EP3872193A1 - Verfahren zur herstellung eines warmgewalzten stahlflachprodukts und stahlflachprodukt - Google Patents

Verfahren zur herstellung eines warmgewalzten stahlflachprodukts und stahlflachprodukt Download PDF

Info

Publication number
EP3872193A1
EP3872193A1 EP21159610.1A EP21159610A EP3872193A1 EP 3872193 A1 EP3872193 A1 EP 3872193A1 EP 21159610 A EP21159610 A EP 21159610A EP 3872193 A1 EP3872193 A1 EP 3872193A1
Authority
EP
European Patent Office
Prior art keywords
temperature
hot
martensite
flat steel
steel product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21159610.1A
Other languages
English (en)
French (fr)
Inventor
Frank Dr. Hisker
Sarah Abraham
Roland Dr. Sebald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3872193A1 publication Critical patent/EP3872193A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • C21D8/0415Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel

Definitions

  • the invention relates to a method for producing a hot-rolled flat steel product with a structure whose main components are tempered or freshly formed martensite and ferrite, the remainder of the structure being filled with retained austenite, bainite and / or cementite.
  • the invention also relates to a flat steel product with a corresponding structure, the flat steel product being able to be produced in particular by the method according to the invention.
  • the image analysis for the quantitative determination of the structure is carried out optically by means of light microscopy ("LOM”) with a resolution of 1000 times and with a field emission scanning electron microscope (“FE-SEM”) with a resolution of 20,000 times.
  • LOM light microscopy
  • FE-SEM field emission scanning electron microscope
  • Elongation properties such as tensile strength Rm, uniform elongation Ag, elongation at break A50 of flat steel products were determined in tensile tests according to DIN-EN 6892-1 Specimen shape 1 determined transversely to the rolling direction (WR), unless otherwise noted.
  • the elongation at break A80 was calculated in accordance with DIN EN 2566-1 (Sept 1999 section 9.3).
  • the hole expansion behavior or the achievable hole expansion HER of the flat steel products were determined on 100 * 100 samples in accordance with ISO 16630.
  • edge crack tendency is usually characterized by the hole expansion HER determined in accordance with ISO 16630.
  • High values of the hole expansion HER stand for a lower tendency to edge cracking:
  • a high yield point Re is required is associated with a high yield strength ratio Re / Rm formed from the yield strength Re and the tensile strength Rm.
  • a hot-rolled flat steel product which, in% by mass, consists of C: 0.10-0.60%, Si: 0.4-2.0%, Al: up to 2.0%, Mn: 0.4 - 2.5%, Ni: up to 1%, Cu: up to 2.0%, Mo: up to 0.4%, Cr: up to 2%, Ti: up to 0.2%, Nb: up to to 0.2%, V: up to 0.5% and the remainder of iron and is composed of unavoidable impurities.
  • the structure of the flat steel product consists of optionally available proportions of up to 5 vol .-% ferrite and up to 10 vol .-% martensite to at least 60 vol .-% of bainite and the remainder of retained austenite, with at least part of the retained austenite in blocky shape and the blocks of the retained austenite present in blocky form have a mean diameter of at least 98% of less than 5 ⁇ m.
  • Such a flat steel product can be produced by producing a pre-product in the form of a slab, thin slab or a cast strip from a melt composed in the specified manner, which is then hot-rolled into a hot strip in one or more rolling passes, the hot strip obtained at Leaving the last rolling pass has a hot rolling end temperature of at least 880 ° C.
  • the hot-rolled flat steel product obtained in this way is accelerated and cooled at a cooling rate of at least 5 ° C./s to a coiling temperature which is between the martensite start temperature MS and 600 ° C., and at this temperature it is wound into a coil.
  • the flat steel product is then cooled in the coil, with the temperature of the coil being kept in a temperature range during the cooling for the formation of bainite, the upper limit of which is equal to the bainite start temperature BS, from which bainite is formed in the structure of the hot strip, and the lower limit of which is equal to the martensite start temperature MS from which martensite is formed in the structure of the hot strip until at least 60% by volume of the structure of the hot strip consists of bainite.
  • a hot-rolled flat steel product produced in this way regularly has tensile strengths Rm of more than 1000 MPa, in particular at least 1200 MPa, with elongations A80 which are also regularly above 17%, in particular above 19%. Accordingly, the quality Rm * A80 of the known flat steel products is regularly in the range of 18,000 - 30,000 MPa *%.
  • a method for producing a cold-rolled flat steel product whose structure consists of, in vol .-%, at least 10% hardened martensite, less than 10% bainite, less than 10% retained austenite and the remainder ferrite and which has a yield strength ratio Re / Rm of at least 0.7 with a tensile strength Rm of more than 750 MPa and a hole elongation HER of at least 18%.
  • the steel substrate of this cold-rolled flat steel product consists of iron, unavoidable impurities and, in% by mass, 0.05 - 0.20% C, 0.25 - 1.00% Si, 1.0 - 3.0% Mn, 0, 02 - 1.5% Al, 0.1 - 1.5% Cr, less than 0.02% N, less than 0.03% P, less than 0.05% S and optionally one or more elements from the group "Ti, Mo, Nb, V, B", with the proviso that the Ti content up to 0.15%, the Mo content less than 2%, the Nb content less than 0.1%, the V -Content less than 0.12% and the B-content is 0.0005-0.003%.
  • the cold-rolled flat steel product assembled in this way is subjected to an additional heat treatment in which it is kept for an annealing time of 4.5 - 24 hours at an annealing temperature of up to 150 - 400 ° C.
  • Such long-term annealing which was carried out at comparatively low temperatures, results in a significant increase in the yield strength Re and an improvement in the hole elongation.
  • the task has been to specify a method for producing a flat steel product which is further improved with regard to its mechanical properties and is characterized in particular by a favorable hole expansion behavior.
  • a hot-rolled flat steel product should be specified with a property spectrum that has an optimized combination of high strength and good deformability, in particular good hole expansion behavior.
  • the invention has achieved this object in that at least the work steps specified in claim 1 are carried out in the production of a hot-rolled flat steel product.
  • a hot-rolled flat steel product that solves the above-mentioned object has at least the features specified in claim 8.
  • a flat steel product hot-rolled according to the invention has, as mentioned, a hole expansion HER of at least 30%, the hot-rolled flat steel product having a steel substrate which, in mass%, C: 0.05-0.15%, Si: ⁇ 0.5 %, Mn: 0.7-2.1%, Al: ⁇ 0.1%, Cr: 0.2-1%, at least one element from the group "Nb, Ti, V" with the proviso that the sum of the Content of Nb, Ti and / or V is 0.01 - 0.1%, B: ⁇ 0.0015%, Mo: ⁇ 0.2%, Cu: ⁇ 0.2%, Ni: ⁇ 0.2% , P: ⁇ 0.05%, N: ⁇ 0.01% and the remainder of Fe and in total a maximum of 0.1% by mass of unavoidable impurities, and its structure to 4 - 50% by volume of tempered, island-shaped Martensite present in the structure and 30-96% by volume of ferrite, the portion not occupied by martensite and ferrite consisting of up to 66% by volume of
  • At least 10% of the martensite islands are at least partially bordered on their circumference by a seam.
  • the section or sections of the edge area of the martensite islands in which or in which a higher C content is present than in the middle area of the respective martensite island in total at least 30-70% of the circumference of the martensite island concerned (see also Fig. 1 ).
  • the cooling of the hot-rolled flat steel products produced according to the invention is modified in such a way that retained austenite can be produced at the boundaries of the martensite. This allows an extreme improvement in the mechanical properties and the homogeneity of their distribution to be achieved.
  • the martensite islands of the structure of a flat steel product according to the invention are at least over part of their circumference from a hem of a decayed residual austenite consisting of residual austenite, which has a greatly increased C content expresses, are delimited.
  • Whose width is typically 10 nm to 1 ⁇ m, but can also be up to a third of the diameter of the respective martensite island.
  • the improved tensile strength and elongation are achieved in a flat steel product according to the invention through the presence of several phases and the associated high level of solidification, and the good hole expansion through the reduction of the shear stresses compared to pure dual-phase structures.
  • a flat steel product according to the invention thus achieves tensile strengths Rm, hole widenings HER and uniform elongations Ag, the product of which Rm x HER x Ag is regularly at least 300,000 MPa% 2 , in particular at least 320,000 MPa% 2 .
  • the tensile strength Rm of a hot-rolled flat steel product according to the invention regularly reaches values of at least 530 MPa, the hole expansion HER regularly values of at least 30% and the uniform elongation Ag regularly values of at least 7%.
  • Si Silicon
  • Si can be present in the steel of a steel flat product according to the invention in order to strengthen the steel. This effect can be achieved reliably with Si contents of at least 0.01% by mass, in particular 0.04% by mass. However, too high Si contents would increase the Ar3 temperature. This would make the hot rolling aimed for according to the invention more difficult in a temperature range in which the flat steel product has a completely austenitic structure.
  • the invention avoids this in that the Si content is limited to less than 0.5% by mass, in particular less than 0.4% by mass.
  • Manganese is present in the steel of a flat steel product according to the invention in contents of 0.7-2.1% by mass in order to minimize the concentration of C in the structure and the associated formation of undesirable hard martensite. This effect is achieved particularly reliably with Mn contents of at least 0.7% by mass. If the content is more than 2.1% by mass, there is a risk of Mn segregations occurring in the structure of the flat steel product according to the invention, which would impair the mechanical properties. This negative influence of the presence of Mn can be excluded with particular certainty that the Mn content is limited to a maximum of 2.0 mass%.
  • the aluminum (“Al”) content in the steel of a flat steel product according to the invention is limited to less than 0.1% by mass in order to avoid effects of this alloying element on the Ar3 temperature and to ensure optimized castability of the steel melt.
  • Al can be used for deoxidation in the course of steel production. This typically requires Al contents of at least 0.02% by mass. Negative effects triggered by the presence of Al can in particular be avoided in that the Al content is limited to less than 0.05 mass%.
  • Chromium is present in the steel of a flat steel product according to the invention in contents of 0.2-1% by mass in order to increase the hardenability and suppress the formation of pearlite.
  • Cr Chromium
  • contents of 0.2-1% by mass in order to increase the hardenability and suppress the formation of pearlite.
  • at least 0.2% by mass of Cr are required, whereby the favorable effects of the presence of Cr can be used particularly reliably with Cr contents of at least 0.25% by mass.
  • the Cr content is at most 1% by mass in order to enable the formation of ferrite in the structure of the flat steel product according to the invention, which is aimed at according to the invention. This can be ensured particularly reliably by limiting the Cr content to a maximum of 0.9% by mass.
  • the steel of a flat steel product according to the invention contains at least one of the microalloying elements niobium (“Nb”), vanadium (“V”) and titanium (“Ti”) in order to increase the fine grain size and strength.
  • the sum of the contents of these elements is 0.01-0.1% by mass.
  • the respectively envisaged content of the micro-alloy elements can be taken up by the micro-elements alone or two or three of the mentioned micro-alloy elements can be present in combination.
  • the positive influences of the micro-alloy elements on the mechanical properties of a flat steel product according to the invention can be used particularly reliably if the sum of their contents is at least 0.01% by mass.
  • the contents of the micro-alloy elements are limited to a maximum of 0.1% by mass, in particular a maximum of 0.05% by mass, in order to avoid precipitations and to enable accelerated recrystallization.
  • B Boron
  • B can optionally be present in the steel of a flat steel product according to the invention in contents of up to 0.0015% by mass. It increases the hardenability particularly strongly. However, this must not be too high to prevent it from occurring to enable sufficient amounts of ferrite in the structure of a flat steel product according to the invention. Negative effects of the presence of B can be avoided particularly reliably by limiting the B content to a maximum of 0.0008% by mass.
  • Molybdenum can optionally also be added to the steel of a flat steel product according to the invention in contents of less than 0.2% by mass, in particular less than 0.20% by mass, in order to increase the hardenability.
  • Mo Molybdenum
  • An alloy of a steel according to the invention which is particularly balanced in terms of cost / benefit aspects contains up to 0.18% by mass of Mo or up to 0.1% by mass of Mo, in particular up to 0.05% by mass of Mo, in particular up to 0.021% by mass -%, as shown in the exemplary embodiments, or up to 0.018% by mass of Mo.
  • Copper can optionally also be added to the steel of a flat steel product according to the invention in contents of less than 0.2% by mass in order to further increase the strength (precipitation and mixed crystal strengthening).
  • the positive effect of the presence of Cu at contents of at least 0.1 mass% Cu can be used reliably.
  • Nickel can optionally also be added to the steel of a flat steel product according to the invention in contents of less than 0.2% by mass, in order to further increase the strength through precipitation and mixed crystal strengthening.
  • the positive effect of the presence of Ni with contents of at least 0.1 mass% Ni can be used reliably.
  • Phosphorus can also optionally be present in the steel according to the invention in contents of less than 0.05% by mass in order to further increase the strength and to control the transformation behavior. Used reliably the positive effect of the presence of P at contents of at least 0.002 mass% P.
  • N Nitrogen
  • contents of less than 0.01% by mass are permitted to be harmless for the properties. Higher concentrations would lead to coarse precipitations, which could have a negative effect on the forming behavior.
  • the intermediate product which is composed of a melt in accordance with the above remarks, is cast in an otherwise conventional manner and is heated through at a temperature of 1150-1380 ° C. for a period of typically 60-960 minutes.
  • the maximum temperature and the duration of the heating must be measured in such a way that all the carbides contained in the preliminary product are dissolved.
  • the heating temperature is preferably below 1380 ° C.
  • a heating period of at least 60 minutes has proven to be particularly effective, with heating for a maximum of 8 hours being sufficient in practice for conventional slab dimensions for heating.
  • the lower limit of the range of the through-heating temperature specified according to the invention is at least 1150 ° C., preferably more than 1200 ° C., in order to prevent the formation of precipitates and other undesirable phases in the structure of the preliminary product.
  • the pre-product can optionally be descaled before it is fed into the hot rolling process.
  • the pre-product in the event that the pre-product is a slab, the pre-product is pre-rolled at temperatures of 1020-1150 ° C to a thickness of 30-50 mm.
  • the pre-rolling compacts the cast structure of the slab so that the best conditions are created for the subsequent finish hot rolling. If the pre-product is a thin slab or a cast strip, pre-rolling can be dispensed with.
  • the hot rolling of the optionally pre-rolled preliminary product to a thickness of 1.5 - 6.4 mm can be carried out in a conventional manner in one or more steps.
  • the only decisive factor is that the hot rolling end temperature Twe, at which hot rolling is ended, is at least equal to the Ar 3 temperature of the steel and at most 200 ° C higher than the Ar 3 of the steel, with hot rolling end temperatures of 820-900 ° C in particular are practical.
  • the hot-rolling end temperature is selected such that hot-rolling is carried out as exclusively as possible in a temperature range at which an austenitic structure is present in the hot-rolled flat steel product.
  • the hot rolling end temperature can be set to at least 820 ° C.
  • the hot rolling end temperature is at most 200 ° C., in particular less than 200 ° C., above the Ar 3 temperature, in order to support the development of a fine-grained austenite structure, as far as possible there are many nucleation sites for the subsequent ferrite formation.
  • Particularly suitable hot rolling end temperatures are accordingly in the range of 820-900 ° C.
  • the strategy of cooling the hot strip obtained by hot rolling to the respective coiling temperature is also of particular importance for the success of the invention.
  • the cooling rate dT1 between the hot rolling end temperature and the intermediate temperature of Ar 1 -50 ° C must be at least 20 K / s so that a concentration profile of C in the austenite is created, which is later converted to martensite.
  • Cooling speeds dT1 of at least 30 K / s are particularly suitable here.
  • the upper cooling rate dT1 is limited to 90 K / s, in particular to a maximum of 70 K / s.
  • the cooling down to the intermediate temperature Tz controlled according to the invention, controls the cooling rate in such a way that, on the one hand, sufficient ferrite is formed and a sufficiently high diffusion of carbon from the ferrite into the adjacent austenite is enabled, through which the residual austenite, which later forms the fringing area of the martensite islands, is enriched with carbon will. In this temperature range, above all, the C diffusion from the ferrite that forms into the adjacent retained austenite can take place and diffuse therein.
  • an island-like martensite is obtained in the structure of a flat steel product according to the invention, which has an inhomogeneous distribution of the carbon content over its volume. Despite tempering, the inhomogeneous C distribution remains.
  • the martensite edges show a very high C content, which can be easily detected in the FE microprobe. is.
  • This border with increased C concentration typically has a width of 10 nm - 1 ⁇ m, whereby its width can also be up to 1/3 of the diameter of the martensite island.
  • the carbon concentration increasing towards the edge area extends in a flat steel product according to the invention by at least 30% of the circumference of the martensite islands and is in particular not only at least 10% but at least 70% of all martensite islands.
  • the profile of the carbon concentration generated according to the invention can be observed on all martensite islands that have a diameter (half of the shortest length + longest length in Fig 1 . at the martensite island (M)) of> 3 ⁇ m.
  • the border in which there is a higher C content than in the central area of the respective martensite island, can, as indicated in claim 9, also occupy in total at least 50% of the circumference of the martensite island in question.
  • the C gradient generated according to the invention in the martensite islands of the structure increases the hole expansion HER, since the formation of large martensitic bees, homogeneous with regard to the carbon distribution, is prevented, which would increase the shear stress in a ferritic matrix and thus minimize the hole expansion.
  • the invention between the Ferrite matrix and the residual austenite present on the respective martensite island achieves smoother transitions between the soft ferrite matrix and the hard martensite liners or facilitates the deformation in partial areas of the martensite island. Due to the C distribution, areas in the martensite can be deformed earlier in the event of an external load, which reduces steep hardness jumps that are harmful to the hole expansion HER. Nevertheless, there is still a high degree of consolidation of the structure due to the differences in hardness. Thus, with high strength values, you get good elongation in combination with good hole expansion values HER.
  • the further cooling strategy subordinately promotes the advantageous product properties: After the intermediate temperature Tz has been reached, the cooling rate in the temperature range up to the Martensite start temperature T MS is controlled in a second cooling section so that the diffusion length of C in austenite remains as limited as possible.
  • the hot strip is cooled starting from the intermediate temperature Tz at a cooling rate dT2 'of at least 5 K / s, in particular more than 5 K / s or at least 20 K / s, until the martite start temperature T MS is reached is.
  • the cooling speed dT2 'in this variant is limited to a maximum of 100 K / s, to ensure that a diffusion of carbon from the previously formed ferrite into the adjacent austenite can take place.
  • the cooling is completed up to the martensite start temperature T MS with a cooling rate dT2 ′′ of 10-130 K / s.
  • the diffusion of a sufficient amount of carbon can be supported by interrupting the cooling at a cooling stop temperature of 550 - 700 ° C for up to 5 s.
  • a break of at least 1 s is particularly practical here.
  • the cooling rate dT2 ′′ should be at most 130 K / s, in particular less than 100 K / s, in order to even allow a sufficient C diffusion length in the austenite is limited to a maximum of 80 K / s. It is particularly practical when the cooling rate dT2 "is 30 - 80 K / s.
  • the third section of cooling in which the hot-rolled flat steel product is cooled to the coiling temperature after the martensite start temperature T MS has been reached, is not critical and can take place at a cooling rate in still air.
  • the coiling temperature HT is lower than the martensite start temperature and can reach room temperature. In practice, the coiling temperature HT is typically in a range that extends from room temperature to 100 ° C, in particular 20-80 ° C.
  • the hot-rolled flat steel product cooled in this way is wound into a coil.
  • the coiling temperature HT is above room temperature
  • the flat steel product is finally cooled to room temperature in the coil.
  • the low reel temperature set according to the invention is of particular importance. It enables the carbon (C) contained in the hot-rolled flat steel product to have short distances to diffuse in the last cooling step of hot strip production.
  • the solubility of carbon in alpha-Fe is very low. Therefore, this migrates out of the centers of the islands formed from freshly formed martensite in the direction of their edges. Here, in turn, adjacent phases such as ferrite and bainite make further diffusion difficult.
  • a border of retained austenite that at least partially delimits the martensite islands is therefore present in their edge area. This seam can be checked using an FE-SEM microprobe analysis.
  • the basis for the improved tensile strength and elongation in a flat steel product according to the invention are the different phases contained in its structure and the associated high degree of solidification, as well as the reduction in shear stresses compared to pure dual-phase structures achieved through the special C distribution in the martensite islands and the associated development of residual austenite seams , which lead to optimized hole expansion values HER.
  • the flat steel product hot-rolled according to the invention is kept under an inert or reducing atmosphere at a tempering temperature of 150-500 ° C., in particular 150-400 ° C., for a tempering period of 4-16 h.
  • a conventional bell-type annealing furnace is typically used for this, in which the hot-rolled flat steel product is used as a coil.
  • the tempered flat steel product After tempering, the tempered flat steel product is cooled to room temperature at a rate of 4-700 K / h.
  • This tempering treatment further reduces the hardness gradient, which is already softened due to the presence of the seam between the hard martensite and the soft ferrite, which in particular consists of retained austenite (reduction of the martensite strength and possible hardening of the ferrite phases due to carbide precipitations).
  • the tempering treatment according to the invention distributes the carbon in the structure to a greater extent. This in turn has the consequence that the seam with the enriched C content widens and the associated sharp hardness gradients between the martensite and ferrite components of the structure are weakened.
  • the solidified ferrite present in the structure of a flat steel product according to the invention in proportions of typically more than 30% by volume also supports accelerated tempering, since dislocations represent fast diffusion paths. These are also found in the hot strips belonging to the invention.
  • the tempering treatment according to the invention leads to an increase in the hole widening HER of at least 9%, in particular at least 10%, compared to the hole widening HER, which is achieved for a hot-rolled flat steel product according to the invention after coiling and cooling in the coil (steps g) and h)).
  • the ferrite components present in the structure of a flat steel product according to the invention enable comparatively short tempering times, which can be further shortened by higher proportions of ferrite. For example, with ferrite proportions of 70% by volume, the hole expansion HER, which is already high after coiling and cooling and typically at least 20%, can be increased by a further at least 15%.
  • a flat steel product according to the invention thus achieves tensile strengths Rm, hole widenings HER and uniform elongations Ag, the product of which Rm x HER x Ag is regularly at least 300,000 MPa% 2 , in particular at least 330,000 MPa% 2 .
  • the tensile strength Rm of a hot-rolled flat steel product according to the invention regularly reaches values of at least 530 MPa, the hole expansion HER regularly values of at least 30% and the uniform elongation Ag regularly values of at least 8%
  • the yield strength ratio Rp / Rm in a hot-rolled flat steel product according to the invention is regularly at least 0.6, where typically yield strength ratios Rp / Rm of at least 0.65 can be achieved.
  • table 1 shows the martensite start temperatures T MS , Ar 3 temperatures and Ar 1 temperatures estimated in accordance with the formulas (1) - (3) explained above for the melts E1-E5.
  • the melts E1-E5 have been cast in the conventional manner into slabs, which have each been heated through at 1150-1380 ° C. for a period of 60 minutes.
  • the slabs heated through in this way have been subjected to rough rolling, in which they have been hot rough rolled in the temperature range from 1020 to 1150 ° C. to form a rough strip with a thickness of 30 to 50 mm.
  • hot strip hot-rolled strips
  • Dw thickness
  • the hot strips WV and W1-W11 had a hot-rolling end temperature ET which was above the Ar 3 temperature of the steel E1-E5 of which the hot strips WV and W1-W11 each consisted.
  • the hot strips WV and W1 - W11 obtained were cooled, starting from their respective final hot rolling temperature ET, at a cooling rate dT1 to an intermediate temperature Tz which was 50 ° C. below the Ar 1 temperature of the steel E1 - E5 from which the hot strips were made WV and W1 - W11 each passed.
  • the hot strips WV, W1, W3 to W8, W10 and W11 have each been cooled at a cooling rate dT2 'down to the martensite start temperature T MS of the steel.
  • the hot strips W2 and W9 were initially cooled at a cooling rate dT2 ′′ to a cooling stop temperature Tsp, at which they were each held for a holding period tH, and then to the martensite start temperature T MS of the steel and room temperature.
  • the hot strips WV and W1-W11 were then cooled in still air to the respective coiling temperature HT at which they were coiled into a coil. Finally, cooling to room temperature took place in the coil.
  • the thickness Dw As well as the final hot-rolling temperatures ET, cooling rates dT1, cooling rates dT2 ', cooling rates dT2 "and coiling temperatures HT, are shown in Table 2.
  • the tensile strength Rm, the yield point Re, the uniform elongation Ag, the elongation A50, the elongation A80 and the hole expansion HER have been determined for the hot strip WV and W1-W11.
  • the relevant properties as well as the product Rm x ⁇ x Ag and the ratio Re / Rm are listed in Table 3 for the hot strips WV and W1 - W11.
  • the martensite, ferrite, bainite, pearlite and retained austenite components of the structure have also been determined for the hot strips WV and W1 - W11.
  • an undesired perlite content of the structure of 15% by volume resulted.
  • the martensite and residual austenite grain sizes as well as the width Bras of the residual austenite border that surrounded the martensite islands in the structure of the hot strips WV and W1 - W11 have been determined for some of the hot strips WV and W1 - W11.
  • hot strips W1-W11 produced according to the invention and alloyed according to the invention reliably have high mechanical parameters Rm, Re, Ag, A50, A80 and HER, which are too high for the product Rm x HER x Ag of more in each case than 200,000 MPa% 2 . That However, hot strip WV not produced according to the invention remained below this limit.
  • the hot strips were subjected to a tempering treatment in a conventional bell-type furnace, in which they were each held for a tempering period t AN at a tempering temperature T An under an inert or reducing atmosphere.
  • the relevant parameters are listed in Table 5.
  • the relevant data are also given in Table 5. It turns out that the tempering treatment led to a considerable increase in the hole expansion HER and the product Rm x HER x Ag, which makes it clear that a hot-rolled flat steel product can be produced with the method according to the invention, which has superior mechanical properties.
  • the invention thus provides a method for producing a hot-rolled flat steel product with a structure of (in% by volume) 4-50% tempered, island-shaped martensite, 30-96% ferrite, ⁇ 10% retained austenite, the remainder ⁇ 66% bainite or bainitic ferrite to disposal.
  • the strip After reaching Tz, the strip is either cooled between T MS and RT at 5-100 K / s or at 10-130 K / s to a cooling stop temperature Tsp of 550-770 ° C, at which the hot strip is optionally held for ⁇ 5 s and then cooled to a reel temperature HT lying between Tsp and RT.
  • the hot strip is coiled at HT, then cooled further or held, (g) tempered for 4-16 h at 150-500 ° C and (h) cooled to RT at 4-700 K / h.
  • Table 1 Chemical analyzes, *) not according to the invention stole Figures in% by mass, remainder iron and unavoidable impurities ° C C. Si Mn P. S.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines warmgewalzten Stahlflachprodukts mit einem Gefüge aus (in Vol.-%) 4 - 50 % angelassenem, inselförmigen Martensit, 30 - 96 % Ferrit, < 10 % Restaustenit, Rest ≤ 66 % Bainit oder bainitischem Ferrit. Dabei wird (a) eine Stahlschmelze aus, in Masse-%, C: 0,05 - 0,15 %, Si: < 0,5 %, Mn: 0,7 - 2,1 %, Al: < 0,1 %, Cr: 0,2 - 1 %, in Summe 0,01 - 0,1 % Nb, Ti oder V, B: < 0,0015 %, Mo: < 0,2 %, Cu: < 0,2 %, Ni: < 0,2 %, P: < 0,05 %, N: < 0,01 % und als Rest aus Fe und ≤ 0,1 % Verunreinigungen besteht, zu einem Vorprodukt vergossen, das (b) bei 1150 - 1380 °C durcherwärmt, (c) optional entzundert und (d), falls erforderlich, bei 1020 - 1150 °C auf 30 - 50 mm vorgewalzt wird. Dann wird es zu einem 1,4 - 6,4 mm dicken Band mit einer Warmwalzendtemperatur ET warmgewalzt, für die gilt Ar<sub>3</sub> ≤ ET ≤ 200 °C + Ar<sub>3</sub>-Temperaturdes Stahls. Es folgt (f) eine Abkühlung auf eine Haspeltemperatur HT, für die gilt Martensitstarttemperatur T<sub>MS</sub> des Stahls > HT ≥ Raumtemperatur RT, wobei die Abkühlung von ET bis zu einer Zwischentemperatur Tz, für die gilt Tz < Ar<sub>1</sub> - 50 °C, mit ≥ 20 K/s erfolgt. Nach Erreichen von Tz wird das Band entweder zwischen T<sub>MS</sub> und RT mit 5 - 100 K/s gekühlt oder mit 10 - 130 K/s auf eine Kühlstopptemperatur Tsp von 550 - 770 °C, bei der das Warmband optional für ≤ 5 s gehalten wird, und dann auf eine zwischen Tsp und RT liegende Haspeltemperatur HT abgekühlt. Das Warmband wird bei HT gehaspelt, dann weiter abgekühlt oder gehalten, (g) für 4 - 16 h bei 150 - 500 °C angelassen und (h) mit 4 - 700 K/h auf RT abgekühlt.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines warmgewalzten Stahlflachprodukts mit einem Gefüge, dessen Hauptbestandteile angelassener oder frisch gebildeter Martensit und Ferrit sind, wobei der Rest des Gefüges von Restaustenit, Bainit und/oder Zementit aufgefüllt ist.
  • Ebenso betrifft die Erfindung ein Stahlflachprodukt mit entsprechend beschaffenem Gefüge, wobei sich das Stahlflachprodukt insbesondere durch das erfindungsgemäße Verfahren herstellen lässt.
  • Im vorliegenden Text sind, soweit nicht explizit etwas anderes vermerkt ist, Angaben zu den Gehalten von Legierungsbestandteilen stets in Masse-% gemacht. Die Anteile des Gefüges eines Stahlflachprodukts sind hier in Vol.-% angegeben, sofern nicht etwas anderes vermerkt ist.
  • Die Bildanalyse zur quantitativen Gefügebestimmung erfolgt lichtoptisch mittels Lichtmikroskopie ("LOM") mit 1000-facher und mit einem Feldemissions-Rasterelektronenmikroskop ("FE-REM") mit 20.000-facher Auflösung. Die Darstellung und Vermessung des bei erfindungsgemäßen Stahlflachprodukten, wie unten erläutert, an den Martensitinseln des Gefüges vorhandenen Restaustenit-Saumes, erfolgte ebenfalls mit dem FE-REM bei ebenfalls 20.000-facher Vergrößerung. Die hier erwähnten Festigkeits- und
    Dehnungseigenschaften, wie Zugfestigkeit Rm, Gleichmaßdehnung Ag, Bruchdehnung A50 von Stahlflachprodukten wurden im Zugversuch nach DIN-EN 6892-1 Probenform 1 quer zur Walzrichtung (WR) ermittelt, sofern nichts anderes vermerkt. Die Bruchdehnung A80 wurde nach DIN EN 2566-1 (Sept-1999-Kap. 9.3) berechnet.
  • Das Lochaufweitungsverhalten bzw. die jeweils erzielbare Lochaufweitung HER der Stahlflachprodukte wurden an 100*100 Proben nach ISO 16630 bestimmt.
  • Die qualitative C-Verteilung im Gefüge der Stahlflachprodukte wurde mittels einer FE-Mikrosonde bestimmt, wie von H. Farivar et al. im Artikel "Experimental quantification of carbon gradients in martensite and its multi-scale effects in a DP steel", MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 718 (2018) 250-259 beschrieben. Ein Beispiel zur hier verwendeten Auswertung findet sich in Fig. 1.
  • Es ist bekannt, dass aus Dualphasenstählen bestehende Stahlflachprodukte zu Kantenrissen neigen. Dies kann insbesondere bei Stahlflachprodukten mit hoher Festigkeit zu Ausfällen im Presswerkzeug führen. Die Kantenrissneigung wird üblicherweise durch die gemäß ISO 16630 ermittelte Lochaufweitung HER charakterisiert. Hohe Werte der Lochaufweitung HER stehen dabei für eine geringere Kantenrissneigung: Um das Anwendungsspektrum von hochfesten, aus Dualphasen-Stählen bestehenden Stahlflachprodukten der hier in Rede stehenden Art zu erweitern, wird jedoch nicht nur eine geringe Kantenrissneigung, sondern auch eine hohe Streckgrenze Re gefordert, die mit einem hohen, aus der Streckgrenze Re und der Zugfestigkeit Rm gebildeten Streckgrenzenverhältnis Re/Rm einhergeht.
  • Aus der EP 2 690 183 A1 ist ein warmgewalztes Stahlflachprodukt bekannt, das, in Masse-%, aus C: 0,10 - 0,60 %, Si: 0,4 - 2,0 %, Al: bis zu 2,0 %, Mn: 0,4 - 2,5 %, Ni: bis zu 1 %, Cu: bis zu 2,0 %, Mo: bis zu 0,4 %, Cr: bis zu 2 %, Ti: bis zu 0,2 %, Nb: bis zu 0,2 %, V: bis zu 0,5 % sowie als Rest aus Eisen und unvermeidbaren Verunreinigungen zusammengesetzt ist. Dabei besteht das Gefüge des Stahlflachprodukts neben optional vorhandenen Anteilen von bis zu 5 Vol.-% Ferrit und bis zu 10 Vol.-% Martensit zu mindestens 60 Vol.-% aus Bainit und als Rest aus Restaustenit, wobei zumindest ein Teil des Restaustenits in blockiger Form und die Blöcke des in blockiger Form vorliegenden Restaustenits zu mindestens 98 % einen mittleren Durchmesser von weniger als 5 µm aufweisen. Dabei lässt sich ein solches Stahlflachprodukt herstellen, indem ein Vorprodukt in Form einer Bramme, Dünnbramme oder eines gegossenen Bands aus einer in der angegebenen Weise zusammengesetzten Schmelze erzeugt wird, das dann zu einem Warmband in einem oder mehreren Walzstichen warmgewalzt wird, wobei das erhaltene Warmband beim Verlassen des letzten Walzstichs eine Warmwalzendtemperatur von mindestens 880 °C aufweist. Das so erhaltene warmgewalzte Stahlflachprodukt wird mit einer Abkühlrate von mindestens 5 °C/s beschleunigt auf eine Haspeltemperatur abgekühlt, die zwischen der Martensitstarttemperatur MS und 600 °C liegt, und bei dieser Temperatur zu einem Coil gewickelt. Im Coil erfolgt dann die Abkühlung des Stahlflachprodukts, wobei die Temperatur des Coils während der Abkühlung zur Bildung von Bainit in einem Temperaturbereich gehalten wird, dessen Obergrenze gleich der Bainitstarttemperatur BS, ab der Bainit im Gefüge des Warmbands entsteht, und dessen Untergrenze gleich der Martensitstarttemperatur MS ist, ab der Martensit im Gefüge des Warmbands entsteht, bis mindestens 60 Vol.-% des Gefüges des Warmbands aus Bainit bestehen. Ein derart erzeugtes warmgewalztes Stahlflachprodukt weist regelmäßig Zugfestigkeiten Rm von mehr als 1000 MPa, insbesondere mindestens 1200 MPa, bei Dehnungen A80 auf, die ebenso regelmäßig oberhalb von 17 %, insbesondere oberhalb von 19 %, liegen. Dementsprechend liegt die Güte Rm*A80 der bekannten Stahlflachprodukte regelmäßig im Bereich von 18000 - 30000 MPa*%.
  • Des Weiteren ist aus der WO 2015/158731 A1 ein Verfahren zur Herstellung eines kaltgewalzten Stahlflachprodukts bekannt, dessen Gefüge aus, in Vol.-%, mindestens 10 % gehärtetem Martensit, weniger als 10 % Bainit, weniger als 10 % Restaustenit und als Rest Ferrit besteht und das ein Streckgrenzenverhältnis Re/Rm von mindestens 0,7 bei einer Zugfestigkeit Rm von mehr als 750 MPa und eine Lochdehnung HER von mindestens 18 % aufweist. Das Stahlsubstrat dieses kaltgewalzten Stahlflachprodukts besteht aus Eisen, unvermeidlichen Verunreinigungen und, in Masse-%, 0,05 - 0,20 % C, 0,25 - 1,00 % Si, 1,0 - 3,0 % Mn, 0,02 - 1,5 % Al, 0,1 - 1,5 % Cr, weniger als 0,02 % N, weniger als 0,03 % P, weniger als 0,05 % S und optional einem oder mehreren Elementen aus der Gruppe "Ti, Mo, Nb, V, B", mit der Maßgabe, dass der Ti-Gehalt bis zu 0,15 %, der Mo-Gehalt weniger als 2 %, der Nb-Gehalt weniger als 0,1 %, der V-Gehalt weniger als 0,12 % und der B-Gehalt 0,0005 - 0,003 % beträgt. Das so zusammengesetzte kaltgewalzte Stahlflachprodukt wird einer zusätzlichen Wärmebehandlung unterzogen, bei der es für eine Glühzeit von 4,5 - 24 Stunden bei einer Glühtemperatur von bis zu 150 - 400 °C gehalten wird. Durch eine solche Langzeitglühung, die bei vergleichsweise niedrigen Temperaturen durchgeführt wurde, kommt es zu einem deutlichen Anstieg der Streckgrenze Re und einer Verbesserung der Lochdehnung.
  • Ausgehend von dem voranstehend erläuterten Stand der Technik hat sich die Aufgabe gestellt, ein Verfahren zur Herstellung eines Stahlflachprodukts anzugeben, das hinsichtlich seiner mechanischen Eigenschaften weiter verbessert ist und sich insbesondere durch ein günstiges Lochaufweitungsverhalten auszeichnet.
  • Ebenso sollte ein warmgewalztes Stahlflachprodukt mit einem Eigenschaftsspektrum angegeben werden, das eine optimierte Kombination aus hoher Festigkeit und guter Verformbarkeit, insbesondere gutem Lochaufweitungsverhalten, aufweist.
  • In Bezug auf das Verfahren hat die Erfindung diese Aufgabe dadurch gelöst, dass bei der Herstellung eines warmgewalzten Stahlflachprodukts mindestens die in Anspruch 1 angegebenen Arbeitsschritte absolviert werden.
  • Dabei versteht es sich von selbst, dass bei der Durchführung des erfindungsgemäßen Verfahrens der Fachmann nicht nur die in den Ansprüchen erwähnten und hier im Detail erläuterten Verfahrensschritte absolviert, sondern auch alle sonstigen Schritte und Tätigkeiten ausführt, die bei der praktischen Umsetzung derartiger Verfahren im Stand der Technik regelmäßig durchgeführt werden, wenn sich hierzu die Notwendigkeit ergibt.
  • Ein die voranstehend genannte Aufgabe lösendes warmgewalztes Stahlflachprodukt weist mindestens die im Anspruch 8 angegebenen Merkmale auf.
  • Ein erfindungsgemäß warmgewalztes Stahlflachprodukt weist dementsprechend eine Lochaufweitung HER von mindestens 30 % und ein Stahlsubstrat auf,
    • das aus, in Masse-%, C: 0,05 - 0,15 %, Si: < 0,5 %, Mn: 0,7 - 2,1 %, Al: < 0,1 %, Cr: 0,2 - 1 %, mindestens einem Element der Gruppe "Nb, Ti, V" mit der Maßgabe, dass die Summe der Gehalte an Nb, Ti und / oder V 0,01 - 0,1 % beträgt, B: < 0,0015 %, Mo: < 0,2 %, Cu: < 0,2 %, Ni: < 0,2 %, P: < 0,05 %, N: < 0,01 % und als Rest aus Fe und in Summe höchstens 0,1 Masse-% unvermeidbaren Verunreinigungen besteht und
    • dessen Gefüge zu 4 - 50 Vol.-% aus angelassenem, inselförmig im Gefüge vorliegendem Martensit, bei dem mindestens 10 % der Martensitinseln an ihrem Umfang mindestens abschnittsweise von einem Saum umgrenzt sind, und zu 30 - 96 Vol.-% aus Ferrit besteht, wobei der nicht durch Martensit und Ferrit
      eingenommene Anteil aus bis zu 66 Vol.-% Bainit oder bainitischem Ferrit und weniger als 10 Vol.-% Restaustenit besteht und wobei der C-Gehalt des Saums zumindest in einem Abschnitt höher ist als der C-Gehalt des Mittenbereichs der Martensitinsel.
  • Bei einer erfindungsgemäßen Herstellung eines warmgewalzten Stahlflachprodukts mit einem Gefüge, das zu 4 - 50 Vol.-% aus angelassenem, inselförmig vorliegendem Martensit und zu 30 - 96 Vol.-% aus Ferrit besteht, wobei der jeweils nicht durch Martensit und Ferrit eingenommene Anteil des Gefüges aus bis zu 66 Vol.-% Bainit und/oder bainitischem Ferrit und weniger als 10 Vol.-% Restaustenit besteht, werden somit mindestens folgende Arbeitsschritte absolviert:
    a) Vergießen einer Stahlschmelze zu einem Vorprodukt in Form einer Bramme, Dünnbramme oder eines gegossenen Bandes, wobei die Schmelze aus, in Masse-%,
    C: 0,05 - 0,15 %,
    Si: < 0,5 %,
    Mn: 0,7 - 2,1 %,
    Al: < 0,1 %,
    Cr: 0,2 - 1 %,
    mindestens einem Element der Gruppe "Nb, Ti, V" mit der Maßgabe, dass die Summe der Gehalte an Nb, Ti und / oder V 0,01 - 0,1 % beträgt,
    B: < 0,0015 %,
    Mo: < 0,2 %,
    Cu: < 0,2 %,
    Ni: < 0,2 %
    P: < 0,05 %
    N: < 0,01 %
    und als Rest aus Fe und in Summe höchstens 0,1 Masse-% unvermeidbaren Verunreinigungen besteht;
    b) Durcherwärmen des Vorprodukts bei einer Temperatur von 1150 -1380 °C;
    c) optional: Entzundern des Vorprodukts;
    d) im Fall, dass das Vorprodukt eine Bramme ist: Vorwalzen des Vorprodukts bei Temperaturen von 1020 - 1150 °C auf eine Dicke von 30 - 50 mm;
    e) Warmwalzen des optional vorgewalzten Vorproduktes in einem oder mehreren Walzstichen zu einem warmgewalzten Band mit einer Dicke von 1,4 - 6,4 mm, wobei die Warmwalzendtemperatur ET, bei der das Warmwalzen beendet wird, mindestens gleich der Ar3-Temperatur des Stahls und höchstens um 200 °C höher als die Ar3-Temperatur des Stahls ist;
    f) Abkühlen des erhaltenen Warmbands auf eine Haspeltemperatur HT, die in einem Bereich liegt, welcher unterhalb der Martensitstarttemperatur TMS des Stahls beginnt und bei Raumtemperatur endet,
    • wobei die Abkühlgeschwindigkeit dT1 in einem Temperaturbereich, der von der Warmwalzendtemperatur ET bis zu einer Zwischentemperatur Tz reicht, die 50 °C unterhalb der Ar1-Temperatur des Stahls liegt, mindestens 20 K/s beträgt,
    • wobei nach Erreichen der Zwischentemperatur Tz
    • gemäß einer ersten Variante das Warmband mit einer Abkühlrate dT2' von 5 - 100 K/s abgekühlt wird, bis die Martensitstarttemperatur TMS des Stahls erreicht ist,
      oder
    • gemäß einer zweiten Variante das Warmband mit einer Abkühlrate dT2" von jeweils 10 - 130 K/s zunächst auf eine Kühlstopptemperatur Tsp, die im Bereich 550 - 770 °C liegt und bei der das Warmband optional über eine bis zu 5 s dauernde Haltedauer tH gehalten wird, und anschließend auf die Martensitstarttemperatur TMS des Stahls abgekühlt wird,
      und
    • wobei das Warmband anschließend auf die Haspeltemperatur abgekühlt wird und das so abgekühlte Warmband zu einem Coil gehaspelt wird, wobei im Fall, dass die Haspeltemperatur HT oberhalb der Raumtemperatur liegt, das Stahlflachprodukt abschließend im Coil auf Raumtemperatur abgekühlt wird;
    g) Anlassen des warmgewalzten Stahlflachprodukts über eine Anlassdauer tAN von 4 - 16 h bei einer Anlasstemperatur Tan von 150 - 500 °C unter einer reduzierenden oder inerten Atmosphäre;
    h) Abkühlen des angelassenen Stahlflachprodukts mit einer Abkühlgeschwindigkeit von 4 - 700 K/h auf Raumtemperatur.
  • Ein erfindungsgemäß warmgewalztes Stahlflachprodukt besitzt, wie erwähnt, eine Lochaufweitung HER von mindestens 30 %, wobei das warmgewalzte Stahlflachprodukt ein Stahlsubstrat aufweist, das aus, in Masse-%, C: 0,05 - 0,15 %, Si: < 0,5 %, Mn: 0,7 - 2,1 %, Al: < 0,1 %, Cr: 0,2 - 1 %, mindestens einem Element der Gruppe "Nb, Ti, V" mit der Maßgabe, dass die Summe der Gehalte an Nb, Ti und / oder V 0,01 - 0,1 % beträgt, B: < 0,0015 %, Mo: < 0,2 %, Cu: < 0,2 %, Ni: < 0,2 %, P: < 0,05 %, N: < 0,01 % und als Rest aus Fe und in Summe höchstens 0,1 Masse-% unvermeidbaren Verunreinigungen besteht, und dessen Gefüge zu 4 - 50 Vol.-% aus angelassenem, inselförmig im Gefüge vorliegendem Martensit und zu 30 - 96 Vol.-% aus Ferrit besteht, wobei der nicht durch Martensit und Ferrit eingenommene Anteil aus bis zu 66 Vol.-% Bainit oder bainitischem Ferrit und weniger als 10 Vol.-% Restaustenit besteht.
  • Wie im Anspruch 8 angegeben, sind im Gefüge des erfindungsgemäßen Stahlflachprodukts mindestens 10 % der Martensitinseln an ihrem Umfang mindestens abschnittsweise von einem Saum umgrenzt.
  • Es zeigt sich insbesondere, dass bei mindestens 70 % aller Martensitinseln ein das Zentrum der jeweiligen Martensitinsel abdeckender Mittenbereich vorhanden ist, der von einem an den Rand der jeweiligen Martensitinsel grenzenden Randbereich der betreffenden Martensitinsel umgrenzt ist, wobei der C-Gehalt des Randbereichs zumindest in einem Abschnitt höher ist als der C-Gehalt des Mittenbereichs.
  • Typischerweise nimmt der Abschnitt oder die Abschnitte des Randbereichs der Martensitinseln, in dem oder in denen ein höherer C-Gehalt vorliegt als im Mittenbereich der jeweiligen Martensitinsel, in Summe mindestens 30 - 70 % des Umfangs der betreffenden Martensitinsel ein (siehe auch Fig. 1).
  • Die im vorliegenden Text so bezeichneten "MartensitinseIn" werden in der Fachsprache auch als "Martensitkörner" bezeichnet.
  • Dabei gelingt es bei erfindungsgemäßer Herstellweise ein warmgewalztes erfindungsgemäßes Stahlflachprodukt zu erzeugen, bei denen bei allen Martensitinseln mit einem mittleren Durchmesser von mehr als 3 µm mindestens in einem Abschnitt ihrer Randbereiche ein höherer C-Gehalt vorhanden ist, als im Mittenbereich der jeweiligen Martensitinsel.
  • Erfindungsgemäß ist die Kühlung der erfindungsgemäß erzeugten warmgewalzten Stahlflachprodukte so modifiziert, dass Restaustenit an den Grenzen des Martensits erzeugt werden kann. Hierdurch kann eine extreme Verbesserung der mechanischen Eigenschaften und der Homogenität ihrer Verteilung erzielt werden.
  • Als im Hinblick auf die mechanischen Eigenschaften eines erfindungsgemäßen Stahlflachprodukts besonders vorteilhaft erweist es sich dabei, dass die Martensitinseln des Gefüges eines erfindungsgemäßen Stahlflachprodukts zumindest über eine Teillänge ihres Umfangs von einem aus Restaustenit bestehenden Saum eines zerfallenen Restaustenits, welcher sich in einem stark angehobenen C-Gehalt äußert, umgrenzt sind. Dessen Breite beträgt typischerweise 10 nm bis 1 µm, kann aber auch bis zu einem Drittel des Durchmessers der jeweiligen Martensitinsel betragen.
  • Die verbesserte Zugfestigkeit und Dehnung werden bei einem erfindungsgemäßen Stahlflachprodukt durch das Vorhandensein mehrerer Phasen und die damit einhergehende hohe Verfestigung, die gute Lochaufweitung durch die Reduzierung der Scherspannungen gegenüber reinen Dualphasengefügen erzielt.
  • So erreicht ein erfindungsgemäßes Stahlflachprodukt Zugfestigkeiten Rm, Lochaufweitungen HER und Gleichmaßdehnungen Ag, deren Produkt Rm x HER x Ag regelmäßig mindestens 300.000 MPa%2, insbesondere mindestens 320.000 MPa%2, beträgt.
  • Die Zugfestigkeit Rm eines erfindungsgemäßen warmgewalzten Stahlflachprodukts erreicht dabei regelmäßig Werte von mindestens 530 MPa, die Lochaufweitung HER regelmäßig Werte von mindestens 30 % und die Gleichmaßdehnung Ag regelmäßig Werte von mindestens 7 %.
  • Die Legierung der zur Herstellung eines erfindungsgemäßen Stahlflachprodukts erzeugten Schmelze und damit einhergehend des Stahlsubstrats eines erfindungsgemäßen Stahlflachprodukts ist wie folgt ausgewählt worden:
    • Kohlenstoff ("C") ist im erfindungsgemäßen Stahlflachprodukt in Gehalten von 0,05 - 0,15 Masse-% vorhanden, um das geforderte Festigkeitsniveau zu erreichen. Hierzu sind mindestens 0,05 Masse-% C erforderlich. Besonders sicher werden die erfindungsgemäß genutzten Effekte der Anwesenheit von C dann erreicht, wenn der C-Gehalt mindestens 0,065 Masse-% beträgt. Dabei wird durch die Begrenzung des C-Gehalts auf höchstens 0,15 Masse-%,
    • insbesondere weniger als 0,15 Masse-%, sichergestellt, dass sich im Gefüge eines erfindungsgemäßen Stahlflachprodukts eine ausreichende Menge an Ferrit bildet und dass sich der gebildete Martensit in Teilbereichen überhaupt verformen kann und dass somit Scherspannungen abgebaut werden können.
    • Diese Wirkung kann insbesondere dann erzielt werden, wenn der C-Gehalt auf höchstens 0,14 Masse-%, insbesondere höchstens 0,12 Masse-%, beschränkt ist.
  • Silizium ("Si") kann im Stahl eines erfindungsgemäßen Stahlflachprodukts vorhanden sein, um den Stahl zu verfestigen. Dieser Effekt kann betriebssicher bei Si-Gehalten von mindestens 0,01 Masse-%, insbesondere 0,04 Masse-%, erzielt werden. Allerdings würden zu hohe Si-Gehalte die Ar3-Temperatur erhöhen. Dies würde das erfindungsgemäß angestrebte Warmwalzen in einem Temperaturbereich, in dem im Stahlflachprodukt vollständig austenitisches Gefüge vorliegt, erschweren. Die Erfindung vermeidet dies dadurch, dass der Si-Gehalt auf weniger als 0,5 Masse-%, insbesondere weniger als 0,4 Masse-%, beschränkt ist.
  • Mangan ("Mn") ist im Stahl eines erfindungsgemäßen Stahlflachprodukts in Gehalten von 0,7 - 2,1 Masse-% vorhanden, um die Konzentration an C im Gefüge und damit einhergehend die Entstehung von unerwünschtem harten Martensit zu minimieren. Besonders sicher wird dieser Effekt bei Mn-Gehalten von mindestens 0,7 Masse-% erreicht. Bei Gehalten von mehr als 2,1 Masse-% besteht die Gefahr, dass Mn-Seigerungen im Gefüge des erfindungsgemäßen Stahlflachprodukts entstehen, durch die die mechanischen Eigenschaften beeinträchtigt würden. Dieser negative Einfluss der Anwesenheit von Mn kann dadurch besonders sicher ausgeschlossen werden, dass der Mn-Gehalt auf höchstens 2,0 Masse-% beschränkt wird.
  • Der Gehalt an Aluminium ("Al") ist im Stahl eines erfindungsgemäßen Stahlflachprodukts auf weniger als 0,1 Masse-% beschränkt, um Auswirkungen dieses Legierungselements auf die Ar3-Temperatur zu vermeiden und eine optimierte Vergießbarkeit der Stahlschmelze zu gewährleisten. Al kann jedoch im Zuge der Stahlerzeugung zur Desoxidation eingesetzt werden. Hierzu sind typischerweise Al-Gehalte von mindestens 0,02 Masse-% erforderlich. Durch die Anwesenheit von Al ausgelöste negative Effekte können insbesondere dadurch vermieden werden, dass der Al-Gehalt auf weniger als 0,05 Masse-% beschränkt wird.
  • Chrom ("Cr") ist im Stahl eines erfindungsgemäßen Stahlflachprodukts in Gehalten von 0,2 - 1 Masse-% vorhanden, um die Härtbarkeit zu erhöhen und die Perlitbildung zu unterdrücken. Hierzu sind mindestens 0,2 Masse-% Cr erforderlich, wobei sich die günstigen Einflüsse der Anwesenheit von Cr bei Cr-Gehalten von mindestens 0,25 Masse-% besonders sicher nutzen lassen. Gleichzeitig beträgt der Cr-Gehalt höchstens 1 Masse-%, um die erfindungsgemäß angestrebte Bildung von Ferrit im Gefüge des erfindungsgemäßen Stahlflachprodukts zu ermöglichen. Durch eine Beschränkung des Cr-Gehalts auf höchstens 0,9 Masse-% lässt sich dies besonders sicher gewährleisten.
  • Im Stahl eines erfindungsgemäßen Stahlflachprodukts ist mindestens eines der Mikrolegierungselemente Niob ("Nb"), Vanadium ("V") und Titan ("Ti") enthalten, um die Feinkörnigkeit und Festigkeit zu erhöhen. Die Summe der Gehalte an diesen Elementen beträgt dabei erfindungsgemäß 0,01 - 0,1 Masse-%. Der jeweils vorgesehene Gehalt an den Mikrolegierungselementen kann dabei von den Mikroelementen alleine eingenommen werden oder es können zwei oder drei der genannten Mikrolegierungselemente kombiniert vorhanden sein. Die positiven Einflüsse der Mikrolegierungselemente auf die mechanischen Eigenschaften eines erfindungsgemäßen Stahlflachprodukts lassen sich dabei besonders sicher nutzen, wenn die Summe an ihren Gehalten mindestens 0,01 Masse-% beträgt. Gleichzeitig sind die Gehalte an den Mikrolegierungselementen auf höchstens 0,1 Masse-%, insbesondere höchstens 0,05 Masse-%, beschränkt, um Ausscheidungen zu vermeiden und eine beschleunigte Rekristallisation zu ermöglichen.
  • Bor ("B") kann im Stahl eines erfindungsgemäßen Stahlflachprodukts optional in Gehalten von bis zu 0,0015 Masse-% vorhanden sein. Es steigert besonders stark die Härtbarkeit. Diese darf jedoch nicht zu hoch sein, um die Entstehung von ausreichenden Mengen an Ferrit im Gefüge eines erfindungsgemäßen Stahlflachprodukts zu ermöglichen. Negative Effekte der Anwesenheit von B können dadurch besonders sicher vermieden werden, dass der B-Gehalt auf höchstens 0,0008 Masse-% beschränkt wird.
  • Molybdän ("Mo") kann dem Stahl eines erfindungsgemäßen Stahlflachprodukts optional in Gehalten von weniger als 0,2 Masse-%, insbesondere weniger als 0,20 Masse-%, ebenfalls zugegeben werden, um die Härtbarkeit zu steigern. Hierzu können in der Praxis mindestens 0,01 Masse-% Mo vorgesehen sein. Eine unter Kosten/Nutzen-Aspekten besonders ausgewogene Legierung eines erfindungsgemäßen Stahls enthält bis zu 0,18 Masse-% Mo oder bis zu 0,1 Masse-% Mo, insbesondere bis zu 0,05 Masse-% Mo, insbesondere bis zu 0,021 Masse-%, wie in den Ausführungsbeispielen gezeigt, oder bis zu 0,018 Masse-% Mo.
  • Kupfer ("Cu") kann dem Stahl eines erfindungsgemäßen Stahlflachprodukts optional in Gehalten von weniger als 0,2 Masse-% ebenfalls zugegeben werden, um die Festigkeit weiter zu steigern (Ausscheidungs- und Mischristallverfestigung). Betriebssicher genutzt werden kann die positive Wirkung der Anwesenheit von Cu bei Gehalten von mindestens 0,1 Masse-% Cu.
  • Nickel ("Ni") kann dem Stahl eines erfindungsgemäßen Stahlflachprodukts optional in Gehalten von weniger als 0,2 Masse-% ebenfalls zugegeben werden, um die Festigkeit durch Ausscheidungs- und Mischristallverfestigung weiter zu steigern. Betriebssicher genutzt werden kann die positive Wirkung der Anwesenheit von Ni bei Gehalten von mindestens 0,1 Masse-% Ni.
  • Phosphor ("P") kann im erfindungsgemäßen Stahl ebenso optional in Gehalten von weniger als 0,05 Masse-% vorhanden sein, um die Festigkeit weiter zu erhöhen und das Umwandlungsverhalten zu steuern. Betriebssicher genutzt werden kann die positive Wirkung der Anwesenheit von P bei Gehalten von mindestens 0,002 Masse-% P.
  • Stickstoff ("N") zählt zu den unvermeidbaren Verunreinigungen, die durch den Herstellungsprozess bedingt im Stahl vorhanden sind. Im erfindungsgemäßen Stahl sind Gehalte von weniger als 0,01 Masse-% als unschädlich für die Eigenschaften zugelassen. Höhere Konzentrationen würden zu groben Ausscheidungen führen, welche sich negativ auf das Umformverhalten auswirken könnten.
  • Im Arbeitsschritt b) wird das aus einer entsprechend den voranstehenden Anmerkungen zusammengesetzten Schmelze in ansonsten konventioneller Weise gegossene Vorprodukt über eine Dauer, die typischerweise 60 - 960 min beträgt, bei einer Temperatur von 1150 - 1380 °C durcherwärmt. Die maximale Temperatur und die Dauer der Durcherwärmung sind dabei so zu bemessen, dass alle im Vorprodukt enthaltenen Karbide aufgelöst sind. Vorzugsweise liegt hierzu die Erwärmungstemperatur unterhalb von 1380 °C. Im Fall, dass eine konventionelle Bramme als Vorprodukt verarbeitet wird, hat sich eine Durcherwärmungsdauer von mindestens 60 min besonders bewährt, wobei eine Erwärmung über eine Dauer von maximal 8 h in der Praxis bei konventionellen Brammenabmessungen für die Durcherwärmung ausreicht. Die Untergrenze des erfindungsgemäß vorgegebenen Bereichs der Temperatur der Durcherwärmung beträgt mindestens 1150 °C, vorzugsweise mehr als 1200 °C, um die Bildung von Ausscheidungen und sonstigen unerwünschten Phasen im Gefüge des Vorprodukts zu verhindern.
  • Um im nachfolgend durchlaufenen Warmwalzprozess ein Stahlflachprodukt mit optimaler Oberflächenbeschaffenheit erzeugen zu können, kann das Vorprodukt erforderlichenfalls optional entzundert werden, bevor es in den Warmwalzprozess eingespeist wird.
  • Jedenfalls im Fall, dass das Vorprodukt eine Bramme ist wird das Vorprodukt bei Temperaturen von 1020 - 1150 °C auf eine Dicke von 30 - 50 mm vorgewalzt. Durch das Vorwalzen wird das Gussgefüge der Bramme kompaktiert, so dass beste Voraussetzungen für das nachfolgend absolvierte Fertig-Warmwalzen geschaffen sind. Handelt es sich bei dem Vorprodukt um eine Dünnbramme oder ein gegossenes Band, kann auf ein Vorwalzen verzichtet werden.
  • Das Warmwalzen des optional vorgewalzten Vorproduktes auf eine Dicke von 1,5 - 6,4 mm kann in konventioneller Weise in einem oder mehreren Schritten durchgeführt werden. Entscheidend ist dabei nur, dass die Warmwalzendtemperatur Twe, bei der das Warmwalzen beendet wird, mindestens gleich der Ar3-Temperatur des Stahls und höchstes um 200 °C höher als die Ar3 des Stahls ist, wobei Warmwalzendtemperaturen von 820 - 900 °C besonders praxisgerecht sind.
  • Die Ar3-Temperatur von Stählen der erfindungsgemäß verarbeiteten Art kann in konventioneller Weise experimentell ermittelt oder der in CHOQUET, P. et al.: Mathematical Model for Predictions of Austenite and Ferrite Microstructures in Hot Rolling Processes. IRSID Report, St. Germain-en-Laye, 1985. 7 p. angegebenen Formel (1) Ar 3 = 902 527 * % C 62 * % Mn + 60 * % Si
    Figure imgb0001

    mit %C = C-Gehalt, %Mn = Mn-Gehalt, %Si = Si-Gehalt, des Stahls
    in einer für die Erfindung ausreichenden Weise abgeschätzt werden.
  • Die Warmwalzendtemperatur ist dabei erfindungsgemäß so gewählt, dass möglichst ausschließlich in einem Temperaturbereich warmgewalzt wird, bei dem im warmgewalzten Stahlflachprodukt ein austenitisches Gefüge vorliegt. Hierzu kann die Warmwalzendtemperatur auf mindestens 820 °C eingestellt werden. Gleichzeitig liegt die Warmwalzendtemperatur um höchstens 200 °C, insbesondere weniger als 200 °C, oberhalb der Ar3-Temperatur, um die Ausprägung eines feinkörnigen Austenitgefüges zu unterstützen, in dem möglichst viele Keimstellen für die nachfolgende Ferritbildung vorliegen. Besonders geeignete Warmwalzendtemperaturen liegen demnach im Bereich von 820 - 900 °C.
  • Von besonderer Bedeutung für den Erfolg der Erfindung ist auch die Strategie der Abkühlung des durch das Warmwalzen erhaltenen Warmbands auf die jeweilige Haspeltemperatur. So muss die Kühlrate dT1 zwischen der Warmwalzendtemperatur und der Zwischentemperatur von Ar1 -50 °C mindestens 20 K/s betragen, damit ein Konzentrationsprofil von C im Austenit entsteht, der später zu Martensit umgewandelt wird. Dabei kann die Abkühlung mit der Kühlrate dT1 auch bis zu einer Zwischentemperatur fortgesetzt werden, die um 100 °C unterhalb der Ar1-Temperatur liegt (Zwischentemperatur = Ar1 - 100 °C).
  • Besonders geeignet sind hier Abkühlgeschwindigkeiten dT1 von mindestens 30 K/s. Nach oben ist die Abkühlrate dT1 in der Praxis aus Effizienzgründen auf 90 K/s, insbesondere auf höchstens 70 K/s, beschränkt. Durch die erfindungsgemäß gesteuerte Abkühlung bis zur Zwischentemperatur Tz wird die Abkühlgeschwindigkeit so gesteuert, dass einerseits ausreichend Ferrit gebildet und eine ausreichend hohe Diffusion von Kohlenstoff aus dem Ferrit in den angrenzenden Austenit ermöglicht wird, durch den der später den Saumbereich der Martensitinseln bildende Restaustenit mit Kohlenstoff angereichert wird. In diesem Temperaturbereich kann vor allem die C-Diffusion aus dem sich bildenden Ferrit in den angrenzenden Restaustenit erfolgen und hierin diffundieren.
  • Die Ar1-Temperatur kann in konventioneller Weise experimentell ermittelt oder nach der Formel (2) Ar 1 = 741 , 7 7 , 13 × % C 14 , 09 × % Mn + 16 , 26 × % Si + 11 , 54 × % Cr 49 , 69 × % Ni
    Figure imgb0002

    mit %C = C-Gehalt, %Mn = Mn-Gehalt, %Si = Si-Gehalt, %Cr = Cr-Gehalt und %Ni = Ni-Gehalt des Stahls abgeschätzt werden, die von LUTSENKO, A. et al. im Artikel "The Definition and Use of Technological Reserves - An Effective Way to Improve the Production Technology of Rolled Metal", erschienen in 9th International Rolling Conference, Associazione Italiana di Metallurgia, Venice, June 2013, 8 p., angegeben worden ist.
  • Durch die erfindungsgemäß gesteuerte Abkühlung wird im Gefüge eines erfindungsgemäßen Stahlflachprodukts inselartig vorliegender Martensit erhalten, der über sein Volumen eine inhomogene Verteilung des Kohlenstoffgehalts besitzt. Trotz Anlassens bleibt die inhomogene C-Verteilung bestehen. Die Martensitränder zeigen einen sehr hohen C-Gehalt, welcher in der FE-Mikrosonde gut zu detektieren. ist. Dieser Saum mit erhöhter C-Konzentration weist typischerweise eine Breite von 10 nm - 1 µm auf, wobei seine Breite auch bis zu 1/3 des Durchmessers der Martensitinsel betragen kann.
  • Die zum Randbereich ansteigende Kohlenstoffkonzentration erstreckt sich bei einem erfindungsgemäßen Stahlflachprodukt um mindestens 30 % des Umfangs der Martensitinseln und liegt insbesondere nicht nur bei mindestens 10 %, sondern bei mindestens 70 % aller Martensitinseln vor. Dabei ist das erfindungsgemäß erzeugte Profil der C-Konzentration an allen Martensitinseln zu beobachten, die einen Durchmesser (Hälfte der kürzesten Länge + längste Länge in Fig 1. an der Martensitinsel (M)) von > 3 µm aufweisen.
  • Der Saum, in dem ein höherer C-Gehalt vorliegt als im Mittenbereich der jeweiligen Martensitinsel, kann, wie in Anspruch 9 angegeben, in Summe auch mindestens 50 % des Umfangs der betreffenden Martensitinsel einnehmen.
  • Der erfindungsgemäß in den Martensitinseln des Gefüges erzeugte C-Gradient steigert die Lochaufweitung HER, da die Entstehung von großen, bezüglich der Kohlenstoffverteilung homogenen MartensitinseIn verhindert wird, die die Scherspannung in einer ferritischen Matrix erhöhen und damit die Lochaufweitung minimieren würde. Zudem werden durch den erfindungsgemäß zwischen der Ferrit-Matrix und der jeweiligen Martensitinsel vorhandenen Restaustenit sanftere Übergänge zwischen der weichen Ferrit-Matrix und den harten MartensitinseIn erzielt bzw. die Verformung in Teilbereichen der Martensitinsel erleichtert. Durch die C-Verteilung können sich Bereiche im Martensit bei einer äußeren Belastung bereits frühzeitiger umformen, durch die für die Lochaufweitung HER schädliche steile Härtesprünge reduziert werden. Dennoch bleibt eine hohe Verfestigung des Gefüges auf Grund der Härteunterschiede bestehen. Somit erhält man bei hohen Festigkeitswerten eine gute Dehnung in Kombination mit guten Löchaufweitungswerten HER.
  • Die weitere Kühlstrategie fördert untergeordnet die vorteilhaften Produkteigenschaften: Nachdem die Zwischentemperatur Tz erreicht ist, wird in einem zweiten Abschnitt der Abkühlung die Abkühlgeschwindigkeit im Temperaturbereich bis zur Märtensitstarttemperatur TMS so gesteuert, dass die Diffusionslänge von C in Austenit möglichst begrenzt bleibt. Die Martensitstarttemperatur TMS kann in konventioneller Weise experimentell bestimmt oder gemäß der von S.M.C. Van Bohemen im Artikel "Bainite and martensite start temperature calculated with exponential carbon dependence", Mater. Sci. Technol. 28 (2012) 487-495, veröffentlichten Formel (3) T MS = 565 600 × 1 EXP 0 , 96 × % C 31 × % Mn 13 × % Si 10 × % Cr 12 × % Mo
    Figure imgb0003

    mit %C = C-Gehalt, %Mn = Mn-Gehalt, %Si = Si-Gehalt, %Cr = Cr-Gehalt und %Mo = Mo-Gehalt des Stahls
    abgeschätzt werden.
  • Gemäß einer ersten Variante des zweiten Abschnitts der Abkühlung wird das Warmband ausgehend von der Zwischentemperatur Tz mit einer Abkühlrate dT2' von mindestens 5 K/s, insbesondere mehr als 5 K/s oder mindestens 20 K/s abgekühlt, bis die Martsitstarttemperatur TMS erreicht ist. Dabei ist die Abkühlgeschwindigkeit dT2' bei dieser Variante auf höchstens 100 K/s begrenzt, um zu gewährleisten, dass eine Diffusion von Kohlenstoff aus dem zuvor gebildeten Ferrit in den angrenzenden Austenit stattfinden kann.
  • Dies kann besonders sicher gewährleistet werden, indem die Abkühlrate dT2' auf höchstens 70 K/s beschränkt wird. Besonders praxisgerecht ist es somit, wenn die Abkühlrate dT2' 20 - 70 K/s beträgt.
  • Gemäß der zweiten Variante des zweiten Abschnitts der Abkühlung wird die Kühlung bis zur Martensitstarttemperatur TMS mit einer Abkühlrate dT2" von 10 - 130 K/s absolviert. Eine Abkühlrate dT2" von mindestens 10 K/s, insbesondere mindestens 30 K/s, begrenzt zudem die Kohlenstoffdiffusion aus dem Ferrit in den Austenit. Die Diffusion einer ausreichenden Menge an Kohlenstoff kann dadurch unterstützt werden, dass die Kühlung bei einer Kühlstopptemperatur von 550 - 700 °C für bis zu 5 s unterbrochen wird. Besonders praxisgerecht ist hier eine Pause, die mindestens 1 s beträgt. Gleichzeitig sollte hier die Abkühlrate dT2" höchstens 130 K/s, insbesondere weniger als 100 K/s, betragen, um eine ausreichende C-Diffusionslänge in den Austenit überhaupt zu ermöglichen. Dies kann dadurch besonders sicher gewährleistet werden, dass die Abkühlrate dT2" auf höchstens 80 K/s beschränkt wird. Besonders praxisgerecht ist es somit, wenn die Abkühlrate dT2" 30 - 80 K/s beträgt.
  • Der dritte Abschnitt der Abkühlung, in dem das warmgewalzte Stahlflachprodukt nach Erreichen der Martensitstarttemperatur TMS auf die Haspeltemperatur abgekühlt wird, ist unkritisch und kann mit einer Abkühlrate an ruhender Luft erfolgen. Die Haspeltemperatur HT ist dabei geringer als die Martensitstarttemperatur und kann bis zur Raumtemperatur reichen. In der Praxis liegt die Haspeltemperatur HT typischerweise in einem Bereich, der von der Raumtemperatur bis 100 °C reicht, insbesondere 20 - 80 °C beträgt.
  • Das so abgekühlte warmgewalzte Stahlflachprodukt wird zu einem Coil gehaspelt. Im Fall, dass die Haspeltemperatur HT oberhalb der Raumtemperatur liegt, wird das Stahlflachprodukt abschließend im Coil auf Raumtemperatur abgekühlt.
  • Schon der erfindungsgemäß eingestellten niedrigen Haspeltemperatur kommt eine besondere Bedeutung zu. Sie ermöglicht dem im warmgewalzten Stahlflachprodukt enthaltenen Kohlenstoff (C) noch kurze Wege, um im letzten Abkühlschritt der Warmbandfertigung zu diffundieren. Die Löslichkeit von Kohlenstoff in alpha-Fe ist sehr gering. Deshalb wandert dieser aus den Zentren der aus frisch gebildetem Martensit gebildeten Inseln heraus in Richtung von deren Rändern. Hier wiederum erschweren angrenzende Phasen, wie Ferrit und Bainit die weitere Diffusion. Bei vielen MartensitinseIn ist deshalb in deren Randbereich aufgrund der dort vorliegenden hohen Konzentrationen an Kohlenstoff ein die Martensitinseln zumindest abschnittsweise umgrenzender Saum aus Restaustenit vorhanden. Dieser Saum kann mittels einer FE-REM-Mikrosondenanalyse überprüft werden. Auch zeigen sich innere Spannungen innerhalb der Martensitkörner, die durch EBSD-Messungen ermittelt werden können und bei erfindungsgemäßen Stahlflachprodukten viel höher sind als bei konventionellen Warmbändern mit korrespondierender Zusammensetzung (FIG 3). Die EBSD Messungen wurden entsprechend denen bei H. Farivar et al. im Artikel "Experimental quantification of carbon gradients in martensite and its multi-scale effects in a DP steel", MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 718 (2018) 250-259 beschriebenen Verfahren durchgeführt.
  • Grundlage für die verbesserte Zugfestigkeit und Dehnung bei einem erfindungsgemäßen Stahlflachprodukt sind die in seinem Gefüge enthaltenen unterschiedlichen Phasen und die damit einhergehende hohe Verfestigung sowie die durch die spezielle C-Verteilung in den Martensitinseln und die damit einhergehende Ausprägung von Restaustenitsäumen erzielte Reduzierung der Scherspannungen gegenüber reinen Dualphasengefügen, die zu optimierten Lochaufweitungswerten HER führen.
  • Die bereits bei der Abkühlung von der Haspeltemperatur HT auf die Raumtemperatur (∼20 °C) stattfindenden Anlassprozesse führen zu kürzeren Inkubationszeiten, da bereits ein erhöhter Anteil von gelöstem Kohlenstoff vorliegt. Dies ist aus einer Veröffentlichung von Waterschoot zu entnehmen (T. Waterschoot, A.K. De, S. Vandeputte, D.B. Coomann, Static Strain Aging Phenomena in Cold-Rolled Dual-Phase Steels, Metall. and Mat. Trans. A (2003) 781). Da Inkubationstemperatur und Zeit meist über die Diffusion verknüpft sind, sind auch geringere Inkubationstemperaturen für die erfindungsgemäß nach dem Haspeln und der Abkühlung im Coil durchgeführte weitere Anlassbehandlung (Arbeitsschritte g), h)) notwendig.
  • Hierbei wird das erfindungsgemäß warmgewalzte Stahlflachprodukt bei einer Anlasstemperatur von 150 - 500 °C, insbesondere 150 - 400 °C, für eine Anlassdauer von 4 - 16 h unter einer inerten bzw. reduzierenden Atmosphäre gehalten. Typischerweise wird dazu ein konventioneller Haubenglühofen eingesetzt, in den das warmgewalzte Stahlflachprodukt als Coil eingesetzt wird.
  • Nach dem Anlassen erfolgt die Abkühlung des angelassenen Stahlflachprodukts mit einer Abkühlgeschwindigkeit von 4 - 700 K/h auf Raumtemperatur.
  • Durch diese Anlassbehandlung wird der durch die Anwesenheit des insbesondere aus Restaustenit bestehenden Saums zwischen dem harten Martensit und dem weichen Ferrit an sich schon abgemilderte Härtegradient weiter gemindert (Reduzierung der Martensit-Festigkeit und eventuell Aufhärten der Ferrit-Phasen durch Karbidausscheidungen). So wird z.B. der Kohlenstoff im Gefüge durch die erfindungsgemäße Anlassbehandlung stärker verteilt. Dies wiederum hat zur Folge, dass sich der Saum mit angereichertem C-Gehalt verbreitert und damit einhergehend scharfe Härtegradienten zwischen den Martensit- und Ferrit-Anteilen des Gefüges abgeschwächt werden.
  • Der im Gefüge eines erfindungsgemäßen Stahlflachprodukts in Anteilen von typischerweise mehr als 30 Vol.-% vorhandene verfestigte Ferrit unterstützt zudem ein beschleunigtes Anlassen, da Versetzungen schnelle Diffusionswege darstellen. Auch diese finden sich in den zur Erfindung gehörenden Warmbändern.
  • Die erfindungsgemäße Anlassbehandlung führt zu einer Zunahme der Lochaufweitung HER um mindestens 9 %, insbesondere mindestens 10 %, gegenüber der Lochaufweitung HER, die für ein erfindungsgemäßes warmgewalztes Stahlflachprodukt nach dem Haspeln und der Abkühlung im Coil erreicht werden (Arbeitsschritte g) und h)). Dies gilt bereits bei niedrigen Anlasstemperaturen und niedrigen Ferrit-Anteilen im Gefüge des jeweiligen Stahlflachprodukts. Die im Gefüge eines erfindungsgemäßen Stahlflachprodukts vorhandenen Ferrit-Anteile ermöglichen vergleichbar kurze Anlassdauern, die durch höhere Anteile an Ferrit weiter verkürzt werden können. So kann bei Ferrit-Anteilen von 70 Vol.-% eine Steigerung der nach dem Haspeln und Abkühlen ohnehin schon hohen, typischerweise mindestens 20 % betragenden Lochaufweitung HER, um weitere mindestens 15 % erreicht werden.
  • So erreicht ein erfindungsgemäßes Stahlflachprodukt Zugfestigkeiten Rm, Lochaufweitungen HER und Gleichmaßdehnungen Ag, deren Produkt Rm x HER x Ag regelmäßig mindestens 300.000 MPa%2, insbesondere mindestens 330.000 MPa%2, beträgt.
  • Die Zugfestigkeit Rm eines erfindungsgemäßen warmgewalzten Stahlflachprodukts erreicht dabei regelmäßig Werte von mindestens 530 MPa, die Lochaufweitung HER regelmäßig Werte von mindestens 30 % und die Gleichmaßdehnung Ag regelmäßig Werte von mindestens 8 %
  • Das Streckgrenzenverhältnis Rp/Rm beträgt bei einem erfindungsgemäßen warmgewalzten Stahlflachprodukt regelmäßig mindestens 0,6, wobei typischerweise Streckgrenzenverhältnisse Rp/Rm von mindestens 0,65 erreicht werden.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Es zeigen:
  • Fig. 1
    eine Fe-Mikrosonde (C-Verteilung), erstellt am Warmband W1 (angelassen bei 400 °C für 10 h);
    Fig. 2
    eine Fe-REM Aufnahme, erstellt am Stahl W1 (angelassen bei 400 °C für 10 h);
    Fig. 3
    eine KAM 15° Analyse am Martensit, hier am Stahl W1 (angelassen bei 400 °C für 10 h).
  • Zur Erprobung der Erfindung sind fünf den Maßgaben der Erfindung entsprechend zusammengesetzte Schmelzen E1 - E5 erschmolzen worden, deren Zusammensetzungen in Tabelle 1 angegeben sind.
  • Darüber hinaus sind in Tabelle 1 für die Schmelzen E1 - E5 die gemäß den voranstehend erläuterten Formeln (1) - (3) abgeschätzten Martensitstarttemperaturen TMS, Ar3-Temperaturen und Ar1-Temperaturen verzeichnet.
  • Die Schmelzen E1 - E5 sind auf konventionelle Weise zu Brammen vergossen worden, die jeweils bei 1150 - 1380 °C über einer Dauer von 60 min durcherwärmt worden sind.
  • Die so durcherwärmten Brammen sind einem Vorwalzen unterzogen worden, bei dem sie im Temperaturbereich von 1020 - 1150 °C zu jeweils einem Vorband mit einer Dicke von 30 - 50 mm warm vorgewalzt worden sind.
  • Die so vorgewalzten Brammen sind in sieben Stichen in konventioneller Weise zu warmgewalzten Bändern ("Warmband") WV und W1 - W11 mit einer Dicke Dw fertig warmgewalzt worden. Beim Verlassen des letzten Stichs des Warmwalzens wiesen die Warmbänder WV und W1 - W11 eine Warmwalzendtemperatur ET auf, die jeweils oberhalb der Ar3-Temperatur des Stahls E1 - E5 lag, aus dem die Warmbänder WV und W1 - W11 jeweils bestanden.
  • Nach dem Warmwalzen sind die erhaltenen Warmbänder WV und W1 - W11 ausgehend von ihrer jeweiligen Warmwalzendtemperatur ET mit einer Abkühlrate dT1 auf eine Zwischentemperatur Tz abgekühlt worden, die 50 °C unterhalb der Ar1-Temperatur des Stahls E1 - E5 lag, aus dem die Warmbänder WV und W1 - W11 jeweils bestanden.
  • Nach Erreichen der Zwischentemperatur Tz sind die Warmbänder WV, W1, W3 bis W8, W10 und W11 jeweils mit einer Abkühlrate dT2' bis zur Martensitstarttemperatur TMS des Stahls abgekühlt worden.
  • Die Warmbänder W2 und W9 sind dagegen zunächst mit einer Abkühlrate dT2" auf eine Kühlstopptemperatur Tsp, bei der sie über jeweils eine Haltedauer tH gehalten worden sind, und dann auf die Martensitstarttemperatur TMS des Stahls und Raumtemperatur abgekühlt worden.
  • Ausgehend von der Martensitstarttemperatur TMS sind die Warmbänder WV und W1 - W11 dann an ruhender Luft bis zur jeweiligen Haspeltemperatur HT abgekühlt worden, bei der sie zu einem Coil gehaspelt worden sind. Im Coil erfolgte schließlich die Abkühlung auf Raumtemperatur.
  • Für die so erhaltenen Warmbänder WV und W1 - W11 sind die Dicke Dw, sowie die bei ihrer Erzeugung eingestellten Warmwalzendtemperaturen ET, Abkühlraten dT1, Abkühlraten dT2', Abkühlraten dT2" und Haspeltemperaturen HT in Tabelle 2 verzeichnet.
  • Während bei den Warmbändern VW und W1 bis W4 sowie W6 bis W11 die Maßgaben der Erfindung eingehalten worden sind, waren bei der Abkühlung des Warmbands WV nach dem Warmwalzen die Abkühlgeschwindigkeiten zu gering und die Haspeltemperatur HT zu hoch und beim Abkühlen des Warmbands W5 die Abkühlrate dT1 zu gering.
  • Für die Warmbänder WV und W1 - W11 sind die Zugfestigkeit Rm, die Streckgrenze Re, die Gleichmaßdehnung Ag, die Dehnung A50, die Dehnung A80 und die Lochaufweitung HER bestimmt worden. Die betreffenden Eigenschaften sowie das Produkt Rm x λ x Ag und das Verhältnis Re/Rm sind für die Warmbänder WV und W1 - W11 in Tabelle 3 verzeichnet.
  • Für die Warmbänder WV und W1 - W11 sind des Weiteren die Martensit-, Ferrit-, Bainit-, Perlit- und Restaustenit-Anteile des Gefüges bestimmt worden. Hier ergab sich für das nicht erfindungsgemäß abgekühlte Warmband W5 ein unerwünschter Perlit-Anteil des Gefüges von 15 Vol.-%.
  • Darüber hinaus sind für einige der Warmbänder WV und W1 - W11 die Martensit- und Restaustenitkorngrößen sowie die Breite Bras des Restaustenitsaums bestimmt worden, der die Martensitinseln im Gefüge der Warmbänder WV und W1 - W11 umgab.
  • Die betreffenden Werte sind in Tabelle 4 verzeichnet. Die nicht erfindungsgemäß erzeugten Warmbänder WV und W5 wiesen demnach eine Gefügezusammensetzung auf, die nicht den Anforderungen der Erfindung genügt.
  • Es zeigt sich, dass die erfindungsgemäß erzeugten und nach Maßgabe der Erfindung legierten Warmbänder W1 - W11 zuverlässig hohe mechanische Kennwerte Rm, Re, Ag, A50, A80 und HER aufweisen, die zu hohen Werten für das Produkt Rm x HER x Ag von jeweils mehr als 200.000 MPa%2 führen. Das nicht erfindungsgemäß erzeugte Warmband WV blieb jedoch hinter dieser Grenze zurück.
  • Nach der Abkühlung im Coil sind die Warmbänder in einem konventionellen Haubenofen einer Anlassbehandlung unterzogen worden, bei der sie jeweils über eine Anlassdauer tAN bei einer Anlasstemperatur TAn unter einer inerten oder reduzierenden Atmosphäre gehalten worden sind. Die betreffenden Parameter sind in Tabelle 5 verzeichnet.
  • An den so angelassenen Warmbändern WV - W11 sind die Zugfestigkeit Rm, die Gleichmaßdehnung Ag, die Dehnung A50 und die Lochaufweitung HER sowie das Produkt Rm x HER x Ag und der %-Anstieg delta HER bestimmt worden, um den die nach dem Anlassen ermittelte Lochaufweitung HER gegenüber der Lochaufweitung HER zugenommen hat; die das jeweilige Warmband WV und W1 - W11 nach dem Abkühlen im Haspel, aber vor dem Anlassen aufwies. Die betreffenden Daten sind ebenfalls in Tabelle 5 angegeben. Es zeigt sich, dass die Anlassbehandlung jeweils zu einer beträchtlichen Zunahme der Lochaufweitung HER und des Produkts Rm x HER x Ag geführt hat, womit klar ist, dass durch die erfindungsgemäße Art und Weise ein warmgewalztes Stahlflachprodukt erzeugt werden kann, dass überlegene mechanische Eigenschaften besitzt.
  • Die Erfindung stellt somit ein Verfahren zur Herstellung eines warmgewalzten Stahlflachprodukts mit einem Gefüge aus (in Vol.-%) 4 - 50 % angelassenem, inselförmigen Martensit, 30 - 96 % Ferrit, < 10 % Restaustenit, Rest ≤ 66 % Bainit oder bainitischem Ferrit zur Verfügung. Dabei wird (a) eine Stahlschmelze aus, in Masse-%, C: 0,05 - 0,15 %, Si: < 0,5 %, Mn: 0,7 - 2,1 %, Al: < 0,1 %, Cr: 0,2 - 1 %, in Summe 0,01 - 0,1 % Nb, Ti oder V, B: < 0,0015 %, Mo: < 0,2 %, Cu: < 0,2 %, Ni: < 0,2 %, P: < 0,05 %, N: < 0,01 % und als Rest aus Fe und ≤ 0,1 % Verunreinigungen, zu einem Vorprodukt vergossen, das (b) bei 1150 -1380 °C durcherwärmt, (c) optional entzundert und (d), falls erforderlich, bei 1020 - 1150 °C auf 30 - 50 mm vorgewalzt wird. Dann wird es zu einem 1,4 - 6,4 mm dicken Band mit einer Warmwalzendtemperatur ET warmgewalzt, für die gilt Ar3 ≤ ET ≤ 200 °C + Ar3-Temperatur des Stahls. Es folgt (f) eine Abkühlung auf eine Haspeltemperatur HT, für die gilt Martensitstarttemperatur TMS des Stahls > HT ≥ Raumtemperatur RT, wobei die Abkühlung von ET bis zu einer Zwischentemperatur Tz, für die gilt Tz < Ar1 - 50 °C, mit ≥ 20 K/s erfolgt. Nach Erreichen von Tz wird das Band entweder zwischen TMS und RT mit 5 - 100 K/s gekühlt oder mit 10 - 130 K/s auf eine Kühlstopptemperatur Tsp von 550 - 770 °C, bei der das Warmband optional für ≤ 5 s gehalten wird, und dann auf eine zwischen Tsp und RT liegende Haspeltemperatur HT abgekühlt. Das Warmband wird bei HT gehaspelt, dann weiter abgekühlt oder gehalten, (g) für 4 - 16 h bei 150 - 500 °C angelassen und (h) mit 4 - 700 K/h auf RT abgekühlt. Tabelle 1: Chemische Analysen, *) nicht erfindungsgemäß
    Stahl Angaben in Masse-%, Rest Eisen und unvermeidbare Verunreinigungen °C
    C Si Mn P S Al Cr Mo N Ti+Nb+V B TMS Ar3 Ar1
    E1* 0,08 0,6 1,7 0,009 0,0014 0,04 0,3 0,018 0,0048 0,124 0,0002 456 788 730
    E2 0,08 0,11 1,0 0,009 0,0008 0,027 0,5 0,021 0,005 0,044 0,0002 485 807 735
    E3 0,07 0,06 1,0 0,003 0,0007 0,035 0,4 0,012 0,0087 0,038 0,0001 489 806 733
    E4 0,12 0,30 1,7 0,003 0,0007 0,036 0,8 0,014 0,0051 0,044 0,0002 435 751 731
    E5 0,14 0,10 1,0 0,003 0,0006 0,033 0,4 0,01 0,0052 0,038 0,0001 455 774 733
    Tabelle 2 Produktionsparameter Haubenglühe, *) nicht erfindungsgemäß
    Warmband Stahl Dicke Ofen-temperatur Liegezeit Vorbandstich Vorbanddicke ET HT dT1 dT2' dT2" Tsp tH
    [mm] [°C] [min] [°C] [mm] [°C] [K/s] [K/s] [°C [s]
    WV* E1* 3,2 1240 130 1030 41 820 520 30 2
    W1 E2 4 1260 140 1080 40 860 60 40 50 690 2
    W2 E2 2 1280 240 1140 41 850 50 35 30
    W3 E2 1,5 1260 130 1130 42 850 30 30 40
    W4 E2 2 1230 150 1050 46 910 50 135 50
    W5* E3 1,6 1180 160 1040 47 850 30 2 30
    W6 E3 1,6 1290 120 1140 44 860 50 51 60
    W7 E3 2 1260 145 1130 43 855 90 62 40
    W8 E3 3 1230 165 1110 42 900 30 30 40
    W9 E4 1,5 1260 125 1130 41 860 40 80 70 675 3
    W10 E4 2 1250 135 1125 42 850 80 31 30
    W11 E5 3,4 1270 140 1120 38 860 40 42 30
    Tabelle 3,
    Warmband Stahl Dicke Re Rm Re/Rm Ag A50 HER Rm*HER*Ag
    [mm] [MPa] [%] MPa*%2
    WV* E1 3,2 762 856 0,89 7,9 15,5 26 175822
    W1 E2 4 501 702 0,71 12,6 20,7 34 300737
    W2 E2 2 474 711 0,67 12,4 19,4 38 335023
    W3 E2 1,5 562 752 0,75 11,8 18,5 31 275082
    W4 E2 2 750 934 0,80 12,4 15,2 15 173724
    W5* E3 1,6 390 590 0,66 12 20,5 41 290280
    W6 E3 1,6 438 652 0,67 11,8 20,0 48 369293
    W7 E3 2 401 612 0,66 12,6 20,6 56 431827
    W8 E3 3 480 687 0,70 11,5 18,4 45 355523
    W9 E4 1,5 750 1014 0,74 8,5 13,4 25 215475
    W10 E4 2 689 975 0,71 9,1 13,9 27 239558
    W11 E5 3,4 508 804 0,63 10,3 20,8 30 248436
    *) nicht erfindungsgemäß
    Tabelle 4,
    Warmband Stahl Martensit Ferrit Bainit Perlit RA Breite RA-Saum
    Vol.-% µm
    WV* E1 5 10 75 5 2 -
    W1 E2 12 83 5 - 2 0,3
    W2 E2 15 80 5 - 2 -
    W3 E2 20 75 0 - 2 0,3
    W4 E2 30 65 5 - 3 n.b.
    W5* E3 5 80 15 0 -
    W6 E3 15 80 5-10 <1 1,5 0,4
    W7 E3 10 85 5 1,5 -
    W8 E3 15 85 - 1,5 -
    W9 E4 35 60 5 - 1 0,9
    W10 E4 35 65 - - <1 -
    W11 E5 25 75 5 - 1,0 -
    *) nicht erfindungsgemäß
    Tabelle 5,
    Warmband Stahl Dicke TAN tAN Re Rm Re/Rm Ag A50 HER Delta HER Rm*HER* Ag
    [mm] [°C] [h] [MPa] [%] [MPa*%2]
    WV* E1 3,2 300 6 788 875 0,90 8 16,7 38 12 266000
    W1 E1 4 150 8 508 705 0,72 11,3 22,9 58 24 462057
    W1 E2 4 200 12 518 699 0,74 11,8 24,1 58 24 478396
    W1 E2 4 400 10 557 649 0,86 9,3 22,7 102 68 615641
    W2 E2 2 150 15 480 709 0,68 13,1 22,1 53 15 492259
    W2 E2 2 250 13 558 692 0,81 12,3 22,1 63 25 536231
    W2 E2 2 400 6 573 658 0,87 10,7 22,1 103 65 725182
    W2 E2 2 250 12 565 734 0,81 11,7 18,4 52 14 446566
    W2 E2 2 400 9 589 721 0,87 10,5 18,1 98 60 741909
    W6 E3 2,9 150 14 439 651 0,67 12 23,1 73 25 570276
    W6 E3 2,9 200 20 494 640 0,77 13,4 23,5 76 28 651776
    W6 E3 2,9 250 8 516 628 0,82 13,1 25,4 84 36 691051,2
    W6 E3 2,9 400 5 493 576 0,86 11,5 27,1 112 64 741888
    W9 E3 2 300 11 832 1005 0,83 8,4 13,3 68 43 574056
    W9 E4 2 400 7 812 945 0,86 8,5 13,1 78 53 626535
    W11 E4 2 300 12 632 789 0,80 10,2 19,5 52 22 418485,6
    *) nicht erfindungsgemäß

Claims (16)

  1. Verfahren zur Herstellung eines warmgewalzten Stahlflachprodukts mit einem Gefüge, das zu 4 - 50 Vol.-% aus angelassenem, inselförmig vorliegendem Martensit, und zu 30 - 96 Vol.-% aus Ferrit besteht, wobei der jeweils nicht durch Martensit und Ferrit eingenommene Anteil des Gefüges aus bis zu 66 Vol.-% Bainit und/oder bainitischem Ferrit und weniger als 10 Vol.-% Restaustenit besteht, umfassend folgende Arbeitsschritte:
    a) Vergießen einer Stahlschmelze zu einem Vorprodukt in Form einer Bramme, Dünnbramme oder eines gegossenen Bandes, wobei die Schmelze aus, in Masse-%, C: 0,05 - 0,15 %, Si: < 0,5 %, Mn: 0,7 - 2,1 %, Al: < 0,1 %, Cr: 0,2 - 1 %,
    mindestens einem Element der Gruppe "Nb, Ti, V" mit der Maßgabe, dass die Summe der Gehalte an Nb, Ti und / oder V 0,01 - 0,1 % beträgt, B: < 0,0015 %, Mo: < 0,2 %, Cu: < 0,2 %, Ni: < 0,2 % P: < 0,05 % N: < 0, 01 %
    und als Rest aus Fe und in Summe höchstens 0,1 Masse-% unvermeidbaren Verunreinigungen besteht;
    b) Durcherwärmen des Vorprodukts bei einer Temperatur von 1150 - 1380°C;
    c) optional: Entzundern des Vorprodukts;
    d) im Fall, dass das Vorprodukt eine Bramme ist: Vorwalzen des Vorprodukts bei Temperaturen von 1020 - 1150 °C auf eine Dicke von 30 - 50 mm
    e) Warmwalzen des optional vorgewalzten Vorproduktes in einem oder mehreren Walzstichen zu einem warmgewalzten Band mit einer Dicke von 1,4 - 6,4 mm, wobei die Warmwalzendtemperatur ET, bei der das Warmwalzen beendet wird, mindestens gleich der Ar3-Temperatur des Stahls und höchstens um 200 °C höher als die Ar3-Temperatur des Stahls ist;
    f) Abkühlen des erhaltenen Warmbands auf eine Haspeltemperatur HT, die in einem Bereich liegt, welcher unterhalb der Martensitstarttemperatur TMS des Stahls beginnt und bei Raumtemperatur endet,
    - wobei die Abkühlgeschwindigkeit dT1 in einem Temperaturbereich, der von der Warmwalzendtemperatur ET bis zu einer Zwischentemperatur Tz reicht, die 50 °C unterhalb der Ar1-Temperatur des Stahls liegt, mindestens 20 K/s beträgt,
    - wobei nach Erreichen der Zwischentemperatur Tz
    - gemäß einer ersten Variante das Warmband mit einer Abkühlrate dT2' von 5 - 100 K/s abgekühlt wird, bis die Martensitstarttemperatur TMS des Stahls erreicht ist,
    oder
    - gemäß einer zweiten Variante das Warmband mit einer Abkühlrate dT2" von jeweils 10 - 130 K/s zunächst auf eine Kühlstopptemperatur Tsp, die im Bereich 550 - 770 °C liegt und bei der das Warmband optional über eine bis zu 5 s dauernde Haltedauer tH gehalten wird, und anschließend auf die Martensitstarttemperatur TMS des Stahls abgekühlt wird,
    und
    - wobei das Warmband anschließend auf die Haspeltemperatur abgekühlt wird,
    und
    - das so abgekühlte Warmband zu einem Coil gehaspelt wird, wobei im Fall, dass die Haspeltemperatur HT oberhalb der Raumtemperatur liegt, das Stahlflachprodukt abschließend im Coil auf Raumtemperatur abgekühlt wird;
    g) Anlassen des warmgewalzten Stahlflachprodukts über eine Anlassdauer tAN von 4 - 16 h bei einer Anlasstemperatur Tan von 150 - 500 °C unter einer reduzierenden oder inerten Atmosphäre
    h) Abkühlen des angelassenen Stahlflachprodukts mit einer Abkühlgeschwindigkeit von 4 - 700 K/h auf Raumtemperatur.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Warmwalzendtemperatur ET 820 - 900 °C und die Abkühlgeschwindigkeit dT1 höchstens 70 K/s beträgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Abkühlgeschwindigkeit dT1 mindestens 30 K/s beträgt.
  4. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass bei der gemäß der ersten Variante erfolgenden Abkühlung (Arbeitsschritt f)) die Abkühlrate dT2' =20 - 70 K/s beträgt.
  5. Verfahren nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass bei der gemäß der zweiten Variante erfolgenden Abkühlung (Arbeitsschritt f)) die Abkühlrate dT2" =30 - 80 K/s beträgt.
  6. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Haspeltemperatur HT in einem Bereich liegt, der von der Raumtemperatur bis 100 °C reicht.
  7. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Anlasstemperatur 150 - 400 °C beträgt.
  8. Warmgewalztes Stahlflachprodukt mit einer Lochaufweitung HER von mindestens 30 %, wobei das warmgewalzte Stahlflachprodukt ein Stahlsubstrat aufweist,
    - das aus, in Masse-%, C: 0,05 - 0,15 %, Si: < 0,5 %, Mn: 0,7 - 2,1 %, Al: < 0,1 %, Cr: 0,2 -1 %, mindestens einem Element der Gruppe "Nb, Ti, V" mit der Maßgabe, dass die Summe der Gehalte an Nb, Ti und / oder V 0,01 - 0,1 % beträgt, B: < 0,0015 %, Mo: < 0,2 %, Cu: < 0,2 %, Ni: < 0,2 %, P: < 0,05 %, N: < 0,01 % und als Rest aus Fe und in Summe höchstens 0,1 Masse-% unvermeidbaren Verunreinigungen besteht
    und
    - dessen Gefüge zu 4 - 50 Vol.-% aus angelassenem, inselförmig im Gefüge vorliegendem Martensit, bei dem mindestens 10 % der Martensitinseln an ihrem Umfang mindestens abschnittsweise von einem Saum umgrenzt sind, und zu 30 - 96 Vol.-% aus Ferrit besteht, wobei der nicht durch Martensit und Ferrit eingenommene Anteil aus bis zu 66 Vol.-% Bainit oder bainitischem Ferrit und weniger als 10 Vol.-% Restaustenit besteht und wobei der C-Gehalt des Saums zumindest in einem Abschnitt höher ist als der C-Gehalt des Mittenbereichs der Martensitinsel.
  9. Stahlflachprodukt nach Anspruch 8, dadurch gekennzeichnet, dass der Saum, in dem ein höherer C-Gehalt vorliegt als im Mittenbereich der jeweiligen Martensitinsel, in Summe mindestens 50 % des Umfangs der betreffenden Martensitinsel einnimmt.
  10. Stahlflachprodukt nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass bei allen Martensitinseln mit einem mittleren Durchmesser von mehr als 3 µm mindestens in einem Abschnitt ihrer Randbereiche ein höherer C-Gehalt vorhanden ist, an im Mittenbereich der jeweiligen Martensitinsel.
  11. Stahlflachprodukt nach Anspruch 8 bis 10, dadurch gekennzeichnet, dass der Saum Restaustenit und/oder Martensit umfasst.
  12. Stahlflachprodukt nach Anspruch 11, dadurch gekennzeichnet, dass die Breite des Saums 10 nm bis 1 µm beträgt.
  13. Stahlflachprodukt nach einem der Ansprüche 8 - 12, dadurch gekennzeichnet, dass das aus seiner Zugfestigkeit Rm, seiner Lochaufweitung HER und seiner Gleichmaßdehnung Ag gebildete Produkt Rm x HER x Ag mindestens 300.000 MPa%2 beträgt.
  14. Stahlflachprodukt nach Anspruch 8 - 13, dadurch gekennzeichnet, dass seine Zugfestigkeit Rm mindestens 530 MPa beträgt.
  15. Stahlflachprodukt nach einem der Ansprüche 8 - 14, dadurch gekennzeichnet, dass seine Lochaufweitung HER mindestens 30 % beträgt.
  16. Stahlflachprodukt nach einem der Ansprüche 8 - 15, dadurch gekennzeichnet, dass seine Gleichmaßdehnung Ag mindestens 5 % beträgt.
EP21159610.1A 2020-02-26 2021-02-26 Verfahren zur herstellung eines warmgewalzten stahlflachprodukts und stahlflachprodukt Pending EP3872193A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20159610 2020-02-26

Publications (1)

Publication Number Publication Date
EP3872193A1 true EP3872193A1 (de) 2021-09-01

Family

ID=69845825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21159610.1A Pending EP3872193A1 (de) 2020-02-26 2021-02-26 Verfahren zur herstellung eines warmgewalzten stahlflachprodukts und stahlflachprodukt

Country Status (1)

Country Link
EP (1) EP3872193A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117305716A (zh) * 2023-11-10 2023-12-29 常熟市龙腾特种钢有限公司 一种抗震耐蚀球扁钢的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2690183A1 (de) 2012-07-27 2014-01-29 ThyssenKrupp Steel Europe AG Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
WO2015158731A1 (en) 2014-04-15 2015-10-22 Thyssenkrupp Steel Europe Ag Method for producing a cold-rolled flat steel product with high yield strength and flat cold-rolled steel product
EP3147381A1 (de) * 2015-09-22 2017-03-29 Tata Steel IJmuiden B.V. Heissgewalztes hochfestes walzenformbares stahlblech mit hervorragender streckungsformbarkeit und verfahren zur herstellung davon
JP6191268B2 (ja) * 2013-06-19 2017-09-06 新日鐵住金株式会社 コイル幅方向の強度ばらつきが少なく靭性に優れた高降伏比高強度熱延鋼板およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2690183A1 (de) 2012-07-27 2014-01-29 ThyssenKrupp Steel Europe AG Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
JP6191268B2 (ja) * 2013-06-19 2017-09-06 新日鐵住金株式会社 コイル幅方向の強度ばらつきが少なく靭性に優れた高降伏比高強度熱延鋼板およびその製造方法
WO2015158731A1 (en) 2014-04-15 2015-10-22 Thyssenkrupp Steel Europe Ag Method for producing a cold-rolled flat steel product with high yield strength and flat cold-rolled steel product
EP3147381A1 (de) * 2015-09-22 2017-03-29 Tata Steel IJmuiden B.V. Heissgewalztes hochfestes walzenformbares stahlblech mit hervorragender streckungsformbarkeit und verfahren zur herstellung davon

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Bainite and martensite start temperature calculated with exponential carbon dependence", MATER. SCI. TECHNOL., vol. 28, 2012, pages 487 - 495
CHOQUET, P. ET AL.: "Mathematical Model for Predictions of Austenite and Ferrite Microstructures in Hot Rolling Processes", IRSID REPORT, 1985, pages 7
E A GARBER ET AL: "Batch Annealing Model for Cold Rolled Coils and Its Application", RUSSIAN METALLURGY (METALLY), 1 September 2017 (2017-09-01), Moscow, pages 771 - 774, XP055494142, Retrieved from the Internet <URL:http://www.csc.com.tw/csc/ts/ena/pdf/no28/03.PDF> [retrieved on 20180720], DOI: 10.1134/S0036029517090063 *
H. FARIVAR ET AL.: "Experimental quantification of carbon gradients in martensite and its multi-scale effects in a DP steel", MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, vol. 718, 2018, pages 250 - 259
LUTSENKO, A. ET AL.: "9th International Rolling Conference", June 2013, ASSOCIAZIONE ITALIANA DI METALLURGIA, article "The Definition and Use of Technological Reserves - An Effective Way to Improve the Production Technology of Rolled Metal", pages: 8

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117305716A (zh) * 2023-11-10 2023-12-29 常熟市龙腾特种钢有限公司 一种抗震耐蚀球扁钢的制备方法
CN117305716B (zh) * 2023-11-10 2024-03-15 常熟市龙腾特种钢有限公司 一种抗震耐蚀球扁钢的制备方法

Similar Documents

Publication Publication Date Title
EP2710158B1 (de) Hochfestes stahlflachprodukt und verfahren zu dessen herstellung
EP1309734B1 (de) Höherfester, kaltumformbarer stahl und stahlband oder -blech, verfahren zur herstellung von stahlband und verwendungen eines solchen stahls
DE60130500T2 (de) Stahlplatte mit überlegener zähigkeit in der von der schweisshitze beeinflussten zone und verfahren zu ihrer herstellung; schweisskonstruktion unter verwendung davon
DE60125253T2 (de) Hochfestes warmgewalztes Stahlblech mit ausgezeichneten Reckalterungseigenschaften
EP2690183B1 (de) Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
DE60319534T2 (de) Hochfestes kaltgewalztes stahlblech und herstellunsgverfahren dafür
DE60130755T2 (de) Warmgewalzter draht oder stahlblock, die wärmebandelbar und verwendbar im maschinenbau sind und herstellungsverfahren dafür
DE60024672T2 (de) Stab- oder drahtprodukt zur verwendung beim kaltschmieden und herstellungsverfahren dafür
EP3655560B1 (de) Stahlflachprodukt mit guter alterungsbeständigkeit und verfahren zu seiner herstellung
DE69908450T2 (de) Breitflanschträger aus Stahl mit hoher Zähigkeit und Streckgrenze und Verfahren zur Herstellung dieser Bauteile
DE4040355C2 (de) Verfahren zur Herstellung eines dünnen Stahlblechs aus Stahl mit hohem Kohlenstoffgehalt
EP2935635B1 (de) Verfahren zum wärmebehandeln eines mangan-stahlprodukts und mangan-stahlprodukt
EP2840159B1 (de) Verfahren zum Herstellen eines Stahlbauteils
EP2690184B1 (de) Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP2905348B1 (de) Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts
DE69724023T2 (de) Herstellungsverfahren eines dicken Stahlgegenstandes mit hoher Festigkeit und hoher Zähigkeit und hervorragender Schweissbarkeit und minimaler Variation der strukturellen und physikalischen Eigenschaften
EP2009120B1 (de) Verwendung einer hochfesten Stahllegierung zur Herstellung von Stahlrohren mit hoher Festigkeit und guter Umformbarkeit
EP3029162A1 (de) Verfahren zum Wärmebehandeln eines Mangan-Stahlprodukts und Mangan-Stahlprodukt
EP1398390B1 (de) Ferritisch/martensitischer Stahl mit hoher Festigkeit und sehr feinem Gefüge
EP3872193A1 (de) Verfahren zur herstellung eines warmgewalzten stahlflachprodukts und stahlflachprodukt
WO2020201352A1 (de) Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
DE112020006043T5 (de) Kaltgewalztes stahlblech mit ultrahoher festigkeit und verfahren zu dessen herstellung
EP2682485A1 (de) Verfahren und Vorrichtung zur Herstellung von Stahlrohren mit besonderen Eigenschaften
EP3872194A1 (de) Verfahren zur herstellung eines warmgewalzten stahlflachprodukts und stahlflachprodukt
EP1396549A1 (de) Verfahren zum Herstellen eines perlitfreien warmgewalzten Stahlbands und nach diesem Verfahren hergestelltes Warmband

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220224

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR