EP3855085B1 - Device for generating an air curtain - Google Patents

Device for generating an air curtain Download PDF

Info

Publication number
EP3855085B1
EP3855085B1 EP20153093.8A EP20153093A EP3855085B1 EP 3855085 B1 EP3855085 B1 EP 3855085B1 EP 20153093 A EP20153093 A EP 20153093A EP 3855085 B1 EP3855085 B1 EP 3855085B1
Authority
EP
European Patent Office
Prior art keywords
air
flow
cross
blow
outlet openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20153093.8A
Other languages
German (de)
French (fr)
Other versions
EP3855085A1 (en
Inventor
Werner Reumüller
Gerhard Koblmüller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAUSER GmbH
Original Assignee
Hauser GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hauser GmbH filed Critical Hauser GmbH
Priority to EP20153093.8A priority Critical patent/EP3855085B1/en
Publication of EP3855085A1 publication Critical patent/EP3855085A1/en
Application granted granted Critical
Publication of EP3855085B1 publication Critical patent/EP3855085B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F9/00Use of air currents for screening, e.g. air curtains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/081Air-flow control members, e.g. louvres, grilles, flaps or guide plates for guiding air around a curve

Definitions

  • Air curtain with an air duct and several flow chambers, each adjoining the air duct, having inlet and outlet openings, the outlet openings of which adjoin one another transversely to a common blow-out direction.
  • the DE2402340B2 discloses a refrigerated display case for cooling goods, which includes a device for generating an air curtain with four air streams that differ from one another in temperature.
  • the innermost cooled air flow i.e. the one facing the interior, has two functions.
  • the DE2402340B2 also suggests adding a fourth air stream at ambient temperature to prevent mixing of the ambient air with the air curtain.
  • the disadvantage of the prior art is that the air streams must have different temperatures in order to fulfill their respective functions. In order to apply different temperatures to the air streams, it is necessary for design reasons that each air stream passes through a different cooling circuit. This increases the construction and Space required by the device and therefore the costs.
  • the different temperatures of the air flows must also be precisely coordinated in order to reduce, for example, icing of the goods as well as turbulence and heat input from the outside area.
  • the temperature differences between the air flows and the outside area inevitably lead to turbulence at the boundary layers, which leads to heat input, reduces the stability of the air curtain and thus increases the energy requirement.
  • the invention is therefore based on the object of achieving an energy-efficient air curtain that is stable over a large section and with the simplest possible construction conditions.
  • the invention solves the problem in that the cross-sectional ratio between the cross-sectional areas of the inlet and outlet openings of adjacent flow chambers decreases from a main flow chamber.
  • the flow chambers act either as nozzles or as diffusers, these cross-sectional ratios being directly proportional to the speeds of the respective air flows as they leave the outlet openings, with other properties, such as the temperature of the air flows, being involved Cooling of the interior area can be essentially identical.
  • the differences in speed of adjacent air flows are reduced by the decreasing cross-sectional ratios between the cross-sectional areas of the inlet and outlet openings of adjacent flow chambers.
  • the main flow chamber generates the fastest air flow due to the largest cross-sectional ratio between the cross-sectional areas of the inlet and outlet openings, which creates the actual shielding of the interior from the exterior.
  • the speed of the air flows also decreases between the cross-sectional areas of the inlet and outlet openings of adjacent flow chambers.
  • the number of flow chambers and the dimensioning of the cross-sectional ratios can reduce the decrease in speed of adjacent air flows, thereby minimizing turbulence and heat input from the outside area.
  • the energy consumption of the device can be reduced by setting the cross-sectional ratio of the flow chambers between 0.05 and 1.5.
  • too high performance and speeds mean that the air curtain is susceptible to turbulence and therefore becomes energetically inefficient.
  • Tests have shown that in cooling technology, a cross-sectional ratio of the flow chambers between 0.05 and 1.5 leads to an optimized condition with regard to the energy consumption of the device and the stability of the air curtain created.
  • the air curtain is additionally stabilized against external interference if the cross-sectional ratio between the cross-sectional areas of the inlet and outlet openings of a first flow chamber is between 1 and 1.4, a second flow chamber is between 0.11 and 0.15 and a third flow chamber is between 0. 05 and 0.1.
  • external interventions i.e. the entry of a physical object, such as a hand, into the air curtain, can endanger the stability of the air curtain and trigger turbulence.
  • the speed, homogeneity and stability of the air curtain can be increased if at least three flow chambers are provided. Tests have shown that at least three flow chambers are necessary in order to implement sufficiently small speed differences between the air streams in order to avoid turbulence at sufficiently high speeds of the air streams. If additional flow chambers are provided, the speed difference can be continually reduced for given frame speeds.
  • the fastest air flow from the main flow chamber is the one closest to the interior, with the cross-sectional ratio between the cross-sectional areas of the inlet and outlet openings of adjacent flow chambers decreasing towards the exterior.
  • the air curtain protects against turbulence and heat input from outside. Because the fastest air flow is directly adjacent to the stationary air layer of the interior area, turbulence occurs between these two layers, but this does not lead to any heat exchange if the temperature of the fastest air flow essentially corresponds to the temperature of the interior area.
  • a flow chamber is formed by the air duct itself.
  • the remaining flow chambers can be provided as internals in the flow channel, while one flow chamber is located from the remaining one to the others Flow chambers connected in parallel results in free volume of the air duct. It only needs to have its own outlet opening for the air duct, which adjoins the other outlet openings transversely to the common blow-out direction. By dimensioning this outlet opening in coordination with the flow chambers, the desired cross-sectional ratios can still be achieved, which not only saves material but also space.
  • a common blow-out honeycomb stabilizes and directs the outflowing air flows under uniform conditions, making optimized blow-out easier.
  • material costs are reduced and cleaning is made easier because only one component has to be replaced.
  • blow-in direction for each flow chamber runs transversely to the blow-out direction. Since the speed of the air flows only depends on the cross-sectional ratio of the inlet to the outlet openings, the relative orientation of the inlet and outlet openings can be freely selected. This means that structural conditions can be better addressed and limited space can be better utilized.
  • the device can be installed more efficiently in a refrigerated cabinet if the air duct in the area in front of the flow chambers runs transversely to the blow-out direction.
  • the air in the cooling curtain can be circulated in a refrigerated shelf.
  • the air curtain is sucked in again opposite the exhaust openings, for example with the help of a fan.
  • the air flow In order to feed this air flow back into the air duct, the air flow must be redirected. If the air duct in the area in front of the flow chambers runs transversely to the blow-out direction, this deflection can be implemented easily from a structural engineering perspective, since the Air flow is only diverted in the flow chambers and before that can be fed to a common treatment, such as cooling.
  • a device comprises an air duct 1, in which the inlet opening 2 flows into the flow chamber 3 and the inlet opening 4 flows into the flow chamber 5. Within the flow chambers 3, 5, the air is deflected and exits via the outlet openings 6, 7 of the flow chambers 3, 5 as several air streams A, B, C forming an air curtain.
  • the air duct 1 itself forms a flow chamber 8 with the inlet opening 9 and the outlet opening 10.
  • the outlet openings 6, 7, 10 adjoin one another transversely to a common blow-out direction 11.
  • the cross-sectional ratio between the cross-sectional areas of the inlet openings 2, 4, 9 and the outlet openings 6, 7, 10 of adjacent flow chambers 3, 5, 10 decreases from a main flow chamber, which in the illustrated embodiment is formed by the flow chamber 8 of the air duct 1.
  • the air flow A formed in the flow chamber 8 is at least as fast as the air in the air duct 1, since the cross-sectional ratio of the inlet opening 9 to the outlet opening 10 is between 1 and 1.4.
  • the air flow B is due to of the cross-sectional ratio of the inlet opening 4 to the outlet opening 6, which is between 0.11 and 0.15, slower than the air flow A.
  • the air flow C is due to the cross-sectional ratio of the inlet opening 2 to the outlet opening 7, which is between 0.05 and 0.1 is, the slowest of the three air flows A, B and C.
  • the outlet openings 6, 7, 10 are followed by a common blow-out honeycomb 12, which stabilizes the outflowing air flows.
  • the air duct 1 also runs transversely to the blow-out direction 11, which facilitates the dimensioning and applicability of the device for a refrigerated shelf, as in particular in the Fig. 2 will be shown.
  • the air streams A, B and C forming the air curtain are sucked in opposite the device, for example by means of a fan 13.
  • the fan 13 serves, on the one hand, to suck in the air from the air flows A, B and C, and on the other hand to maintain air circulation in the refrigerated shelf, so that the air can be fed back into the device.
  • the air from the air streams A, B and C passes a heat exchanger 14, which is located upstream of the device. Because the air flows A, B and C are fed back to the cooling circuit via the fan 13, energy for cooling the air and thus costs can be saved.

Description

Luftschleiers mit einem Luftkanal und mehreren, je an den Luftkanal anschließenden, Einlass- und Auslassöffnungen aufweisenden Strömungskammern, deren Auslassöffnungen quer zu einer gemeinsamen Ausblasrichtung aneinander angrenzen.Air curtain with an air duct and several flow chambers, each adjoining the air duct, having inlet and outlet openings, the outlet openings of which adjoin one another transversely to a common blow-out direction.

Aus dem Stand der Technik sind Vorrichtungen zur Erzeugung von Luftschleiern bekannt, bei denen sich die Luftschleier aus mehreren, im Wesentlichen parallel zueinander verlaufenden Luftströmen zusammensetzen. Der Zweck eines solchen Luftschleiers ist, einen Innenbereich, in dem beispielsweise zu kühlende Waren gelagert sind, vor Wärmeeintrag aus einem Außenbereich zu schützen. Die DE2402340B2 offenbart eine Kühlvitrine zur Kühlung von Waren, die eine Vorrichtung zur Erzeugung eines Luftschleiers mit vier Luftströmen umfasst, die sich in ihrer Temperatur voneinander unterscheiden. Der innerste, also der dem Innenbereich zugewandte, gekühlte Luftstrom hat zwei Funktionen. Einerseits kühlt er die Ware, indem der Luftstrom auf die Ware gelenkt wird und andererseits schirmt er die Ware von dem zweiten Luftstrom ab, sodass der zweite, kälteste Luftstrom nicht direkt gegen die Ware gerichtet ist und so zu deren Vereisung führt. Der zweite Luftstrom wird am stärksten gekühlt und dient als Temperaturreservoir der angrenzenden Luftströme. Der dritte Luftstrom weist im Wesentlichen dieselbe Temperatur wie der erste Luftstrom auf. Die DE2402340B2 schlägt darüber hinaus vor, einen vierten Luftstrom mit Umgebungstemperatur hinzuzufügen, um ein Vermischen der Umgebungsluft mit dem Luftschleier zu verhindern.Devices for generating air curtains are known from the prior art, in which the air curtains are composed of several air streams that run essentially parallel to one another. The purpose of such an air curtain is to protect an interior area, in which, for example, goods to be cooled are stored, from heat input from an outside area. The DE2402340B2 discloses a refrigerated display case for cooling goods, which includes a device for generating an air curtain with four air streams that differ from one another in temperature. The innermost cooled air flow, i.e. the one facing the interior, has two functions. On the one hand, it cools the goods by directing the air flow onto the goods and, on the other hand, it shields the goods from the second air flow so that the second, coldest air flow is not directed directly against the goods and thus leads to their icing. The second air stream is cooled the most and serves as a temperature reservoir for the adjacent air streams. The third air stream has essentially the same temperature as the first air stream. The DE2402340B2 also suggests adding a fourth air stream at ambient temperature to prevent mixing of the ambient air with the air curtain.

Dokument EP 1 462 730 A1 offenbart eine Vorrichtung nach dem Oberbegriff des Anspruchs 1.document EP 1 462 730 A1 discloses a device according to the preamble of claim 1.

Nachteilig am Stand der Technik ist jedoch, dass die Luftströme unterschiedliche Temperaturen aufweisen müssen, um ihre jeweiligen Funktionen zu erfüllen. Um die Luftströme mit unterschiedlichen Temperaturen zu beaufschlagen ist es konstruktionsbedingt notwendig, dass jeder Luftstrom einen anderen Kühlkreislauf durchläuft. Dies erhöht den Konstruktions - und Platzaufwand der Vorrichtung und demzufolge die Kosten. Die verschiedenen Temperaturen der Luftströme müssen darüber hinaus genau abgestimmt werden, um beispielswiese eine Vereisung der Ware sowie Verwirbelungen und Wärmeeinträge aus dem Außenbereich zu verringern. Die Temperaturdifferenzen der Luftströme zueinander und zum Außenbereich führen aber zwangsläufig zu Verwirbelungen an den Grenzschichten, was zu einem Wärmeeintrag führt, die Stabilität des Luftschleiers vermindert und somit den Energiebedarf erhöht.However, the disadvantage of the prior art is that the air streams must have different temperatures in order to fulfill their respective functions. In order to apply different temperatures to the air streams, it is necessary for design reasons that each air stream passes through a different cooling circuit. This increases the construction and Space required by the device and therefore the costs. The different temperatures of the air flows must also be precisely coordinated in order to reduce, for example, icing of the goods as well as turbulence and heat input from the outside area. However, the temperature differences between the air flows and the outside area inevitably lead to turbulence at the boundary layers, which leads to heat input, reduces the stability of the air curtain and thus increases the energy requirement.

Der Erfindung liegt somit die Aufgabe zugrunde, einen energieeffizienten, über einen größeren Abschnitt stabilen Luftschleier mit möglichst einfachen Konstruktionsbedingungen zu erreichen.The invention is therefore based on the object of achieving an energy-efficient air curtain that is stable over a large section and with the simplest possible construction conditions.

Die Erfindung löst die gestellte Aufgabe dadurch, dass das Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass- und der Auslassöffnungen aneinander angrenzender Strömungskammern von einer Hauptströmungskammer aus abnimmt. Je nach Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass- und der Auslassöffnungen wirken die Strömungskammern entweder als Düsen oder als Diffusoren, wobei diese Querschnittsverhältnisse direkt proportional zu den Geschwindigkeiten der jeweiligen Luftströme beim Verlassen der Ausblassöffnungen sind, wobei andere Eigenschaften, wie beispielsweise die Temperatur der Luftströme zur Kühlung des Innenbereiches, im Wesentlichen ident sein können. Da insbesondere durch großen Geschwindigkeitsunterschied angrenzender Luftströme hervorgerufene Verwirbelungen für einen Wärmeeintrag aus dem Außenbereich verantwortlich sind, werden die Geschwindigkeitsunterschiede benachbarter Luftströme durch die abnehmenden Querschnittsverhältnisse zwischen den Querschnittsflächen der Einlass- und der Auslassöffnungen aneinander angrenzender Strömungskammern gesenkt. Die Hauptströmungskammer erzeugt durch das größte Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass- und der Auslassöffnungen den schnellsten Luftstrom, der die eigentliche Abschirmung des Innenbereiches vom Außenbereich erzeugt. Durch die Abnahme der Querschnittsverhältnisse zwischen den Querschnittsflächen der Einlass- und der Auslassöffnungen aneinander angrenzender Strömungskammern nimmt also auch die Geschwindigkeit der Luftströme ab. Durch die Anzahl der Strömungskammern und die Dimensionierung der Querschnittsverhältnisse kann also die Geschwindigkeitsabnahme benachbarter Luftströme verringert und dadurch Verwirbelungen und der Wärmeeintrag vom Außenbereich minimiert werden.The invention solves the problem in that the cross-sectional ratio between the cross-sectional areas of the inlet and outlet openings of adjacent flow chambers decreases from a main flow chamber. Depending on the cross-sectional ratio between the cross-sectional areas of the inlet and outlet openings, the flow chambers act either as nozzles or as diffusers, these cross-sectional ratios being directly proportional to the speeds of the respective air flows as they leave the outlet openings, with other properties, such as the temperature of the air flows, being involved Cooling of the interior area can be essentially identical. Since turbulences caused by large differences in speed of adjacent air flows are responsible for heat input from the outside, the differences in speed of adjacent air flows are reduced by the decreasing cross-sectional ratios between the cross-sectional areas of the inlet and outlet openings of adjacent flow chambers. The main flow chamber generates the fastest air flow due to the largest cross-sectional ratio between the cross-sectional areas of the inlet and outlet openings, which creates the actual shielding of the interior from the exterior. By decreasing the cross-sectional ratios The speed of the air flows also decreases between the cross-sectional areas of the inlet and outlet openings of adjacent flow chambers. The number of flow chambers and the dimensioning of the cross-sectional ratios can reduce the decrease in speed of adjacent air flows, thereby minimizing turbulence and heat input from the outside area.

Der Energieverbrauch der Vorrichtung kann gesenkt werden, indem das Querschnittsverhältnis der Strömungskammern zwischen 0,05 und 1,5 liegt. Bei der Dimensionierung der Bauteile eines Luftschleiers gilt es, die Leistung der beteiligten Komponenten so zu wählen, dass durch die Geschwindigkeit des Luftschleiers eine kontinuierliche Luftzirkulation und Wärmeabschirmung ermöglicht wird. Andererseits führen aber zu hohe Leistungen und Geschwindigkeiten dazu, dass der Luftschleier anfällig für Turbulenzen und damit energetisch ineffizient wird. Versuche haben gezeigt, dass in der Kühltechnik ein Querschnittsverhältnis der Strömungskammern zwischen 0,05 und 1,5 zu einem optimierten Zustand im Hinblick auf den Energieverbrauch der Vorrichtung und der Stabilität des erzeugten Luftschleiers führt.The energy consumption of the device can be reduced by setting the cross-sectional ratio of the flow chambers between 0.05 and 1.5. When dimensioning the components of an air curtain, it is important to select the performance of the components involved so that the speed of the air curtain enables continuous air circulation and heat shielding. On the other hand, too high performance and speeds mean that the air curtain is susceptible to turbulence and therefore becomes energetically inefficient. Tests have shown that in cooling technology, a cross-sectional ratio of the flow chambers between 0.05 and 1.5 leads to an optimized condition with regard to the energy consumption of the device and the stability of the air curtain created.

Der Luftschleier wird gegen Eingriffe von außen zusätzlich stabilisiert, wenn das Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass- und der Auslassöffnungen einer ersten Strömungskammer zwischen 1 und 1,4, einer zweiten Strömungskammer zwischen 0,11 und 0,15 und einer dritten Strömungskammer zwischen 0,05 und 0,1 liegt. Insbesondere Eingriffe von außen, also das Eintreten eines physischen Objektes, wie beispielsweise einer Hand, in den Luftschleier können die Stabilität des Luftschleiers gefährden und Turbulenzen auslösen. Bei diesen Parametern herrschen jedoch durch die resultierenden Geschwindigkeiten der Luftströme zusätzlich zum beschriebenen verringerten Energiebedarf, verbesserte Übergangsbedingungen zwischen den Luftströmen untereinander, sowie dem Außenbereich vor, sodass in diesem Wertebereich die Unempfindlichkeit des langsameren Luftstromes der dritten Strömungskammer gegenüber äußerer Eingriffe mit dem Wärmeschutzeffekt des schnellen Luftstromes der ersten Strömungskammer zusammenwirkt. Der Luftstrom der zweiten Strömungskammer, dessen Geschwindigkeit zwischen der des ersten und dritten Luftstromes liegt, dient hierbei als Puffer um Verwirbelungen, hervorgerufen durch zu hohe Geschwindigkeitsdifferenzen an der Grenzschicht, zwischen dem ersten und dritten Luftstrom zu verhindern. Dadurch stützen sich die drei Luftströme gegenseitig gegen Verwirbelungen und Wärmeeintrag.The air curtain is additionally stabilized against external interference if the cross-sectional ratio between the cross-sectional areas of the inlet and outlet openings of a first flow chamber is between 1 and 1.4, a second flow chamber is between 0.11 and 0.15 and a third flow chamber is between 0. 05 and 0.1. In particular, external interventions, i.e. the entry of a physical object, such as a hand, into the air curtain, can endanger the stability of the air curtain and trigger turbulence. With these parameters, however, due to the resulting speeds of the air flows, in addition to the reduced energy requirement described, there are improved transition conditions between the air flows among themselves and the outside area, so that in this value range the insensitivity of the slower air flow of the third flow chamber to external interventions with the thermal protection effect of the fast air flow the first Flow chamber interacts. The air flow of the second flow chamber, whose speed is between that of the first and third air flow, serves as a buffer to prevent turbulence between the first and third air flow caused by excessive speed differences at the boundary layer. This means that the three air streams support each other against turbulence and heat input.

Die Geschwindigkeit, Homogenität und Stabilität des Luftschleiers kann erhöht werden, wenn wenigstens drei Strömungskammern vorgesehen sind. Versuche haben gezeigt, dass wenigstens drei Strömungskammern notwendig sind, um die ausreichend geringe Geschwindigkeitsdifferenzen zwischen den Luftströmen umzusetzen um bei ausreichend hohen Geschwindigkeiten der Luftströme Verwirbelungen zu vermeiden. Sind zusätzliche Strömungskammern vorgesehen, lässt sich die Geschwindigkeitsdifferenz bei gegebenen Rahmengeschwindigkeiten immer weiter verringern. In einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung, ist der schnellste Luftstrom aus der Hauptströmungskammer der dem Innenbereich am nächsten gelegene, wobei das Querschnittsverhältnis zwischen den Querschnittsflächen der Einlass- und der Auslassöffnungen aneinander angrenzender Strömungskammern in Richtung Außenbereich abnimmt. So schützt der Luftschleier vor Verwirbelungen und Wärmeeintrag vom Außenbereich. Dadurch, dass der schnellste Luftstrom direkt an die ruhende Luftschicht des Innenbereiches angrenzt, kommt es zwar zwischen diesen beiden Schichten zu Verwirbelungen, diese führen aber zu keinem Wärmeaustausch, wenn die Temperatur des schnellsten Luftstromes im Wesentlichen der Temperatur des Innenbereichs entspricht.The speed, homogeneity and stability of the air curtain can be increased if at least three flow chambers are provided. Tests have shown that at least three flow chambers are necessary in order to implement sufficiently small speed differences between the air streams in order to avoid turbulence at sufficiently high speeds of the air streams. If additional flow chambers are provided, the speed difference can be continually reduced for given frame speeds. In a particularly preferred embodiment of the device according to the invention, the fastest air flow from the main flow chamber is the one closest to the interior, with the cross-sectional ratio between the cross-sectional areas of the inlet and outlet openings of adjacent flow chambers decreasing towards the exterior. The air curtain protects against turbulence and heat input from outside. Because the fastest air flow is directly adjacent to the stationary air layer of the interior area, turbulence occurs between these two layers, but this does not lead to any heat exchange if the temperature of the fastest air flow essentially corresponds to the temperature of the interior area.

Um die Vorrichtung besonders materialschonend und kompakt auszugestalten, wird vorgeschlagen, dass eine Strömungskammer durch den Luftkanal selbst gebildet ist. Zufolge dieser Maßnahme können die übrigen Strömungskammern als Einbauten in den Strömungskanal vorgesehen werden, während sich eine Strömungskammer aus dem verbleibenden, zu den übrigen Strömungskammern parallelgeschalteten freien Volumen des Luftkanales ergibt. Es muss lediglich für den Luftkanal eine eigene Auslassöffnung aufweisen, die quer zur gemeinsamen Ausblasrichtung an die übrigen Auslassöffnungen angrenzt. Durch die Dimensionierung dieser Auslassöffnung in Abstimmung mit den Strömungskammern können weiterhin die gewünschten Querschnittsverhältnisse realisiert werden, wodurch nicht nur Material, sondern auch Platz eingespart werden kann.In order to make the device particularly gentle on materials and compact, it is proposed that a flow chamber is formed by the air duct itself. As a result of this measure, the remaining flow chambers can be provided as internals in the flow channel, while one flow chamber is located from the remaining one to the others Flow chambers connected in parallel results in free volume of the air duct. It only needs to have its own outlet opening for the air duct, which adjoins the other outlet openings transversely to the common blow-out direction. By dimensioning this outlet opening in coordination with the flow chambers, the desired cross-sectional ratios can still be achieved, which not only saves material but also space.

Besonders praktische Betriebs- und Instandhaltungsbedingungen ergeben sich, wenn den Auslassöffnungen in Strömungsrichtung eine gemeinsame Ausblaswabe nachgelagert ist. Eine gemeinsame Ausblaswabe stabilisiert und lenkt die ausströmenden Luftströme unter uniformen Bedingungen, sodass ein optimiertes Ausblasen erleichtert wird. Außerdem sinken die Materialkosten und die Reinigung wird erleichtert, da nur ein Bauteil ausgetauscht werden muss.Particularly practical operating and maintenance conditions arise when a common blow-out honeycomb is downstream of the outlet openings in the direction of flow. A common blow-out honeycomb stabilizes and directs the outflowing air flows under uniform conditions, making optimized blow-out easier. In addition, material costs are reduced and cleaning is made easier because only one component has to be replaced.

Um den Platzbedarf der Vorrichtung zu verringern, wird vorgeschlagen, dass je Strömungskammer die Einblasrichtung quer zur Ausblasrichtung verläuft. Da die Geschwindigkeit der Luftströme nur vom Querschnittsverhältnis der Einlass- zu den Auslassöffnungen abhängt, kann die relative Ausrichtung der Einlass- zu den Auslassöffnungen frei gewählt werden. Dadurch kann auf bauliche Rahmenbedingen besser eingegangen, beziehungsweise ein begrenztes Raumangebot besser ausgenutzt werden.In order to reduce the space required by the device, it is proposed that the blow-in direction for each flow chamber runs transversely to the blow-out direction. Since the speed of the air flows only depends on the cross-sectional ratio of the inlet to the outlet openings, the relative orientation of the inlet and outlet openings can be freely selected. This means that structural conditions can be better addressed and limited space can be better utilized.

Die Vorrichtung kann effizienter in einem Kühlmöbel verbaut werden, wenn der Luftkanal im Bereich vor den Strömungskammern quer zur Ausblasrichtung verläuft. Um die Energie- und Kühleffizienz zu erhöhen, kann in einem Kühlregal die Luft des Kühlschleiers einem Kreislauf zugeführt werden. Hierbei wird gegenüber den Ausblassöffnungen, beispielsweise mit Hilfe eines Ventilators, der Luftschleier wieder angesaugt. Um diesen Luftstrom wieder dem Luftkanal zuzuführen, muss der Luftstrom umgelenkt werden. Verläuft der Luftkanal im Bereich vor den Strömungskammern quer zur Ausblasrichtung, kann diese Umlenkung bautechnisch einfach umgesetzt werden, da der Luftstrom erst in den Strömungskammern umgelenkt wird und davor einer gemeinsamen Behandlung, wie beispielsweise einer Kühlung, zugeführt werden kann. Zusätzlich dazu ist die Berechnung und Dimensionierung der Querschnittsflächen und deren Verhältnisse einfacher zu bewerkstelligen, da die notwendige Umlenkung der Luft erst nach der Einleitung in die Strömungskammern stattfindet, wo sie die Austrittsgeschwindigkeit und - richtung des Luftstromes nicht beeinflusst. Dadurch werden die strömungsmechanischen Überlegungen zur Versorgung der Strömungskammern mit Luft vereinfacht.The device can be installed more efficiently in a refrigerated cabinet if the air duct in the area in front of the flow chambers runs transversely to the blow-out direction. In order to increase energy and cooling efficiency, the air in the cooling curtain can be circulated in a refrigerated shelf. Here, the air curtain is sucked in again opposite the exhaust openings, for example with the help of a fan. In order to feed this air flow back into the air duct, the air flow must be redirected. If the air duct in the area in front of the flow chambers runs transversely to the blow-out direction, this deflection can be implemented easily from a structural engineering perspective, since the Air flow is only diverted in the flow chambers and before that can be fed to a common treatment, such as cooling. In addition, the calculation and dimensioning of the cross-sectional areas and their ratios is easier to accomplish, since the necessary deflection of the air only takes place after it has been introduced into the flow chambers, where it does not influence the exit speed and direction of the air flow. This simplifies the fluid mechanics considerations for supplying the flow chambers with air.

In der Zeichnung ist der Erfindungsgegenstand beispielsweise dargestellt. Es zeigen

Fig.1
einem Schnitt durch eine erfindungsgemäße Vorrichtung parallel zur Ausblasrichtung und
Fig. 2
eine schematische Darstellung der Vorrichtung in einem Kühlkreislauf.
The subject matter of the invention is shown, for example, in the drawing. Show it
Fig.1
a section through a device according to the invention parallel to the blow-out direction and
Fig. 2
a schematic representation of the device in a cooling circuit.

Eine Vorrichtung umfasst einen Luftkanal 1, bei der die Einlassöffnung 2 die Strömungskammer 3, und die Einlassöffnung 4 die Strömungskammer 5 anströmt. Innerhalb der Strömungskammern 3, 5 wird die Luft umgelenkt und tritt über die Auslassöffnungen 6, 7 der Strömungskammern 3, 5 als mehrere, einen Luftschleier bildende, Luftströme A, B, C aus. In der gezeigten, besonders bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung bildet der Luftkanal 1 selbst eine Strömungskammer 8 mit der Einlassöffnung 9 und der Auslassöffnung 10. Die Auslassöffnungen 6, 7, 10 grenzen dabei quer zu einer gemeinsamen Ausblasrichtung 11 aneinander an. Das Querschnittsverhältnis zwischen den Querschnittsflächen der Einlassöffnungen 2, 4, 9 und der Auslassöffnungen 6, 7, 10 aneinander angrenzender Strömungskammern 3, 5, 10 nimmt von einer Hauptströmungskammer, die in der dargestellten Ausführungsform von der Strömungskammer 8 des Luftkanals 1 gebildet wird, ab. Wie insbesondere aus Fig. 1 ersichtlich ist, ist der in der Strömungskammer 8 gebildete Luftstrom A mindestens so schnell wie die Luft im Luftkanal 1, da das Querschnittsverhältnis der Einlassöffnung 9 zur Auslassöffnung 10 zwischen 1 und 1,4 liegt. Der Luftstrom B ist aufgrund des Querschnittsverhältnisses der Einlassöffnung 4 zur Auslassöffnung 6, welches zwischen 0,11 und 0,15 liegt, langsamer als der Luftstrom A. Analog ist der Luftstrom C durch das Querschnittsverhältnis der Einlassöffnung 2 zur Auslassöffnung 7, welches zwischen 0,05 und 0,1 liegt, der langsamste der drei Luftströme A, B und C. Den Auslassöffnungen 6, 7, 10 ist eine gemeinsame Ausblaswabe 12 nachgelagert, die die ausströmenden Luftströme stabilisiert. In der gezeigten, besonders bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung verläuft überdies der Luftkanal 1 quer zur Ausblasrichtung 11, was die Dimensionierung und Anwendbarkeit der Vorrichtung für ein Kühlregal erleichtert, wie insbesondere in der Fig. 2 gezeigt wird. Die den Luftschleier bildenden Luftströme A, B und C werden gegenüber der Vorrichtung, beispielsweise mittels eines Ventilators 13, angesaugt. Der Ventilator 13 dient dabei einerseits zum Ansaugen der Luft der Luftströme A, B und C, sowie andererseits zum Aufrechterhalten der Luftzirkulation im Kühlregal, sodass die Luft wieder der Vorrichtung zugeführt werden kann. Nach dem Ventilator 13 passiert die Luft der Luftströme A, B und C einen Wärmetauscher 14, der der Vorrichtung vorgelagert ist. Dadurch, dass die Luftströme A, B und C dem Kühlkreislauf über den Ventilator 13 wieder zugeführt werden, lassen sich Energie zur Kühlung der Luft und somit Kosten sparen.A device comprises an air duct 1, in which the inlet opening 2 flows into the flow chamber 3 and the inlet opening 4 flows into the flow chamber 5. Within the flow chambers 3, 5, the air is deflected and exits via the outlet openings 6, 7 of the flow chambers 3, 5 as several air streams A, B, C forming an air curtain. In the particularly preferred embodiment of the device according to the invention shown, the air duct 1 itself forms a flow chamber 8 with the inlet opening 9 and the outlet opening 10. The outlet openings 6, 7, 10 adjoin one another transversely to a common blow-out direction 11. The cross-sectional ratio between the cross-sectional areas of the inlet openings 2, 4, 9 and the outlet openings 6, 7, 10 of adjacent flow chambers 3, 5, 10 decreases from a main flow chamber, which in the illustrated embodiment is formed by the flow chamber 8 of the air duct 1. Like in particular Fig. 1 As can be seen, the air flow A formed in the flow chamber 8 is at least as fast as the air in the air duct 1, since the cross-sectional ratio of the inlet opening 9 to the outlet opening 10 is between 1 and 1.4. The air flow B is due to of the cross-sectional ratio of the inlet opening 4 to the outlet opening 6, which is between 0.11 and 0.15, slower than the air flow A. Analogously, the air flow C is due to the cross-sectional ratio of the inlet opening 2 to the outlet opening 7, which is between 0.05 and 0.1 is, the slowest of the three air flows A, B and C. The outlet openings 6, 7, 10 are followed by a common blow-out honeycomb 12, which stabilizes the outflowing air flows. In the particularly preferred embodiment of the device according to the invention shown, the air duct 1 also runs transversely to the blow-out direction 11, which facilitates the dimensioning and applicability of the device for a refrigerated shelf, as in particular in the Fig. 2 will be shown. The air streams A, B and C forming the air curtain are sucked in opposite the device, for example by means of a fan 13. The fan 13 serves, on the one hand, to suck in the air from the air flows A, B and C, and on the other hand to maintain air circulation in the refrigerated shelf, so that the air can be fed back into the device. After the fan 13, the air from the air streams A, B and C passes a heat exchanger 14, which is located upstream of the device. Because the air flows A, B and C are fed back to the cooling circuit via the fan 13, energy for cooling the air and thus costs can be saved.

Claims (7)

  1. Device for producing an air curtain with an air duct (1) and a plurality of flow chambers (3, 5, 8) each having inlet openings (2, 4, 9) and outlet openings (6, 7, 10) adjoining the air duct (1), the outlet openings (6, 7, 10) of the flow chambers (3, 5, 8) adjoin one another transversely to a common blow-out direction (11), characterized in that the cross-sectional ratio between the cross-sectional areas of the inlet openings (2, 4, 9) and outlet openings (6, 7, 10) of mutually adjacent flow chambers (3, 5, 8) decreases from a main flow chamber, and in that the cross-sectional ratio between the cross-sectional areas of the inlet openings (2, 4, 9) and outlet openings (6, 7, 10) of the flow chambers (3, 5, 8) is between 0.05 and 1.5.
  2. Device according to claim 1, characterized in that the cross-sectional ratio between the cross-sectional areas of the inlet openings (2, 4, 9) and outlet (6, 7, 10) openings of a first flow chamber (8) is between 1 and 1.4, of a second flow chamber (5) is between 0.11 and 0.15, and of a third flow chamber (3) is between 0.05 and 0.1.
  3. Device according to claim 1 or 2, characterized in that at least three flow chambers (3, 5, 8) are provided.
  4. Device according to any one of claims 1 to 3, characterized in that a flow chamber (8) is formed by the air duct (1) itself.
  5. Device according to any one of claims 1 to 4, characterized in that a common discharge honeycomb (13) is arranged downstream of the outlet openings (6, 7, 10) in the blow-out direction (11).
  6. Device according to one any one of claims 1 to 5, characterized in that for each flow chamber (3, 5, 8) the blow-in direction is transverse to the blow-out direction.
  7. Refrigerating cabinet with a device according to any one of claims 1 to 6, characterized in that the air duct (1) runs transversely to the blow-out direction (11) in the region in front of the flow chambers (3, 5, 8).
EP20153093.8A 2020-01-22 2020-01-22 Device for generating an air curtain Active EP3855085B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20153093.8A EP3855085B1 (en) 2020-01-22 2020-01-22 Device for generating an air curtain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20153093.8A EP3855085B1 (en) 2020-01-22 2020-01-22 Device for generating an air curtain

Publications (2)

Publication Number Publication Date
EP3855085A1 EP3855085A1 (en) 2021-07-28
EP3855085B1 true EP3855085B1 (en) 2023-11-08

Family

ID=69187640

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20153093.8A Active EP3855085B1 (en) 2020-01-22 2020-01-22 Device for generating an air curtain

Country Status (1)

Country Link
EP (1) EP3855085B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1462730B1 (en) * 2003-03-25 2015-09-09 Kampmann GmbH Device for creating an air curtain

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756038A (en) * 1972-04-07 1973-09-04 Emhart Corp Refrigerated display equipment
US3935803A (en) * 1972-10-12 1976-02-03 Flanders Filters, Inc. Air filtration apparatus
ZA74348B (en) 1973-05-04 1974-11-27 Emhart Corp Refrigerated display case
DE102009032232A1 (en) * 2009-07-08 2011-01-13 Frico Ab Air curtain device
JP5881227B1 (en) * 2015-08-07 2016-03-09 有限会社川野技研 Air curtain device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1462730B1 (en) * 2003-03-25 2015-09-09 Kampmann GmbH Device for creating an air curtain

Also Published As

Publication number Publication date
EP3855085A1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
DE602006000466T2 (en) Exhaust air deflector for refrigerated display
CH668881A5 (en) COOLING DEVICE.
DE102015105490B3 (en) Cooling device for cooling the air taken in the interior of a cabinet and a corresponding control cabinet assembly
EP3327366B1 (en) Air outlet for tempering a room
DE10064264B4 (en) Arrangement for cooling a component
EP2839724B1 (en) Cooling apparatus for control cabinet cooling
EP3583668B1 (en) Heat dissipation device for an electrical cabinet
EP3855085B1 (en) Device for generating an air curtain
DE10233672A1 (en) Method for cooling chilled containers in ships hold has fresh air ducts each serving two rows of containers and with hot air vents
DE2320480B2 (en) Textile heat treatment device, in particular tenter frames
DE4026107A1 (en) CONVECTION DRY AND / OR FIXER
DE102011050323B3 (en) Cooling device for data processing system, has pressure chamber which is separated by boundary wall from heat exchanger such that overpressure is obtained in pressure chamber in operation of fan assembly
EP0864519A1 (en) Apparatus to guide webs in a floating manner
EP2843332B1 (en) Refrigeration unit
DE19538364C5 (en) Device for rapid heating of metal press studs
DE3127106C2 (en)
EP2192366B1 (en) Device for radiating a substrate
DE102011117604A1 (en) Apparatus for heating or drying elongated materials
EP3151937A1 (en) Air deflector device
EP1035385A2 (en) Method for temperature control of a hall and device for curring out this method
DE102008012931B4 (en) Method and device for cooling substrates
EP3299750B1 (en) Refrigerated cabinet and method for controlling a refrigerated cabinet
DE4133734A1 (en) AIR HEATING AND / OR COOLING UNIT
DE4219003A1 (en) Gas blowing device for treating glass or ceramic articles - has ventilators maintaining uniform gas speed as it is blown upwards or downwards through perforated conveyor belt
DE1635356C3 (en) Device for continuous heat treatment, such as drying, of web or tape-shaped textile material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220126

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAUSER GMBH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230504

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F24F 13/08 20060101ALI20230807BHEP

Ipc: F24F 9/00 20060101AFI20230807BHEP

INTG Intention to grant announced

Effective date: 20230824

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020005911

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240209

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240108

Year of fee payment: 5

Ref country code: HU

Payment date: 20240109

Year of fee payment: 5

Ref country code: DE

Payment date: 20240129

Year of fee payment: 5

Ref country code: CZ

Payment date: 20240104

Year of fee payment: 5

Ref country code: CH

Payment date: 20240201

Year of fee payment: 5

Ref country code: GB

Payment date: 20240123

Year of fee payment: 5