EP3863785A1 - Heating device with infrared radiating elements - Google Patents

Heating device with infrared radiating elements

Info

Publication number
EP3863785A1
EP3863785A1 EP19786559.5A EP19786559A EP3863785A1 EP 3863785 A1 EP3863785 A1 EP 3863785A1 EP 19786559 A EP19786559 A EP 19786559A EP 3863785 A1 EP3863785 A1 EP 3863785A1
Authority
EP
European Patent Office
Prior art keywords
heating device
radiator
molded part
heating
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19786559.5A
Other languages
German (de)
French (fr)
Inventor
Oliver Weiss
Holger Zissing
Johannes Lohn
Peter Koppa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP3863785A1 publication Critical patent/EP3863785A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/38Housings, e.g. machine housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a heating device for heating a powder during the production of a 3D molded part, with an IR radiator and with a housing in which a space is provided which is facing downwards from a
  • Construction platform for receiving the molded part is limited, which rests on a carrier plate.
  • the invention relates to a method for producing a 3D molded part using the heating device.
  • Three-dimensional (3D) molded parts are usually produced using the layered structure technique and solidifying a loose powder by means of so-called selective laser beam sintering or laser melting.
  • SLS is also used for selective laser sintering, for plastic powders, or SLM for selective laser melting, for metal powders.
  • Infrared emitters in the sense of the invention are irradiation units with usually several emitter tubes, so-called fluorescent tubes, made of quartz glass, in which a heating filament (also known as a filament) is arranged.
  • the heating filament determines the radiation spectrum of the IR radiator.
  • IR-A radiation has wavelengths in the range from 0.78 pm to 1.4 pm; the wavelengths of IR-B radiation are in the range from 1.4 pm to 3.0 pm, those of IR-C radiation in the range from 3 pm to 1000 pm.
  • IR-A radiation has wavelengths in the range from 0.78 pm to 1.4 pm; the wavelengths of IR-B radiation are in the range from 1.4 pm to 3.0 pm, those of IR-C radiation in the range from 3 pm to 1000 pm.
  • DE 10 2015 006 533 A1 alternatively proposes to temper the building platform or the sinter powder on it by means of heating coil through which heating oil flows and which are arranged below the mounting plate and on the side of the building platform.
  • the temperature that can be achieved with the heating coils is not significantly higher than 200 ° C and the heat transfer to the sinter powder is inefficient (slow) due to this construction.
  • a reservoir and, if necessary, a pump must also be provided for the tempering oil in order to convey the tempering oil through the heating coil. Overall, these additional devices result in a complex heating device without an increase in efficiency in terms of rapid heat transfer or an extended temperature range being achievable.
  • DE 10 2012 012 344 B3 discloses a method and a device for producing workpieces by beam melting powdery material.
  • the powdery building material is preheated instead of with a platform heater by heating elements which are arranged on or in the side walls of the storage chamber and / or the process chamber.
  • Laser sintering or melting of powdered material is known in the a layer of the powdery material is heated with a heater with infrared heating coils.
  • the invention has for its object to provide a heating device with an IR radiator for heating a powder in the manufacture of a 3D molded part in a construction space, which ensures an optimized heat transfer to the sintered or melt powder with a particularly homogeneous temperature distribution.
  • the heating device should also function as a high-temperature heating device and enable simple retrofitting in an existing installation space, so that the heating device can be used in corresponding processes for producing a 3D molded part.
  • Installation space and the infrared radiator is a partition made of a transparent material for IR radiation.
  • the installation space is separated from the infrared radiator by a partition made of a material transparent to IR radiation.
  • At least one IR radiator is attached to the outside of the partition and emits the IR radiation in the direction of the powder or the 3D molded part on the build platform in the build space.
  • the construction platform lies directly on the height-adjustable support plate or is indirectly connected to the support plate via a so-called mounting plate.
  • the heating device optionally includes a partition wall, which surrounds the installation space on the side as a jacket that is transparent to IR radiation (side wall).
  • the heating device when the powder is heated before and during the laser treatment for local melting or before the application of a new powder layer, temperature differences between the molded part that has already solidified in part and a new layer of powder are leveled or avoided entirely. Rather, the powder and the 3D molded part are heated particularly uniformly and without temperature gradients, so that any thermal aftertreatment of the molded part to relieve thermal stresses after its completion can be omitted. This makes the manufacturing process faster and more economical.
  • heating device Another advantage of the heating device is that the partition can be easily replaced in the event of a repair, and retrofitting of an existing installation space with the heating device according to the invention is also possible.
  • IR radiators are arranged on the partition of the installation space, the IR radiator preferably being part of a radiator arrangement comprising a plurality of IR radiators and the IR radiators of the radiator arrangement being individually electrically controllable.
  • the fact that several IR radiators can be provided means that individual radiators can be switched off or on in order to obtain the desired radiation spectrum and at the same time the predetermined total irradiation power.
  • Emission spectrum in the IR-A range shows peak wavelengths from 09 pm to 13 pm.
  • IR radiation in the IR-A range has a higher radiation energy than IR-B radiation. Basically, the larger the radiation energy, the shorter the radiation process can be selected. The IR-A radiation component therefore contributes to an efficient process using the heating device.
  • Partition made of quartz glass or a glass ceramic. Has quartz glass a high transparency for IR radiation and is also at relatively high
  • Electrically insulating temperatures has good resistance to corrosion, temperature and temperature changes and is available in high purity.
  • glass ceramic can also be used as a material that is permeable to IR radiation to form the side wall.
  • the installation space is surrounded in the radial direction by a side wall, preferably in the form of a cylindrical sleeve, which is formed at least in sections, in particular completely, as a partition.
  • the partition can be designed as a side wall surrounding the installation space. It can have the shape of a hollow cylinder based on a circular or rectangular surface and can be adapted to the geometry of the construction platform surface. In this way, the heat transfer to the powder bed or the molded part is optimized.
  • An advantageous embodiment of the heating device is to provide the IR radiators with at least one reflector on their side facing away from the molded part.
  • the reflector causes the infrared radiation to be directed onto the powder and / or the 3D molded part on the construction platform and thus increases the efficiency of the heating device.
  • the reflector can be designed as a primary reflector, the IR radiator having a cladding tube which is covered on its side facing away from the molded part with a primary reflector in the form of a reflector layer applied to the cladding tube.
  • a reflective inner side of a housing wall of the housing facing the molded part additionally forms a secondary or, if appropriate, also a tertiary reflector.
  • the housing wall can be equipped with coolants and / or insulation agents.
  • the cooling and / or insulating means isolate the IR radiator from the outside
  • the IR radiator and the side wall are arranged in a frame of a heating unit, which in the Housing can be used.
  • the frame has a frame outer wall with a reflective inner side facing the molded part, which forms a secondary reflector.
  • the frame advantageously surrounds a closed interior in which the IR radiator is arranged.
  • the installation space preferably has at least one measuring cell for detecting the temperature of the powder and / or the molded part.
  • the temperature in the installation space can be measured continuously.
  • pyrometers, thermal imaging cameras or heat sensors such as thermocouples or resistance sensors can be used as measuring means.
  • Partition is double-walled with the formation of at least one intermediate space, the at least one IR radiator in the intermediate space
  • the IR radiator in the space between the double-walled side or partition wall comprises at least one heating filament with an emission spectrum in the IR-B range.
  • Individual heating filaments can be mechanically and electrically separated from one another by webs in the double-walled side wall of the installation space.
  • IR radiation in the IR-B range has a lower radiation energy compared to IR-A radiation. With a corresponding duration of the irradiation process and in many cases high absorption of the IR-B radiation from the powder or from the molding, good irradiation results can also be achieved with IR-B radiation.
  • the separation of individual heating filaments by means of webs in the double-walled side or partition wall enables targeted control, so that individual heating filaments can be switched off or on in order to achieve the desired radiation spectrum at the same time
  • the heating device is preferably used in a method for
  • a 3D molded part is produced by sintering a preferably at least partially metallic powder in a construction space using a laser, the powder and / or the 3D molded part being sintered are heated with at least one IR radiator, and between which
  • Installation space and the infrared radiator is a partition made of a transparent material for IR radiation.
  • the invention is based on a patent drawing and a
  • Figure 1 shows an embodiment of the heating device according to the invention in a side view
  • Figure 2 shows another embodiment of the heating device with a
  • FIG. 1 shows schematically an embodiment of the heating device.
  • the installation space 1 has a circumferential, cylindrical side wall or partition 2 made of quartz glass.
  • a plurality of IR radiators 3, 3 ' are attached to the outside of the partition 2 and emit the IR radiation in the direction of the powder P or the 3D molded part 5 on the building platform 4 in the building space 1.
  • Above the building space 1 is the process chamber 6 , in which units (not shown here) for controlling the assembly process of the molded parts 5 are accommodated.
  • a laser unit 7 which is suitable for using the powder P with a high-energy laser beam emanating from it
  • Powder P is typically a metal powder, but can also be
  • Plastic powder can be used.
  • the powder P is on the
  • Construction platform 4 which is arranged on a height-displaceable support plate 9 indicated by the double directional arrow 8 with a stamp 9.1.
  • the construction platform 4 is mounted on a mounting plate 10, which simplifies the exchange of the construction platform 4.
  • the reflector 11 has the effect that the infrared radiation is directed onto the powder P and / or the 3D molded part 5 on the building platform 4.
  • the reflector 11 is designed as a so-called primary reflector in the form of a reflector layer applied to the cladding tube of the IR radiator 3, 3 '(not shown here).
  • the reflector layer is, for example, a gold layer or a layer of white-opaque quartz glass.
  • the primary reflector can alternatively also be present as a separate sheet metal part which bears on the cladding tube of the IR radiator.
  • a reflective inner side 12.2 of the housing wall 12.1 of the housing 12 facing the molded part 5 additionally forms a secondary reflector.
  • the reflective inside 12.2 is formed by a gold or aluminum layer.
  • the IR radiator 3, 3 ′ from FIG. 1 shows two sections of a
  • Ring radiator also called omega radiator
  • omega radiator which is arranged on the outside around the cylindrical side wall 2.
  • the IR emitters 3, 3 ' are to be understood as individual, linear emitters which are attached to the partition 2 in several planes, the
  • Partition 2 has the shape of a rectangular cylinder.
  • the housing wall 12.1 is further equipped with a cooling plate and / or insulation layer, not shown here.
  • FIG. 2 shows a variant of the pickling device, here the construction space 1 with a partition 2 in the form of a double-walled side wall 22 made of quartz glass with an intermediate space 23 is shown only schematically.
  • fleece filaments 30 made of Kanthal wires are arranged, which emit IR radiation in the IR-B range.
  • the double-walled side wall 22 has the function of a cladding tube for the fleece filaments 30.
  • the fleece filaments can either be designed as a single, long filament, which is wound from bottom to top in the space 23 of the double-walled side wall 22, or in shape from individually electric controllable rings are present.
  • webs 40 made of temperature-resistant, electrically insulating material are provided.
  • the webs 40 consist of quartz glass, glass ceramic or ceramic such as a calcium silicate ceramic with the trade name Calcast®.
  • a reflector layer 24 made of gold is applied to the outside of the double-walled side wall 22 and reflects the IR-B radiation of the heating filaments 30 in the direction of the powder P and the molded part 5, so that the heating device operates efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Resistance Heating (AREA)

Abstract

The invention relates to a heating device for heating a powder during the production of a 3D moulded part, comprising an IR radiating element and a housing, in which a construction space is provided, which is limited from below by a construction platform for receiving the moulded part, which rests on a carrier plate. In order to provide a corresponding heating device with an IR radiating element for heating a powder in the production of the 3D moulded part in a construction space, which guarantees an optimised heat transfer to the sintering or melting powder with a particularly homogeneous temperature distribution, according to the invention, a separating wall made of a material that is transparent for IR radiation is arranged between the construction space and the infrared radiating element.

Description

Heizeinrichtung mit Infrarot-Strahlern  Heating device with infrared emitters
Beschreibung  description
Technisches Gebiet Technical field
Die vorliegende Erfindung betrifft eine Heizeinrichtung zum Erhitzen eines Pulvers während der Herstellung eines 3D-Formteils, mit einem IR-Strahler und mit einem Gehäuse, in dem ein Bauraum vorgesehen ist, der nach unten von einer The present invention relates to a heating device for heating a powder during the production of a 3D molded part, with an IR radiator and with a housing in which a space is provided which is facing downwards from a
Bauplattform zur Aufnahme des Formteils begrenzt ist, die auf einer Trägerplatte aufliegt. Construction platform for receiving the molded part is limited, which rests on a carrier plate.
Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung eines 3D-Formteils unter Verwendung der Heizeinrichtung. Furthermore, the invention relates to a method for producing a 3D molded part using the heating device.
Dreidimensionale (3D) Formteile werden in der Regel in Schichtaufbautechnik und Verfestigen eines losen Pulvers mittels sogenanntem selektiven Laserstrahlsintern oder Laserschmelzen hergestellt. Es wird auch kurz die Bezeichnung SLS für selective laser sintering, bei Kunststoffpulvern, bzw. SLM für selective laser melting, bei Metallpulvern verwendet. Beim Erhitzen des Pulvers, sei es ein Kunststoffpulver oder ein Metallpulver, ist eine homogene Temperaturverteilung erforderlich um thermische Spannungen (Risse, Verzug) im fertigen Formteil zu vermeiden.  Three-dimensional (3D) molded parts are usually produced using the layered structure technique and solidifying a loose powder by means of so-called selective laser beam sintering or laser melting. The term SLS is also used for selective laser sintering, for plastic powders, or SLM for selective laser melting, for metal powders. When heating the powder, be it a plastic powder or a metal powder, a homogeneous temperature distribution is required to avoid thermal stresses (cracks, warping) in the finished molded part.
Infrarot-Strahler (kurz: IR-Strahler) im Sinne der Erfindung sind Bestrahlungs- einheiten mit in der Regel mehreren Strahlerrohren, sogenannten Leuchtröhren, aus Quarzglas, in denen ein Heizfilament (auch Glühdraht genannt) angeordnet ist. Das Heizfilament bestimmt das Strahlungsspektrum des IR-Strahlers. Infrared emitters (short: IR emitters) in the sense of the invention are irradiation units with usually several emitter tubes, so-called fluorescent tubes, made of quartz glass, in which a heating filament (also known as a filament) is arranged. The heating filament determines the radiation spectrum of the IR radiator.
IR-A-Strahlung weist Wellenlängen im Bereich von 0,78 pm bis 1 ,4 pm auf; die Wellenlängen von IR-B-Strahlung liegen im Bereich von 1 ,4 pm bis 3,0 pm die von IR-C-Strahlung im Bereich von 3 pm bis 1000 pm. Stand der Technik IR-A radiation has wavelengths in the range from 0.78 pm to 1.4 pm; the wavelengths of IR-B radiation are in the range from 1.4 pm to 3.0 pm, those of IR-C radiation in the range from 3 pm to 1000 pm. State of the art
Aus DE 10 2015 006 533 A1 ist die Herstellung eines 3D Formteils aus einem Kunststoff-Sinterpulver bekannt. Zum Beheizen der Bauplattform wird eine auf Silikon basierende, flächige Heizfolie mit elektrischer Widerstandheizung eingesetzt, mit der jedoch kaum höhere Temperaturen als 200°C erreicht werden. Diese Heizleistung ist zum Erwärmen von Kunststoff-Sinterpulvern bei der Herstellung von 3D Formteilen ausreichend, nicht jedoch bei der Herstellung von metallischen 3D Formteilen, bei denen insgesamt deutlich höhere Prozess- temperaturen erforderlich sind. Zusätzlich sind seitlich der Bauplattform The production of a 3D molded part from a plastic sinter powder is known from DE 10 2015 006 533 A1. To heat the construction platform, a silicone-based, flat heating foil with electrical resistance heating is used, but with which temperatures hardly higher than 200 ° C are reached. This heating power is sufficient for heating plastic sinter powders in the manufacture of 3D molded parts, but not in the manufacture of metallic 3D molded parts, which require significantly higher process temperatures overall. In addition, are on the side of the construction platform
angebrachte Strahler bevorzugt. attached spotlights preferred.
An Stelle der Silikon-basierten Heizfolie wird in DE 10 2015 006 533 A1 alternativ vorgeschlagen die Bauplattform bzw. das auf ihr befindliche Sinterpulver durch von Temperieröl durchströmte Heizwendel zu temperieren, die unterhalb der Montageplatte und seitlich an der Bauplattform angeordnet sind. Die mit den Heizwendeln erreichbare Temperatur liegt nicht wesentlich höher als 200°C und der Wärmeübertrag auf das Sinterpulver ist durch diese Konstruktion ineffizient (langsam). Für das Temperieröl müssen außerdem ein Vorratsbehälter und gegebenenfalls eine Pumpe vorgesehen sein, um das Temperieröl durch die Heizwendel zu fördern. Diese zusätzlichen Einrichtungen ergeben insgesamt eine aufwendige Heizeinrichtung, ohne dass dabei eine Effizienzsteigerung im Sinne einer schnellen Wärmeübertragung oder ein erweiterter Temperaturbereich zu erreichen ist.  Instead of the silicone-based heating foil, DE 10 2015 006 533 A1 alternatively proposes to temper the building platform or the sinter powder on it by means of heating coil through which heating oil flows and which are arranged below the mounting plate and on the side of the building platform. The temperature that can be achieved with the heating coils is not significantly higher than 200 ° C and the heat transfer to the sinter powder is inefficient (slow) due to this construction. A reservoir and, if necessary, a pump must also be provided for the tempering oil in order to convey the tempering oil through the heating coil. Overall, these additional devices result in a complex heating device without an increase in efficiency in terms of rapid heat transfer or an extended temperature range being achievable.
Aus der DE 10 2012 012 344 B3 sind ein Verfahren und eine Vorrichtung zur Herstellung von Werkstücken durch Strahlschmelzen pulverförmigen Materials bekannt. Um die prozess-bedingten Temperaturgradienten zu verringern, wird das pulverförmige Aufbaumaterial statt mit einer Plattformheizung durch Heizelemente vorgeheizt, die an beziehungsweise in den Seitenwandungen der Vorratskammer und/oder der Prozesskammer angeordnet sind.  DE 10 2012 012 344 B3 discloses a method and a device for producing workpieces by beam melting powdery material. In order to reduce the process-related temperature gradients, the powdery building material is preheated instead of with a platform heater by heating elements which are arranged on or in the side walls of the storage chamber and / or the process chamber.
Aus der DE 10 2015 211 538 A1 ist eine Bauzylinder-Anordnung für eine  DE 10 2015 211 538 A1 describes a construction cylinder arrangement for a
Maschine zur schichtweisen Fertigung dreidimensionaler Objekte durch Machine for the layer-by-layer production of three-dimensional objects
Lasersintern oder Laserschmelzen von pulverförmigem Material bekannt, bei der eine Schicht des pulverförmigen Materials mit einer Heizeinrichtung mit Infrarot- Heizwendeln erwärmt wird. Laser sintering or melting of powdered material is known in the a layer of the powdery material is heated with a heater with infrared heating coils.
Technische Aufgabenstellung Technical task
Der Erfindung liegt die Aufgabe zugrunde, eine Heizeinrichtung mit einem IR- Strahler zum Erhitzen eines Pulvers bei der Herstellung eines 3D-Formteils in einem Bauraum bereitzustellen, die bei einer besonders homogenen Temperatur- Verteilung einen optimierten Wärmeübertrag auf das Sinter- bzw. Schmelzpulver gewährleistet. Die Heizeinrichtung soll überdies als Hochtemperaturheiz- einrichtung fungieren und eine einfache Nachrüstung in einem bestehenden Bauraum ermöglichen, so dass ein Einsatz der Heizeinrichtung in entsprechenden Verfahren zur Herstellung eines 3D-Formteils möglich ist.  The invention has for its object to provide a heating device with an IR radiator for heating a powder in the manufacture of a 3D molded part in a construction space, which ensures an optimized heat transfer to the sintered or melt powder with a particularly homogeneous temperature distribution. The heating device should also function as a high-temperature heating device and enable simple retrofitting in an existing installation space, so that the heating device can be used in corresponding processes for producing a 3D molded part.
Allgemeine Beschreibung der Erfindung General description of the invention
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass zwischen dem  This object is achieved in that between the
Bauraum und dem Infrarot-Strahler eine Trennwand aus einem für IR-Strahlung transparenten Material angeordnet ist. Installation space and the infrared radiator is a partition made of a transparent material for IR radiation.
Der Bauraum wird gegenüber dem Infrarot-Strahler durch eine Trennwand aus einem für IR-Strahlung transparentem Material getrennt.  The installation space is separated from the infrared radiator by a partition made of a material transparent to IR radiation.
Mindestens ein IR-Strahler ist außen an der Trennwand angebracht und emittiert die IR-Strahlung in Richtung des Pulvers bzw. des 3D-Formteils auf der Bauplatt- form im Bauraum. Die Bauplattform liegt unmittelbar auf der höhenverstellbaren Trägerplatte oder ist mittelbar über eine sogenannte Montageplatte mit der Trägerplatte verbunden.  At least one IR radiator is attached to the outside of the partition and emits the IR radiation in the direction of the powder or the 3D molded part on the build platform in the build space. The construction platform lies directly on the height-adjustable support plate or is indirectly connected to the support plate via a so-called mounting plate.
Die Heizeinrichtung umfasst optional eine Trennwand, die als ein für IR-Strahlung transparenter Mantel den Bauraum seitlich umgibt (Seitenwand).  The heating device optionally includes a partition wall, which surrounds the installation space on the side as a jacket that is transparent to IR radiation (side wall).
Bei der Herstellung eines 3D Formteils mit dem SLM-Verfahren scannt ein Laser über das auf der Bauplattform aufgetragene Pulver und schmilzt dieses  When producing a 3D molded part using the SLM process, a laser scans over the powder applied to the build platform and melts it
schichtweise lokal auf. Insbesondere bei metallischen Werkstoffen mit hohen Schmelzpunkten können sich hohe Temperaturgradienten zwischen den in layers locally. Especially with metallic materials with high melting points, high temperature gradients between the
Schmelzbereichen und dem umliegenden Pulver ergeben. Während einer ungleichmäßigen Aufheizung und Abkühlung des Werkstücks können sich während des Aufbauprozesses des Formteils häufig Spannungsrisse ergeben.Melt areas and the surrounding powder. During one Uneven heating and cooling of the workpiece can often result in stress cracks during the molding process.
Mit der erfindungsgemäßen Heizeirichtung werden beim Erwärmen des Pulvers vor und während der Laserbehandlung zum lokalen Aufschmelzen bzw. vor dem Aufträgen einer neuen Pulverschicht Temperaturunterschiede zwischen dem in Teilen schon verfestigten Formteil und einer neuen Schicht von Pulver nivelliert oder gänzlich vermieden. Das Pulver und das 3D-Formteil werden vielmehr besonders gleichmäßig und ohne Temperaturgradienten erhitzt, so dass eine etwaige thermische Nachbehandlung des Formteils zum Abbau thermischer Spannungen nach dessen Fertigstellung entfallen kann. Das Herstellverfahren ist dadurch schneller und wirtschaftlich günstiger. With the heating device according to the invention, when the powder is heated before and during the laser treatment for local melting or before the application of a new powder layer, temperature differences between the molded part that has already solidified in part and a new layer of powder are leveled or avoided entirely. Rather, the powder and the 3D molded part are heated particularly uniformly and without temperature gradients, so that any thermal aftertreatment of the molded part to relieve thermal stresses after its completion can be omitted. This makes the manufacturing process faster and more economical.
Ein weiterer Vorteil der Heizeinrichtung besteht darin, dass im Reparaturfall die Trennwand leicht ausgetauscht werden kann und auch eine Nachrüstung eines bestehenden Bauraums mit der erfindungsgemäßen Heizeinrichtung möglich ist. Another advantage of the heating device is that the partition can be easily replaced in the event of a repair, and retrofitting of an existing installation space with the heating device according to the invention is also possible.
In der Regel werden mehrere IR-Strahler an der Trennwand des Bauraums angeordnet, wobei vorzugsweise der IR-Strahler Bestandteil einer mehrere IR- Strahler umfassenden Strahleranordnung ist und die IR-Strahler der Strahler- anordnung individuell elektrisch ansteuerbar sind. Dadurch, dass mehrere IR- Strahler vorgesehen sein können, können einzelne Strahler ausgeschaltet oder zugeschaltet werden, um das gewünschte Strahlungsspektrum und gleichzeitig die vorgegebene Gesamtbestrahlungsleistung zu erhalten. As a rule, several IR radiators are arranged on the partition of the installation space, the IR radiator preferably being part of a radiator arrangement comprising a plurality of IR radiators and the IR radiators of the radiator arrangement being individually electrically controllable. The fact that several IR radiators can be provided means that individual radiators can be switched off or on in order to obtain the desired radiation spectrum and at the same time the predetermined total irradiation power.
Es hat sich bewährt wenn der wenigstens eine Infrarot-Strahler ein auf die  It has proven itself if the at least one infrared emitter is on the
Absorptionscharakteristik des Pulvers abgestimmtes Emissionsspektrum im IR-A Bereich aufweist, also ein IR-A-Strahler ist. Das bevorzugte kurzwellige Absorption characteristics of the powder matched emission spectrum in the IR-A range, that is, an IR-A emitter. The preferred shortwave
Emissionsspektrum im IR-A Bereich weist Peak-Wellenlängen von 09 pm bis 13 pm auf. IR-Strahlung im IR-A-Bereich weist im Vergleich zu IR-B-Strahlung eine höhere Strahlungsenergie auf. Grundsätzlich gilt: Je größer die Strahlungsenergie, desto kürzer kann der Bestrahlungsvorgang gewählt werden. Der IR-A-Strahlungs- anteil trägt daher zu einem effizienten Verfahren unter Verwendung der Heiz- einrichtung bei. Emission spectrum in the IR-A range shows peak wavelengths from 09 pm to 13 pm. IR radiation in the IR-A range has a higher radiation energy than IR-B radiation. Basically, the larger the radiation energy, the shorter the radiation process can be selected. The IR-A radiation component therefore contributes to an efficient process using the heating device.
Als vorteilhaft hat es sich erwiesen, wenn die für IR-Strahlung transparente  It has proven to be advantageous if the one that is transparent to IR radiation
Trennwand aus Quarzglas oder aus einer Glaskeramik besteht. Quarzglas hat eine hohe Transparenz für IR-Strahlung und ist auch bei relativ hohen Partition made of quartz glass or a glass ceramic. Has quartz glass a high transparency for IR radiation and is also at relatively high
Temperaturen elektrisch isolierend, besitzt eine gute Korrosions-, Temperatur- und Temperaturwechselbeständigkeit und steht in hoher Reinheit zur Verfügung. Electrically insulating temperatures, has good resistance to corrosion, temperature and temperature changes and is available in high purity.
Daher bietet sich seine Verwendung insbesondere bei Hochtemperatur- Heizprozessen an. Neben Quarzglas kann auch Glaskeramik als für IR-Strahlung durchlässiges Material zur Bildung der Seitenwand eingesetzt werden.  It is therefore particularly useful for high-temperature heating processes. In addition to quartz glass, glass ceramic can also be used as a material that is permeable to IR radiation to form the side wall.
Besonders bewährt hat es sich, wenn der Bauraum in Radialrichtung von einer vorzugsweise zylinderhülsenförmigen Seitenwand umgeben ist, die zumindest abschnittsweise, insbesondere vollumfänglich als Trennwand ausgebildet ist. Die Trennwand kann dabei als eine um den Bauraum umlaufende Seitenwand ausgebildet sein. Sie kann die Form eines Hohlzylinders auf Basis einer Kreis- oder einer Rechteckfläche aufweisen und der Geometrie der Bauplattformfläche angepasst sein. Auf diese Weise wird die Wärmeübertragung auf das Pulverbett bzw. das Formteil optimiert.  It has proven particularly useful if the installation space is surrounded in the radial direction by a side wall, preferably in the form of a cylindrical sleeve, which is formed at least in sections, in particular completely, as a partition. The partition can be designed as a side wall surrounding the installation space. It can have the shape of a hollow cylinder based on a circular or rectangular surface and can be adapted to the geometry of the construction platform surface. In this way, the heat transfer to the powder bed or the molded part is optimized.
Eine vorteilhafte Ausgestaltung der Heizeinrichtung besteht darin, die IR-Strahler auf ihrer dem Formteil abgewandten Seite mit mindestens einen Reflektor zu versehen. Der Reflektor bewirkt, dass die Infrarot-Strahlung auf das Pulver und/oder das 3D-Formteil auf der Bauplattform gerichtet wird und erhöht somit die Effizienz der Heizeinrichtung.  An advantageous embodiment of the heating device is to provide the IR radiators with at least one reflector on their side facing away from the molded part. The reflector causes the infrared radiation to be directed onto the powder and / or the 3D molded part on the construction platform and thus increases the efficiency of the heating device.
Der Reflektor kann als Primär-Reflektor ausgebildet sein, wobei der IR-Strahler ein Hüllrohr hat, das auf seiner dem Formteil abgewandten Seite mit einem Primär- Reflektor in Form einer auf dem Hüllrohr aufgebrachten Reflektorschicht bedeckt ist. Vorzugsweise bildet eine dem Formteil zugewandte reflektierende Innenseite einer Gehäusewand des Gehäuses zusätzlich noch einen Sekundär- oder gegebenenfalls auch einen Tertiär-Reflektor.  The reflector can be designed as a primary reflector, the IR radiator having a cladding tube which is covered on its side facing away from the molded part with a primary reflector in the form of a reflector layer applied to the cladding tube. Preferably, a reflective inner side of a housing wall of the housing facing the molded part additionally forms a secondary or, if appropriate, also a tertiary reflector.
Um die Hitzeentwicklung im Bereich des Gehäuses zu begrenzen kann die Gehäusewand mit Kühl- und/oder Isolationsmitteln ausgestattet sein. Die Kühl- und/oder Isolationsmittel isolieren den IR-Strahler gegenüber der äußeren  In order to limit the heat development in the area of the housing, the housing wall can be equipped with coolants and / or insulation agents. The cooling and / or insulating means isolate the IR radiator from the outside
Umgebung und können als eine thermische Isolationsschicht und/oder eine Kühlplatte vorliegen. Environment and can be present as a thermal insulation layer and / or a cooling plate.
In einer bevorzugten Variante der Heizeinrichtung sind der IR-Strahler und die Seitenwand in einem Rahmen einer Erwärmungseinheit angeordnet, die in das Gehäuse einsetzbar ist. Der Rahmen weist eine Rahmenaußenwand mit einer dem Formteil zugewandten reflektierenden Innenseite auf, die einen Sekundär- Reflektor bildet. Der Rahmen umgibt vorteilhafterweise einen geschlossenen Innenraum, in dem der IR-Strahler angeordnet ist. Diese Ausgestaltungen der Heizeinrichtung sind insbesondere im Zusammenhang mit einer Nachrüstlösung für bestehende Anlagen zur Herstellung von 3D-Fomnteilen von Vorteil. In a preferred variant of the heating device, the IR radiator and the side wall are arranged in a frame of a heating unit, which in the Housing can be used. The frame has a frame outer wall with a reflective inner side facing the molded part, which forms a secondary reflector. The frame advantageously surrounds a closed interior in which the IR radiator is arranged. These designs of the heating device are particularly advantageous in connection with a retrofit solution for existing systems for the production of 3D molded parts.
Vorzugsweise weist der Bauraum mindestens eine Messzelle zur Erfassung der Temperatur des Pulvers und/oder des Formteils auf. Die Temperatur im Bauraum kann fortlaufend gemessen werden. Hierzu können als Messmittel Pyrometer, Wärmebildkameras oder Wärmefühler, wie beispielsweise Thermoelemente oder Widerstandssensoren, eingesetzt werden.  The installation space preferably has at least one measuring cell for detecting the temperature of the powder and / or the molded part. The temperature in the installation space can be measured continuously. For this purpose, pyrometers, thermal imaging cameras or heat sensors such as thermocouples or resistance sensors can be used as measuring means.
In einer weiteren vorteilhaften Ausgestaltung der Heizeinrichtung ist die  In a further advantageous embodiment of the heating device, the
Trennwand unter Ausbildung wenigstens eines Zwischenraumes doppelwandig ausgeführt ist, wobei der mindestens eine IR-Strahler im Zwischenraum Partition is double-walled with the formation of at least one intermediate space, the at least one IR radiator in the intermediate space
angeordnet ist. is arranged.
Der IR-Strahler im Zwischenraum der doppelwandigen Seiten- oder Trennwand umfasst mindestens ein Heizfilament mit einem Emissionsspektrum im IR-B Bereich. Einzelne Heizfilamente können dabei durch Stege in der doppelwandigen Seitenwand des Bauraums voneinander mechanisch und elektrisch separiert sein. The IR radiator in the space between the double-walled side or partition wall comprises at least one heating filament with an emission spectrum in the IR-B range. Individual heating filaments can be mechanically and electrically separated from one another by webs in the double-walled side wall of the installation space.
IR-Strahlung im IR-B Bereich weist im Vergleich zu IR-A Strahlung eine geringere Strahlungsenergie auf. Bei einer entsprechenden Dauer des Bestrahlungs- vorgangs und in vielen Fällen hoher Absorption der IR-B Strahlung vom Pulver bzw. vom Formteil können auch mit IR-B Strahlung gute Bestrahlungsergebnisse erzielt werden. Zudem ermöglicht die Separierung einzelner Heizfilamente durch Stege in der doppelwandigen Seiten- oder Trennwand die gezielte Ansteuerung, so dass einzelne Heizfilamente ausgeschaltet oder zugeschaltet werden können, um im entsprechenden Strahlungsspektrum gleichzeitig die gewünschte IR radiation in the IR-B range has a lower radiation energy compared to IR-A radiation. With a corresponding duration of the irradiation process and in many cases high absorption of the IR-B radiation from the powder or from the molding, good irradiation results can also be achieved with IR-B radiation. In addition, the separation of individual heating filaments by means of webs in the double-walled side or partition wall enables targeted control, so that individual heating filaments can be switched off or on in order to achieve the desired radiation spectrum at the same time
Gesamtbestrahlungsleistung zu erhalten. Get total irradiation power.
Die Heizeinrichtung findet bevorzugt Verwendung in einem Verfahren zur  The heating device is preferably used in a method for
Herstellung von 3D-Formteilen. Dabei wird ein 3D-Fomnteil durch Sintern eines bevorzugt zumindest teilweise metallischen Pulvers in einem Bauraum mittels eines Lasers hergestellt, wobei das Pulver und/oder das 3D-Fomnteil beim Sintern mit mindestens einem IR-Strahler erhitzt werden, und wobei zwischen dem Production of 3D molded parts. A 3D molded part is produced by sintering a preferably at least partially metallic powder in a construction space using a laser, the powder and / or the 3D molded part being sintered are heated with at least one IR radiator, and between which
Bauraum und dem Infrarot-Strahler eine Trennwand aus einem für IR-Strahlung transparenten Material angeordnet ist. Installation space and the infrared radiator is a partition made of a transparent material for IR radiation.
Ausführunqsbeispiel Execution example
Nachfolgend wird die Erfindung anhand einer Patentzeichnung und eines  The invention is based on a patent drawing and a
Ausführungsbeispiels näher erläutert. Im Einzelnen zeigen in schematischer Darstellung: Embodiment explained in more detail. In detail, a schematic representation shows:
Figur 1 eine Ausführungsform des erfindungsgemäßen Heizeinrichtung in einer Seitenansicht, und  Figure 1 shows an embodiment of the heating device according to the invention in a side view, and
Figur 2 eine weitere Ausführungsform der Heizeinrichtung mit einer  Figure 2 shows another embodiment of the heating device with a
Teilansicht des Bauraums.  Partial view of the installation space.
Figur 1 zeigt schematisch eine Ausführungsform der Heizeinrichtung. Dabei hat der Bauraum 1 eine umlaufende, zylindrische Seiten- oder Trennwand 2 aus Quarzglas. Mehrere IR-Strahler 3, 3‘ sind außen an der Trennwand 2 angebracht und emittieren die IR-Strahlung in Richtung des Pulvers P bzw. des 3D-Formteils 5 auf der Bauplattform 4 im Bauraum 1. Oberhalb des Bauraums 1 befindet sich die Prozesskammer 6, in der hier nicht dargestellte Einheiten zur Steuerung des Aufbauprozesses der Formteile 5 untergebracht sind. Am oberen Ende der Prozesskammer 6 ist schematisch eine Lasereinheit 7 angeordnet, die geeignet ist mit einem von ihr ausgehenden Hochenergie-Laserstrahl das Pulver P zur  Figure 1 shows schematically an embodiment of the heating device. The installation space 1 has a circumferential, cylindrical side wall or partition 2 made of quartz glass. A plurality of IR radiators 3, 3 'are attached to the outside of the partition 2 and emit the IR radiation in the direction of the powder P or the 3D molded part 5 on the building platform 4 in the building space 1. Above the building space 1 is the process chamber 6 , in which units (not shown here) for controlling the assembly process of the molded parts 5 are accommodated. At the upper end of the process chamber 6 there is schematically arranged a laser unit 7 which is suitable for using the powder P with a high-energy laser beam emanating from it
Herstellung des 3D-Formteils 5 selektiv zu sintern und/oder zu schmelzen. Production of the 3D molded part 5 to sinter and / or melt selectively.
Das Pulver P ist typischerweise ein Metallpulver, jedoch können auch  Powder P is typically a metal powder, but can also be
Kunststoffpulver eingesetzt werden. Das Pulver P befindet sich auf der Plastic powder can be used. The powder P is on the
Bauplattform 4, die auf einer durch den doppelten Richtungspfeil 8 angezeigten, höhenverschiebbaren Trägerplatte 9 mit einem Stempel 9.1 angeordnet ist. Construction platform 4, which is arranged on a height-displaceable support plate 9 indicated by the double directional arrow 8 with a stamp 9.1.
Die Bauplattform 4 ist auf einer Montageplatte 10 montiert, die den Austausch der Bauplattform 4 vereinfacht.  The construction platform 4 is mounted on a mounting plate 10, which simplifies the exchange of the construction platform 4.
Die Infrarot-Strahler 3, 3‘ emittieren Strahlung im IR-A Bereich und sind auf ihrer dem Formteil 5 abgewandten Seite mit einen Reflektor 11 versehen. Der Reflektor 11 bewirkt, dass die Infrarot-Strahlung auf das Pulver P und/oder das 3D-Formteil 5 auf der Bauplattform 4 gerichtet wird. Der Reflektor 11 ist als sogenannter Primär-Reflektor in Form einer auf dem hier nicht gezeigten Hüllrohr des IR- Strahlers 3, 3‘ aufgebrachten Reflektorschicht ausgebildet. Die Reflektorschicht ist beispielsweise eine Goldschicht oder eine Schicht aus weiß-opakem Quarzglas. Der Primär-Reflektor kann alternativ auch als ein separates Blechteil vorliegen, das an dem Hüllrohr des IR-Strahlers anliegt. The infrared emitters 3, 3 'emit radiation in the IR-A range and are provided with a reflector 11 on their side facing away from the molded part 5. The reflector 11 has the effect that the infrared radiation is directed onto the powder P and / or the 3D molded part 5 on the building platform 4. The reflector 11 is designed as a so-called primary reflector in the form of a reflector layer applied to the cladding tube of the IR radiator 3, 3 '(not shown here). The reflector layer is, for example, a gold layer or a layer of white-opaque quartz glass. The primary reflector can alternatively also be present as a separate sheet metal part which bears on the cladding tube of the IR radiator.
Weiterhin bildet eine dem Formteil 5 zugewandte reflektierende Innenseite 12.2 der Gehäusewand 12.1 des Gehäuses 12 zusätzlich einen Sekundär-Reflektor. Furthermore, a reflective inner side 12.2 of the housing wall 12.1 of the housing 12 facing the molded part 5 additionally forms a secondary reflector.
Die reflektierende Innenseite 12.2 wird von einer Gold- oder Aluminiumschicht gebildet. The reflective inside 12.2 is formed by a gold or aluminum layer.
Im Fall eines kreiszylindrischen Bauraums 1 mit einer entsprechend kreisrunden Bauplattform 4 und einer kreiszylindrischen Seitenwand 2 um den Bauraum herum, so zeigt der IR-Strahler 3, 3‘ aus Figur 1 zwei Abschnitte eines  In the case of a circular-cylindrical construction space 1 with a correspondingly circular construction platform 4 and a circular-cylindrical side wall 2 around the construction space, the IR radiator 3, 3 ′ from FIG. 1 shows two sections of a
Ringstrahlers (auch Omega-Strahler genannt), der außen um die zylindrische Seitenwand 2 herum angeordnet ist. Ring radiator (also called omega radiator), which is arranged on the outside around the cylindrical side wall 2.
Ist der Bauraum 1 mit einer Bauplattform 4 mit rechteckiger Grundfläche versehen, so sind die IR-Strahler 3, 3‘ als einzelne, lineare Strahler zu verstehen, die in mehreren Ebenen außen an der Trennwand 2 angebracht sind, wobei die  If the construction space 1 is provided with a construction platform 4 with a rectangular base area, the IR emitters 3, 3 'are to be understood as individual, linear emitters which are attached to the partition 2 in several planes, the
Trennwand 2 die Form eines Rechteckzylinders aufweist. Partition 2 has the shape of a rectangular cylinder.
Um die Flitzeentwicklung im Bereich des Gehäuses 12 zu begrenzen, ist die Gehäusewand 12.1 weiterhin mit einer hier nicht dargestellten Kühlplatte und/oder Isolationsschicht ausgestattet.  In order to limit the development of strands in the area of the housing 12, the housing wall 12.1 is further equipped with a cooling plate and / or insulation layer, not shown here.
Figur 2 zeigt eine Variante der Fleizeinrichtung, wobei hier nur schematisch der Bauraum 1 mit einer Trennwand 2 in Form einer doppelwandigen Seitenwand 22 aus Quarzglas mit einem Zwischenraum 23 dargestellt ist. Im Zwischenraum 23 der doppelwandigen Seitenwand 22 sind Fleizfilamente 30 aus Kanthal-Drähten angeordnet, die IR-Strahlung im IR-B Bereich emittieren. Die doppelwandige Seitenwand 22 hat hier die Funktion eines Hüllrohres für die Fleizfilamente 30. Die Fleizfilamente können entweder als ein einziges, langes Filament, was von unten nach oben in dem Zwischenraum 23 der doppelwandigen Seitenwand 22 in Windungen gelegt ist, ausgeführt sein, oder in Form von individuell elektrisch ansteuerbaren Ringen vorliegen. Zur Separation der Ringe oder der Windungen sind Stege 40 aus temperaturfestem, elektrisch isolierendem Material vorgesehen. Die Stege 40 bestehen aus Quarzglas, Glaskeramik oder aus Keramik wie beispielsweise eine Kalziumsilikat-Keramik mit dem Handelsnamen Calcast®. An der Außenseite der doppelwandigen Seitenwand 22 ist eine Reflektorschicht 24 aus Gold aufgebracht, die die IR-B Strahlung der Heizfilamente 30 in Richtung des Pulvers P und des Formteils 5 reflektiert, so dass sich ein effizienter Betrieb der Heizeinrichtung ergibt. FIG. 2 shows a variant of the pickling device, here the construction space 1 with a partition 2 in the form of a double-walled side wall 22 made of quartz glass with an intermediate space 23 is shown only schematically. In the space 23 of the double-walled side wall 22, fleece filaments 30 made of Kanthal wires are arranged, which emit IR radiation in the IR-B range. The double-walled side wall 22 has the function of a cladding tube for the fleece filaments 30. The fleece filaments can either be designed as a single, long filament, which is wound from bottom to top in the space 23 of the double-walled side wall 22, or in shape from individually electric controllable rings are present. To separate the rings or the turns, webs 40 made of temperature-resistant, electrically insulating material are provided. The webs 40 consist of quartz glass, glass ceramic or ceramic such as a calcium silicate ceramic with the trade name Calcast®. A reflector layer 24 made of gold is applied to the outside of the double-walled side wall 22 and reflects the IR-B radiation of the heating filaments 30 in the direction of the powder P and the molded part 5, so that the heating device operates efficiently.

Claims

Patentansprüche Claims
1. Heizeinrichtung zum Erhitzen eines Pulvers (P) während der Herstellung eines 3D-Formteils (5), mit einem Infrarot-Strahler (3; 3‘; 30) und mit einem Gehäuse (12), in dem ein Bauraum (1 ) vorgesehen ist, der nach unten von einer Bauplattform (4) zur Aufnahme des Formteils (5) begrenzt ist, die auf einer Trägerplatte (9) aufliegt, dadurch gekennzeichnet, dass zwischen dem 1. Heating device for heating a powder (P) during the production of a 3D molded part (5), with an infrared radiator (3; 3 '; 30) and with a housing (12) in which a space (1) is provided which is bounded at the bottom by a building platform (4) for receiving the molded part (5), which rests on a carrier plate (9), characterized in that between the
Bauraum (1 ) und dem Infrarot-Strahler (3; 3‘; 30) eine Trennwand (2) aus einem für IR-Strahlung transparenten Material angeordnet ist.  Installation space (1) and the infrared radiator (3; 3 '; 30) a partition (2) made of a material transparent to IR radiation is arranged.
2. Heizeinrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass das für IR- Strahlung transparente Material der Trennwand (2) aus Quarzglas oder aus einer Glaskeramik besteht.  2. Heating device according to claim 1, characterized in that the transparent material for IR radiation of the partition (2) consists of quartz glass or a glass ceramic.
3. Heizeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Bauraum (1 ) in Radialrichtung von einer vorzugsweise zylinderhülsenförmigen Seitenwand umgeben ist, die zumindest abschnittsweise, insbesondere vollumfänglich als Trennwand (2) ausgebildet ist.  3. Heating device according to claim 1 or 2, characterized in that the installation space (1) is surrounded in the radial direction by a preferably cylindrical sleeve-shaped side wall which is formed at least in sections, in particular completely, as a partition (2).
4. Heizeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Infrarot-Strahler (3; 3‘; 30) auf seiner dem Formteil (5) abgewandten Seite mindestens einen Reflektor (11 ) aufweist.  4. Heating device according to one of claims 1 to 3, characterized in that the infrared radiator (3; 3 '; 30) on its side facing away from the molded part (5) has at least one reflector (11).
5. Heizeinrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der IR- Strahler (3; 3‘; 30) ein Hüllrohr hat, das auf seiner dem Formteil (5)  5. Heating device according to claim 4, characterized in that the IR radiator (3; 3 '; 30) has a cladding tube, which on its the molded part (5)
abgewandten Seite mit einem Primär-Reflektor in Form einer auf das Hüllrohr aufgebrachten Reflektorschicht bedeckt ist, und vorzugsweise eine dem Formteil (5) zugewandten reflektierende Innenseite (12.2) einer Gehäusewand (12.1 ) des Gehäuses (12) einen Sekundär-Reflektor bildet.  opposite side is covered with a primary reflector in the form of a reflector layer applied to the cladding tube, and preferably a reflecting inner side (12.2) of a housing wall (12.1) of the housing (12) facing the molded part (5) forms a secondary reflector.
6. Heizeinrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die  6. Heating device according to claim 5, characterized in that the
Gehäusewand (12.1 ) mit Kühl- und/oder Isolationsmitteln ausgestattet ist. Housing wall (12.1) is equipped with coolants and / or insulation.
7. Heizeinrichtung nach einem der vorhergehenden Ansprüche, dadurch 7. Heating device according to one of the preceding claims, characterized
gekennzeichnet, dass der Bauraum (1 ) mindestens eine Messzelle zur Erfassung der Temperatur des Pulvers und/oder des Formteils aufweist. characterized in that the installation space (1) has at least one measuring cell for detecting the temperature of the powder and / or the molded part.
8. Heizeinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Trennwand (2) unter Ausbildung wenigstens eines Zwischenraumes (23) doppelwandig ausgeführt ist, wobei der mindestens eine IR-Strahler (3; 3‘; 30) im Zwischenraum (23) angeordnet ist. 8. Heating device according to one of claims 1 to 7, characterized in that the partition (2) with at least one intermediate space (23) is double-walled, the at least one IR radiator (3; 3 '; 30) in the intermediate space ( 23) is arranged.
9. Heizeinrichtung nach Anspruch 3 und 8, dadurch gekennzeichnet, dass die doppelwandige Trennwand (2) eine doppelwandige Seitenwand (22) des Bauraums (1 ) umfasst und dass einzelne Heizfilamente durch Stege (40) in der doppelwandigen Seitenwand (22) voneinander mechanisch und elektrisch separiert sind.  9. Heating device according to claim 3 and 8, characterized in that the double-walled partition (2) comprises a double-walled side wall (22) of the installation space (1) and that individual heating filaments mechanically and by webs (40) in the double-walled side wall (22) are electrically separated.
10. Heizeinrichtung nach einem der vorhergehenden Ansprüche, dadurch  10. Heating device according to one of the preceding claims, characterized
gekennzeichnet, dass der wenigstens eine IR-Strahler (3; 3‘; 30) ein IR-B- Strahler mit mindestens einem Heizfilament mit einem Emissionsspektrum im IR-B Bereich umfasst.  characterized in that the at least one IR radiator (3; 3 '; 30) comprises an IR-B radiator with at least one heating filament with an emission spectrum in the IR-B range.
11. Heizeinrichtung nach einem der vorhergehenden Ansprüche, dadurch  11. Heating device according to one of the preceding claims, characterized
gekennzeichnet, dass die Heizeinrichtung eine mehrere IR-Strahler (3; 3‘; 30) umfassende Strahleranordnung umfasst und dass die IR-Strahler der  characterized in that the heating device comprises a plurality of IR emitters (3; 3 '; 30) and that the IR emitters
Strahleranordnung individuell elektrisch ansteuerbar sind.  Radiator arrangement are individually electrically controllable.
12. Heizeinrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der wenigstens eine Infrarot-Strahler (3; 3‘; 30) einen IR-A-Strahler mit einem insbesondere auf die Absorptionscharakteristik des Pulvers (P) abgestimmtes Emissionsspektrum im IR-A Bereich aufweist.  12. Heating device according to one of claims 1 to 8, characterized in that the at least one infrared radiator (3; 3 '; 30) is an IR-A radiator with an emission spectrum in the IR which is matched in particular to the absorption characteristic of the powder (P) -A area.
13. Heizeinrichtung nach einem der Ansprüche 3 bis 12, dadurch gekennzeichnet, dass der wenigstens eine IR-Strahler (3; 3‘; 30) und die Seitenwand in einem Rahmen einer Erwärmungseinheit angeordnet sind, die in das Gehäuse (12) einsetzbar ist.  13. Heating device according to one of claims 3 to 12, characterized in that the at least one IR radiator (3; 3 '; 30) and the side wall are arranged in a frame of a heating unit which can be inserted into the housing (12).
14. Heizeinrichtung nach Anspruch 13, dadurch gekennzeichnet, dass der  14. Heating device according to claim 13, characterized in that the
Rahmen eine Rahmenaußenwand aufweist mit einer dem Formteil (5) zugewandten reflektierenden Innenseite (12.2) aufweist, die einen Sekundär- oder einen Tertiär-Reflektor bildet. Has a frame outer wall with a reflecting inner side (12.2) facing the molded part (5), which forms a secondary or a tertiary reflector.
15. Heizeinrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass der Rahmen einen geschlossenen Innenraum umgibt, in dem der IR-Strahler angeordnet ist. 15. Heating device according to claim 13 or 14, characterized in that the frame surrounds a closed interior in which the IR radiator is arranged.
16. Verfahren zur Herstellung eines 3D-Formteils unter Verwendung der  16. Process for producing a 3D molded part using the
Heizeinrichtung gemäß einem der Ansprüche 1 bis 15.  Heating device according to one of claims 1 to 15.
EP19786559.5A 2018-10-12 2019-10-09 Heating device with infrared radiating elements Pending EP3863785A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018125310.9A DE102018125310A1 (en) 2018-10-12 2018-10-12 Heating device with infrared emitters
PCT/EP2019/077337 WO2020074571A1 (en) 2018-10-12 2019-10-09 Heating device with infrared radiating elements

Publications (1)

Publication Number Publication Date
EP3863785A1 true EP3863785A1 (en) 2021-08-18

Family

ID=68210806

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19786559.5A Pending EP3863785A1 (en) 2018-10-12 2019-10-09 Heating device with infrared radiating elements

Country Status (6)

Country Link
US (1) US20220072786A1 (en)
EP (1) EP3863785A1 (en)
JP (2) JP2022504738A (en)
CN (1) CN112805102B (en)
DE (1) DE102018125310A1 (en)
WO (1) WO2020074571A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018128243A1 (en) * 2018-11-12 2020-05-14 AM Metals GmbH Manufacturing device for additive manufacturing of three-dimensional components
EP4031354A1 (en) * 2019-09-17 2022-07-27 Formlabs, Inc. Techniques for thermal management in additive fabrication and related systems and methods
DE102019131059A1 (en) * 2019-11-18 2021-05-20 Heraeus Additive Manufacturing Gmbh Swap body container and device for additive manufacturing of a workpiece, process station and system for it
US20220410275A1 (en) * 2021-06-24 2022-12-29 Wisconsin Alumni Research Foundation High Energy 3-D Printer Employing Continuous Print Path

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3406789C1 (en) * 1984-02-24 1989-07-20 Adolf 7251 Weissach Berkmann Process for drying particularly powder-coated workpieces by infrared radiation
EP0224320B1 (en) * 1985-08-07 1993-05-12 Samuel Manu-Tech Inc. Improved heating of fluidized bed furnace
CA1238183A (en) * 1985-08-07 1988-06-21 Roger Dalton High temperature fluidized bed furnace
DE3938437A1 (en) * 1989-11-20 1991-05-23 Heraeus Quarzglas INFRARED RADIANT
WO2007114895A2 (en) * 2006-04-06 2007-10-11 Z Corporation Production of three-dimensional objects by use of electromagnetic radiation
DE102006055053A1 (en) * 2006-11-22 2008-05-29 Eos Gmbh Electro Optical Systems Apparatus for layering a three-dimensional object
DE102008051478A1 (en) * 2008-10-13 2010-06-02 Eos Gmbh Electro Optical Systems Frame for a device for producing a three-dimensional object and device for producing a three-dimensional object with such a frame
DE102009011361A1 (en) * 2009-03-05 2010-09-09 Krones Ag Oven for plastic preforms with semi-transparent spotlight
DE102011012363A1 (en) * 2011-02-24 2012-08-30 Heraeus Noblelight Gmbh Infrared surface radiator for infrared radiation with high radiating power per unit area, has pipes whose outer surfaces are provided on side with reflector and fixation layer made of opaque quartz glass, where side faces toward surface
DE102012012344B4 (en) * 2012-03-21 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for the production of workpieces by jet melting of pulverulent material
EP2857177A1 (en) * 2013-10-01 2015-04-08 Siemens Aktiengesellschaft Method for layered construction of a three-dimensional component and device for performing the method
DE102015006533A1 (en) 2014-12-22 2016-06-23 Voxeljet Ag Method and device for producing 3D molded parts with layer construction technique
DE102015211538A1 (en) * 2015-06-23 2016-12-29 Trumpf Laser- Und Systemtechnik Gmbh Construction cylinder arrangement for a machine for the layered production of three-dimensional objects
JP6850945B2 (en) * 2016-02-19 2021-03-31 株式会社アスペクト Powder bed fusion bonding equipment
DE102016120536A1 (en) * 2016-10-27 2018-05-03 Heraeus Noblelight Gmbh infrared Heaters
JP7154735B2 (en) * 2016-12-13 2022-10-18 三菱重工業株式会社 Three-dimensional lamination device and its powder temperature control method
GB201706705D0 (en) * 2017-04-27 2017-06-14 Renishaw Plc Powder bed fusion apparatus and methods
CN207607114U (en) * 2017-10-24 2018-07-13 王月娟 A kind of preheating device for selective laser melting technology
US11053159B2 (en) * 2017-12-13 2021-07-06 Corning Incorporated Polychromatic articles and methods of making the same
WO2019151998A1 (en) * 2018-01-31 2019-08-08 Hewlett-Packard Development Company, L.P. Fracture detection in additive manufacturing

Also Published As

Publication number Publication date
CN112805102A (en) 2021-05-14
CN112805102B (en) 2023-11-21
WO2020074571A1 (en) 2020-04-16
US20220072786A1 (en) 2022-03-10
JP2022504738A (en) 2022-01-13
DE102018125310A1 (en) 2020-04-16
JP2024079729A (en) 2024-06-11

Similar Documents

Publication Publication Date Title
EP3863785A1 (en) Heating device with infrared radiating elements
EP3253515B1 (en) System for an additive production method having heating device for the powder chamber
EP2313254B1 (en) Interchangeable frame for a device for producing a three-dimensional object and device having such an interchangeable frame for producing a three-dimensional object
EP1355760B1 (en) Method and device for the selective laser sintering of metallic substances
EP2836323B1 (en) Multiple coil arrangement for a device for generative production of components and corresponding production method
DE102012012344B4 (en) Method and device for the production of workpieces by jet melting of pulverulent material
EP2613899B1 (en) Method and device for generatively producing at least one component area
EP2200797B1 (en) Method for producing a fibre-composite component
EP3377321A1 (en) Method and device for 3d printing with a narrow wavelength spectrum
EP3655234A1 (en) Process and apparatus for producing 3d moldings comprising a spectrum converter
WO2020074568A1 (en) Heating device with an infrared panel radiator
DE19941038A1 (en) Electric heater for hot runner systems and method for producing such a heater
WO2021099247A1 (en) Removable build container and apparatus for the additive manufacture of a workpiece, process station and system therefor
EP3256804B1 (en) Sintering furnace for components made of sintered material, in particular dental components
DE102004042422A1 (en) Heated composite molding tool for manufacture of fiber reinforced components is constructed in fiber reinforced plastic with embedded conductive electrical resistance heating element
EP2793008A1 (en) Calibrator for calibration of temperature measuring devices
EP3147067A1 (en) Device and method for producing and/or repairing of in particular rotationally symmetrical components
DE102016207112A1 (en) Method for producing at least one component region of a component and induction auxiliary structure
DE2812888C2 (en) Isostatic hot press autoclave
DE19510989A1 (en) Component combination for electrical heating plates, ignition devices, temperature sensors or the like
DE202014004068U1 (en) High-temperature infrared radiators
DE102015211170A1 (en) Device and method for producing a three-dimensional object
EP2372281B1 (en) Oven for heat-treating a number of objects
DE10031447A1 (en) Device for heating meltable material
DE102015216583A1 (en) Method for producing a three-dimensional structure and device for this purpose

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)