WO2020074568A1 - Heating device with an infrared panel radiator - Google Patents

Heating device with an infrared panel radiator Download PDF

Info

Publication number
WO2020074568A1
WO2020074568A1 PCT/EP2019/077326 EP2019077326W WO2020074568A1 WO 2020074568 A1 WO2020074568 A1 WO 2020074568A1 EP 2019077326 W EP2019077326 W EP 2019077326W WO 2020074568 A1 WO2020074568 A1 WO 2020074568A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
heating device
molded part
infrared
radiator
Prior art date
Application number
PCT/EP2019/077326
Other languages
German (de)
French (fr)
Inventor
Oliver Weiss
Holger Zissing
Lotta Gaab
Original Assignee
Heraeus Noblelight Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight Gmbh filed Critical Heraeus Noblelight Gmbh
Publication of WO2020074568A1 publication Critical patent/WO2020074568A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/20Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a heating device with at least one infrared surface heater for heating a powder for producing a 3D molded part in a construction space, which has a construction platform for receiving the molded part, a height-adjustable support plate and the infrared surface heater arranged between Construction platform and carrier plate.
  • the invention further relates to a method for producing a 3D molded part using the heating device.
  • Three-dimensional (3D) molded parts are usually produced using the layered structure technique and solidifying a loose powder by means of so-called selective laser beam sintering or laser melting.
  • SLS is also used for selective laser sintering, for plastic powders, or SLM for selective laser melting, for metal powders.
  • DE 10 2015 006 533 A1 alternatively proposes to temper the building platform or the sintered powder on it by means of a heating coil through which heating oil flows and which are arranged below the mounting plate and on the side of the building platform.
  • the temperature that can be achieved with the heating coils is not significantly higher than 200 ° C and the heat transfer to the sinter powder is inefficient (slow) due to this construction.
  • a reservoir and, if necessary, a pump must also be provided for the tempering oil in order to convey the tempering oil through the heating coil. Overall, these additional devices result in a complex heating device, without an increase in efficiency in terms of rapid heat transfer or an extended temperature range being achievable.
  • DE 10 2015 211 538 A1 discloses a construction cylinder arrangement for a machine for the layer-by-layer production of three-dimensional objects by laser sintering or laser melting of powdery material.
  • the powdery material is melted or sintered with a processing laser beam.
  • a heating device in the form of a surface heater with infrared heating coils is provided. The arrangement is selected so that the main part of the heating power of the heating device heats the substrate.
  • DE 10 2012 012 344 B3 discloses a method and a device for the production of workpieces by beam melting of powdery material.
  • the powdery building material is preheated instead of with a platform heater by heating elements which are arranged on or in the side walls of the storage chamber and / or the process chamber.
  • the object of the invention is to provide a method and a heating device for heating a powder for the production of a 3D molded part in an installation space, which ensure an optimized heat transfer to the sintered or melt powder with a homogeneous temperature distribution.
  • the heating device should also function as a high-temperature heating device and enable simple retrofitting in an existing installation space
  • the infrared surface heater comprises a conductor track covered with an electrically insulating cover layer and made of an electrically conductive resistance material on a plate-shaped substrate body made of an electrically insulating material and generating heat when current flows through.
  • the infrared panel heater can be arranged on the carrier plate with its plate-shaped substrate body facing the building platform.
  • the heating device comprises at least one infrared area radiator for heating a powder for producing a 3D molded part in an installation space.
  • the construction space is limited at the bottom by a construction platform for receiving the molded part or for receiving the powder to be sintered or melted.
  • the surface radiator can be designed as a floor surface radiator.
  • An infrared surface radiator can be referred to as a bottom surface radiator, the main (surface) extension of which extends in two mutually perpendicular horizontal directions.
  • the infrared area heater lies, for example, on the carrier plate and is arranged below the construction platform.
  • the infrared surface radiator can be installed with its substrate body facing the building platform.
  • the substrate body in the form of a plate has a smooth surface, so that there is direct contact with the surface of the building Platform. This ensures good heat transfer to the construction platform.
  • the heating device can preferably be provided for heating a powder for producing an at least partially metallic 3D molded part. Alternatively or additionally, the heating device can be provided for heating a powder with a melting point greater than 200 ° C. or greater than 500 ° C. for the production of a 3D molded part.
  • the heating device can preferably set ambient temperatures, in particular in the powder bed, preferably on the surface of the powder bed that is to be processed with the laser, of at least 300 ° C., at least 500 ° C. or more.
  • the powder is a metal powder.
  • a metal powder comprises metallic components.
  • the metal powder can consist of metallic components.
  • the metal powder preferably comprises at least 50%, at least 75%, at least 90% or at least 95% of metallic constituents.
  • the construction platform can be mounted on a mounting plate, in particular screwed on.
  • the infrared surface radiator can be attached below the mounting plate and / or can be laterally surrounded by the mounting plate, preferably in such a way that there is direct contact with the surface of the substrate body of the infrared surface radiator.
  • the IR surface heater heats the construction platform directly or indirectly via the mounting plate by means of heat conduction.
  • an infrared surface heater can be arranged inside the mounting plate or embedded in it from above in order to ensure optimal heat transfer to the building platform.
  • the mounting plate and / or the IR surface radiator are in turn located on a height-displaceable carrier plate which is lowered and / or raised in the course of the molded part's manufacturing process.
  • the surface radiator can be arranged in an annular or tubular mounting plate.
  • the surface radiator can be fully encapsulated in the mounting plate.
  • a floor plate surface spotlight can be in direct contact with the mounting plate.
  • the surface radiator is formed in functional union as a mounting plate.
  • the floor surface heater comprises several, for example 2, 4, 16 or more floor surface heater segments. Web, bridge and / or pillar-like sections of the mounting plate can be arranged between the bottom surface heater segments.
  • the surface radiator can be spring-loaded or flexible in the vertical direction. In this way, damage when assembling the construction platform can be avoided.
  • the IR surface heater has a resistive conductor track, which is covered in particular with an electrically insulating cover layer and generates heat when current flows through it.
  • the conductor track can be designed as a burned-in thick film layer. Thick film layers of this type are produced, for example, from resistance paste by means of screen printing or from metal-containing ink by means of inkjet printing and then baked at high temperature.
  • IR emitters are optionally equipped with an electrical resistance element made of a resistance material that generates heat when current flows through it.
  • the electrical resistance element itself can form the actual heating element of the IR radiator.
  • the resistance element such as a wire, a conductor track or a layer of the resistance material, also heats the substrate by heat conduction, convection and / or heat radiation, so that this too - depending on the radiation characteristics of the specific substrate material - is the essential heating element of the IR radiator can form.
  • IR emitters show, in particular, a point-like or line-shaped radiation characteristic for the IR radiation, or - as an infrared area radiator - a two-dimensional or three-dimensional radiation characteristic that extends over the area, based on the geometry Adapted to the surface of the heating material to be heated, homogeneous radiation of two- or three-dimensional surfaces is possible.
  • the conductor track is applied to a preferably plate-shaped substrate body made of an electrically insulating material.
  • the substrate body is preferably resistant to high temperatures. Preferred materials include glass and / or ceramic.
  • the conductor track can be at least partially separated from the surroundings by an electrical insulator.
  • the conductor track can be covered by an electrically insulating cover layer.
  • An insulator, in particular as an insulating cover layer for the conductor track can comprise a porous, quartz glass.
  • the insulator, in particular the quartz glass can be arranged as a thermal and / or optical insulator on, in particular directly on, the surface radiator.
  • the isolator can be opaque white.
  • the insulator in particular the electrically insulating cover layer, advantageously has a thickness in the range from 5 pm to 20 pm or to 30 pm.
  • the cover layer is also referred to as overglazing and is preferably made of
  • a thermally insulating cover layer can be applied to the insulator, in particular the electrically insulating cover layer, which has an insulating effect with respect to the carrier plate.
  • the thermally insulating layer preferably has a thickness of 0.5 to 4.0 mm, particularly preferably 0.8 to 1.5 mm.
  • a laser scans over the powder applied to the build platform and melts it locally in layers.
  • high temperature gradients between the melting areas and the surrounding powder can result. Stress irregular cracks can often occur during the uneven heating and cooling of the workpiece.
  • molded parts are temperature-treated in a further process step to ensure that the material is free of stress.
  • mounting plates are used in known SLM systems, which are heated to about 200 ° C electrically by means of heating cartridges. The effective preheating or ambient temperature of the molded part is then reduced by heat conduction through the building platform and the already solidified part of the molded part and the powder bed itself. It is significantly lower than the nominal temperature of the building platform heating and increases with the progress of the construction and associated lowering of the construction platform towards the powder surface. For these reasons, some metal alloys cannot yet be processed using the SLM process.
  • the heating device thus enables a homogeneous heating of the resulting 3D molded part, so that subsequent, complex annealing of the molded part to reduce mechanical stresses can be dispensed with.
  • the heating device is that the infrared surface heater can be easily replaced in the event of a repair and that an existing installation space can also be retrofitted with the heating device.
  • the substrate material contains or consists of quartz glass. Quartz glass is electrically insulating even at relatively high temperatures, has good resistance to corrosion, temperature and temperature changes and is available in high purity. For this reason, it is also suitable for high-temperature heating processes with high demands on purity and inertness as a substrate material for an IR surface heater. Special Another preferred substrate material is opaque quartz glass, which in particular has a porosity of less than 0.5%. The porosity is a dimensionless quantity and is measured using a porosimeter. A high density is achieved due to the low proportion of pores.
  • the quartz glass contains an additional component, preferably elemental silicon, which absorbs in the spectral range of the infrared radiation.
  • the preferably used elementary silicon as an additional component forms its own Si phase dispersed in the quartz glass matrix and causes the glassy matrix material to turn black, specifically at room temperature, but also at an elevated temperature above, for example, 600 ° C. This achieves a good radiation characteristic in the sense of a broadband, high emission at high temperatures for wavelengths between 2 and 8 pm. It is thus possible to provide a higher radiation output per unit area than with a substrate material made of pure quartz glass.
  • a homogeneous radiation and a uniform temperature field can be generated even with thin substrate wall thicknesses and / or with a comparatively low conductor occupancy density.
  • a thermal insulation layer between the support plate and the infrared surface radiator In order to minimize heat losses and to avoid overheating of the support plate or the stamp underneath, it has proven useful to provide a thermal insulation layer between the support plate and the infrared surface radiator. Alternatively or in addition, a liquid-cooled plate can be used.
  • the heating device comprises a further infrared surface radiator, which in particular has a conductor track covered with an electrically insulating cover layer and made of an electrically conductive resistance material that generates heat when current flows, preferably on an electrically insulating substrate material.
  • the installation space can be delimited by at least one side wall, at least two side walls, at least three side walls or more side walls, Of which or of which at least a part is formed by at least one further infrared surface radiator, which can be referred to as a side surface radiator, the substrate element of the surface radiator itself forming the side wall of the installation space - or a part thereof - and this or is turned away.
  • An infrared surface radiator can be referred to as a side surface radiator, the flutter extension of which extends in the surface in a horizontal direction and a vertical direction perpendicular thereto.
  • the number of components that limit the installation space is minimized.
  • at least one side wall, or parts thereof is formed by at least one side surface radiator.
  • the installation space is also heated from the side.
  • Another infrared area heater forms at least part of one or more side walls. The lateral heating of the powder and the at least partially solidified molded part when the support platform is passed under the animal helps to optimize the temperature distribution when the molded part is placed under the oil, so that the temperature gradient between the building platform and the powder surface is minimized.
  • the infrared surface radiator can also have a circular cylindrical shape, so that even with this geometry there is no loss of space due to the surface radiator.
  • a circular-cylindrical side wall can comprise a plurality of infrared surface emitters in the form of a cylinder barrel.
  • the side wall on its side facing away from the molded part can be completely or partially covered by a thermal insulation layer.
  • a thermal insulation layer In the event that the side wall is formed by an infrared surface radiator, this is covered on the outside by the thermal insulation layer.
  • an at least partially liquid-cooled jacket can be used.
  • the infrared area heater can be electrically controlled in zones. It has proven to be particularly advantageous if the conductor track of the infrared Flat radiator comprises a printed heating meander, which can be electrically controlled in particular zones. With this embodiment, the temperature profile of the installation space and in particular the construction platform can be set in a targeted manner. Furthermore, the zones of the jacket heating can be switched on step by step, for example if the building platform lowers in the course of the molding process. The different activation of the zones of the jacket heating means that a temperature gradient in the vertical direction upward in the direction of the powder surface, as would occur with a pure construction platform heating, can be minimized. This makes it possible to work with heating of the resulting 3D molded part, which optimizes the manufacturing process of the 3D molded part. A subsequent, expensive annealing of the molded part to reduce mechanical stresses can be omitted.
  • the powder being melted and / or sintered by means of a laser
  • the aforementioned object is achieved in that the powder and / or the 3D molded part is provided with at least one infrared Surface heater is heated.
  • the powder and / or the 3D molded part are heated continuously or at least temporarily, for example intermittently, by the infrared area heater.
  • the at least one infrared area heater heats the powder and / or the 3D molded part at least before or while the powder is melted and / or sintered by the laser.
  • the laser treatment causes a local melting or sintering of the powder and the application of a new layer from the powder on the 3D molded part that has already been partially manufactured.
  • the laser treatment causes a local melting or sintering of the powder and the application of a new layer from the powder on the 3D molded part that has already been partially manufactured.
  • the at least one infrared area heater heats the Powder and / or the 3D molded part continuously while the powder is melted and / or sintered by the laser.
  • the at least one infrared area heater also heats the powder and the 3D molded part after the powder has been melted and / or sintered by the laser, in particular after completion of the production of the 3D molded part.
  • thermal energy is introduced into the powder and / or the 3D molded part by the laser, the heating of the powder and / or 3D molded part preferably taking place below the melting temperature by means of the at least one infrared surface radiator, whereas the additional is carried out by the laser
  • the thermal energy provided raises the temperature of the powder and / or 3D molded part locally, particularly in a punctiform manner, to a temperature above the melting temperature.
  • “heating” is to be understood to mean that the temperature is raised to a temperature below the melting temperature.
  • melting or “sintering” is to be understood to mean that an at least local temperature increase to a temperature corresponding to or above the melting temperature takes place.
  • Corresponding webs should be arranged between the emitters to absorb the forces acting on the construction platform and to transmit them to the carrier plate.
  • the powder and / or the 3D molded part is advantageously heated to a temperature of at least 250 ° C. or at least 500 ° C.
  • the powder and / or the 3D molded part has proven useful to heat the powder and / or the 3D molded part to a temperature below the melting temperature of the powder.
  • it is heated to a temperature of not more than 500 ° C., not more than 200 ° C., not more than 100 ° C. or not more than 50 ° C. below the melting temperature of the powder.
  • the optimized setting of the temperature of the powder and / or the 3D molded part during the sintering process by means of the laser avoids stress cracks and other errors during melting due to excessive temperature differences.
  • the heat on the powder and / or the 3D molded part during sintering is preferably carried out vertically from below and / or horizontally from at least one side.
  • At least one infrared surface radiator in particular a side surface radiator, comprises different heating zones which are controlled separately from one another, in particular depending on a position of the powder and / or the 3D molded part.
  • the heating zones can, for example, be arranged adjacent to one another in the vertical direction.
  • the heating zones can overlap in the vertical direction.
  • the heating zones can be designed without overlaps in the vertical direction. At least 2, at least 3, at least 5 or at least 10 heating zones can be provided in the vertical direction.
  • the heating zone height can be at least 3 cm and / or a maximum of 6 cm. According to another embodiment, the heating zone height can be at least 8 cm and / or a maximum of 12 cm. Depending on the height of the machine room, the heating zone height can be at least 1/10 and / or at most 1 of the height of the machine room.
  • the machine room height can be at least 20 cm or at least 30 cm. Further preferred embodiments are described in the claims.
  • Figure 1 shows an embodiment of the heating device in a schematic representation and in a side view, and Figures 2 to 4 further embodiments of the heating device;
  • FIG. 1 schematically shows an embodiment of the heating device with several infrared surface radiators 4, 4 ', 4 ”in a construction space 1 for the production of 3D molded parts 5.
  • the process chamber 2 Above the construction space 1 there is the process chamber 2, in which units, not shown here to control the assembly process of the molded parts 5 are housed.
  • a laser unit 3 is schematically arranged at the upper end of the process chamber 2, which is suitable for heating the powder P for producing the 3D molded part 5 with a high-energy laser beam emanating therefrom and selectively sintering and / or melting it .
  • Powder P is typically a metal powder, but plastic powders can also be used.
  • the powder P is located on the construction platform 6, which is arranged on a height-displaceable support plate 7 indicated by the double directional arrow 8 with a stamp 7.1.
  • the construction platform 6 is mounted on a mounting plate 9, which simplifies the exchange of the construction platform 6.
  • the construction platform 6 - supported by the mounting plate 9 - is heated by one of the infrared surface radiators 4, which is arranged on the carrier plate 7.
  • the infrared surface heater 4 is insulated from the carrier plate 7 by a thermal insulation layer 4i, which is applied directly to the infrared surface heater 4, and additionally by a cooling plate 10.
  • the cooling plate 10 consists, at least on the side facing the infrared area radiator, preferably of a material which reflects the infrared radiation well, or is coated with such a material.
  • a material which reflects the infrared radiation well can be aluminum, gold, silver, copper or polished steel, for example.
  • the reflected heat radiation is again partially absorbed by the IR surface heater and contributes to its further heating. This allows the necessary electrical power, which is necessary to keep the IR surface heater at a constant Operating temperature, reduced and thus the energy efficiency of the heating process can be increased.
  • the reflective cooling plate can be positioned at a small distance on the back of the IR surface radiator. This distance is preferably in the range from 5 to 50 mm. The smaller the distance between the surface radiator and the reflecting cooling plate, the more effective the reflecting effect of the cooling plate. In the case of a metal cooling plate, which can be electrically at ground or another electrical potential, a short circuit must be avoided.
  • the distance is usually less than 10 mm, preferably at most 5 mm, in particular at most 2.5 mm.
  • the distance can be greater than 0.5 mm, preferably at least 1 mm, in particular at least 1.5 mm. For example, the distance is 2.0 mm ⁇ 0.15 mm.
  • insulation layer 4i and reflective cooling plate 10 can be described as follows. Due to its low emissivity, the thermal insulation layer ensures that only a small part of the total radiation power of the panel radiator is emitted backwards towards the cooling plate.
  • the cooling plate can in turn reflect a large part (up to 99%) of the incoming loss radiation, so that a large part of the lost radiation hits the infrared radiator again.
  • the infrared heater would be hotter, but this is prevented by the individual temperature control, so that the infrared heater only consumes less electricity (less voltage).
  • thermal insulation layer and reflecting cooling plate in thermal equilibrium can achieve an energy consumption of the infrared radiator that is up to 80% lower than when the infrared radiators are heated. Since the lost radiation contributes to the self-heating of the infrared radiators, higher heating rates can also be achieved.
  • the construction space 1 is further heated laterally by two infrared surface radiators 4 ', 4 “, which simultaneously form the side walls of the construction space.
  • these infrared surface radiators 4 ', 4 ”or the side walls are covered by a thermal insulator, which is in the form of a further, thermal insulation layer 4ii, 4iii on the infrared surface radiator 4 ', 4 "is present.
  • a cooling plate 10 ', 10 " is provided on both sides of the jacket heating.
  • a seal 12 is provided between the height-adjustable support plate 7 and the side walls in order to maintain a suitable atmosphere in the installation space 1 permanently and to minimize heat losses at this point.
  • the infrared surface radiators 4, 4 ′′, 4 ′′ shown in side view in the heating device are each arranged with their plate-shaped substrate body 4s facing the building platform 6 in the building space 1.
  • the substrate body 4s in the form of a plate has a smooth surface which, in the case of the surface emitter 4 on the carrier plate 7, lies directly against the surface of the mounting plate 9 and the construction platform 6 connected to it. Because of the particularly good radiation characteristics of the material of the substrate body 4s, good heat transfer to the construction platform 6 is guaranteed.
  • the plate-shaped substrate body 4s has a rectangular shape with a plate thickness of 2.5 mm. It consists of a composite material with a quartz glass matrix. The matrix is visually translucent to transparent. When viewed microscopically, it shows no open pores and at most closed pores with maximum dimensions of less than 10 pm on average. A phase of elemental silicon in the form of non-spherical areas is homogeneously distributed in the matrix. Their weight percentage is 5%. The maximum dimensions of the Si phase areas are on average (median) in the range from about 1 to 10 pm.
  • the composite material is gas-tight, it has a density of 2.19 g / cm 3 and it is stable in air up to a temperature of around 1200 ° C.
  • the embedded Si phase contributes to the overall opacity of the composite material and has an impact on the optical and thermal egg properties of the composite material. At high temperature, this shows a high absorption of heat radiation and a high emissivity.
  • a conductor track 4c made of an electrically conductive resistance material which generates heat when current flows through, in this case a platinum conductor track which is applied from a platinum resistor paste to the surface of the substrate body 4s by screen printing or by means of ink-jet printing and then at a higher level Temperature was baked.
  • the conductor track 4c of the infrared panel heater 4, 4 ′′, 4 ′′ comprises a printed heating meander which can be electrically controlled in zones.
  • the zones which can be controlled individually are designated z1 and z2 by way of example in the figure.
  • the zone-by-zone heating of the heating meander can have a targeted effect on the temperature distribution in the process of building the 3D molded part 5.
  • the opposite side of the substrate body 4s serves - as explained above - when using the infrared area radiator as a radiation surface for heat radiation.
  • the conductor track 4c is covered by an electrically insulating cover layer 4d made of white opaque quartz glass (overglazing), which additionally serves as a thermal and optical insulator directly on the surface radiator.
  • the electrically insulating cover layer 4d has a thickness of approximately 5 pm to 20 pm or up to 30 pm.
  • the thermally insulating covering layer 4i which has an insulating effect with respect to the carrier plate 7, is applied to the electrically insulating covering layer 4d.
  • This thermally insulating layer has a thickness of approximately one millimeter (1 mm).
  • the heating device is characterized by a high emissivity for thermal radiation and effective use of the power fed in with a simple geometric design of the infrared panel heaters.
  • a homogeneous temperature distribution and an optimized heat transfer to the sintered or melt powder are guaranteed.
  • the heating device shown in FIG. 2 shows an IR surface heater 4, which is designed as a floor surface heater and is completely surrounded by the mounting plate 9. is encapsulated.
  • the bottom surface radiator 4 is inserted into the mounting plate 9 through a lateral slot (not shown here). This results in good contact with the building platform 6 and thus with the powder P or with the molded part 5.
  • FIGS. 3 and 4 show further variants with regard to the position of the floor surface radiator 4 between the building platform 6 and the carrier plate 7.
  • the bottom surface radiator 4 is inserted from above into a corresponding recess in the mounting plate 9, so that there is direct contact with the building platform 6.
  • the heat transfer to the powder P and the molded part 5 is thereby optimized. It is important that the surface radiator 4 is spring-mounted so that the construction platform 6 is not damaged during assembly.
  • Figure 4 finally shows the bottom surface radiator 4 in a position in which it is used in the lower region of the mounting plate 9. In relation to the heat transfer to the powder or to the molded part, this position results in a particularly uniform heating pattern.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Resistance Heating (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a heating device with at least one infrared panel radiator for heating a powder for the production of a 3D moulded part in a construction space, comprising a construction platform for receiving the moulded part, a height-adjustable carrier plate and the infrared panel radiator arranged between the construction platform and the carrier plate. In order to provide a corresponding heating device with an infrared panel radiator for the production of a 3D moulded part in a construction space, which guarantees an optimised heat transfer to the sintering or melting powder with a homogeneous temperature distribution and which enables a simple retrofitting in an existing construction space as a high-temperature heating device, according to the invention, the infrared panel radiator has a conductor path which is formed by a resistive material that is electrically conductive and generates heat when current flows through, and which is covered by an electrically insulating cover layer, on a plate-type substrate element made of an electrically insulating material, and the infrared panel radiator is arranged on the carrier plate with its plate-type substrate element facing the construction platform. The invention also relates to a method for producing a 3D moulded part using the above-mentioned heating device.

Description

Heizeinrichtung mit einem Infrarot-Flächenstrahler  Heating device with an infrared area heater
Beschreibung description
Technisches Gebiet Die vorliegende Erfindung betrifft eine Heizeinrichtung mit mindestens einem Inf rarot-Flächenstrahler zum Erhitzen eines Pulvers zur Herstellung eines 3D- Formteils in einem Bauraum, der eine Bauplattform zur Aufnahme des Formteils, eine höhenverschiebbare Trägerplatte und den Infrarot-Flächenstrahler, angeord- net zwischen Bauplattform und Trägerplatte, umfasst. Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung eines 3D-Formteils unter Verwendung der Heizeinrichtung. TECHNICAL FIELD The present invention relates to a heating device with at least one infrared surface heater for heating a powder for producing a 3D molded part in a construction space, which has a construction platform for receiving the molded part, a height-adjustable support plate and the infrared surface heater arranged between Construction platform and carrier plate. The invention further relates to a method for producing a 3D molded part using the heating device.
Dreidimensionale (3D) Formteile werden in der Regel in Schichtaufbautechnik und Verfestigen eines losen Pulvers mittels sogenanntem selektiven Laserstrahl- sintern oder Laserschmelzen hergestellt. Es wird auch kurz die Bezeichnung SLS für selective laser sintering, bei Kunststoffpulvern, bzw. SLM für selective laser melting, bei Metallpulvern verwendet. Beim Erhitzen des Pulvers, sei es ein Kunststoffpulver oder ein Metallpulver, ist eine homogene Temperaturverteilung erforderlich um thermische Spannungen (Risse, Verzug) im fertigen Formteil zu vermeiden. Stand der Technik Three-dimensional (3D) molded parts are usually produced using the layered structure technique and solidifying a loose powder by means of so-called selective laser beam sintering or laser melting. The term SLS is also used for selective laser sintering, for plastic powders, or SLM for selective laser melting, for metal powders. When heating the powder, be it a plastic powder or a metal powder, a homogeneous temperature distribution is required to avoid thermal stresses (cracks, warping) in the finished molded part. State of the art
Aus DE 10 2015 006 533 A1 ist die Herstellung eines 3D Formteils aus einem Kunststoff-Sinterpulver bekannt. Zum Schmelzen des Kunststoff-Sinterpulvers wird ein Infrarot-Flächenstrahler in Form einer auf Silikon basierenden, flächigen Heizfolie mit elektrischer Widerstandheizung eingesetzt. Eine thermische Isolati- onsschicht ist unten, gegenüber einer höhenverschiebbaren Trägerplatte, und gegebenenfalls seitlich an der Bauplattform vorgesehen. Man erreicht mit der Sil i- kon-basierten Heizfolie jedoch kaum höhere Temperaturen als 200°C. Diese Heizleistung ist zum Erwärmen von Kunststoff-Sinterpulvern bei der Herstellung von 3D Formteilen ausreichend, nicht jedoch bei der Herstellung von metallischen 3D Formteilen, bei denen insgesamt deutlich höhere Prozesstemperaturen erfor- derlich sind. An Stelle der Silikon-basierten Heizfolie wird in DE 10 2015 006 533 A1 alternativ vorgeschlagen die Bauplattform bzw. das auf ihr befindliche Sinterpulver durch von Temperieröl durchströmte Heizwendel zu temperieren, die unterhalb der Mon- tageplatte und seitlich an der Bauplattform angeordnet sind. Die mit den Heiz- wendeln erreichbare Temperatur liegt nicht wesentlich höher als 200°C und der Wärmeübertrag auf das Sinterpulver ist durch diese Konstruktion ineffizient (lang- sam). Für das Temperieröl müssen außerdem ein Vorratsbehälter und gegebe- nenfalls eine Pumpe vorgesehen sein, um das Temperieröl durch die Heizwendel zu fördern. Diese zusätzlichen Einrichtungen ergeben insgesamt eine aufwendige Heizeinrichtung, ohne dass dabei eine Effizienzsteigerung im Sinne einer schnel- len Wärmeübertragung oder ein erweiterter Temperaturbereich zu erreichen ist. The production of a 3D molded part from a plastic sinter powder is known from DE 10 2015 006 533 A1. To melt the plastic sinter powder, an infrared surface heater in the form of a silicone-based, flat heating foil with electrical resistance heating is used. A thermal insulation layer is provided at the bottom, opposite a height-adjustable support plate, and possibly on the side of the building platform. However, the silicone-based heating foil barely reaches temperatures higher than 200 ° C. These Heating power is sufficient for heating plastic sinter powders in the manufacture of 3D molded parts, but not in the manufacture of metallic 3D molded parts, which require significantly higher process temperatures overall. Instead of the silicone-based heating foil, DE 10 2015 006 533 A1 alternatively proposes to temper the building platform or the sintered powder on it by means of a heating coil through which heating oil flows and which are arranged below the mounting plate and on the side of the building platform. The temperature that can be achieved with the heating coils is not significantly higher than 200 ° C and the heat transfer to the sinter powder is inefficient (slow) due to this construction. A reservoir and, if necessary, a pump must also be provided for the tempering oil in order to convey the tempering oil through the heating coil. Overall, these additional devices result in a complex heating device, without an increase in efficiency in terms of rapid heat transfer or an extended temperature range being achievable.
Aus der DE 10 2015 211 538 A1 ist eine Bauzylinder-Anordnung für eine Maschi- ne zur schichtweisen Fertigung dreidimensionaler Objekte durch Lasersintern o- der Laserschmelzen von pulverförmigem Material bekannt. Das pulverförmige Material wird mit einem Bearbeitungslaserstrahl aufgeschmolzen oder gesintert. Außerdem ist eine Heizeinrichtung in Form eines Flächenstrahlers mit Infrarot- Heizwendeln, vorgesehen. Die Anordnung ist so gewählt, dass der Hauptteil der Heizleistung der Heizeinrichtung das Substrat erwärmt. DE 10 2015 211 538 A1 discloses a construction cylinder arrangement for a machine for the layer-by-layer production of three-dimensional objects by laser sintering or laser melting of powdery material. The powdery material is melted or sintered with a processing laser beam. In addition, a heating device in the form of a surface heater with infrared heating coils is provided. The arrangement is selected so that the main part of the heating power of the heating device heats the substrate.
Aus der DE 10 2012 012 344 B3 sind ein Verfahren und eine Vorrichtung zur Her- stellung von Werkstücken durch Strahlschmelzen pulverförmigen Materials be- kannt. Um die prozess-bedingten Temperaturgradienten zu verringern, wird das pulverförmige Aufbaumaterial statt mit einer Plattformheizung durch Heizelemente vorgeheizt, die an beziehungsweise in den Seitenwandungen der Vorratskammer und/oder der Prozesskammer angeordnet sind. DE 10 2012 012 344 B3 discloses a method and a device for the production of workpieces by beam melting of powdery material. In order to reduce the process-related temperature gradients, the powdery building material is preheated instead of with a platform heater by heating elements which are arranged on or in the side walls of the storage chamber and / or the process chamber.
Technische Aufgabenstellung Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Heizeinrichtung zum Erhitzen eines Pulvers zur Herstellung eines 3D-Formteils in einem Bauraum bereitzustellen, die bei homogener Temperaturverteilung einen optimierten Wär- meübertrag auf das Sinter- bzw. Schmelzpulver gewährleisten. Die Heizeinrich- tung soll überdies als Hochtemperaturheizeinrichtung fungieren und eine einfache Nachrüstung in einem bestehenden Bauraum ermöglichen Technical task The object of the invention is to provide a method and a heating device for heating a powder for the production of a 3D molded part in an installation space, which ensure an optimized heat transfer to the sintered or melt powder with a homogeneous temperature distribution. The heating device should also function as a high-temperature heating device and enable simple retrofitting in an existing installation space
Kurzdarstellunq der Erfindung Brief description of the invention
Diese Aufgabe wird gelöst durch die Gegenstände der unabhängigen Ansprüche. This object is achieved by the subject matter of the independent claims.
Gemäß einer Ausführung einer Heizeinrichtung mit einem Infrarot-Flächenstrahler umfasst der Infrarot-Flächenstrahler eine mit einer elektrisch isolierenden Deck- schicht abgedeckte Leiterbahn aus einem elektrisch leitenden und bei Strom- durchfluss Wärme erzeugenden Widerstandsmaterial auf einem plattenförmigen Substratkörper aus einem elektrisch isolierendem Werkstoff. Der Infrarot- Flächenstrahler kann - mit seinem plattenförmigen Substratkörper der Bauplatt- form zugewandt - auf der Trägerplatte angeordnet ist. According to an embodiment of a heating device with an infrared surface heater, the infrared surface heater comprises a conductor track covered with an electrically insulating cover layer and made of an electrically conductive resistance material on a plate-shaped substrate body made of an electrically insulating material and generating heat when current flows through. The infrared panel heater can be arranged on the carrier plate with its plate-shaped substrate body facing the building platform.
Die Heizeinrichtung umfasst mindestens einen Infrarot-Flächenstrahler zum Erhit- zen eines Pulvers zur Herstellung eines 3D Formteils in einem Bauraum. Der Bauraum wird nach unten hin von einer Bauplattform zur Aufnahme des Formteils bzw. zur Aufnahme des zu sinterden - oder des zu schmelzenden Pulvers be- grenzt. The heating device comprises at least one infrared area radiator for heating a powder for producing a 3D molded part in an installation space. The construction space is limited at the bottom by a construction platform for receiving the molded part or for receiving the powder to be sintered or melted.
Insbesondere kann der Flächenstrahler als Bodenflächenstrahler ausgebildet sein. Als Bodenflächenstrahler kann ein Infrarot-Flächenstrahler bezeichnet wer- den, dessen Haupt-(Flächen-)erstreckung in zwei zueinander senkrechten Hori- zontalrichtungen verläuft. Der Infrarot-Flächenstrahler liegt beispielsweise auf der Trägerplatte auf und ist dabei unterhalb der Bauplattform angeordnet. Beispiels- weise kann der Infrarot-Flächenstrahler mit seinem Substratkörper der Bauplatt- form zugewandt eingebaut sein. Der Substratkörper in Form einer Platte hat eine glatte Oberfläche, so dass sich ein direkter Kontakt mit der Oberfläche der Bau- Plattform herstellt. Auf diese Weise ist ein guter Wärmeübergang zur Bauplattform gewährleistet. In particular, the surface radiator can be designed as a floor surface radiator. An infrared surface radiator can be referred to as a bottom surface radiator, the main (surface) extension of which extends in two mutually perpendicular horizontal directions. The infrared area heater lies, for example, on the carrier plate and is arranged below the construction platform. For example, the infrared surface radiator can be installed with its substrate body facing the building platform. The substrate body in the form of a plate has a smooth surface, so that there is direct contact with the surface of the building Platform. This ensures good heat transfer to the construction platform.
Die Heizeinrichtung kann bevorzugt zum Erhitzen eines Pulvers zur Herstellung eines zumindest teilweise metallischen 3D Formteils vorgesehen sein. Alternativ oder zusätzlich kann die Heizeinrichtung zum Erhitzen eines Pulvers mit einem Schmelzpunkt größer als 200 °C oder größer als 500°C zur Herstellung eines 3D Formteils vorgesehen sein. Vorzugsweise kann die Heizeinrichtung Umgebungs- temperaturen, insbesondere im Pulverbett, vorzugsweise an der Oberfläche des Pulverbetts, die mit dem Laser zu bearbeiten ist, von wenigstens 300°C, wenigs- tens 500°C oder mehr einstellen. Insbesondere ist das Pulver ein Metallpulver.The heating device can preferably be provided for heating a powder for producing an at least partially metallic 3D molded part. Alternatively or additionally, the heating device can be provided for heating a powder with a melting point greater than 200 ° C. or greater than 500 ° C. for the production of a 3D molded part. The heating device can preferably set ambient temperatures, in particular in the powder bed, preferably on the surface of the powder bed that is to be processed with the laser, of at least 300 ° C., at least 500 ° C. or more. In particular, the powder is a metal powder.
Ein Metallpulver umfasst metallische Bestandteile. Das Metallpulver kann aus me- tall ischen Bestandteilen bestehen. Das Metallpulver umfasst vorzugsweise we- nigstens 50%, wenigsten 75%, wenigstens 90% oder wenigstens 95% metallische Bestandteile. Von besonderem Interesse sind dabei Metallpulver aus hochfesten Stählen mit hohem Kohlenstoffanteil und Aluminiumlegierungen der Klassen 5xxx, 6xxx und 7xxx gemäß dem Bezeichnungssystem nach EN 573-3/4, sowie Titanlegierungen. A metal powder comprises metallic components. The metal powder can consist of metallic components. The metal powder preferably comprises at least 50%, at least 75%, at least 90% or at least 95% of metallic constituents. Of particular interest are metal powders made of high-strength steels with a high carbon content and aluminum alloys of classes 5xxx, 6xxx and 7xxx according to the designation system according to EN 573-3 / 4, as well as titanium alloys.
Die Bauplattform kann auf einer Montageplatte montiert, insbesondere aufge- schraubt sein. Der Infrarot-Flächenstrahler kann in diesem Fall unterhalb der Montageplatte angebracht und/oder seitlich von der Montageplatte umgeben sein, und zwar vorzugsweise so, dass sich ein direkter Kontakt mit der Oberfläche des Substratkörpers des Infrarot-Flächenstrahlers herstellt. Auf diese Art erwärmt der IR-Flächenstrahler die Bauplattform mittels Wärmeleitung direkt oder indirekt über die Montageplatte. Alternativ oder zusätzlich kann ein Infrarot-Flächenstrahler innerhalb der Montageplatte angeordnet oder in diese von oben eingelassen sein, um einen optimalen Wärmeübergang zur Bauplattform zu gewährleisten. Die Montageplatte und/oder der IR-Flächenstrahler befinden sich wiederum auf einer höhenverschiebbaren Trägerplatte, die im Laufe des Herstellprozesses des Form- teils abgesenkt und/oder angehoben wird. Gemäß einer Ausführung kann der Flächenstrahler in einer ring- oder rohrförmi- gen Montageplatte angeordnet sein. Insbesondere kann der Flächenstrahler in der Montageplatte vollumfänglich eingekapselt sein. Ein Bodenplattenflächen- strahler kann in einem unmittelbaren Berührkontakt zu der Montageplatte stehen. Es ist denkbar, dass der Flächenstrahler in Funktionsunion als Montageplatte ge- bildet ist. Gemäß einer Ausführung umfasst der Bodenflächenstrahler mehrere, beispielsweise 2, 4, 16 oder mehr Bodenflächenstrahler-Segmente. Zwischen den Bodenflächenstrahler-Segmenten können Steg-, brücken- und/oder pfeilerartige Abschnitte der Montageplatte angeordnet sein. Insbesondere kann der Flächenstrahler in Vertikalrichtung federnd oder nachgie- big gelagert sein. Auf diese Weise kann eine Beschädigung beim Montieren der Bauplattform vermieden werden. The construction platform can be mounted on a mounting plate, in particular screwed on. In this case, the infrared surface radiator can be attached below the mounting plate and / or can be laterally surrounded by the mounting plate, preferably in such a way that there is direct contact with the surface of the substrate body of the infrared surface radiator. In this way, the IR surface heater heats the construction platform directly or indirectly via the mounting plate by means of heat conduction. Alternatively or additionally, an infrared surface heater can be arranged inside the mounting plate or embedded in it from above in order to ensure optimal heat transfer to the building platform. The mounting plate and / or the IR surface radiator are in turn located on a height-displaceable carrier plate which is lowered and / or raised in the course of the molded part's manufacturing process. According to one embodiment, the surface radiator can be arranged in an annular or tubular mounting plate. In particular, the surface radiator can be fully encapsulated in the mounting plate. A floor plate surface spotlight can be in direct contact with the mounting plate. It is conceivable that the surface radiator is formed in functional union as a mounting plate. According to one embodiment, the floor surface heater comprises several, for example 2, 4, 16 or more floor surface heater segments. Web, bridge and / or pillar-like sections of the mounting plate can be arranged between the bottom surface heater segments. In particular, the surface radiator can be spring-loaded or flexible in the vertical direction. In this way, damage when assembling the construction platform can be avoided.
Der IR-Flächenstrahler hat eine insbesondere mit einer elektrisch isolierenden Deckschicht abgedeckte Widerstandsleiterbahn, die bei Stromdurchfluss Wärme erzeugt. Die Leiterbahn kann als eingebrannte Dickfilmschicht ausgeführt sein. Derartige Dickfilmschichten werden beispielsweise aus Widerstandspaste mittels Siebdruck oder aus metallhaltiger Tinte mittels Tintenstrahldruck erzeugt und an- schließend bei hoher Temperatur eingebrannt. The IR surface heater has a resistive conductor track, which is covered in particular with an electrically insulating cover layer and generates heat when current flows through it. The conductor track can be designed as a burned-in thick film layer. Thick film layers of this type are produced, for example, from resistance paste by means of screen printing or from metal-containing ink by means of inkjet printing and then baked at high temperature.
IR-Strahler sind optional mit einem elektrischen Widerstandselement aus einem Widerstandsmaterial ausgestattet, das bei Stromdurchfluss Wärme erzeugt. Das elektrische Widerstandselement selbst kann das eigentliche Heizelement des IR- Strahlers bilden. Das Widerstandselement, wie etwa ein Draht, eine Leiterbahn oder eine Schicht aus dem Widerstandsmaterial, erwärmt durch Wärmeleitung, Konvektion und/oder Wärmestrahlung auch das Substrat, so dass auch dieses - je nach Abstrahlcharakteristik des spezifischen Substrat-Werkstoffes - das we- sentliche Heizelement des IR-Strahlers bilden kann. IR emitters are optionally equipped with an electrical resistance element made of a resistance material that generates heat when current flows through it. The electrical resistance element itself can form the actual heating element of the IR radiator. The resistance element, such as a wire, a conductor track or a layer of the resistance material, also heats the substrate by heat conduction, convection and / or heat radiation, so that this too - depending on the radiation characteristics of the specific substrate material - is the essential heating element of the IR radiator can form.
IR-Strahler zeigen insbesondere eine punkt- oder linienförmige Abstrahlcharakte- ristik für die IR-Strahlung, oder - als Infrarot-Flächenstrahler - eine flächig ausge- dehnte zwei-, oder dreidimensionale Abstrahlcharakteristik, die an die Geometrie der zu beheizenden Oberfläche des Heizgutes angepasst eine homogene Be- strahlung zwei- oder dreidimensional gestalteter Oberflächen ermöglicht. IR emitters show, in particular, a point-like or line-shaped radiation characteristic for the IR radiation, or - as an infrared area radiator - a two-dimensional or three-dimensional radiation characteristic that extends over the area, based on the geometry Adapted to the surface of the heating material to be heated, homogeneous radiation of two- or three-dimensional surfaces is possible.
Die Leiterbahn ist auf einem vorzugsweise plattenförmigen Substratkörper aus einem elektrisch isolierenden Werkstoff aufgebracht. Der Substratkörper ist be- vorzugt hochtemperaturfest. Bevorzugte Werkstoffe umfassen Glas und/oder Ke- ramik. The conductor track is applied to a preferably plate-shaped substrate body made of an electrically insulating material. The substrate body is preferably resistant to high temperatures. Preferred materials include glass and / or ceramic.
Die Leiterbahn kann mit einem elektrischen Isolator von der Umgebung zumindest teilweise getrennt sein. Die Leiterbahn kann von einer elektrisch isolierenden Deckschicht abgedeckt sein. Ein Isolator, insbesondere als isolierende Deck- Schicht, für die Leiterbahn, kann ein poröses, Quarzglas umfassen. Der Isolator, insbesondere das Quarzglas, kann als thermischer und/oder optischer Isolator an, insbesondere direkt auf, dem Flächenstrahler angeordnet sein. Der Isolator kann opak weiß sein. The conductor track can be at least partially separated from the surroundings by an electrical insulator. The conductor track can be covered by an electrically insulating cover layer. An insulator, in particular as an insulating cover layer for the conductor track, can comprise a porous, quartz glass. The insulator, in particular the quartz glass, can be arranged as a thermal and / or optical insulator on, in particular directly on, the surface radiator. The isolator can be opaque white.
Vorteilhafterweise weist der Isolator, insbesondere die elektrisch isolierende Deckschicht, eine Dicke im Bereich von 5 pm bis 20 pm oder bis 30 pm auf. Die Deckschicht wird auch als Overglazing bezeichnet und wird bevorzugt aus The insulator, in particular the electrically insulating cover layer, advantageously has a thickness in the range from 5 pm to 20 pm or to 30 pm. The cover layer is also referred to as overglazing and is preferably made of
Quarzglas ausgeführt. Executed quartz glass.
Auf dem Isolator, insbesondere der elektrisch isolierenden Deckschicht, kann eine thermisch isolierende Deckschicht aufgetragen sein, die eine isolierende Wirkung gegenüber der Trägerplatte aufweist. Die thermisch isolierende Schicht weist be- vorzugt eine Dicke von 0,5 bis 4,0 mm, besonders bevorzugt von 0,8 bis 1 ,5 mm Dicke auf. A thermally insulating cover layer can be applied to the insulator, in particular the electrically insulating cover layer, which has an insulating effect with respect to the carrier plate. The thermally insulating layer preferably has a thickness of 0.5 to 4.0 mm, particularly preferably 0.8 to 1.5 mm.
Bei der Herstellung eines 3D Formteils mit dem SLM-Verfahren scannt ein Laser über das auf der Bauplattform aufgetragene Pulver und schmilzt dieses schicht- weise lokal auf. Insbesondere bei metallischen Werkstoffen mit hohen Schmelz- punkten können sich hohe Temperaturgradienten zwischen den Schmelzberei- chen und dem umliegenden Pulver ergeben. Während einer ungleichmäßigen Aufheizung und Abkühlung des Werkstücks können sich während des Aufbaupro- zesses des Formteils häufig Spannungsrisse ergeben. Ebenso müssen viele Formteile nach dem Aufbauprozess in einem weiteren Prozessschritt temperatur- behandelt werden, um eine Spannungsfreiheit im Material zu gewährleisten. Um Spannungsrisse und zusätzlichen Prozessschritte zu vermeiden, werden bei be- kannten SLM-Anlagen Montageplatten eingesetzt, die elektrisch mittels Heizpat- ronen auf etwa 200°C erwärmt werden. Die effektive Vorwärm- bzw. Umgebungs- temperatur des Formteils verringert sich dann durch Wärmeleitung durch die Bauplattform und den bereits verfestigten Teil des Formteils und das Pulverbett selbst. Sie ist deutlich kleiner als die nominelle Temperatur der Bauplattformhei- zung und nimmt mit fortschreitendem Baufortschritt und der damit verbundenen Absenkung der Bauplattform zur Pulveroberfläche hin ab. Einige Metalllegierun- gen können aus diesen Gründen bisher noch gar nicht mittels SLM-Verfahren verarbeitet werden. When producing a 3D molded part using the SLM process, a laser scans over the powder applied to the build platform and melts it locally in layers. Particularly with metallic materials with high melting points, high temperature gradients between the melting areas and the surrounding powder can result. Stress irregular cracks can often occur during the uneven heating and cooling of the workpiece. Many also have to After the assembly process, molded parts are temperature-treated in a further process step to ensure that the material is free of stress. In order to avoid stress cracks and additional process steps, mounting plates are used in known SLM systems, which are heated to about 200 ° C electrically by means of heating cartridges. The effective preheating or ambient temperature of the molded part is then reduced by heat conduction through the building platform and the already solidified part of the molded part and the powder bed itself. It is significantly lower than the nominal temperature of the building platform heating and increases with the progress of the construction and associated lowering of the construction platform towards the powder surface. For these reasons, some metal alloys cannot yet be processed using the SLM process.
Die Erwärmung des Pulvers vor der Laserbehandlung zum lokalen Aufschmelzen bzw. vor dem Aufträgen einer neuen Pulverschicht werden Temperaturunter- schiede zwischen dem in Teilen schon verfestigten Formteil und einer neuen Schicht von Pulver nivelliert oder gänzlich vermieden, so dass keine unerwünsch- ten thermischen Effekte wie der Bimetall-Effekt auftreten. The heating of the powder before the laser treatment for local melting or before the application of a new powder layer, temperature differences between the molded part, which has already solidified, and a new layer of powder are leveled or avoided entirely, so that no undesirable thermal effects such as that Bimetal effect occur.
Die Heizeinrichtung ermöglicht somit eine homogene Erwärmung des entstehen- den 3D Formteils, so dass ein nachträgliches, aufwendiges Glühen des Formteils zum Abbau mechanischer Spannungen entfallen kann. The heating device thus enables a homogeneous heating of the resulting 3D molded part, so that subsequent, complex annealing of the molded part to reduce mechanical stresses can be dispensed with.
Ein weiterer Vorteil der Heizeinrichtung besteht darin, dass der Infrarot- Flächenstrahler ohne weiteres im Reparaturfall ausgetauscht werden kann und auch eine Nachrüstung eines bestehenden Bauraums mit der Heizeinrichtung möglich ist. Another advantage of the heating device is that the infrared surface heater can be easily replaced in the event of a repair and that an existing installation space can also be retrofitted with the heating device.
Als vorteilhaft hat sich erwiesen, wenn der Substrat-Werkstoff Quarzglas enthält oder daraus besteht. Quarzglas ist auch bei relativ hohen Temperaturen elektrisch isolierend, besitzt eine gute Korrosions-, Temperatur- und Temperatur- wechselbeständigkeit und steht in hoher Reinheit zur Verfügung. Daher bietet es sich auch bei Hochtemperatur-Heizprozessen mit hohen Anforderungen an Rein- heit und Inertheit als Substrat-Werkstoff für einen IR-Flächenstrahler an. Beson- ders bevorzugt als Substrat-Werkstoff ist opakes Quarzglas, das insbesondere eine Porosität von weniger als 0,5 %aufweist. Die Porosität ist eine dimensionslo- se Größe und wird mittels eines Porosimeters gemessen. Durch den geringen Porenanteil wird eine hohe Dichte erreicht. It has proven to be advantageous if the substrate material contains or consists of quartz glass. Quartz glass is electrically insulating even at relatively high temperatures, has good resistance to corrosion, temperature and temperature changes and is available in high purity. For this reason, it is also suitable for high-temperature heating processes with high demands on purity and inertness as a substrate material for an IR surface heater. Special Another preferred substrate material is opaque quartz glass, which in particular has a porosity of less than 0.5%. The porosity is a dimensionless quantity and is measured using a porosimeter. A high density is achieved due to the low proportion of pores.
Besonders bevorzugt hinsichtlich guter Emissivität ist es, wenn das Quarzglas eine im Spektralbereich der Infrarotstrahlung absorbierende Zusatzkomponente, vorzugsweise elementares Silizium enthält. Das vorzugsweise eingesetzte, ele- mentare Silizium als Zusatzkomponente bildet dabei eine in der Quarzglas-Matrix dispergierte, eigene Si-Phase und bewirkt eine Schwarzfärbung des glasigen Matrix-Werkstoffs und zwar bei Raumtemperatur, aber auch bei erhöhter Tempe- ratur oberhalb von beispielsweise 600 °C. Dadurch wird eine gute Abstrahlungs- charakteristik im Sinne einer breitbandigen, hohen Emission bei hohen Tempera- turen für Wellenlängen zwischen 2 und 8 pm erreicht. Somit gelingt es, eine hö- here Strahlungsleistung pro Flächeneinheit bereitzustellen als bei einem Sub- strat-Werkstoff aus reinem Quarzglas. Darüber hinaus kann auch bei dünnen Substrat-Wandstärken und/oder bei einer vergleichsweise geringen Leiterbahn- Belegungsdichte eine homogene Abstrahlung und ein gleichförmiges Temperatur- feld erzeugt werden. With regard to good emissivity, it is particularly preferred if the quartz glass contains an additional component, preferably elemental silicon, which absorbs in the spectral range of the infrared radiation. The preferably used elementary silicon as an additional component forms its own Si phase dispersed in the quartz glass matrix and causes the glassy matrix material to turn black, specifically at room temperature, but also at an elevated temperature above, for example, 600 ° C. This achieves a good radiation characteristic in the sense of a broadband, high emission at high temperatures for wavelengths between 2 and 8 pm. It is thus possible to provide a higher radiation output per unit area than with a substrate material made of pure quartz glass. In addition, a homogeneous radiation and a uniform temperature field can be generated even with thin substrate wall thicknesses and / or with a comparatively low conductor occupancy density.
Um Wärmeverluste zu minimieren und um eine Überhitzung der Trägerplatte bzw. des darunter liegenden Stempels zu vermeiden, hat es sich bewährt, dass zwi- schen Trägerplatte und Infrarot-Flächenstrahler eine thermische Isolationsschicht vorgesehen ist. Alternativ oder ergänzend dazu kann eine flüssigkeitsgekühlte Platte verwendet werden. In order to minimize heat losses and to avoid overheating of the support plate or the stamp underneath, it has proven useful to provide a thermal insulation layer between the support plate and the infrared surface radiator. Alternatively or in addition, a liquid-cooled plate can be used.
Weiterhin vorteilhaft ist es, wenn die Heizeinrichtung einen weiteren Infrarot- Flächenstrahler umfasst, der insbesondere eine mit einer elektrisch isolierenden Deckschicht abgedeckte Leiterbahn aus einem elektrisch leitenden und bei Stromdurchfluss Wärme erzeugenden Widerstandsmaterial vorzugsweise auf ei- nem elektrisch isolierenden Substrat-Werkstoff aufweist. It is also advantageous if the heating device comprises a further infrared surface radiator, which in particular has a conductor track covered with an electrically insulating cover layer and made of an electrically conductive resistance material that generates heat when current flows, preferably on an electrically insulating substrate material.
Der Bauraum kann von mindestens einer Seitenwand, mindestens zwei Seiten- wänden, mindestens drei Seitenwänden oder mehr Seitenwänden begrenzt sein, von denen oder von der mindestens ein Teil durch wenigstens einen weiteren Inf- rarot-Flächenstrahler gebildet wird, der als Seitenflächenstrahler bezeichnet wer- den kann, wobei das Substratelement des Flächenstrahlers selbst die Seitenwand des Bauraums - oder einen Teil davon - bildet und diesem zu- oder abgewandt ist. Als Seitenflächenstrahler kann ein Infrarot-Flächenstrahler bezeichnet wer- den, dessen Flaupterstreckung in der Fläche in einer Florizontalrichtung und einer dazu senkrechten Vertikalrichtung verläuft. The installation space can be delimited by at least one side wall, at least two side walls, at least three side walls or more side walls, Of which or of which at least a part is formed by at least one further infrared surface radiator, which can be referred to as a side surface radiator, the substrate element of the surface radiator itself forming the side wall of the installation space - or a part thereof - and this or is turned away. An infrared surface radiator can be referred to as a side surface radiator, the flutter extension of which extends in the surface in a horizontal direction and a vertical direction perpendicular thereto.
Bei dieser Ausführungsform, welche auch als Mantelheizung bezeichnet wird, wird die Anzahl der Komponenten, die den Bauraum begrenzen, minimiert. Insbe- sondere ist wenigstens eine Seitenwand, oder Teile davon, durch wenigstens ei- nen Seitenflächenstrahler gebildet. Auf diese Art wird der Bauraum auch seitlich beheizt. Ein weiterer Infrarot-Flächenstrahler bildet mindestens einen Teil einer oder mehrerer Seitenwand. Die seitliche Erwärmung des Pulvers und des zumin- dest zum Teil verfestigten Formteils beim Fierunterfahren der Trägerplattform trägt dazu bei, dass die Temperaturverteilung beim Fierstellen des Formteils optimiert wird, so dass der Temperaturgradient zwischen der Bauplattform und der Pulver- oberfläche minimiert wird. In this embodiment, which is also referred to as jacket heating, the number of components that limit the installation space is minimized. In particular, at least one side wall, or parts thereof, is formed by at least one side surface radiator. In this way, the installation space is also heated from the side. Another infrared area heater forms at least part of one or more side walls. The lateral heating of the powder and the at least partially solidified molded part when the support platform is passed under the animal helps to optimize the temperature distribution when the molded part is placed under the oil, so that the temperature gradient between the building platform and the powder surface is minimized.
Im Falle einer kreiszylindrischen Seitenwand kann der Infrarot-Flächenstrahler ebenfalls eine kreiszylindrische Form aufweisen, so dass auch bei dieser Geo- metrie kein Raumverlust durch den Flächenstrahler eintritt. Es kann eine kreiszy- lindrische Seitenwand mehrere teilzylindermantelförmige Infrarot-Flächenstrahler umfassen. In the case of a circular cylindrical side wall, the infrared surface radiator can also have a circular cylindrical shape, so that even with this geometry there is no loss of space due to the surface radiator. A circular-cylindrical side wall can comprise a plurality of infrared surface emitters in the form of a cylinder barrel.
Um eine Wärmeabfuhr nach außen zu minimieren kann die Seitenwand auf ihrer dem Formteil abgewandten Seite vollständig oder teilweise von einer thermischen Isolationsschicht bedeckt sein. Für den Fall, dass die Seitenwand von einem Inf- rarot-Flächenstrahler gebildet wird, wird dieser nach außen hin von der thermi- schen Isolationsschicht bedeckt. Alternativ oder ergänzend dazu kann ein zumin- dest teilweise flüssigkeitsgekühlter Mantel verwendet werden. In order to minimize heat dissipation to the outside, the side wall on its side facing away from the molded part can be completely or partially covered by a thermal insulation layer. In the event that the side wall is formed by an infrared surface radiator, this is covered on the outside by the thermal insulation layer. As an alternative or in addition, an at least partially liquid-cooled jacket can be used.
Der Infrarot-Flächenstrahler kann zonenweise elektrisch ansteuerbar sein. Als besonders vorteilhaft hat es sich erwiesen, wenn die Leiterbahn des Infrarot- Flächenstrahlers einen gedruckten Heizmäander umfasst, der insbesondere zo- nenweise elektrisch ansteuerbar ist. Mit dieser Ausführungsform kann das Tem- peraturprofil des Bauraums und insbesondere der Bauplattform gezielt eingestellt werden. Des Weiteren lassen sich die Zonen der Mantelheizung schrittweise an- schalten, beispielsweise wenn sich die Bauplattform im Laufe des Aufbauprozes- ses des Formteils absenkt. Durch die unterschiedliche Ansteuerung der Zonen der Mantelheizung lässt sich ein Temperaturgradient in Vertikalrichtung nach oben in Richtung der Pulveroberfläche, wie er bei einer reinen Bauplattformhei- zung auftreten würde, minimieren. Dadurch ist es möglich mit einer den Herstel- lungsprozess des 3D Formteils optimierenden Erwärmung des entstehenden 3D Formteils zu arbeiten. Ein nachträgliches, aufwendiges Glühen des Formteils zum Abbau mechanischer Spannungen kann entfallen. The infrared area heater can be electrically controlled in zones. It has proven to be particularly advantageous if the conductor track of the infrared Flat radiator comprises a printed heating meander, which can be electrically controlled in particular zones. With this embodiment, the temperature profile of the installation space and in particular the construction platform can be set in a targeted manner. Furthermore, the zones of the jacket heating can be switched on step by step, for example if the building platform lowers in the course of the molding process. The different activation of the zones of the jacket heating means that a temperature gradient in the vertical direction upward in the direction of the powder surface, as would occur with a pure construction platform heating, can be minimized. This makes it possible to work with heating of the resulting 3D molded part, which optimizes the manufacturing process of the 3D molded part. A subsequent, expensive annealing of the molded part to reduce mechanical stresses can be omitted.
Hinsichtlich des Verfahrens zur Herstellung eines zumindest teilweise metalli- schen 3D-Formteils, wobei das Pulver mittels eines Lasers geschmolzen und/oder gesintert wird, wird die vorgenannte Aufgabe dadurch gelöst, dass das Pulver und/oder das 3D-Formteil mit mindestens einem Infrarot-Flächenstrahler erhitzt wird. With regard to the method for producing an at least partially metallic 3D molded part, the powder being melted and / or sintered by means of a laser, the aforementioned object is achieved in that the powder and / or the 3D molded part is provided with at least one infrared Surface heater is heated.
Das Pulver und/oder das 3D-Formteil werden durch den Infrarot-Flächenstrahler kontinuierlich oder zumindest zeitweise, beispielsweise taktweise beheizt. Insbe- sondere erhitzt der wenigstens eine Infrarot-Flächenstrahler das Pulver und/oder das 3D-Formteil zumindest bevor oder während das Pulver durch den Laser ge- schmolzen und/ oder gesintert wird. The powder and / or the 3D molded part are heated continuously or at least temporarily, for example intermittently, by the infrared area heater. In particular, the at least one infrared area heater heats the powder and / or the 3D molded part at least before or while the powder is melted and / or sintered by the laser.
Die Laserbehandlung bewirkt ein lokales Aufschmelzen oder Sintern des Pulvers und das Aufträgen einer neuen Schicht aus dem Pulver auf dem bereits teilweise gefertigten 3D-Formteil. Durch das Erhitzen des Pulvers vor oder während der Laserbehandlung mittels Infrarot-Flächenstrahler werden Temperaturunterschiede zwischen dem in Teilen schon verfestigten Formteil und der neuen Schicht aus dem Pulver nivelliert oder gänzlich vermieden, so dass keine unerwünschten thermischen Effekte wie der Bimetall-Effekt auftreten. The laser treatment causes a local melting or sintering of the powder and the application of a new layer from the powder on the 3D molded part that has already been partially manufactured. By heating the powder before or during the laser treatment using an infrared radiator, temperature differences between the molded part that has already solidified in parts and the new layer of powder are leveled or avoided entirely, so that no undesirable thermal effects such as the bimetal effect occur.
Bei einer Ausführung erhitzt der wenigstens eine Infrarot-Flächenstrahler das Pulver und/oder das 3D-Formteil kontinuierlich während das Pulver durch den Laser geschmolzen und/ oder gesintert wird. In one embodiment, the at least one infrared area heater heats the Powder and / or the 3D molded part continuously while the powder is melted and / or sintered by the laser.
Ergänzend dazu ist bei einer anderen Verfahrensweise vorgesehen, dass der we- nigstens eine Infrarot-Flächenstrahler das Pulver und das 3D-Formteil auch dann noch erhitzt, nachdem das Pulver durch den Laser geschmolzen und/ oder gesin- tert wurde, insbesondere nach Abschluss der Fertigung des 3D-Formteils. In addition, it is provided in another procedure that the at least one infrared area heater also heats the powder and the 3D molded part after the powder has been melted and / or sintered by the laser, in particular after completion of the production of the 3D molded part.
Es ist vorteilhaft, nach Abschluss des Sinterns kontrolliert weiter zu Heizen, um eine Temperaturrampe steuern zu können. Durch den Laser wird zusätzliche thermische Energie in das Pulver und/oder das 3D-Formteil eingebracht, wobei vorzugsweise die Erhitzung des Pulvers und/oder 3D-Formteils bis unterhalb der Schmelztemperatur durch den wenigstens einen Infrarot-Flächenstrahler erfolgt, wohingegen die zusätzliche durch den Laser bereitgestellte thermische Energie die Temperatur des Pulvers/und oder 3D Formteils lokal insbesondere punktför- mig auf eine Temperatur oberhalb der Schmelztemperatur anhebt. Im Sinne der Anmeldung ist„erhitzen“ so zu verstehen, dass eine Temperaturanhebung auf eine Temperatur unterhalb der Schmelztemperatur erfolgt. Im Sinne der Anmel- dung ist„schmelzen“ oder„sintern“ so zu verstehen, dass eine zumindest lokale Temperaturüberhöhung auf eine Temperatur entsprechend oder oberhalb der Schmelztemperatur erfolgt. In den verschiedenen Ausführungsformen der Heizeinrichtung kann es sinnvoll sein mehrere kleinere Flächenstrahler unter der Bauplattform anzuordnen. Dabei sollten zwischen den Strahlern entsprechende Stege angeordnet sein, die die Kräfte, die auf die Bauplattform wirken aufzunehmen und auf die Trägerplatte wei- terzuleiten. Vorteilhafterweise wird das Pulver und/oder das 3D-Formteil auf eine Temperatur von wenigstens 250 °C oder von wenigstens 500 °C erhitzt. It is advantageous to continue controlled heating after the sintering is completed in order to be able to control a temperature ramp. Additional thermal energy is introduced into the powder and / or the 3D molded part by the laser, the heating of the powder and / or 3D molded part preferably taking place below the melting temperature by means of the at least one infrared surface radiator, whereas the additional is carried out by the laser The thermal energy provided raises the temperature of the powder and / or 3D molded part locally, particularly in a punctiform manner, to a temperature above the melting temperature. In the sense of the application, “heating” is to be understood to mean that the temperature is raised to a temperature below the melting temperature. In the sense of the application, “melting” or “sintering” is to be understood to mean that an at least local temperature increase to a temperature corresponding to or above the melting temperature takes place. In the various embodiments of the heating device, it may be useful to arrange several smaller area radiators under the construction platform. Corresponding webs should be arranged between the emitters to absorb the forces acting on the construction platform and to transmit them to the carrier plate. The powder and / or the 3D molded part is advantageously heated to a temperature of at least 250 ° C. or at least 500 ° C.
In jedem Fall hat es sich bewährt, das Pulver und/oder das 3D-Formteil auf eine Temperatur unterhalb der Schmelztemperatur des Pulvers zu erhitzen. Je nach spezifischer Schmelztemperatur des vorzugsweise metallischen Pulvers wird es auf eine Temperatur von nicht mehr als 500°C, nicht mehr als 200°C, nicht mehr als 100 °C oder nicht mehr als 50 °C unterhalb der Schmelztemperatur des Pulvers erhitzt. Durch die optimierte Einstellung der Temperatur des Pulvers und/oder des 3D- Formteils während des Sintervorgangs mittels des Lasers werden Spannungsris- se und andere Fehler beim Aufschmelzen durch zu große Temperaturunterschie- de vermieden. In any case, it has proven useful to heat the powder and / or the 3D molded part to a temperature below the melting temperature of the powder. Depending on the specific melting temperature of the preferably metallic powder, it is heated to a temperature of not more than 500 ° C., not more than 200 ° C., not more than 100 ° C. or not more than 50 ° C. below the melting temperature of the powder. The optimized setting of the temperature of the powder and / or the 3D molded part during the sintering process by means of the laser avoids stress cracks and other errors during melting due to excessive temperature differences.
Die Hitzeeinwirkung auf das Pulver und/oder das 3D-Formteil beim Sintern erfolgt vorzugsweise vertikal von unten und/oder horizontal von wenigstens einer Seite. The heat on the powder and / or the 3D molded part during sintering is preferably carried out vertically from below and / or horizontally from at least one side.
Gemäß einer Ausführung umfasst wenigstens ein Infrarot-Flächenstrahler, insbe- sondere ein Seitenflächenstrahler, unterschiedliche Heizzonen, die getrennt von- einander angesteuert werden, insbesondere abhängig von einer Stellung des Pulvers und/oder des 3D-Formteils. Die Heizzonen können beispielsweise in Ver- tikalrichtung benachbart zu einander angeordnet sein. Die Heizzonen können ei- nander in Vertikalrichtung überlappen. Die Heizzonen können in Vertikalrichtung überlappungsfrei ausgeführt sein. In Vertikalrichtung können wenigstens 2, we- nigstens 3, wenigstens 5 oder wenigstens 10 Heizzonen vorgesehen sein. According to one embodiment, at least one infrared surface radiator, in particular a side surface radiator, comprises different heating zones which are controlled separately from one another, in particular depending on a position of the powder and / or the 3D molded part. The heating zones can, for example, be arranged adjacent to one another in the vertical direction. The heating zones can overlap in the vertical direction. The heating zones can be designed without overlaps in the vertical direction. At least 2, at least 3, at least 5 or at least 10 heating zones can be provided in the vertical direction.
Die Heizzonenhöhe kann gemäß einer Ausführung wenigstens 3 cm und/oder höchsten 6cm betragen. Die Heizzonenhöhe kann gemäß einer anderen Ausfüh- rung wenigstens 8 cm und/oder höchsten 12cm betragen. Abhängig von der Höhe des Maschinenbauraums kann die Heizzonenhöhe wenigstens 1/10 und/oder höchstens 1 der Höhe des Maschinenbauraums betragen. Die Maschinenbau- raumhöhe kann wenigstens 20 cm oder wenigstens 30 cm betragen. Weitere bevorzugte Ausführungen werden in den Ansprüchen beschrieben. According to one embodiment, the heating zone height can be at least 3 cm and / or a maximum of 6 cm. According to another embodiment, the heating zone height can be at least 8 cm and / or a maximum of 12 cm. Depending on the height of the machine room, the heating zone height can be at least 1/10 and / or at most 1 of the height of the machine room. The machine room height can be at least 20 cm or at least 30 cm. Further preferred embodiments are described in the claims.
Ausführunqsbeispiel Execution example
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels und einer Patentzeichnung näher erläutert. In der Zeichnung zeigt im Einzelnen: Figur 1 eine Ausführungsform der Heizeinrichtung in schematischer Darstellung und in einer Seitenansicht, und die Figuren 2 bis 4 weitere Ausführungsformen der Heizeinrichtung; The invention is explained in more detail below on the basis of an exemplary embodiment and a patent drawing. The drawing shows in detail: Figure 1 shows an embodiment of the heating device in a schematic representation and in a side view, and Figures 2 to 4 further embodiments of the heating device;
Figur 1 zeigt schematisch eine Ausführungsform der Heizeinrichtung mit mehre- ren Infrarot-Flächenstrahlern 4, 4‘, 4“ in einem Bauraum 1 für die Herstellung von 3D Formteilen 5. Oberhalb des Bauraums 1 befindet sich die Prozesskammer 2, in der hier nicht dargestellte Einheiten zur Steuerung des Aufbauprozesses der Formteile 5 untergebracht sind. Am oberen Ende der Prozesskammer 2 ist sche- matisch eine Lasereinheit 3 angeordnet, die geeignet ist mit einem von ihr ausge- henden Hochenergie-Laserstrahl das Pulver P zur Herstellung des 3D-Formteils 5 zu Erhitzen und dabei selektiv zu sintern und/oder zu erschmelzen. FIG. 1 schematically shows an embodiment of the heating device with several infrared surface radiators 4, 4 ', 4 ”in a construction space 1 for the production of 3D molded parts 5. Above the construction space 1 there is the process chamber 2, in which units, not shown here to control the assembly process of the molded parts 5 are housed. A laser unit 3 is schematically arranged at the upper end of the process chamber 2, which is suitable for heating the powder P for producing the 3D molded part 5 with a high-energy laser beam emanating therefrom and selectively sintering and / or melting it .
Das Pulver P ist typischerweise ein Metallpulver, jedoch können auch Kunststoff- pulver eingesetzt werden. Das Pulver P befindet sich auf der Bauplattform 6, die auf einer durch den doppelten Richtungspfeil 8 angezeigten, höhenverschiebba- ren Trägerplatte 7 mit einem Stempel 7.1 angeordnet ist. Die Bauplattform 6 ist auf einer Montageplatte 9 montiert, die den Austausch der Bauplattform 6 verein- facht. Die Bauplattform 6 - unterstützt von der Montageplatte 9 - wird von einem der Infrarot-Flächenstrahler 4 beheizt, der auf der Trägerplatte 7 angeordnet ist. Der Infrarot-Flächenstrahler 4 ist gegenüber der Trägerplatte 7 durch eine thermi- sche Isolationsschicht 4i, die direkt auf dem Infrarot-Flächenstrahler 4 aufge- bracht ist, - und zusätzlich durch eine Kühlplatte 10, isoliert. Die Kühlplatte 10 besteht zumindest auf der dem Infrarot-Flächenstrahler zugewandten Seite vor- zugsweise aus einem die Infrarotstrahlung gut reflektierendem Material, bezie- hungsweise ist mit einem solchen beschichtet. Dies kann zum Beispiel Aluminium, Gold, Silber, Kupfer oder polierter Stahl sein. Sie bewirkt zum einen, dass nur ein geringer Teil der Wärmestrahlung von der Kühlplatte absorbiert wird und somit die notwendige Kühlleistung reduziert werden kann. Zum anderen wird die reflek- tierte Wärmestrahlung wiederum teilweise vom IR-Flächenstrahler re-absorbiert und trägt zu dessen weiterer Erwärmung bei. Dadurch kann die notwendige elekt- rische Leistung, die notwendig ist um den IR-Flächenstrahler bei einer konstanten Temperatur zu betreiben, reduziert und somit die Energieeffizienz des Heizpro- zesses erhöht werden. Powder P is typically a metal powder, but plastic powders can also be used. The powder P is located on the construction platform 6, which is arranged on a height-displaceable support plate 7 indicated by the double directional arrow 8 with a stamp 7.1. The construction platform 6 is mounted on a mounting plate 9, which simplifies the exchange of the construction platform 6. The construction platform 6 - supported by the mounting plate 9 - is heated by one of the infrared surface radiators 4, which is arranged on the carrier plate 7. The infrared surface heater 4 is insulated from the carrier plate 7 by a thermal insulation layer 4i, which is applied directly to the infrared surface heater 4, and additionally by a cooling plate 10. The cooling plate 10 consists, at least on the side facing the infrared area radiator, preferably of a material which reflects the infrared radiation well, or is coated with such a material. This can be aluminum, gold, silver, copper or polished steel, for example. On the one hand, it has the effect that only a small part of the heat radiation is absorbed by the cooling plate and the necessary cooling capacity can thus be reduced. On the other hand, the reflected heat radiation is again partially absorbed by the IR surface heater and contributes to its further heating. This allows the necessary electrical power, which is necessary to keep the IR surface heater at a constant Operating temperature, reduced and thus the energy efficiency of the heating process can be increased.
Die reflektierende Kühlplatte kann in geringem Abstand rückseitig zu dem IR- Flächenstrahler positioniert werden. Dieser Abstand liegt vorzugsweise im Be- reich von 5 bis 50 mm. Je geringer der Abstand zwischen Flächenstrahler und reflektierender Kühlplatte ist, umso effektiver ist reflektierende Wirkung der Kühl- platte. Bei einer metallischen Kühlplatte, die elektrisch auf Masse oder einem an- deren elektrischen Potential liegen kann, muss ein Kurzschluss aber vermieden werden. Der Abstand ist üblicherweise kleiner als 10 mm, vorzugsweise höchs- tens 5 mm, insbesondere höchstens 2,5 mm. Der Abstand kann größer sein als 0,5 mm, vorzugsweise mindestens 1 mm, insbesondere mindestens 1 ,5 mm. Bei- spielsweise beträgt der Abstand 2,0 mm ±0,15 mm.  The reflective cooling plate can be positioned at a small distance on the back of the IR surface radiator. This distance is preferably in the range from 5 to 50 mm. The smaller the distance between the surface radiator and the reflecting cooling plate, the more effective the reflecting effect of the cooling plate. In the case of a metal cooling plate, which can be electrically at ground or another electrical potential, a short circuit must be avoided. The distance is usually less than 10 mm, preferably at most 5 mm, in particular at most 2.5 mm. The distance can be greater than 0.5 mm, preferably at least 1 mm, in particular at least 1.5 mm. For example, the distance is 2.0 mm ± 0.15 mm.
Das Zusammenspiel von Isolationsschicht 4i und reflektierender Kühlplatte 10 kann wie folgt beschrieben werden. Die thermische Isolationsschicht sorgt auf- grund ihrer geringen Emissivität dafür, dass nur ein geringer Teil der Gesamt- strahlungsleistung des Flächenstrahlers Rückwärts in Richtung auf die Kühlplatte emittiert wird. Die Kühlplatte kann wiederum einen großen Teil (bis zu 99%) der ankommenden Verluststrahlung zurückreflektieren, so dass ein Großteil der Ver- luststrahlung wieder auf den Infrarotstrahler trifft. Der Infrarotstrahler würde dadurch theoretisch heißer, was aber durch die individuelle Temperaturregelung verhindert wird, so dass der Infrarotstrahler lediglich weniger Strom (weniger Spannung) verbraucht. Es hat sich gezeigt, dass durch die Kombination von thermischer Isolationsschicht und reflektierender Kühlplatte im thermischen Gleichgewicht ein bis zu 80 % niedrigerer Energieverbrauch des Infrarotstrahler als beim Aufheizen der Infrarotstrahler erreichbar ist. Da die Verluststrahlung zur Eigenerwärmung der Infrarotstrahler beiträgt, sind zudem höhere Aufheizraten erreichbar. The interplay of insulation layer 4i and reflective cooling plate 10 can be described as follows. Due to its low emissivity, the thermal insulation layer ensures that only a small part of the total radiation power of the panel radiator is emitted backwards towards the cooling plate. The cooling plate can in turn reflect a large part (up to 99%) of the incoming loss radiation, so that a large part of the lost radiation hits the infrared radiator again. Theoretically, the infrared heater would be hotter, but this is prevented by the individual temperature control, so that the infrared heater only consumes less electricity (less voltage). It has been shown that the combination of thermal insulation layer and reflecting cooling plate in thermal equilibrium can achieve an energy consumption of the infrared radiator that is up to 80% lower than when the infrared radiators are heated. Since the lost radiation contributes to the self-heating of the infrared radiators, higher heating rates can also be achieved.
Der Bauraum 1 wird weiterhin seitlich von zwei Infrarot-Flächenstrahlern 4‘, 4“ beheizt, die gleichzeitig die Seitenwände des Bauraums bilden. Nach außen hin sind diese Infrarot-Flächenstrahler 4‘, 4“ bzw. die Seitenwände durch einen ther- mischen Isolator abgedeckt, der in Form von einer weiteren, thermischen Isolati- onsschicht 4ii, 4iii auf dem Infrarot-Flächenstrahler 4‘, 4“ vorliegt. Zusätzlich ist an beiden Seiten der Mantelheizung nach außen eine Kühlplatte 10‘, 10“ vorgese- hen. The construction space 1 is further heated laterally by two infrared surface radiators 4 ', 4 “, which simultaneously form the side walls of the construction space. On the outside, these infrared surface radiators 4 ', 4 ”or the side walls are covered by a thermal insulator, which is in the form of a further, thermal insulation layer 4ii, 4iii on the infrared surface radiator 4 ', 4 "is present. In addition, a cooling plate 10 ', 10 "is provided on both sides of the jacket heating.
Zwischen der höhenverschiebbaren Trägerplatte 7 und den Seitenwänden ist eine Dichtung 12 vorgesehen, um eine geeignete Atmosphäre im Bauraum 1 dauerhaft aufrecht zu erhalten und um Wärmeverluste an dieser Stelle zu minimieren. A seal 12 is provided between the height-adjustable support plate 7 and the side walls in order to maintain a suitable atmosphere in the installation space 1 permanently and to minimize heat losses at this point.
Die in der Heizeinrichtung in Seitenansicht dargestellten Infrarot-Flächenstrahler 4, 4‘, 4“ sind jeweils mit ihrem plattenförmigen Substratkörper 4s der Bauplattform 6 zugewandt im Bauraum 1 angeordnet. Der Substratkörper 4s in Form einer Plat- te hat eine glatte Oberfläche, die im Fall des Flächenstrahlers 4 auf der Träger- platte 7 direkt an der Oberfläche der Montageplatte 9 und der mit ihr verbundenen Bauplattform 6 anliegt. Aufgrund der besonders guten Abstrahlcharakteristik des Werkstoffs des Substratkörpers 4s ist ein guter Wärmeübergang zur Bauplattform 6 gewährleistet. Ein Einbau der Infrarot-Flächenstrahler mit der elektrisch isolie- renden Deckschicht dem Bauraum zugewandt ist grundsätzlich auch möglich, je- doch wird dabei der Vorteil einer gegebenenfalls besonderen Abstrahlcharakteris- tik des Substratkörper-Werkstoffs nicht genutzt. The infrared surface radiators 4, 4 ″, 4 ″ shown in side view in the heating device are each arranged with their plate-shaped substrate body 4s facing the building platform 6 in the building space 1. The substrate body 4s in the form of a plate has a smooth surface which, in the case of the surface emitter 4 on the carrier plate 7, lies directly against the surface of the mounting plate 9 and the construction platform 6 connected to it. Because of the particularly good radiation characteristics of the material of the substrate body 4s, good heat transfer to the construction platform 6 is guaranteed. In principle, it is also possible to install the infrared surface radiators with the electrically insulating cover layer facing the installation space, but the advantage of a possibly special radiation characteristic of the substrate body material is not used.
Der plattenförmige Substratkörper 4s hat Rechteckform mit einer Plattenstärke von 2,5 mm. Es besteht aus einem Kompositwerkstoff mit einer Matrix aus Quarz- glas. Die Matrix wirkt visuell transluzent bis transparent. Sie zeigt bei mikroskopi- scher Betrachtung keine offenen Poren und allenfalls geschlossene Poren mit maximalen Abmessungen von im Mittel weniger als 10 pm. In der Matrix ist eine Phase aus elementarem Silizium in Form nicht-sphärischer Bereiche homogen verteilt. Deren Gewichtsanteil beträgt 5%. Die maximalen Abmessungen der Si- Phasenbereiche liegen im Mittel (Medianwert) im Bereich von etwa 1 bis 10 pm. Der Kompositwerkstoff ist gasdicht, er hat eine Dichte von 2,19 g/cm3 und er ist an Luft bis zu einer Temperatur von etwa 1200 °C stabil. The plate-shaped substrate body 4s has a rectangular shape with a plate thickness of 2.5 mm. It consists of a composite material with a quartz glass matrix. The matrix is visually translucent to transparent. When viewed microscopically, it shows no open pores and at most closed pores with maximum dimensions of less than 10 pm on average. A phase of elemental silicon in the form of non-spherical areas is homogeneously distributed in the matrix. Their weight percentage is 5%. The maximum dimensions of the Si phase areas are on average (median) in the range from about 1 to 10 pm. The composite material is gas-tight, it has a density of 2.19 g / cm 3 and it is stable in air up to a temperature of around 1200 ° C.
Die eingelagerte Si-Phase trägt einerseits zur Opazität des Kompositwerkstoffs insgesamt bei und sie hat Auswirkungen auf die optischen und thermischen Ei- genschaften des Kompositwerkstoffs. Dieser zeigt bei hoher Temperatur eine ho- he Absorption von Wärmestrahlung und einen hohen Emissionsgrad. The embedded Si phase contributes to the overall opacity of the composite material and has an impact on the optical and thermal egg properties of the composite material. At high temperature, this shows a high absorption of heat radiation and a high emissivity.
Auf dem Substratkörper 4s ist eine Leiterbahn 4c aus einem elektrisch leitenden und bei Stromdurchfluss Wärme erzeugenden Widerstandsmaterial, - hier eine Platin-Leiterbahn, die aus einer Platin-Widerstandspaste auf die Oberfläche des Substratkörpers 4s per Siebdruckverfahren oder mittels Tintenstrahldruck aufge- bracht und anschließend bei hoher Temperatur eingebrannt wurde. Die Leiter- bahn 4c des Infrarot-Flächenstrahlers 4, 4‘, 4“ umfasst einen gedruckten Heizmä- ander, der zonenweise elektrisch ansteuerbar ist. Die einzeln ansteuerbaren Zo- nen sind in der Figur beispielhaft mit z1 und z2 bezeichnet. Mit dem zonenweisen Erhitzen des Heizmäanders kann gezielt auf die Temperaturverteilung beim Auf- bauprozess des 3D-Formteils 5 eingewirkt werden. Die gegenüberliegende Seite des Substratkörpers 4s dient - wie oben erläutert - beim Einsatz des Infrarot- Flächen-strahlers als Abstrahlfläche für Wärmestrahlung. Die Leiterbahn 4c ist von einer elektrisch isolierenden Deckschicht 4d aus weiß- opakem Quarzglas (Overglazing) abgedeckt, welche zusätzlich als thermischer und optischer Isolator direkt auf dem Flächenstrahler dient. Die elektrisch isolie rende Deckschicht 4d hat eine Dicke von etwa 5 pm bis 20 pm oder bis 30 pm. On the substrate body 4s there is a conductor track 4c made of an electrically conductive resistance material which generates heat when current flows through, in this case a platinum conductor track which is applied from a platinum resistor paste to the surface of the substrate body 4s by screen printing or by means of ink-jet printing and then at a higher level Temperature was baked. The conductor track 4c of the infrared panel heater 4, 4 ″, 4 ″ comprises a printed heating meander which can be electrically controlled in zones. The zones which can be controlled individually are designated z1 and z2 by way of example in the figure. The zone-by-zone heating of the heating meander can have a targeted effect on the temperature distribution in the process of building the 3D molded part 5. The opposite side of the substrate body 4s serves - as explained above - when using the infrared area radiator as a radiation surface for heat radiation. The conductor track 4c is covered by an electrically insulating cover layer 4d made of white opaque quartz glass (overglazing), which additionally serves as a thermal and optical insulator directly on the surface radiator. The electrically insulating cover layer 4d has a thickness of approximately 5 pm to 20 pm or up to 30 pm.
Auf der elektrisch isolierenden Deckschicht 4d ist die thermisch isolierende Deck- Schicht 4i aufgetragen sein, die eine isolierende Wirkung gegenüber der Träger- platte 7 aufweist. Diese thermisch isolierende Schicht weist eine Dicke von etwa einem Millimeter (1 mm) auf. The thermally insulating covering layer 4i, which has an insulating effect with respect to the carrier plate 7, is applied to the electrically insulating covering layer 4d. This thermally insulating layer has a thickness of approximately one millimeter (1 mm).
Die Heizeinrichtung zeichnet sich durch einen hohen Emissionsgrad für Wärme- strahlung und effektive Nutzung der eingespeisten Leistung bei einfacher geomet- rischer Gestaltung der Infrarot-Flächenstrahler aus. Bei der Anwendung im Be- reich des 3D-Drucks sind eine homogene Temperaturverteilung und ein optimier- ter Wärmeübertrag auf das Sinter- bzw. Schmelzpulver gewährleistet. The heating device is characterized by a high emissivity for thermal radiation and effective use of the power fed in with a simple geometric design of the infrared panel heaters. When used in the area of 3D printing, a homogeneous temperature distribution and an optimized heat transfer to the sintered or melt powder are guaranteed.
Die in Figur 2 dargestellte Heizeinrichtung zeigt einen IR-Flächenstrahler 4, der als Bodenflächenstrahler ausgeführt ist und durch die Montageplatte 9 vollum- fänglich eingekapselt ist. Der Bodenflächenstrahler 4 durch einen hier nicht dar- gestellten seitlichen Schlitz in die Montageplatte 9 eingesetzt. Hierdurch ergibt sich ein guter Kontakt zur Bauplattform 6 und damit zum Pulver P bzw. zum Form- teil 5. Die Figuren 3 und 4 zeigen weitere Varianten in Bezug auf die Position des Bo- denflächenstrahlers 4 zwischen Bauplattform 6 und Trägerplatte 7. The heating device shown in FIG. 2 shows an IR surface heater 4, which is designed as a floor surface heater and is completely surrounded by the mounting plate 9. is encapsulated. The bottom surface radiator 4 is inserted into the mounting plate 9 through a lateral slot (not shown here). This results in good contact with the building platform 6 and thus with the powder P or with the molded part 5. FIGS. 3 and 4 show further variants with regard to the position of the floor surface radiator 4 between the building platform 6 and the carrier plate 7.
Gemäß Figur 3 ist der Bodenflächenstrahler 4 von oben in eine entsprechende Aussparung der Montageplatte 9 eingesetzt, so dass ein direkter Kontakt zur Bauplattform 6 besteht. Der Wärmeübergang zum Pulver P und dem Formteil 5 ist dadurch optimiert. Wichtig dabei ist, dass der Flächenstrahler 4 federnd gelagert ist, damit die Bauplattform 6 bei der Montage nicht beschädigt wird. According to FIG. 3, the bottom surface radiator 4 is inserted from above into a corresponding recess in the mounting plate 9, so that there is direct contact with the building platform 6. The heat transfer to the powder P and the molded part 5 is thereby optimized. It is important that the surface radiator 4 is spring-mounted so that the construction platform 6 is not damaged during assembly.
In dieser wie auch in den anderen Ausführungsformen der Heizeinrichtung kann es hilfreich sein mehrere kleinere Flächenstrahler unter der Bauplattform anzu- ordnen. Dabei sollten zwischen den Strahlern entsprechende Stege angeordnet sein, die die Kräfte, die auf die Bauplattform wirken aufzunehmen und auf die Trägerplatte weiterzuleiten.  In this as well as in the other embodiments of the heating device, it can be helpful to arrange several smaller area radiators under the construction platform. Corresponding webs should be arranged between the emitters, which absorb the forces that act on the construction platform and transmit them to the carrier plate.
Figur 4 schließlich zeigt den Bodenflächenstrahler 4 in einer Position, bei der er im unteren Bereich der Montageplatte 9 eingesetzt ist. Diese Position ergibt in Bezug auf die Wärmeübertragung zum Pulver bzw. zum Formteil hin ein besonde- res gleichmäßiges Erwärmungsbild. Figure 4 finally shows the bottom surface radiator 4 in a position in which it is used in the lower region of the mounting plate 9. In relation to the heat transfer to the powder or to the molded part, this position results in a particularly uniform heating pattern.
Bezuqszeichenliste Reference list
1 Bauraum  1 installation space
2 Prozesskammer  2 process chamber
3 Lasereinheit  3 laser unit
4, 4‘, 4“ IR-Flächenstrahler  4, 4 ″, 4 “IR surface radiators
4c Leiterbahn  4c conductor track
4d elektrisch isolierenden Deckschicht 4i thermisch isolierenden Deckschicht4d electrically insulating cover layer 4i thermally insulating top layer
4s Substratkörper 4s substrate body
5 3D-Formteil  5 3D molded part
6 Bauplattform  6 construction platform
7 Trägerplatte  7 carrier plate
7.1 Stempel  7.1 stamp
8 Richtungspfeil  8 directional arrow
9 Montageplatte  9 mounting plate
10, 10‘ Kühlplatte, thermische Isolationsschicht 10, 10 'cooling plate, thermal insulation layer
12 Dichtung 12 seal
P Pulver  P powder
z1 , z2, z3 Heizzonen z1, z2, z3 heating zones

Claims

Patentansprüche Claims
1. Heizeinrichtung mit mindestens einem Infrarot-Flächenstrahlers (4; 4‘; 4“) zum Erhitzen eines Pulvers (P) zur Herstellung eines zumindest teilweise metalli- schen 3D-Formteils (5) und einem Laser zum Schmelzen des Pulvers (P). 1. Heating device with at least one infrared area radiator (4; 4 ″; 4 “) for heating a powder (P) for producing an at least partially metallic 3D molded part (5) and a laser for melting the powder (P).
2. Heizeinrichtung insbesondere nach Anspruch 1 mit mindestens einem Infrarot- Flächenstrahler (4; 4‘; 4“) zum Erhitzen eines Pulvers (P) zur Herstellung ei- nes 3D-Formteils (5) in einem Bauraum (1 ), der eine Bauplattform (6) zur Auf- nahme des Formteils (5), eine Trägerplatte (7) und den als Bodenflächen- strahler ausgeführten Infrarot-Flächenstrahler (4), angeordnet zwischen Bau- plattform (6) und Trägerplatte (7), umgreift. 2. Heating device in particular according to claim 1 with at least one infrared area radiator (4; 4 '; 4 ") for heating a powder (P) for the production of a 3D molded part (5) in a construction space (1) which is a construction platform (6) for receiving the molded part (5), encompasses a carrier plate (7) and the infrared surface radiator (4) designed as a bottom surface radiator, arranged between the building platform (6) and carrier plate (7).
3. Heizeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Infrarot-Flächenstrahler (4; 4‘; 4“) eine mit einer elektrisch isolierenden Deck- schicht (4d) abgedeckte Leiterbahn (4c) aus einem elektrisch leitenden und bei Stromdurchfluss Wärme erzeugenden Widerstandsmaterial auf einem plat- tenförmigen Substratkörper (4s) aus einem elektrisch isolierendem Werkstoff aufweist. 3. Heating device according to claim 1 or 2, characterized in that the infrared surface radiator (4; 4 '; 4 ") with an electrically insulating cover layer (4d) covered conductor track (4c) from an electrically conductive and heat when current flows generating resistance material on a plate-shaped substrate body (4s) made of an electrically insulating material.
4. Heizeinrichtung nach einem der vorstehenden Ansprüche, dadurch gekenn- zeichnet, dass der Bodenflächenstrahler (4) mit seinem plattenförmigen Sub- stratkörper (4s) der Bauplattform (6) zugewandt auf der Trägerplatte (7) ange- ordnet ist. 4. Heating device according to one of the preceding claims, characterized in that the bottom surface radiator (4) with its plate-shaped substrate body (4s) facing the building platform (6) is arranged on the carrier plate (7).
5. Heizeinrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der elektrisch isolierende Werkstoff des Substratkörpers (4s) Quarzglas enthält. 5. Heating device according to claim 3 or 4, characterized in that the electrically insulating material of the substrate body (4s) contains quartz glass.
6. Heizeinrichtung nach Anspruch 5, dadurch gekennzeichnet, dass das Quarz- glas opak ist und eine Porosität von weniger als 0,5 % aufweist. 6. Heating device according to claim 5, characterized in that the quartz glass is opaque and has a porosity of less than 0.5%.
7. Heizeinrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Quarzglas eine im Spektralbereich der Infrarotstrahlung absorbierende Zu- satzkomponente, vorzugsweise elementares Silizium, enthält. 7. Heating device according to claim 5 or 6, characterized in that the quartz glass contains an additional component, preferably elemental silicon, which absorbs in the spectral range of the infrared radiation.
8. Heizeinrichtung nach einem der vorhergehenden Ansprüchen, dadurch ge- kennzeichnet, dass zwischen Trägerplatte (7) und Bodenflächenstrahler (4) eine thermische Isolationsschicht (10; 10‘) vorgesehen ist. 8. Heating device according to one of the preceding claims, characterized in that a thermal insulation layer (10; 10 ″) is provided between the carrier plate (7) and bottom surface radiator (4).
9. Heizeinrichtung nach einem der vorhergehenden Ansprüchen, dadurch ge- kennzeichnet, dass die Bauplattform (6) mit einer Montageplatte (9) verbunden ist, wobei die Montageplatte (9) zwischen Bodenflächenstrahler (4) und Bau- plattform (6) angeordnet ist und/oder wobei die Montageplatte (9) seitlich des Bodenflächenstrahlers (4) angeordnet ist. 9. Heating device according to one of the preceding claims, characterized in that the building platform (6) is connected to a mounting plate (9), the mounting plate (9) being arranged between the floor surface heater (4) and the building platform (6) and / or wherein the mounting plate (9) is arranged on the side of the floor surface radiator (4).
10. Heizeinrichtung nach einem der vorhergehenden Ansprüchen, dadurch ge- kennzeichnet, dass die Heizeinrichtung wenigstens einen als Seitenflächen- strahler ausgeführten Infrarot-Flächenstrahler (4‘; 4“) umfasst und dass der Bauraum (1 ) von mindestens einer Seitenwand begrenzt ist, von der mindes- tens ein Teil von dem Seitenflächenstrahler (4‘; 4“) gebildet wird. 10. Heating device according to one of the preceding claims, characterized in that the heating device comprises at least one infrared area heater (4 '; 4 ") designed as a side area heater and that the installation space (1) is delimited by at least one side wall of at least part of which is formed by the side surface radiator (4 '; 4 “).
11. Heizeinrichtung nach Anspruch 10, dadurch gekennzeichnet, dass, der Seiten- flächenstrahler eine mit einer elektrisch isolierenden Deckschicht (4d) abge- deckte Leiterbahn (4c) aus einem elektrisch leitenden und bei Stromdurchfluss Wärme erzeugenden Widerstandsmaterial auf einem plattenförmigen Sub- stratkörper (4s) aus einem elektrisch isolierenden Werkstoff aufweist, und der plattenförmige Substratkörper (4s) des Seitenflächenstrahler (4‘; 4“) dem Bau- raum (1 ) zugewandt ist. 11. Heating device according to claim 10, characterized in that the side surface heater has a conductor track (4c) covered with an electrically insulating cover layer (4d) and made of an electrically conductive resistance material on a plate-shaped substrate body (4s ) made of an electrically insulating material, and the plate-shaped substrate body (4s) of the side surface radiator (4 '; 4 ") faces the construction space (1).
12. Heizeinrichtung nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass die Seitenwand auf ihrer dem Formteil (5) abgewandten Seite von einer thermi- schen Isolationsschicht (4i) und einer Kühlplatte (10‘) bedeckt ist. 12. Heating device according to claim 10 or 11, characterized in that the side wall on its side facing away from the molded part (5) is covered by a thermal insulation layer (4i) and a cooling plate (10 ').
13. Heizeinrichtung nach einem der vorhergehenden Ansprüchen, dadurch ge- kennzeichnet, dass die Leiterbahn (4c) des Infrarot-Flächenstrahlers, insbe- sondere des Bodenflächenstrahler und/oder des Seitenflächenstrahlers (4; 4‘; 4“) zonenweise elektrisch ansteuerbar ist, wobei insbesondere der Infrarot- Flächenstrahler je wenigstens einen insbesondere gedruckten Heizmäander umfasst. 13. Heating device according to one of the preceding claims, characterized in that the conductor track (4c) of the infrared surface radiator, in particular the bottom surface radiator and / or the side surface radiator (4; 4 '; 4 ") can be electrically controlled in zones, whereby in particular the infrared area heater each comprises at least one printed heating meander.
14. Heizeinrichtung nach einem der Ansprüche 3 bis 13, dadurch gekennzeich- net, dass die elektrisch isolierende Deckschicht (4d) eine Dicke im Bereich von 5 pm bis 30 pm aufweist. 14. Heating device according to one of claims 3 to 13, characterized in that the electrically insulating cover layer (4d) has a thickness in the range from 5 pm to 30 pm.
15. Verfahren zur Herstellung eines zumindest teilweise metallischen 3D-Formteils (5) aus einem Pulver (P), wobei das Pulver mittels eines Lasers (3) geschmol- zen und/oder gesintert wird, dadurch gekennzeichnet, dass das Pulver (P) und/oder das 3D-Formteil (5) mit mindestens einem Infrarot-Flächenstrahler (4; 4‘; 4“) erhitzt wird. 15. A method for producing an at least partially metallic 3D molded part (5) from a powder (P), the powder being melted and / or sintered by means of a laser (3), characterized in that the powder (P) and / or the 3D molded part (5) is heated with at least one infrared area radiator (4; 4 '; 4 “).
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass das Pulver (P) und/oder das 3D-Formteil (5) auf eine Temperatur von wenigstens 250 °C o- der von wenigstens 500 °C erhitzt wird. 16. The method according to claim 15, characterized in that the powder (P) and / or the 3D molded part (5) is heated to a temperature of at least 250 ° C or at least 500 ° C.
17. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass das Pul- ver (P) und/oder das 3D-Formteil (5) auf eine Temperatur unterhalb der Schmelztemperatur des Pulvers erhitzt wird. 17. The method according to claim 15 or 16, characterized in that the powder (P) and / or the 3D molded part (5) is heated to a temperature below the melting temperature of the powder.
18. Verfahren nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass das Pulver (P) und/oder das 3D-Formteil (5) auf eine Temperatur von nicht mehr als 500°C, nicht mehr als 200°C, nicht mehr als 100 °C oder nicht mehr als 50 °C unterhalb der Schmelztemperatur des Pulvers (P) erhitzt wird. 18. The method according to any one of claims 15 to 17, characterized in that the powder (P) and / or the 3D molded part (5) to a temperature of not more than 500 ° C, not more than 200 ° C, no more is heated as 100 ° C or not more than 50 ° C below the melting temperature of the powder (P).
19. Verfahren nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass das Pulver (P) und/oder das 3D-Formteil (5) vertikal von unten und/oder horizontal von wenigstens einer Seite erhitzt wird. 19. The method according to any one of claims 15 to 18, characterized in that the powder (P) and / or the 3D molded part (5) is heated vertically from below and / or horizontally from at least one side.
20. Verfahren nach einem der Ansprüche 15 bis 19, dadurch gekennzeichnet, dass eine vertikale Relativbewegung des Pulver (P) und/oder des 3D-Formteil (5) während des Erhitzens relativ zu wenigstens einem Infrarot- Flächenstrahler (4; 4‘; 4“), insbesondere einem Seitenflächenstrahler (4‘, 4“) erfolgt. 20. The method according to any one of claims 15 to 19, characterized in that a vertical relative movement of the powder (P) and / or the 3D molded part (5) during heating relative to at least one infrared surface radiator (4; 4 '; 4th "), In particular a side surface radiator (4 ', 4").
21. Verfahren nach einem der Ansprüche 15 bis 20, dadurch gekennzeichnet, dass wenigstens ein Infrarot-Flächenstrahler (4; 4‘; 4“), insbesondere ein Sei- tenflächenstrahler, unterschiedliche Heizzonen (z 1 , z 2, z 3) umfasst, die ge- trennt voneinander angesteuert werden, insbesondere abhängig von einer Stellung des Pulvers (P) und/oder des 3D-Formteils (5). 21. The method according to any one of claims 15 to 20, characterized in that at least one infrared radiator (4; 4 '; 4 "), in particular a side surface heater, different heating zones (z 1, z 2, z 3), which are controlled separately from one another, in particular depending on a position of the powder (P) and / or the 3D molded part (5).
PCT/EP2019/077326 2018-10-12 2019-10-09 Heating device with an infrared panel radiator WO2020074568A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018125304.4 2018-10-12
DE102018125304.4A DE102018125304A1 (en) 2018-10-12 2018-10-12 Heating device with an infrared area heater

Publications (1)

Publication Number Publication Date
WO2020074568A1 true WO2020074568A1 (en) 2020-04-16

Family

ID=68289919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/077326 WO2020074568A1 (en) 2018-10-12 2019-10-09 Heating device with an infrared panel radiator

Country Status (2)

Country Link
DE (1) DE102018125304A1 (en)
WO (1) WO2020074568A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102138630B1 (en) * 2020-06-16 2020-07-28 주식회사 너랑나 Jewelry 3D Printer
WO2022134250A1 (en) * 2020-12-24 2022-06-30 华中科技大学 Rapid ultra-high temperature heating device of 3d printing powder bed
US20220219392A1 (en) * 2021-01-14 2022-07-14 Rn Technologies, Llc Methods and apparatus for additive manufacturing based on multi-dimensional build platforms

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021106020A1 (en) 2021-03-12 2022-09-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Processing system and method for the additive construction of a component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015006533A1 (en) 2014-12-22 2016-06-23 Voxeljet Ag Method and device for producing 3D molded parts with layer construction technique
DE102015211538A1 (en) 2015-06-23 2016-12-29 Trumpf Laser- Und Systemtechnik Gmbh Construction cylinder arrangement for a machine for the layered production of three-dimensional objects
WO2017084980A1 (en) * 2015-11-16 2017-05-26 Heraeus Noblelight Gmbh Infrared emitter
DE102012012344B4 (en) 2012-03-21 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for the production of workpieces by jet melting of pulverulent material
CN207496012U (en) * 2017-11-22 2018-06-15 杭州德迪智能科技有限公司 A kind of Thermal Environment Control structure of 3D printer fusion sediment process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016118137A1 (en) * 2016-09-26 2018-03-29 Heraeus Noblelight Gmbh Infrared Panel Heaters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012012344B4 (en) 2012-03-21 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for the production of workpieces by jet melting of pulverulent material
DE102015006533A1 (en) 2014-12-22 2016-06-23 Voxeljet Ag Method and device for producing 3D molded parts with layer construction technique
DE102015211538A1 (en) 2015-06-23 2016-12-29 Trumpf Laser- Und Systemtechnik Gmbh Construction cylinder arrangement for a machine for the layered production of three-dimensional objects
WO2017084980A1 (en) * 2015-11-16 2017-05-26 Heraeus Noblelight Gmbh Infrared emitter
CN207496012U (en) * 2017-11-22 2018-06-15 杭州德迪智能科技有限公司 A kind of Thermal Environment Control structure of 3D printer fusion sediment process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102138630B1 (en) * 2020-06-16 2020-07-28 주식회사 너랑나 Jewelry 3D Printer
WO2022134250A1 (en) * 2020-12-24 2022-06-30 华中科技大学 Rapid ultra-high temperature heating device of 3d printing powder bed
US20220219392A1 (en) * 2021-01-14 2022-07-14 Rn Technologies, Llc Methods and apparatus for additive manufacturing based on multi-dimensional build platforms
US20220219402A1 (en) * 2021-01-14 2022-07-14 Rn Technologies, Llc Methods and apparatus for additive manufacturing based on multi-dimensional build platforms
WO2022155310A1 (en) * 2021-01-14 2022-07-21 Rn Technologies, Llc Methods and apparatus for additive manufacturing based on multi-dimensional build platforms

Also Published As

Publication number Publication date
DE102018125304A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
WO2020074568A1 (en) Heating device with an infrared panel radiator
EP1762122B2 (en) Radiant heater for heating the building material in a laser sintering device
EP2340925B1 (en) Process for generative production of a three-dimensional object with continuous heat supply
EP2313254B1 (en) Interchangeable frame for a device for producing a three-dimensional object and device having such an interchangeable frame for producing a three-dimensional object
EP3099469B1 (en) Method and device for the improved control of the energy input in a generative layer construction method
EP3059076B1 (en) Method and device for generating a three-dimensional object
EP1236526B1 (en) Process and device for selectively laser sintering
EP0734842B2 (en) Apparatus and method for manufacturing three-dimensional objects
EP3655234A1 (en) Process and apparatus for producing 3d moldings comprising a spectrum converter
DE102006053121B3 (en) Coating device for applying powdered layers to a device for producing a three-dimensional object comprises longitudinal walls joined together, a unit for fluidizing powdered material and a controlling and/or regulating unit
EP1355760B1 (en) Method and device for the selective laser sintering of metallic substances
DE102012012344B4 (en) Method and device for the production of workpieces by jet melting of pulverulent material
DE102015014964A1 (en) Method and apparatus for 3D printing with narrow wavelength spectrum
EP2200797B1 (en) Method for producing a fibre-composite component
DE102014208565A1 (en) Rapid Prototyping Model, Powder Rapid Prototyping Device and Powder Rapid Prototyping Process
WO2020074571A1 (en) Heating device with infrared radiating elements
DE102007057450A1 (en) Producing three-dimensional articles e.g. injection mold, comprises applying and pressing solidifyable fluid or powdered material layer on target surface, and illuminating selected part of the layer with energy beam or material beam
EP3491886A1 (en) Infrared surface emitter and method for producing said infrared surface emitter
DE102008029951B4 (en) Heat-insulating arrangement for crucibles and their use, as well as apparatus and method for the production of monocrystalline or multicrystalline materials
DE102015103939A1 (en) Process for the additive production of a molded article
EP3311983A1 (en) Apparatus and process for additively manufacturing of three-dimensional objects
DE102015012844A1 (en) Method and device for the generative production of a three-dimensional molded article from a shapeless material by means of laser beam melting, as well as chamber device for the method and the device
DE102016120536A1 (en) infrared Heaters
DE102020106516A1 (en) Sensor-integrated manufacturing system for additive manufacturing
DE102004034204A1 (en) Heating plate, in particular for a laminator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19789886

Country of ref document: EP

Kind code of ref document: A1