem ansonsten isoliert aufgebauten ungeerdeten elektrischen System und der geerdet betriebenen Flüssigkeitskühlung kann durch einen Kühlmittelwiderstand RK modelliert werden.However, there is no complete galvanic isolation between the ungrounded electrical system and the grounded liquid cooling system due to the practically always present and process-related fluctuating electrolytic conductivity of the cooling liquid. This incomplete electrical isolation between the otherwise isolated ungrounded electrical system and the grounded operated liquid cooling can be modeled by a coolant resistance R K .
Zur Überwachung des Isolationswiderstands Rf des elektrischen Systems 2 ist das elektrische System 2 vorschriftsgemäß mit einem Isolationsüberwachungsgerät 14 ausgestattet.In order to monitor the insulation resistance Rf of the
Die elektrolytische Leitfähigkeit des Kühlmittels ist durch den Kühlmittelwiderstand RK als konzentriertes Element dargestellt und liegt parallel zu dem Isolationswiderstand Rf. Nimmt der Kühlmittelwiderstand RK bei zu hoher Leitfähigkeit des Kühlmittels 3 im Vergleich zu dem Isolationswiderstand Rf einen unzulässig kleinen Wert ein, so ist eine normgerechte Überwachung des elektrischen Systems 2 mit dem Isolationsüberwachungsgerät 14 nicht mehr zuverlässig möglich. Liegt der Kühlmittelwiderstand RK mit durchaus üblichen Werten von einigen wenigen kΩ parallel zu einem (System-)Isolationswiderstand Rf, der ein hohes Isolationsniveau, von z.B. einem MΩ aufweist, so müsste das Isolationsüberwachungsgerät trotz gutem Isolationszustand des elektrischen Systems 2 aufgrund des niedrigen Kühlmittelwiderstands RK dauerhaft einen Alarm ausgeben, um den normativen Anforderungen gerecht zu werden.The electrolytic conductivity of the coolant is represented by the coolant resistance R K as a lumped element and is parallel to the insulation resistance R f . If the coolant resistance R K assumes an inadmissibly small value in comparison to the insulation resistance Rf when the conductivity of the
Aus diesen Überlegungen wird deutlich, dass eine normgerechte Überwachung nicht möglich ist.From these considerations, it becomes clear that standard-compliant monitoring is not possible.
Diese Problemstellung verschärft sich, wenn aus Kostengründen mehrere ungeerdete elektrische Subsysteme 16, beispielsweise mehrere leistungsstarke Stromrichter, von einem gemeinsamen ungeerdeten Transformator 15 gespeist werden.This problem is exacerbated when several ungrounded
Zur Lösung des Problems kann dem Stand der Technik gemäß bei der Systemplanung durch konstruktive Maßnahmen dafür gesorgt werden, dass der Kühlmittelwiderstand groß genug wird, um den systematischen Fehler bei der Isolationsüberwachung entsprechend den normativen Anforderungen klein zu halten. Bekannte Maßnahmen sind beispielsweise eine entsprechende Ausgestaltung der Geometrie der Kühlmittelzuführung, die Verwendung sehr hochwertiger Materialien, um Korrosions-und/oder Migrationseffekte bei der Verwendung von Kühlmitteln mit sehr niedrigen Leitwerten gering zu halten.To solve the problem, according to the state of the art, constructive measures can be taken during system planning to ensure that the coolant resistance is large enough to keep the systematic error in insulation monitoring small in accordance with the normative requirements. Known measures are, for example, a corresponding design of the geometry of the coolant supply, the use of very high-quality materials in order to keep corrosion and/or migration effects low when using coolants with very low conductance values.
Diese konstruktiven Maßnahmen führen jedoch zu deutlich erhöhten Systemkosten, sodass in der Praxis die Ansprechwerte des Isolationsüberwachungsgerätes für den Vor- und den Hauptalarm deutlich abweichend von den normativen Empfehlungen auf ein sehr niederohmiges Niveau gesetzt werden. Messtechnisch arbeiten daher die Isolationsüberwachungsgeräte in diesem Umfeld häufig in einem Grenzbereich und außerhalb ihrer technischen Spezifikation. Für den Anwender bedeutet dies auch eine Häufung von Fehlalarmmeldungen. Der Stand der Technik findet sich zum Beispiel in den Dokumenten
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, für ein ungeerdetes elektrisches System, welches mit einer geerdet betriebenen Flüssigkeitskühlung betrieben wird, eine Überwachungsvorrichtung sowie ein Verfahren zur Überwachung des Isolationswiderstands vorzuschlagen, die eine zuverlässige und kosteneffiziente Überwachung des Isolationswiderstands ermöglichen.The present invention is therefore based on the object of proposing a monitoring device and a method for monitoring the insulation resistance for an ungrounded electrical system which is operated with a grounded liquid cooling system, which enable reliable and cost-efficient monitoring of the insulation resistance.
Diese Aufgabe wird bezogen auf eine Vorrichtung durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.This object is achieved by the characterizing features of claim 1 in relation to a device.
Der erfinderische Grundgedanke liegt nun darin, dass die Einspeisung eines Messsignales zur Bestimmung des Isolationswiderstands seriell über den Kühlmittelwiderstand erfolgt. Im Gegensatz zu dem Stand der Technik, bei dem eine Ankopplung des Messsignales an einen aktiven Leiter gegen Erde parallel zu dem Kühlmittelwiderstand RK erfolgt, liegt bei der erfindungsgemäßen Konstellation der Kühlmittelwiderstand RK nicht parallel zu dem zu ermittelnden Isolationswiderstand Rf, sondern ist zu diesem in Reihe geschaltet. Der oben beschriebene systematische Fehler entfällt dadurch.The basic idea of the invention is that a measuring signal for determining the insulation resistance is fed in serially via the coolant resistance. In contrast to the prior art, in which the measurement signal is coupled to an active conductor to ground parallel to the coolant resistance R K , in the constellation according to the invention the coolant resistance R K is not parallel to the insulation resistance Rf to be determined, but is related to it connected in series. This eliminates the systematic error described above.
Die Überwachungsvorrichtung weist daher je nach Art der Einkopplung des Messsignals - eine gemeinsame Einkopplung über die Zuleitung und die Rückleitung oder eine einseitige Einkopplung nur in die Zuleitung oder in die Rückleitung - eine oder zwei niederohmige Messsignalquellen auf, die jeweils ein Messsignal in Form einer Messspannung erzeugen. Die Messsignalquelle(n) ist/sind über einen Erdpotentialanschluss mit dem elektrisch leitfähigem Rohrleitungsabschnitt oder allgemein mit dem Erdpotential kontaktiert.The monitoring device therefore has one or two low-impedance measurement signal sources, which each generate a measurement signal in the form of a measurement voltage, depending on the type of coupling of the measurement signal - a joint coupling via the supply line and the return line or a one-sided coupling only into the supply line or into the return line . The measuring signal source(s) is/are in contact with the electrically conductive pipeline section or generally with the earth potential via an earth potential connection.
Zur Einkopplung des Messsignales ist ein Einkopplungsanschluss der Messsignalquelle mit einem leitfähigen, das Kühlmittel kontaktierenden Einkopplungsrohrelement verbunden.In order to couple in the measurement signal, a coupling connection of the measurement signal source is connected to a conductive coupling-in tube element that makes contact with the coolant.
Zur Messung eines Ankoppelstroms, welcher in dem durch den elektrisch isolierten Rohrleitungsabschnitt strömenden Kühlmittel fließt, ist ein Ankoppelstrom-Messsensor an dem elektrisch isolierten Rohrleitungsabschnitt angeordnet.In order to measure a coupling current, which flows in the coolant flowing through the electrically insulated pipeline section, a coupling current measuring sensor is arranged on the electrically insulated pipeline section.
Dem Ankoppelstrom-Messsensor ist in Richtung des elektrischen Systems ein Fehlerstrom-Messsensor nachgeschaltet. Dieser dient zur Messung eines Fehlerstroms, welcher sich ebenfalls in dem durch den elektrisch isolierten Rohrleitungsabschnitt strömenden Kühlmittel ausbildet und zur Bestimmung des Isolationswiderstands herangezogen wird.A fault current measuring sensor is connected downstream of the coupling current measuring sensor in the direction of the electrical system. This is used to measure a fault current, which is also formed in the coolant flowing through the electrically insulated pipeline section and is used to determine the insulation resistance.
Auf dem elektrisch isoliertem Rohrleitungsabschnitt ist das (einteilige) Einkopplungs-Rohrelement zwischen dem erdpotentialseitig angeordneten Ankoppelstrom-Messsensor und dem systemseitig befindlichen Fehlerstrom-Messsensor so angeordnet - bzw. sind bei zweiteiliger Einkopplung beide Einkopplungs-Rohrelemente so angeordnet -, dass die Rohrleitungslänge des elektrisch isolierten Rohrleitungsabschnitts in eine sich zwischen dem elektrisch leitfähigen Rohrleitungsabschnitt und dem Einkopplungs-Rohrelement erstreckende Ankopplungslänge und eine sich von dem Einkopplungs-Rohrelement bis zu dem elektrischen System erstreckende Widerstandslänge geteilt ist.On the electrically insulated pipeline section, the (one-piece) coupling pipe element between the coupling current measuring sensor on the ground potential side and the fault current measuring sensor on the system side is arranged in such a way - or in the case of two-piece coupling, both coupling pipe elements are arranged in such a way - that the pipe length of the electrically insulated Pipe section is divided into a coupling length extending between the electrically conductive pipe section and the coupling-in pipe element and a resistance length extending from the coupling-in pipe element to the electrical system.
Zur Berechnung des Isolationswiderstands aus der Messspannung, dem erfassten Ankopplungsstrom, dem erfassten Fehlerstrom, der Ankopplungslänge und der Widerstandslänge weist die Überwachungsvorrichtung eine Recheneinheit, beispielsweise in Form eines Mikroprozessors auf.The monitoring device has to calculate the insulation resistance from the measured voltage, the detected coupling current, the detected error current, the coupling length and the resistance length a computing unit, for example in the form of a microprocessor.
Ausgehend von dem von einem geerdeten Stromversorgungssystem gespeisten Kühlmittelantrieb und daran angeschlossenen elektrisch leitfähigen Rohrleitungsabschnitten ist die Reihenfolge der Anordnung der Elemente Ankoppelstrom-Messsensor, Einkopplungs-Rohrelement und Fehlerstrom-Messsensor stets gleich, die Konstruktion zur Anbringung dieser Elemente an der Zuleitung bzw. der Rückleitung kann sich jedoch unterscheiden.Based on the coolant drive fed by a grounded power supply system and electrically conductive pipe sections connected to it, the order in which the elements of coupling current measuring sensor, coupling pipe element and residual current measuring sensor are arranged is always the same, the design for attaching these elements to the supply line or return line can however differ.
In einer möglichen Ausgestaltung weist der Fehlerstrom-Messsensor einen Fehlerstrom-Messstromwandler auf, der gemeinsam die Zuleitung und die Rückleitung umschließt. Ebenso weist der Ankoppelstrom-Messsensor einen Ankoppelstrom-Messstromwandler auf, der gemeinsam die Zuleitung und die Rückleitung umschließt.In one possible embodiment, the residual current measuring sensor has a residual current measuring current transformer, which together encloses the supply line and the return line. The coupling current measuring sensor also has a coupling current measuring current transformer, which together encloses the supply line and the return line.
Das Einkopplungs-Rohrelement ist entweder einteilig ausgeführt und mit der Messsignalquelle verbunden, sodass das Messsignal gemeinsam in die Zuleitung und die Rückleitung synchron im Gleichtakt eingekoppelt wird oder das Einkopplungs-Rohrelement ist zweiteilig ausgeführt und besteht aus einem Zuleitungs-Einkopplungs-Rohrelement und einem Rückleitungs-Einkopplungs-Element. Letztere beiden Elemente sind jeweils mit einer der Messsignalquellen verbunden und koppeln die jeweiligen Messsignale jeweils einseitig in die Zuleitung und die Rückleitung synchron im Gleichtakt ein. Die Messsignaleinkopplung erfolgt somit immer in die Zuleitung und die Rückleitung.The coupling tube element is either made in one piece and connected to the measurement signal source, so that the measurement signal is coupled synchronously in common mode into the supply line and the return line, or the coupling tube element is made in two parts and consists of a supply line coupling tube element and a return line launch element. The latter two elements are each connected to one of the measurement signal sources and synchronously couple the respective measurement signals on one side into the supply line and the return line in common mode. The measurement signal is therefore always coupled into the supply line and the return line.
Der Fehlerstrom-Messsensor weist einen Fehlerstrom-Messstromwandler und der Ankoppelstrom-Messsensor weist einen Ankoppelstrom-Messstromwandler auf, wobei der Fehlerstrom-Messstromwandler und der Ankoppelstrom-Messstromwandler beide einseitig die Zuleitung oder beide einseitig die Rückleitung umfassen.The residual current measuring sensor has a residual current measuring current transformer and the coupling current measuring sensor has a coupling current measuring current transformer, the residual current measuring current transformer and the coupling current measuring current transformer both comprising the supply line on one side or both comprising the return line on one side.
Besonders vorteilhaft gestaltet sich die Verwendung der erfindungsgemäßen Überwachungsvorrichtung zur Überwachung des Isolationswiderstandes für ein elektrisches System, welches ein ungeerdetes Stromrichtersystem ist.The use of the monitoring device according to the invention for monitoring the insulation resistance for an electrical system which is an ungrounded converter system is particularly advantageous.
Insbesondere leistungsstarke Stromrichtersysteme (Wechsel-, Gleich-und Umrichtersysteme), die einer hohen Kühlleistung bedürfen, können mit der erfindungsgemäßen Überwachungsvorrichtung zuverlässig im Hinblick auf den Isolationswiderstand überprüft werden.In particular, powerful power converter systems (alternating, rectifying and converter systems), which require a high cooling capacity, can be reliably checked with regard to the insulation resistance using the monitoring device according to the invention.
Eine verbleibende Messunsicherheit bei der galvanisch getrennten Strommessung über den Fehlerstrom-Messsensor und den Ankoppelstrom-Messsensor kann durch die Ermittlung eines Messstroms über den Spannungsabfall an einen Bürdenwiderstand in der Messspannungsquelle verringert werden. Aus dieser Überlegung heraus ergibt sich ein zu der Strommessung alternativer erfindungsgemäßer Ansatz mit einer Spannungsmessung, der jedoch bekannte und stabile Geometrieverhältnisse der Kühlmittelzuführung voraussetzt.A remaining measurement uncertainty in the galvanically isolated current measurement via the fault current measuring sensor and the coupling current measuring sensor can be reduced by determining a measuring current via the voltage drop across a load resistor in the measuring voltage source. This consideration results in an approach according to the invention which is an alternative to the current measurement and uses a voltage measurement, which, however, requires known and stable geometry conditions of the coolant supply.
Die der Erfindung zugrunde liegende Aufgabe wird somit weiterhin gelöst durch eine Überwachungsvorrichtung gemäß den Merkmalen nach Anspruch 5.The object on which the invention is based is thus further achieved by a monitoring device according to the features of claim 5.
Auch in dieser Ausführungsform weist die Überwachungseinrichtung eine niederohmige Messsignalquelle zur Erzeugung eines Messsignals mit einer Messspannung auf. Die Messsignalquelle umfasst einen Erdpotentialanschluss, der mit dem elektrisch leitfähigen Rohrleitungsabschnitt verbunden ist, sowie einen Einkopplungsanschluss. Mit diesem Einkopplungsanschluss der Messsignalquelle ist ein leitfähiges, das Kühlmittel kontaktierende Einkopplungs-Rohrelement verbunden, welches das Messsignal im Gleichtakt in die Zuleitung und die Rückleitung synchron einkoppelt.In this embodiment, too, the monitoring device has a low-impedance measurement signal source for generating a measurement signal with a measurement voltage. The measurement signal source includes a ground potential connection, which is connected to the electrically conductive pipeline section, and a coupling connection. A conductive coupling pipe element, which contacts the coolant, is connected to this coupling connection of the measurement signal source and synchronously couples the measurement signal into the supply line and the return line in common mode.
Diese Ausführungsform der Überwachungsvorrichtung weist im Gegensatz zu der im Anspruch 1 beschriebenen Überwachungsvorrichtung keine Strommessung auf, sondern umfasst stattdessen einen Spannungsmesser und ein leitfähiges, das Kühlmittel kontaktierende Spannungsmess-Rohrelement zur Messung einer Teilspannung auf dem elektrisch isolierten Rohrleitungsabschnitt auf.In contrast to the monitoring device described in claim 1, this embodiment of the monitoring device does not have a current measurement, but instead comprises a voltmeter and a conductive, coolant-contacting voltage measuring tube element for measuring a partial voltage on the electrically insulated pipeline section.
Ein erster Spannungsmesseingang des Spannungsmessers ist mit dem Einkopplungsanschluss der Messsignalquelle verbunden, ein zweiter Spannungsmesseingang des Spannungsmessers ist zur Erfassung der Teilspannung mit dem Spannungsmess-Rohrelement verbunden.A first voltage measurement input of the voltmeter is connected to the coupling connection of the measurement signal source, a second voltage measurement input of the voltmeter is connected to the voltage measurement tube element for detecting the partial voltage.
Das Einkopplungs-Rohrelement ist auf den elektrisch isolierten Rohrleitungsabschnitten so angeordnet, dass sich zwischen dem systemseitigen Ende der erdpotentialseitig angeordneten elektrisch leitfähigen Rohrleitungsabschnitte und dem Einkopplungs-Rohrelement eine bestimmte Ankopplungslänge auf den elektrisch isolierten Rohrleitungsabschnitten ergibt. Daran anschließend in Richtung des elektrischen Systems ist das Spannungsmess-Rohrelement auf den elektrisch isolierten Rohrleitungsabschnitten so angeordnet, dass sich zwischen dem Einkopplungs-Rohrelement und dem Spannungsmess-Rohrelement ein Abstand mit einer definierten Spannungsmesslänge einstellt. Zwischen dem Spannungsmessrohrelement und dem elektrischen System ergibt sich eine definierte Widerstandslänge auf den elektrisch isolierten Rohrleitungsabschnitten.The coupling pipe element is arranged on the electrically insulated pipe sections in such a way that there is a certain coupling length on the electrically insulated pipe sections between the system-side end of the electrically conductive pipe sections arranged on the ground potential side and the coupling pipe element. Then, in the direction of the electrical system, the voltage-measuring tube element is arranged on the electrically insulated pipeline sections in such a way that a distance with a defined voltage-measuring length is established between the coupling-in tube element and the voltage-measuring tube element. There is a defined resistance length on the electrically insulated pipe sections between the voltage measuring tube element and the electrical system.
Auch die Überwachungsvorrichtung in dieser Ausführungsform mit Spannungsmessung weist eine Recheneinheit auf, die zur Berechnung des Isolationswiderstands aus der Messspannung, dem Messsignal, einem eingespeisten Messstrom, der Teilspannung, der Ankopplungslänge, der Spannungsmesslänge und der Widerstandslänge ausgelegt ist.The monitoring device in this embodiment with voltage measurement also has a computing unit that is designed to calculate the insulation resistance from the measurement voltage, the measurement signal, an input measurement current, the partial voltage, the coupling length, the voltage measurement length and the resistance length.
Vorteilhaft ist die Verwendung der Überwachungsvorrichtung zur Überwachung des Isolationswiderstands für ein ungeerdetes Stromrichtersystem als elektrisches System, um insbesondere bei leistungsstarken Stromrichtersystemen dem Kühlbedarf gerecht zu werden.It is advantageous to use the monitoring device to monitor the insulation resistance for an ungrounded power converter system as an electrical system in order to meet the cooling requirements, particularly in the case of high-performance power converter systems.
Ausgehend von der Überwachungsvorrichtung mit Strommessung (Anspruch 1) und der Ausführung der Überwachungsvorrichtung mit Spannungsmessung (Anspruch 5) wird eine erweiterte Überwachungsvorrichtung zur Überwachung eines gemeinsamen Isolationswiderstands mehrerer von einem gemeinsamen Transformator gespeister, ungeerdeter elektrischer Subsysteme konzipiert.Based on the monitoring device with current measurement (claim 1) and the design of the monitoring device with voltage measurement (claim 5), an extended monitoring device for monitoring a common insulation resistance of several ungrounded electrical subsystems fed by a common transformer is designed.
Die jeweiligen elektrischen Subsysteme entsprechen dabei unter Einbeziehung des gemeinsamen Transformators dem oben genannten ungeerdeten elektrischen System, welches jeweils eine mit einem Kühlmittel geerdet betriebe Flüssigkeitskühlung mit einer Zuleitung und einer Rückleitung aufweist.The respective electrical subsystems, including the common transformer, correspond to the above-mentioned ungrounded electrical system, which in each case has a liquid cooling system that is grounded with a coolant and has a supply line and a return line.
Erfindungsgemäß sind in der erweiterten Überwachungsvorrichtung mindestens zwei der ungeerdeten elektrischen Subsysteme mit einer Überwachungsvorrichtung nach einem der Ansprüche 1 bis 6 ausgestattet.According to the invention, at least two of the unearthed electrical subsystems in the extended monitoring device are equipped with a monitoring device according to one of Claims 1 to 6.
Die erweiterte Überwachungsvorrichtung weist weiterhin eine Synchronisations-Steuereinrichtung zur synchronen Einkopplung der Messsignale in die jeweiligen zu überwachenden elektrischen Subsysteme auf.The expanded monitoring device also has a synchronization control device for synchronously coupling the measurement signals into the respective electrical subsystems to be monitored.
Damit ist ein zeitlich synchroner Messsignalverlauf der von den Messsignalquellen erzeugten und in das jeweilige Subsystem eingespeisten Messsignale gewährleistet.This ensures that the measurement signals generated by the measurement signal sources and fed into the respective subsystem are synchronous in time.
Mit Vorteil weist die Synchronisations-Steuereinrichtung eine Amplituden-Steuereinrichtung zur Steuerung der Messsignalamplituden der in den jeweiligen Überwachungsvorrichtungen erzeugten Messsignale auf.The synchronization control device advantageously has an amplitude control device for controlling the measurement signal amplitudes of the measurement signals generated in the respective monitoring devices.
Die Steuerung der Messsignalamplituden in den jeweiligen den elektrischen Subsystemen zugeordneten Überwachungsvorrichtungen ist nicht unbedingt erforderlich, kann aber bei sehr ungleicher geometrischer Aufteilung der Kühlmittelzuführung dazu genutzt werden, auftretende Ableitströme gegen Erde oder Verlagerungsspannungen gegen Erde für jedes elektrische Subsystem möglichst gleich einzustellen. Hierdurch wird eine ungleiche Strom- und Spannungsbelastung einzelner elektrischer Subsysteme vermieden, denn eine extreme Abweichung der Ableitströme in den einzelnen elektrischen Subsystemen kann dazu führen, dass ein zusätzlicher systematischer Messfehler dadurch entsteht, dass die jeweiligen Messsignalquellen und/oder Stromsensoren in einen ungünstigen Arbeitsbereich gelangen.The control of the measurement signal amplitudes in the respective monitoring devices assigned to the electrical subsystems is not absolutely necessary, but can be used in the case of very unequal geometric distribution of the coolant supply to adjust any leakage currents to earth or residual voltages to earth for each electrical subsystem as equally as possible. This avoids an unequal current and voltage load on individual electrical subsystems, because an extreme deviation in the leakage currents in the individual electrical subsystems can lead to an additional systematic measurement error due to the respective measurement signal sources and/or current sensors entering an unfavorable working range.
In vorteilhafter Weise kann mit der Amplituden-Steuereinrichtung die Messsignalamplitude für jedes zu überwachende elektrische Subsystem gesteuert werden, sodass die Gesamtbetriebsmesssicherheit des Isolationsüberwachungssystems weitgehend unabhängig von prozesstechnisch zu erwartenden Schwankungen von Parametern des Kühlmittelsystems (z.B. Schwankung der elektrolytischen Leitfähigkeit) und den zu erwartenden Unterschieden in der geometrischen Konstruktion des Kühlmittelkreislaufs (z.B. unterschiedliche Längen der Kühlmittelrohre) erhöht wird.Advantageously, the amplitude control device can be used to control the measurement signal amplitude for each electrical subsystem to be monitored, so that the overall operational measurement reliability of the insulation monitoring system is largely independent of expected process-related fluctuations in parameters of the coolant system (e.g. fluctuation in electrolytic conductivity) and the expected differences in the geometric design of the coolant circuit (e.g. different lengths of the coolant pipes).
Die Ausführungen der zuvor beschriebenen erfindungsgemäßen Überwachungsvorrichtungen beruhen auf der in den unabhängigen Verfahrensansprüchen 9, 11 und 13 beschriebenen technischen Lehren. Insoweit treffen auch die vorgenannten technischen Wirkungen und die daraus entstehenden Vorteile auf die in den Verfahrensansprüchen aufgeführten Merkmale zu.The embodiments of the monitoring devices according to the invention described above are based on the technical teachings described in the independent method claims 9 , 11 and 13 . In this respect, the aforementioned technical effects and the resulting advantages also apply to the features listed in the method claims.
Insbesondere können in vorteilhafter Weise systembedingt durch die Konstruktion der Kühlmittelzufuhr vorhandene Einkopplungsmöglichkeiten bei flüssigkeitsgekühlten Stromrichteranwendungen genutzt werden und dadurch eine messtechnische Optimierung durch Vermeidung eines parallel zu dem Isolationswiderstand liegenden Kühlmittelwiderstands gegen Erde erreicht werden.In particular, existing coupling options in liquid-cooled power converter applications due to the design of the coolant supply can be used in an advantageous manner, thereby optimizing measurement technology by avoiding a coolant resistance to ground that is parallel to the insulation resistance.
Mit Vorteil kann die in einem Isolationsüberwachungsgerät umgesetzte Leistung und dessen Spannungsbelastung auch bei Mittelspannungsanwendungen reduziert werden.Advantageously, the power converted in an insulation monitoring device and its voltage load can also be reduced in medium-voltage applications.
Weitere vorteilhafte Ausgestaltungmerkmale ergeben sich aus der nachfolgenden Beschreibung und den Zeichnungen, die bevorzugte Ausführungsformen der Erfindung anhand von Beispielen erläutern.Further advantageous design features result from the following description and the drawings, which explain preferred embodiments of the invention using examples.
Es zeigen:
- Fig. 1
- Ein ungeerdetes elektrisches System mit geerdet betriebener Flüssigkeitskühlung;
- Fig. 2
- von einem gemeinsamen Transformator gespeiste ungeerdete elektrische Subsysteme;
- Fig. 3
- eine erfindungsgemäße Überwachungsvorrichtung mit gemeinsamer Strommessung und einteiliger Messsignaleinkopplung;
- Fig. 4
- eine erfindungsgemäße Überwachungsvorrichtung mit einseitiger Strommessung und einteiliger Messsignaleinkopplung;
- Fig. 5
- eine erfindungsgemäße Überwachungsvorrichtung mit gemeinsamer Strommessung und zweiteiliger Messsignaleinkopplung;
- Fig. 6
- ein Ersatzschaltbild zur Bestimmung des Isolationswiderstands nach
Fig. 3 ; - Fig. 7
- eine erfindungsgemäße Überwachungsvorrichtung mit Spannungsmessung;
- Fig. 8
- ein Ersatzschaltbild zur Bestimmung des Isolationswiderstands nach
Fig. 7 ; - Fig. 9
- eine erfindungsgemäße erweiterte Überwachungsvorrichtung mit Strommessung;
- Fig. 10
- ein Ersatzschaltbild zur Bestimmung des Isolationswiderstands nach
Fig. 9 ; - Fig. 11
- eine erweiterte Überwachungsvorrichtung mit Spannungsmessung;
- Fig. 12
- ein Ersatzschaltbild zur Bestimmung des Isolationswiderstands nach
Fig. 11 .
- 1
- An ungrounded electrical system with grounded powered liquid cooling;
- 2
- unearthed electrical subsystems fed from a common transformer;
- 3
- a monitoring device according to the invention with common current measurement and one-piece measurement signal coupling;
- 4
- a monitoring device according to the invention with one-sided current measurement and one-piece measurement signal coupling;
- figure 5
- a monitoring device according to the invention with common current measurement and two-part measurement signal coupling;
- 6
- an equivalent circuit diagram for determining the
insulation resistance 3 ; - 7
- a monitoring device according to the invention with voltage measurement;
- 8
- an equivalent circuit diagram for determining the
insulation resistance 7 ; - 9
- an extended monitoring device with current measurement according to the invention;
- 10
- an equivalent circuit diagram for determining the insulation resistance
9 ; - 11
- an advanced monitoring device with voltage measurement;
- 12
- an equivalent circuit diagram for determining the insulation resistance
11 .
An einen Kühlmittelantrieb 4 (erdpotentialseitig) ist mit dem Erdpotential PE verbunden für die Zuleitung 6 und die Rückleitung 8 des Kühlmittels 3 jeweils ein elektrisch leitfähiger Rohrleitungabschnitt 10 angeordnet, an den sich (systemseitig) ein elektrisch isolierter Rohrleitungsabschnitt 12 anschließt, der an dem ungeerdeten elektrischen System 2 mündet.An electrically
Um den Isolationswiderstand Rf des elektrischen Systems 2 zwischen einem oder mehreren aktiven Leitern gegen Erde PE zu bestimmen, ist dem Stand der Technik gemäß ein Isolationsüberwachungsgerät 14 zwischen das ungeerdete elektrische System 2 und Erde PE geschaltet.In order to determine the insulation resistance Rf of the
In Folge der elektrolytischen Leitfähigkeit des Kühlmittels 3 ist das elektrische System 2 nicht vollständig gegen Erde PE elektrisch isoliert. Es besteht somit gegen Erde PE eine elektrisch leitfähige Verbindung, die hier durch den Kühlmittelwiderstand RK als konzentriertes Element modelliert ist. Dieser Kühlmittelwiderstand RK liegt parallel zu dem zu ermittelnden Isolationswiderstand Rf und beeinflusst die Messung des Isolationswiderstandes erheblich.As a result of the electrolytic conductivity of the
An dem elektrisch isolierten Rohrleitungsabschnitt 12 mit der Rohrleitungslänge li ist erdpotentialseitig ein Ankoppelstrom-Messsensor 40 angeordnet, dessen Ankoppelstrom-Messstromwandler gemeinsam die Zuleitung 6 und die Rückleitung 8 umschließt. Der Ankoppelstrom-Messsensor 40 erfasst einen Ankoppelstrom IAK, welcher in dem durch den elektrisch isolierten Rohrleitungsabschnitt 12 strömenden Kühlmittel 3 fließt.A coupling
In Richtung des elektrischen Systems 2 dem Ankoppelstrom-Messsensor 40 nachgeschaltet ist ein Fehlerstrom-Messsensor 42, der ebenfalls die Zuleitung 6 und die Rückleitung 8 gemeinsam umschließt und der einen Fehlerstrom IRi erfasst, welcher sich - in der Darstellung "oberhalb" der Messsignaleinkopplung - in dem durch den elektrisch isolierten Rohrleitungsabschnitt 12 strömenden Kühlmittel 3 einstellt.Downstream from the coupling
Zwischen dem Ankoppelstrom-Messsensor 40 und dem Fehlerstrom-Messsensor 42 ist im Abstand einer Ankopplungslänge lAK - gemessen von dem (systemseitigen Ende des) elektrisch leitfähigen Rohrleitungabschnitts 10 - ein einteiliges Einkopplungs-Rohrelement 50 in dem elektrisch isolierten Rohrleitungsabschnitt 12 angebracht. Von dem Einkopplungs-Rohrelement 50 bis zum Anschluss des elektrisch isolierten Rohrleitungsabschnitts 12 an das elektrische System 2 verbleibt eine Widerstandslänge lRi, die zusammen mit der Ankopplungslänge lAK die Rohrleitungslänge li des elektrisch isolierten Rohrleitungsabschnitts 12 ergibt.Between the coupling
Zur Einspeisung eines Messsignals (Messspannung Um) ist das einteilige Einkopplungs-Rohrelement 50 mit einer Messspannungsquelle 30 über einen Einkopplungsanschluss 32 verbunden. Ein Erdpotentialanschluss 31 der Messsignalquelle 30 liegt auf Erdpotential PE, beispielsweise verbunden mit dem elektrisch leitfähigen Rohrleitungsabschnitt 10.In order to feed in a measurement signal (measurement voltage U m ), the one-piece
Zur Berechnung des Isolationswiderstands Rf weist die Überwachungsvorrichtung 100 eine Recheneinheit 60 auf, die die Ausgangssignale des Ankoppelstrom-Messsensors 40, des Fehlerstrom-Messsensors 42 und der Messsignalquelle 30 auswertet.In order to calculate the insulation resistance Rf, the
Im Unterschied zu der in
Die Überwachungsvorrichtung 101 weist in gleicher Weise wie die in
Die Strommessung erfolgt wie bei der in
Das Einkopplungs-Rohrelement 50 ist jedoch zweiteilig in ein Zuleitungs-Einkopplungs-Rohrelement 52 und ein Rückleitungs-Einkopplungs-Rohrelement 54 geteilt. Das Zuleitungs-Einkopplungs-Rohrelement 52 und das Rückleitungs-Einkopplungs-Rohrelement 54 sind jeweils mit einer Messsignalquelle 30 verbunden, wobei die jeweiligen Messsignale einseitig jeweils in die Zuleitung 6 und die Rückleitung 8 synchron im Gleichtakt eingekoppelt werden.However, the
Würde die Einkopplung des Messsignals nicht synchron im Gleichtakt gegen Erde in die Zuleitung 6 und die Rückleitung 8 erfolgen, beispielsweise nur in die Zuleitung 6, so würden elektrische Ableitströme über die Kühlmittelrückleitung wieder als elektrischer Widerstand parallel zu dem bestimmenden Isolationswiderstand Rf liegen. Das zugrundeliegende Problem wäre damit nicht gelöst.If the measurement signal were not coupled synchronously in common mode to ground in the
In
Der in
Erfindungsgemäß werden damit Schwankungen der elektrolytischen Leitfähigkeit des Kühlmittels 3 über die Änderung des Innenwiderstands Ri erkannt und können bei der Bestimmung des Isolationswiderstands Rf berücksichtigt werden. Ein systematischer Messfehler wird dadurch vermieden.According to the invention, fluctuations in the electrolytic conductivity of the
Zu bemerken ist, dass in dem elektrischen Ersatzschaltbild das in der Zuleitung 6 und der Rückleitung 8 strömende Kühlmittel 3 in seiner elektrischen Wirkung als ein (einziger) Widerstand Ri bzw. ein (einziger) Ankoppelwiderstand RK dargestellt ist.It should be noted that in the electrical equivalent circuit diagram, the
Ausgehend von dem elektrischen Ersatzschaltbild lässt sich mit der Stromteilerregel der Isolationswiderstand Rf wie folgt bestimmen
In dieser Ausführung wird die in den vorgenannten Ausführungen beschriebene Strommessung durch eine Spannungsmessung mit einem Spannungsmesser 70 ersetzt.In this embodiment, the current measurement described in the above embodiments is replaced by a voltage measurement using a
Die Einkopplung des Messsignales erfolgt wie in den vorgenannten Ausführungen mit einer niederohmigen Messsignalquelle 30, an die im Abstand einer Ankopplungslänge lAK1 - gemessen von dem systemseitigen Ende des elektrisch leitfähigen Rohrleitungabschnitts 10 - ein auf dem elektrisch isolierten Rohrleitungsabschnitt 12 angeordnetes Einkopplungs-Rohrelement 50 angeschlossen ist.The measurement signal is coupled in, as in the above-mentioned embodiments, with a low-impedance
Der Spannungsmesser 70 ist zur Messung einer Teilspannung Ui mit einem ersten Spannungsmesseingang 72 mit dem Einkopplungsanschluss 32 der Messspannungsquelle 30 verbunden und weist einen zweiten Spannungsmesseingang 74 auf, der mit einem leitfähigen das Kühlmittel 3 kontaktierenden Spannungsmess-Rohrelement 76 verbunden ist.To measure a partial voltage Ui,
Das Spannungsmess-Rohrelement 76 ist in dem Abstand einer Spannungslänge lAK2 in Richtung des elektrischen Systems 2 dem Einkopplungs-Rohrelement 50 nachgeordnet angebracht. Ausgehend von dem Spannungsmess-Rohrelement 76 verbleibt in Richtung des elektrischen Systems 2 eine Widerstandslänge lRi, die zusammen mit der Ankopplungslänge lAK1 und der Spannungslänge lAK2 die Rohrleitungslänge li des elektrisch isolierten Rohrleitungsabschnitts 12 ergibt.The voltage-measuring
Die Recheneinheit 60 (nicht dargestellt) ermittelt aus den erfassten Größen den Isolationswiderstand Rf.The arithmetic unit 60 (not shown) determines the insulation resistance R f from the detected values.
Das in
Da keine Stromerfassung erfolgt, sind der Fehlerstrom IRi und der Ankoppelstrom IAK zunächst nicht bekannt. In Abänderung der zu
Jedem der zu überwachenden Subsysteme 16 ist eine erfindungsgemäße Überwachungseinrichtung 102 nach
Die erweiterte Überwachungsvorrichtung 110 weist eine Synchronisations-Steuereinrichtung 80 auf, die eine synchrone Einkopplung der Messsignale in die jeweiligen zu überwachenden elektrischen Subsysteme 16 ermöglicht.The expanded
Zusätzlich ist in die Synchronisations-Steuereinrichtung 80 eine Amplituden-Steuereinrichtung 82 integriert, die die Messsignalamplituden der in den jeweiligen Überwachungseinrichtungen 102 erzeugten Messsignale steuert.In addition, an amplitude control device 82 is integrated into the synchronization control device 80 and controls the measurement signal amplitudes of the measurement signals generated in the
Zudem kann die in den einzelnen Überwachungsvorrichtungen 102 angeordnete Recheneinheit durch eine gemeinsame übergeordnete Recheneinheit 61 ersetzt werden.In addition, the processing unit arranged in the
Da sich die erweiterte Überwachungsvorrichtung 110 für eine Anwendung von n (n≥2) elektrischen Subsystemen eignet, ist das Ersatzschaltbild allgemein für n elektrische Subsysteme gültig.Since the
Das Ersatzschaltbild zeigt zusätzlich eine Funktionsgruppe bestehend aus der Synchronisations-Steuereinrichtung 80 und der Amplituden-Steuereinrichtung 82, die mit den jeweiligen Messsignalquellen 30 verbunden sind.The equivalent circuit diagram also shows a functional group consisting of the synchronization control device 80 and the amplitude control device 82, which are connected to the respective measurement signal sources 30.
Basierend auf der Gleichung zu dem Ersatzschaltbild in
Die Einzelisolationswiderstandswerte Rfi in oben stehender Formel bestimmen sich analog der Gleichung zu
Die erweiterte Überwachungsvorrichtung 111 weist eine Synchronisations-Steuereinrichtung 80, eine gemeinsame Recheneinheit 61 sowie optional eine Amplituden-Steuereinheit 82 auf.The expanded
Auch in dieser Ausführung müssen die Messspannungsquellen Um der einzelnen elektrischen Subsysteme 16 synchron zueinander laufen, um zu vermeiden, dass sich die Messsignale gegenseitig stören. So ist es beispielsweise in einem Extremfall denkbar, dass sich der von einer Messsignalquelle 30 eingeprägte Messstrom Im mit dem von einer anderen Messsignalquelle 30 eingeprägten Messstrom aufhebt. Eine messtechnisch optimale Arbeitsweise wird erwartet, wenn die Messsignalamplituden so eingestellt werden, dass der Strom durch den Isolationswiderstand Rf etwa gleich verteilt auf alle Messzweige fließt. Die Isolationswiderstandsberechnung erfolgt pro Einzelzweig basierend auf den bekannten Längenverhältnissen der Kühlmittelzuführung, den bekannten Messspannungsamplituden Um, dem pro Messzweig gemessenen Werten für Ui und dem jeweils eingespeisten Messstrom Im. Der Gesamtisolationswert wird dann aus der Summe der n Einzelwerte geteilt durch n gebildet.In this embodiment too, the measurement voltage sources U m of the individual
Claims (14)
- A monitoring device (100, 101, 102) for monitoring an insulation resistance (Rf) for an ungrounded electric system (2) which comprises a liquid cooling which is operated to ground using a refrigerant (3) and has a supply line (6) and a return line (8), the supply line (6) and the return line (8) each being realized as a tube section (10) which is connected to a ground potential (PE) and is electrically conductive and to which an electrically insulated tube section (12) is connected which has a tube length (li) and is connected to the electric system (2),
characterized byone or two low-impedance measuring signal sources (30) each configured for generating a measuring signal having a measuring voltage (Um), each comprising a ground-potential connection (31) connected to the electrically conductive tube section (10), and each comprising a coupling connection (32),a coupling-current measuring sensor (40) for measuring a coupling current (IAK) which flows in the refrigerant (3) flowing through the electrically insulated tube section (12),a fault-current measuring sensor (42) which is switched downstream of the coupling-current measuring sensor (40) in the direction of the electric system (2) and is configured for measuring a fault current (IRi) which flows in the refrigerant (3) flowing through the electrically insulated tube section (12),a conductive coupling tube element (50) which contacts the refrigerant (3) and is electrically connected to the coupling connection (32) of the measuring signal source (30) for coupling the measuring signal, the coupling tube element (50) being disposed in such a manner on the electrically insulated tube section (12) between the coupling-current measuring sensor (40) and the fault-current measuring sensor (42) that the tube length (li) of the electrically insulated tube section (12) is divided into a coupling length (IAK) extending between the electrically conductive tube section (10) and the coupling tube element (50) and a resistance length (lRi) extending from the coupling tube element (50) to the electric system (2),a computing unit (60) which is configured for computing the insulation resistance (Rf) from the measuring voltage (Um), the detected coupling current (IAK), the detected fault current (IRi), the coupling length (IAK) and the resistance length (lRi). - The monitoring device (100, 102) according to claim 1, characterized in thatthe fault-current measuring sensor (42) comprises a fault-current measuring current transformer which encircles both the supply line (6) and the return line (8), andthe coupling-current measuring sensor (40) comprises a coupling-current measuring current transformer which encircles both the supply line (6) and the return line (8), andthe coupling tube element (50) is realized in one part and is connected to the measuring signal source (30) and the measuring signal is synchronously coupled both into the supply line (6) and the return line (8) in common mode, orthe coupling tube element (50) is divided into two parts in a supply-line coupling tube element (52) and a return-line coupling tube element (54) which are each connected to one of the measuring signal sources (30) and synchronously couple the corresponding measuring signals into the supply line (6) or the return line (8) on one side in common mode.
- The monitoring device (101) according to claim 1,
characterized in thatthe fault-current measuring sensor (42) comprises a fault-current measuring current transformer andthe coupling-current measuring sensor (40) comprises a coupling-current measuring current transformer,the fault-current measuring current transformer and the coupling-current measuring current transformer both encircle the supply line (6) on one side and the return line (8) on one side, andthe coupling tube element (50) is realized in one part and is connected to the measuring signal source (30) and the measuring signal is synchronously coupled together into the supply line (6) and the return line (8) in common mode, orthe coupling tube element (50) is divided into two parts in a supply-line coupling tube element (52) and a return-line coupling tube element (54) which are each connected to one of the measuring signal sources (30) and synchronously couple the corresponding measuring signals into the supply line (6) or the return line (8) on one side in common mode. - The monitoring device according to any one of the claims 1 to 3, characterized by
a use for monitoring the insulation resistance (Rf) for an ungrounded power converter system. - A monitoring device (103) for monitoring an insulation resistance (Rf) for an ungrounded electric system (2) which comprises a liquid cooling which is operated to ground using a refrigerant (3) and comprises a supply line (6) and a return line (8), the supply line (6) and the return line (8) each being realized as an electrically conductive tube section (10) which is connected to a ground potential (PE) and to which an electrically insulated tube section (12) is connected which has a tube length (li) and is connected to the electric system (2),
characterized bya low-impedance measuring signal source (30) configured for generating a measuring signal having a measuring voltage (Um), the measuring signal source (30) comprising a ground-potential connection (31) connected to the electrically conductive tube section (10) and comprising a coupling connection (32),a voltage meter (70) for measuring a partial voltage (Ui), the voltage meter (70) comprising a first voltage-meter input (72) connected to the coupling connection (32) of the measuring signal source (30), and the voltage meter comprising a second voltage-meter input (74),a conductive coupling tube element (50) which contacts the refrigerant (3) and is electrically connected to the coupling connection (32) of the measuring signal source (30) for synchronously coupling the measuring signal into the supply line (6) and the return line (8) in common mode,a conductive voltage-meter tube element (76) which contacts the refrigerant (3) and is connected to the second voltage-meter input (74) of the voltage meter (70),the coupling tube element (50) being disposed in such a manner on the electrically insulated tube section (12) that a coupling length (lAK1) is yielded between the system-sided end of the electrically conductive tube section (10) and the coupling tube element (50), and the voltage-meter tube element (76) being disposed in such a manner adjacent to the electrically insulated tube section (12) that a voltage-meter length (lAK2) is yielded between the coupling tube element (50) and the voltage-meter tube element (76) and a resistance length (lRi) is yielded between the voltage-meter tube element and the electric system,a computing unit which is configured for computing the insulation resistance from the measuring voltage (Um) of the measuring signal, a supplied measuring current (Im), the partial voltage (Ui), the coupling length (lAK1), the voltage-meter length (lAK2) and the resistance length (lRi). - The monitoring device according to claim 5,
characterized by
a use for monitoring the insulation resistance (Rf) for an ungrounded power converter system. - An enhanced monitoring device (110) for monitoring a shared insulation resistance (Rf) of several ungrounded electric subsystems (16) which are fed by a shared transformer (15) and each comprise a liquid cooling operated to ground using a refrigerant (3) and comprising a supply line (6) and a return line (8), the supply line (6) and the return line (8) each being realized as an electrically conductive tube section (10) which is connected to a ground potential (PE) and to which an electrically insulated tube section (12) is connected which has a tube length (li) is and connected to the corresponding electric subsystem (16),
characterized in thatat least two of the electric subsystems (16) are equipped with a monitoring device (100, 101, 102, 103) according to any one of the claims 1 to 6, anda synchronization control device (80) for synchronously coupling the measuring signals into the electric subsystems (16) to be monitored is installed. - The enhanced monitoring device (110) according to claim 7, characterized in that
the synchronization control device (80) comprises an amplitude control device (82) for controlling the measuring-signal amplitudes of the measuring signals generated in the corresponding monitoring devices (100, 101, 102, 103). - A method for monitoring an insulation resistance (Rf) for an ungrounded electrical system (2) which comprises a liquid cooling which is operated to ground using a refrigerant (3) and comprises a supply line (6) and a return line (8), the supply line (6) and the return line (8) each being realized as an electrically conductive tube section (10) which is connected to a ground potential (PE) and to which an electrically insulated tube section (12) is connected which is connected to the electric system (2) and has a tube length (li), the method comprising the steps:generating a measuring signal having a measuring voltage (Um) using a low-impedance measuring signal source (30),synchronously coupling the measuring voltage (Um) in common mode into the supply line (6) and the return line (8) having a conductive coupling tube element (50) contacted with the refrigerant (3),measuring a coupling current (IAK) which flows in the refrigerant (3), which flows through the electrically insulated tube section (12), using a coupling-current measuring sensor (40), measuring a fault current (IRi) which flows in the refrigerant (3), which flows through the electrically insulated tube section (12), using a fault-current measuring sensor (42) switched downstream of the coupling-current measuring sensor (40) in the direction of the electric system (2),the coupling tube element (50) being disposed in such a manner on the electrically insulated tube section (12) between the coupling-current measuring sensor (40) and the fault-current measuring sensor (42) that the tube length (li) of the electrically insulated tube section (12) is divided into a coupling length (IAK) extending between the electrically conductive tube section (10) and the coupling tube element (50) and a resistance length (lRi) extending from the coupling tube element (50) to the electric system (2), computing the insulation resistance (Rf) from the measuring voltage (Um) of the measuring signal, the detected coupling current (IAK), the detected fault current (IRi), the coupling length (IAK) and the resistance length (lRi) using a computing unit (60).
- The monitoring method according to claim 9,
characterized by
a use for monitoring the insulation resistance (Rf) for an ungrounded power converter system. - A method for monitoring an insulation resistance (Rf) for an ungrounded electric system (2) which comprises a liquid cooling which is operated to ground using a refrigerant (3) and comprises a supply line (6) and a return line (8), the supply line (6) and the return line (8) each being realized as an electrically conductive tube section (10) which is connected to a ground potential (PE) and to which an electrically insulated tube section (12) is connected which is connected to the electric system (2) and has a tube length (li), the method comprising the steps:generating a measuring signal having a measuring voltage (Um) via a measuring signal source (30) which comprises a ground-potential connection (31), which is connected to the electrically conductive tube section (10), and a coupling connection (32),synchronously coupling the measuring voltage (Um) in common mode into the supply line (6) and the return line (8) having a conductive coupling tube element (50) which is contacted with the refrigerant (3) and is electrically connected to the coupling connection (32) of the measuring signal source (30),measuring a partial voltage (Ui) using a voltage meter (70) which comprises a first voltage-meter input (72) connected to the coupling connection (32) of the measuring signal source (30) and a second voltage-meter input (74) connected to a conductive voltage-meter tube element (76) contacted with the refrigerant (3),the coupling tube element (50) being disposed in such a manner on the electrically insulated tube section (12) that a coupling length (lAK1) is yielded between the electrically conductive tube section (10) and the coupling tube element (50), and the voltage-meter tube element (76) is adjacently disposed in such a manner on the electrically insulated tube section (12) that a voltage-meter length (lAK2) is yielded between the coupling tube element (50) and the voltage-meter tube element (76) and a resistance length (lRi) is yielded between the voltage-meter tube element (76) and the electric system (2),computing the insulation resistance (Rf) from the measuring voltage (Um) of the measuring signal, a supplied measuring current (Im), the partial voltage (Ui), the coupling length (lAK1), the voltage-meter length (lAK2) and the resistance length (lRi).
- The monitoring method according to claim 11,
characterized by
a use for monitoring the insulation resistance (Rf) for an ungrounded power converter system. - An enhanced method for monitoring a shared insulation resistance of several ungrounded electric subsystems (16) which are fed by a shared transformer (15) and each comprise a liquid cooling which is operated to ground using a refrigerant (3) and comprises a supply line (6) and a return line (8), the supply line (6) and the return line (8) each being realized as an electrically conductive tube section (10) which is connected to a ground potential (PE) and to which an electrically insulated tube section (12) is connected which is connected to the corresponding electric subsystem (16) and has a tube length (li),
characterized in that
at least two of the ungrounded electric subsystems (16) are monitored using a method for monitoring an insulation resistance according to any one of the claims 9 to 12 and the measuring signals are synchronously coupled into the electric subsystems (16) to be monitored by means of a synchronization control device (18). - The enhanced monitoring method according to claim 13, characterized in that
the measuring-signal amplitudes of the measuring signals are controlled by means of an amplitude control device (82).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020104956.0A DE102020104956B3 (en) | 2020-02-26 | 2020-02-26 | Monitoring device and method as well as an extended monitoring device and extended method for the insulation monitoring of an ungrounded electrical system with an earthed operated liquid cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3872503A1 EP3872503A1 (en) | 2021-09-01 |
EP3872503B1 true EP3872503B1 (en) | 2022-10-19 |
Family
ID=74666618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21157668.1A Active EP3872503B1 (en) | 2020-02-26 | 2021-02-17 | Monitoring device and method for monitoring the insulation of an unshielded electrical system with grounded liquid cooling |
Country Status (4)
Country | Link |
---|---|
US (1) | US11353492B2 (en) |
EP (1) | EP3872503B1 (en) |
CN (1) | CN113311231B (en) |
DE (1) | DE102020104956B3 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018121979A1 (en) * | 2018-09-10 | 2020-03-12 | Bender Gmbh & Co. Kg | Insulation monitoring method for an inverter-fed power supply system |
CN112444706A (en) * | 2019-08-28 | 2021-03-05 | 台达电子企业管理(上海)有限公司 | Insulation monitoring device applied to power system and power system |
DE102023119910B3 (en) | 2023-07-27 | 2024-10-02 | Bender Gmbh & Co. Kg | Method and device for insulation monitoring of a hydrogen electrolysis plant |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07111367B2 (en) * | 1991-02-26 | 1995-11-29 | ディーエクスエル・インターナショナル・インコーポレーテッド | Flow rate sensor and its inspection method |
US6265883B1 (en) * | 1997-03-01 | 2001-07-24 | Lloyd Douglas Clark | Apparatus and method for combining measurement of electrical properties and depth of a fluid |
FR2806799B1 (en) * | 2000-03-22 | 2002-06-21 | Schlumberger Services Petrol | DEVICES FOR CHARACTERIZING A CONTINUOUSLY CONDUCTIVE POLYPHASE FLUID |
US7183778B2 (en) * | 2005-07-19 | 2007-02-27 | Schlumberger Technology Corporation | Apparatus and method to measure fluid resistivity |
US20090037142A1 (en) * | 2007-07-30 | 2009-02-05 | Lawrence Kates | Portable method and apparatus for monitoring refrigerant-cycle systems |
JP2009093822A (en) * | 2007-10-04 | 2009-04-30 | Toyota Industries Corp | Leakage detection device of fuel cell system |
JP5363126B2 (en) * | 2009-01-19 | 2013-12-11 | 中部電力株式会社 | Method for measuring insulation resistance of electrical equipment and insulation resistance measuring device for electrical equipment |
JP2013250038A (en) * | 2012-06-04 | 2013-12-12 | Daikin Industries Ltd | Refrigeration device management system |
GB201319099D0 (en) * | 2013-10-29 | 2013-12-11 | Wellstream Int Ltd | Detection apparatus and method |
DE102013225946B4 (en) * | 2013-12-13 | 2024-01-25 | Bender Gmbh & Co. Kg | Device and method for insulation monitoring in a power supply system with a high-resistance grounded star point |
DE102014204038A1 (en) * | 2014-03-05 | 2015-09-10 | Bender Gmbh & Co. Kg | Methods and devices for selective isolation monitoring in ungrounded IT power systems |
DE102016009346A1 (en) * | 2016-08-02 | 2017-02-09 | Daimler Ag | Coolant circuit coupling to a circuit arrangement with fuel cell stack and high-voltage battery for a motor vehicle |
-
2020
- 2020-02-26 DE DE102020104956.0A patent/DE102020104956B3/en not_active Expired - Fee Related
-
2021
- 2021-02-17 EP EP21157668.1A patent/EP3872503B1/en active Active
- 2021-02-24 US US17/183,445 patent/US11353492B2/en active Active
- 2021-02-26 CN CN202110217648.4A patent/CN113311231B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113311231A (en) | 2021-08-27 |
CN113311231B (en) | 2023-01-06 |
US20210263093A1 (en) | 2021-08-26 |
US11353492B2 (en) | 2022-06-07 |
DE102020104956B3 (en) | 2021-05-06 |
EP3872503A1 (en) | 2021-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3872503B1 (en) | Monitoring device and method for monitoring the insulation of an unshielded electrical system with grounded liquid cooling | |
EP3524985B1 (en) | Apparatus and method for insulation monitoring with detection of defective outer conductor in an unearthed 3-phase power supply system | |
DE60216808T2 (en) | DETERMINE ELECTRICAL ERRORS IN UNDERGROUND POWER SUPPLY SYSTEMS WITH A THRESHOLD ELEMENT | |
EP3598151B1 (en) | Method and device for determining the distribution of a total isolation resistance and the distribution of a total power line capacity in an unearthed power system | |
EP3046197B1 (en) | Method and device for detecting the earth fault direction in a three phase alternating electric current network | |
EP2758789B1 (en) | Device for measuring a battery current | |
DE102017209663B3 (en) | Method for insulation fault location and insulation fault location device for an ungrounded power supply system | |
EP2476002A1 (en) | Fault detection in energy supply networks having an unearthed or resonant-earthed star point | |
EP3157113A1 (en) | Insulation fault protection in an ungrounded power network | |
WO2014057017A1 (en) | Line network, in particular an on-board dc electrical system for a motor vehicle, and method for monitoring a line network for the occurrence of an arc | |
EP2392934A1 (en) | Method and device for surveillance of a sheath voltage arrester of a cable system | |
DE102013212821A1 (en) | Method and device for the internal resistance-dependent adjustment of a load current | |
DE102013107968A1 (en) | Online monitoring system for use in electrical installations and method of operation thereof | |
DE102010036847B4 (en) | Method and device for external current detection | |
DE102013018294B4 (en) | Device and method for recording the electrical energy of single or multi-phase electrical consumers | |
DE112015005677T5 (en) | Ground fault detection device for a vehicle | |
DE102020114018A1 (en) | Method and device for determining the direction to an earth fault | |
DE10355086B4 (en) | Method for determining the ohmic insulation resistance of a grounded AC network | |
EP2450715A1 (en) | Device and method for determining the earth resistance of a direct current system | |
DE2333930C3 (en) | Mains protection device for fault detection for a three-phase network | |
EP3943954B1 (en) | Circuit arrangement for locating insulation faults | |
AT405768B (en) | METHOD AND DEVICE FOR MEASURING THE LOOP RESISTANCE IN CIRCUIT-PROTECTED NETS | |
DE19959793B4 (en) | Differential protection method | |
DE19959776B4 (en) | Differential protection method | |
EP0990164B1 (en) | Method and device for monitoring a cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211202 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01R 31/52 20200101ALI20220331BHEP Ipc: G01R 31/50 20200101ALI20220331BHEP Ipc: G01R 31/08 20200101ALI20220331BHEP Ipc: G01R 27/18 20060101ALI20220331BHEP Ipc: G01R 27/22 20060101AFI20220331BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220510 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502021000196 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1525873 Country of ref document: AT Kind code of ref document: T Effective date: 20221115 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20221019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230220 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230119 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230219 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230120 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502021000196 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 |
|
26N | No opposition filed |
Effective date: 20230720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240216 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221019 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240222 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |