EP3848659B1 - Partitioned heat exchanger, thermal energy recovery unit and associated sterilisation device - Google Patents

Partitioned heat exchanger, thermal energy recovery unit and associated sterilisation device Download PDF

Info

Publication number
EP3848659B1
EP3848659B1 EP21150572.2A EP21150572A EP3848659B1 EP 3848659 B1 EP3848659 B1 EP 3848659B1 EP 21150572 A EP21150572 A EP 21150572A EP 3848659 B1 EP3848659 B1 EP 3848659B1
Authority
EP
European Patent Office
Prior art keywords
fluid
circuit
primary
fluid circuit
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21150572.2A
Other languages
German (de)
French (fr)
Other versions
EP3848659A1 (en
Inventor
Sébastien VESIN
Jérôme POUVREAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3848659A1 publication Critical patent/EP3848659A1/en
Application granted granted Critical
Publication of EP3848659B1 publication Critical patent/EP3848659B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0058Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having different orientations to each other or crossing the conduit for the other heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0075Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the same heat exchange medium flowing through sections having different heat exchange capacities or for heating or cooling the same heat exchange medium at different temperatures

Definitions

  • the present invention relates to the field of energy recovery and optimization of the use of thermal energy. It finds a particularly advantageous application in the field of sterilizers using heat in a discontinuous manner for the implementation of a sterilization cycle.
  • sterilization devices and processes are major consumers of energy and water, a major part of which is not recycled.
  • the device of this document comprises a sterilization chamber in which the products to be sterilized are deposited.
  • the sterilization chamber is connected to a primary fluid circuit.
  • the products to be sterilized in the sterilization chamber are sprayed with hot water from the primary fluid circuit.
  • the fluid is heated or cooled by means of a heat exchanger.
  • This first heat exchanger comprising for this purpose a steam inlet, a supply line for a coolant, a return line for the coolant and a condensate drain.
  • a second heat exchanger is arranged in series on the primary fluid circuit and is connected to a secondary fluid circuit. The second exchanger makes it possible to heat or cool the primary fluid circuit thanks to a secondary fluid circuit.
  • the device also includes a laminated storage reservoir.
  • the energy of the primary fluid circuit is therefore transmitted via the second heat exchanger to the secondary fluid circuit and can be stored in the stratified storage tank.
  • the primary fluid circuit is cooled via the supply line of a coolant in the first heat exchanger until the target temperature is reached.
  • the hot fluid is released in a temperature stratified way from the storage tank stratified to the primary fluid circuit via the second heat exchanger as long as heat transfer to the primary fluid circuit is possible, then the primary fluid circuit is heated via the steam line in the first heat exchanger to until the target temperature is reached.
  • This device presents a loss of efficiency due to the use of each exchanger for one stage of the cycle.
  • the device does not allow optimized recovery of the stored thermal energy.
  • EP-A-3524919 discloses a heat exchanger according to the preamble of claim 1.
  • the heat exchanger of the invention makes it possible to reduce or increase the exchange surface of the heat exchanger according to storage or energy needs. thermal. The dimensioning of the exchanger is thus facilitated and advantageously reduced.
  • the modularity of the heat exchanger makes it possible to size the heat exchanger according to the most restrictive functionality.
  • the two-part structure of the exchanger and the presence of circulation means which can advantageously be controlled according to requirements makes it possible to use a single optimized exchanger.
  • the exchanger is able to be fluidically connected to a thermal energy storage module, more precisely the first fluidic circuit and the second fluidic circuit are able to be fluidically connected to the energy storage module so that the the thermal energy exchanged by the exchanger can be stored towards or withdrawn from the storage module.
  • the invention relates, according to another aspect, to an upgrading unit comprising a heat exchanger as described above and a thermal energy storage module fluidically connected to the first fluidic circuit and to the second fluidic circuit so as to be capable of storing and destock the secondary fluid.
  • the invention relates according to another aspect to a sterilization device comprising a sterilizer and a recovery unit as described above, the main fluid being used as the sterilization fluid in the sterilization device.
  • the recovery unit thus makes it possible to store the thermal energy of the main fluid by the secondary fluid in the storage module at the end of the sterilization cycle and to destock the thermal energy stored in the storage module to heat or at least preheat the main fluid intended for use in the sterilization device.
  • the invention relates to the use of a recovery unit as described above in a sterilizer.
  • the invention makes it possible to envisage a single partitioned heat exchanger which is suitable for different hot and cold sources such as condensing steam, two-phase source or cooling water, single-phase source or hot or cold water.
  • a thermal storage module single-phase source.
  • the heat exchanger is a plate exchanger, preferably with welded plates.
  • the first fluidic circuit 6 and the second fluidic circuit 8 are able to be connected to a hot source and to a cold source, so as to provide heating of the main fluid alternately by the thermal energy stored in the storage module or by a heat source or by combining the thermal energy stored in the storage module and by the heat source and so as to provide cooling of the main fluid alternately by the thermal energy stored in the storage module or by a cold source or by combining the thermal energy stored in the storage module and by the cold source.
  • the hot source is steam from a boiler.
  • the cold source is water from a cold network.
  • the upgrading unit comprises a module for controlling the circulation of the main fluid and of the secondary fluid, the latter being in particular the hot source, the cold source and/or the storage fluid.
  • the traffic control module advantageously comprising a plurality of valves.
  • the flow of fluids, main fluid and secondary fluid, observed between the input and output terminals is similar either to a flow in cross current, or to a flow in counter- current, or to co-current flow.
  • the upstream and downstream at a given point are taken in reference to the direction of circulation of the fluid in the circuit.
  • the heat exchanger 1 shown in figures 1 to 7 is advantageously suitable for use associated with a storage module, not shown, and advantageously with a sterilization device also called a sterilizer or autoclave.
  • a sterilization device is a device intended to sterilize products in particular by spraying hot water or hot water vapor.
  • sterilization devices The operation of sterilization devices is cyclical with successive stages: heating, maintaining the temperature, then cooling in a continuous cycle.
  • the load inside the autoclave undergoes a thermal cycle provided by heating by a hot source such as a boiler and cooling by a cold source such as water from town.
  • the heat evacuated into the tap water during the sterilization cycles represents a substantial energy deposit which can amount to around 300 kWh (contained in 7 m 3 of water) per sterilization cycle carried out with one of the best-selling models. . Knowing that on certain industrial sites, the sterilizers make up to 20 cycles per day, the discharges are greater than 2 TWh and 50,000 m 3 of water per year and per sterilizer.
  • the sterilization process is timed by batch, also called by “batch” not allowing the use of a simple heat exchanger to preheat the water entering the boiler.
  • the use of a storage means to recover and store the waste heat with a view to its recovery during a following cycle makes it possible to overcome the fact that the heating and cooling phases are out of phase and occur at different times.
  • the thermal energy storage module is chosen from sensible heat storage which can be combined with latent heat storage.
  • the storage module can be stratified, ie temperature stratified.
  • the storage module comprises a reservoir partitioned into several variable volumes.
  • each volume is at a homogeneous temperature different from the others volumes.
  • the variable volumes are physically separated by deformable membranes.
  • the heat exchanger according to the invention advantageously makes it possible to divide the heat exchanger into two distinct parts, a first part 7 and a second part 9, more precisely a main circulation zone 2.
  • the heat exchanger comprises a single enclosure whose two parts do not overlap.
  • the exchanger comprises an enclosure in which are arranged a first fluidic circuit and a second fluidic circuit, advantageously not superposed and not overlapping.
  • the heat exchanger that is to say the first part 7 and the second part 9, is thus fluidically connected and therefore supplied by a hot source such as for example a steam network, by a cold source such as for example a cooling network and/or by a storage fluid stored in the storage module.
  • a hot source such as for example a steam network
  • a cold source such as for example a cooling network
  • a storage fluid stored in the storage module.
  • the heat exchanger and the recovery unit according to the invention are intended to be used in a sterilization device.
  • the main fluid of the exchanger being the sterilization fluid.
  • the heat exchanger 1 is of the shell and tube type to facilitate the illustration.
  • the heat exchanger has welded plates.
  • the local heat exchange between the circulating fluids advantageously takes place in cross-current, which can be in counter-current or co-current orientation.
  • the heat exchanger 1 comprises a main circulation zone 2, advantageously defined in an enclosure, intended to receive a main fluid 5.
  • the main circulation zone 2 comprises an inlet 3 to allow the main fluid 5 to enter the heat exchanger. 1 and an outlet 4 to allow the exit of the main fluid 5 from the heat exchanger 1.
  • the main fluid 5 circulates in the main circulation zone 2 between the inlet 3 and the outlet 4.
  • the main circulation zone 2 comprises a first part 7 and a second part 9.
  • the first part 7 and the second part 9 are preferably arranged in series following the circulation of the main fluid 5.
  • the main circulation zone 2 defines an exterior volume, corresponding on the figures 1 to 7 to an enclosure, and in the case of a plate heat exchanger around the outer assembly of the plates.
  • the heat exchanger 1 comprises circulation means comprising a first fluidic circuit 6 capable of receiving a secondary fluid.
  • the first fluidic circuit 6 is arranged in the first part 7 of the exchanger 1. It is understood that the first fluidic circuit 6 is arranged in the first part 7 in that the first fluidic circuit 6 is arranged in the volume of the first part 7 and in particular in contact with the first part 7 of the main circulation zone 2.
  • the first fluidic circuit 6 is intended to ensure the heat exchange between the main fluid 5 circulating in the first part 7 and the secondary fluid circulating in said first fluidic circuit 6.
  • the first fluidic circuit 6 comprises a first pipe 10 intended for the inlet and/or the outlet of the secondary fluid and a second pipe 11 intended for the inlet and/or the outlet of the secondary fluid.
  • the secondary fluid circulates in the first fluidic circuit 6 between the first pipe 10 intended for the secondary fluid inlet and the second pipe 11 intended for the secondary fluid outlet or vice versa between the second pipe 11 intended for the secondary fluid inlet and the first conduit 10 intended for secondary fluid outlet.
  • the main fluid 5 and the secondary fluid circulate in the first part 7 according to a cross-current with co-current or counter-current.
  • the heat exchanger 1 comprises circulation means comprising a second fluidic circuit 8 capable of receiving a secondary fluid.
  • the second fluidic circuit 8 is arranged in the second part 9 of the exchanger 1. It is understood that the second fluidic circuit 8 is arranged in the second part 9 in that the second fluidic circuit 8 is arranged in the volume of the second part 8 and in particular in contact with the second part 8 of the main circulation zone 2.
  • the second fluidic circuit 8 is intended to ensure the heat exchange between the main fluid 5 circulating in the second part 9 and the secondary fluid circulating in said second fluidic circuit 8.
  • the second fluidic circuit 8 comprises a first pipe 12 intended for the inlet and/or the outlet of the secondary fluid and a second pipe 13 intended for the inlet and/or the outlet of the secondary fluid.
  • the secondary fluid circulates in the second fluidic circuit 8 between the first conduit 12 intended for the secondary fluid inlet and the second conduit 13 intended for the secondary fluid outlet or vice versa between the second conduit 13 intended for the secondary fluid inlet and the first conduit 12 intended for secondary fluid outlet.
  • the main fluid 5 and the secondary fluid circulate in the second part 9 according to a cross-current with co-current or counter-current.
  • the secondary fluid is chosen from a hot source, a cold source and/or a storage fluid.
  • the secondary fluid circulating in the first fluid circuit 6 is identical to the secondary fluid circulating in the second fluid circuit 8 or else the secondary fluid circulating in the first fluid circuit 6 is different from the secondary fluid circulating in the second circuit fluidics 8.
  • the hot source is a fluid intended to provide thermal energy in the heat exchanger 1.
  • the hot source is advantageously hot water or hot water vapor, preferably from a heating means such as for example a gas, oil, electric or biomass boiler.
  • the cold source is a fluid intended to recover thermal energy in the heat exchanger 1.
  • the cold source is advantageously city water from a cold network, cooled by a cooling tower, a refrigeration unit or by heat exchange with groundwater, a river.
  • the storage fluid is advantageously a heat transfer fluid chosen to operate at the temperature of the application, in this case for a sterilization device.
  • the storage fluid is water, thus facilitating the successive circulation of the storage fluid, of the hot source and of the cold source in the first fluidic circuit 6 and the second fluidic circuit 8.
  • the Water remains the most advantageous storage fluid.
  • the water is preferentially pressurized and potentially overheated.
  • Other fluids can be envisaged such as thermal oil.
  • the first fluidic circuit 6 is advantageously fluidically connected to an outlet of the storage module 17, so that the secondary fluid being the storage fluid is removed from the storage module and enters the first fluidic circuit 6.
  • the first fluidic circuit 6 is also advantageously fluidically connected to a hot source outlet 16 so that the secondary fluid being a hot source enters the first fluidic circuit 6.
  • the first fluidic circuit 6 is also advantageously fluidically connected to a cold source return 23 so that the secondary fluid being a cold source emerges from the first fluidic circuit 6.
  • the first fluidic circuit 6 is fluidically connected to an outlet of the storage module 17, to a hot source outlet 16, and to a cold source return 23 by three separate fluidic connections. According to another possibility represented in the figures, the first fluidic circuit 6 is fluidly connected to a start of the storage module 17, to a hot source start 16 and to a cold source return 23 by a first common pipe 10.
  • the first fluidic circuit 6 is advantageously fluidically connected to a return to the storage module 18, so that the secondary fluid being the storage fluid is stored in the storage module on leaving the first fluidic circuit 6.
  • the first fluidic circuit 6 is advantageously fluidically connected to a hot source return 21, so that the secondary fluid being a hot source leaves the first fluidic circuit 6 and advantageously returns to the heating means.
  • the first fluidic circuit 6 is also advantageously fluidically connected to the second fluidic circuit 8 so as to fluidically connect the first fluidic circuit 6 and the second fluidic circuit 8.
  • the first fluidic circuit 6 is fluidically connected to a return to the storage module 18, to a hot source return 21 and to the second fluidic circuit 8, by three separate fluidic connections.
  • the first fluidic circuit 6 is fluidically connected to a return to the storage module 18, to a hot source return 21 and to the second fluidic circuit 8, by a second common pipe 11.
  • the second fluidic circuit 8 is advantageously fluidically connected to a return to the storage module 20, so that the secondary fluid being the storage fluid is stored in the storage module on leaving the second fluidic circuit 8.
  • the second fluidic circuit 8 is advantageously also fluidically connected to a hot source outlet 19 so that the secondary fluid being a hot source enters the second fluidic circuit 8.
  • the second fluidic circuit 8 is advantageously also fluidically connected to a cold source outlet 24 so that the secondary fluid being a cold source enters the second fluidic circuit 8.
  • the second fluidic circuit 8 is fluidically connected to a return to the storage module 20, to a hot source outlet 19 and to a cold source outlet 24 by three separate fluidic connections.
  • the first fluidic circuit 8 is fluidically connected to a return to the storage module 20, to a hot source outlet 19 and to a cold source outlet 24 by a first common pipe 12.
  • the second fluidic circuit 8 is advantageously fluidically connected to a hot source return 21, so that the secondary fluid being a hot source leaves the second fluidic circuit 8.
  • the second fluidic circuit 8 is advantageously fluidically connected to a cold source return 25, so that the secondary fluid being a cold source leaves the second fluidic circuit 8 and advantageously returns either to the cooling network or to an intermediate cooling module. .
  • the second fluidic circuit 8 is also advantageously also fluidically connected to the first fluidic circuit 6 so as to fluidically connect the first fluidic circuit 6 and the second fluidic circuit 8.
  • the second fluidic circuit 8 is fluidically connected to a hot source return 21, to a cold source return 25 and to the first fluidic circuit 6 by three separate fluidic connections.
  • the first fluidic circuit 8 is fluidically connected to a hot source return 21, to a cold source return 25 and to the first fluidic circuit 6 by a second common pipe 13.
  • the heat exchanger 1 comprises a module for controlling the circulation of the main fluid 5 and of the secondary fluid being the hot source, the cold source and/or the storage fluid and comprising a plurality of valves.
  • the heat exchanger comprises a module for measuring physical parameters of the heat exchanger, such as the temperature T STW, from of the main fluid 5 at the inlet 3 of the main circulation zone 2 and/or the temperature T STW, to of the main fluid 5 at the outlet 4 of the main circulation zone 2 and/or the temperature T R,1 of the secondary fluid at the inlet of the first fluidic circuit 6.
  • thermal energy storage module is charged with thermal energy.
  • the storage module has been previously charged by recovering the heat during a cooling phase of a previous cycle.
  • the thermal energy restored by the thermal storage module is at a sufficient temperature level to allow the main fluid 5 intended to supply the sterilization device to follow a set temperature.
  • the temperature T R,1 of the storage fluid at the start of the storage module is higher than the temperature T STW,from of the main fluid 5 at the inlet 3 of the main circulation zone 2 of the heat exchanger 1.
  • the fluid main 5 is heated only by thermal energy from the storage module.
  • the storage fluid leaves the storage module through the start of the storage module 17 advantageously fluidically connected to the first pipe 10 of the first fluid circuit 6.
  • the storage fluid enters the first fluid circuit 6 and circulates to exchange with the main fluid 5 circulating the first part of the main circulation zone 2 between the inlet 3 and the outlet 4.
  • the exchange between the storage fluid and the main fluid 5 takes place locally by cross-current with a co-current orientation,
  • the storage fluid emerges from the first fluidic circuit 6 advantageously via the second pipe 11.
  • the second conduit 11 of the first fluidic circuit 6 is fluidically connected to the second conduit 13 of the second fluidic circuit 8 so that the first fluidic circuit 6 and the second fluidic circuit 8 are fluidically connected by a fluidic connection 22
  • the storage fluid also circulates in the second fluidic circuit 8 to exchange with the main fluid 5, before exiting, preferably via the first pipe 12, from the second fluidic circuit 8.
  • the exchange between the storage fluid and the main fluid 5 is done locally by cross-current with a co-current orientation.
  • the storage fluid returns to the storage module via the return 20.
  • the circulation control module advantageously comprises a valve V stock, from intended to control the outlet of the storage fluid from the storage module preferably arranged on the outlet of the storage module e 17.
  • the circulation control module advantageously comprises a valve V bypass intended to fluidically connect the first fluidic circuit 6 and the second fluidic circuit 8 preferably arranged on the fluidic connection 22.
  • the circulation control module advantageously comprises a valve V stock, to intended to put the first pipe 12 of the second fluid circuit 8 in fluidic connection with the storage module to allow return of the fluid from storage from the second fluidic circuit 8 to the storage module, preferably arranged on the return to the storage module 20.
  • the valves V stock, from , V bypass , V stock, to are open in the configuration of the figure 1 . According to this first possibility, the two parts, the first part 7 and the second part 9, of the heat exchanger, more precisely of the main circulation zone 2, are used, which has the advantage of exploiting a larger surface. exchange.
  • the second pipe 11 of the first fluidic circuit 6 is not fluidly connected to the second pipe 13 of the second fluidic circuit 8, so that the storage fluid circulates in the first fluidic circuit 6 and comes out of it. ci by the second pipe 11 fluidly connected to the storage module so that the storage fluid returns to the storage module, without circulating in the second fluidic circuit 8.
  • This configuration is implemented for example when the temperature T R , 1 is very high in relation to the temperature T STW, from and in relation to the setpoint temperature. This configuration thus avoids causing unnecessary pressure drops in the storage fluid when its circulation only in the first fluidic circuit 6 is sufficient to heat the main fluid 5.
  • the valve V stock,from is controlled according to the acquisition of the temperature T STW,to of the main fluid at the outlet 4 of the main circulation zone 2, so that the temperature T STW,to reaches a setpoint temperature.
  • the heat exchanger As soon as the temperature of the storage fluid and therefore the thermal energy restored by the storage module no longer allows the main fluid 5, intended to be used by the sterilization device, to follow a set temperature then, the heat exchanger according to the invention operates according to the figure 2 .
  • the mode of operation of the figure 2 is thus implemented when the temperature T R,1 of the storage fluid at the outlet of the storage module is greater than the temperature T STW,from of the main fluid at the inlet 3 of the main circulation zone 2, but the temperature T STW,to is below a set temperature.
  • the thermal energy restored by the storage module thus allows the preheating of the main fluid intended to supply the sterilization device by using the first part 7 of the partitioned heat exchanger.
  • the second part 9 of the heat exchanger is fed by a hot source, preferably a steam network, and thus provides additional heat to the main fluid 5 exiting from the first part. 7.
  • the main fluid 5 is preheated by the thermal energy of the storage module at the level of the first fluidic circuit 6.
  • the storage fluid leaves the storage module by the outlet of the storage module 17 fluidically connected to the first fluidic circuit 6, preferably by the first pipe 10.
  • the storage fluid enters the first fluidic circuit 6 and circulates to exchange, advantageously in cross-current, with the main fluid 5 circulating in the first part 7 of the main circulation zone 2 between the inlet 3 and the outlet 4.
  • the storage fluid leaves the first fluidic circuit 6, advantageously through the second pipe 11, to return to the storage module through the return 18.
  • the circulation control module advantageously comprises a valve V stock, to 2 intended to put the second pipe 11 of the first fluid circuit 6 in fluidic connection with the storage module to allow the return of the storage fluid from the first fluid circuit 6 to the storage module.
  • the valve V stock, to 2 preferably arranged on the return to the storage module 18 is open.
  • the bypass valve V is closed so that the fluidic connection 22 between the first fluidic circuit 6 and the second fluidic circuit 8 is inactive.
  • the first fluidic circuit 6 and the second fluidic circuit 8 are fluidically independent.
  • the main fluid 5 is then heated by the hot source in the second part 9 of the heat exchanger.
  • the second fluidic circuit 8 is fluidically connected to the start of the hot source 19, preferably via the first pipe 12.
  • the circulation control module advantageously comprises a valve V vap,2 intended to put the first pipe 12 of the second circuit into fluidic connection.
  • fluid circuit 8 with the hot source to allow the hot source, for example from heating means, to enter the second fluid circuit 8 preferably via the first pipe 12.
  • the valve V vap,2 preferably arranged on a hot source outlet 19 is open.
  • the hot source is advantageously steam, for example from heating means such as a boiler.
  • the hot source circulates in the second fluidic circuit 8 and transmits the thermal energy to the main fluid 5 circulating in the second part 9 of the main circulation zone 2 in the direction of the outlet 4.
  • the hot source leaves the second fluidic circuit 8, preferably by the second pipe 13 fluidically connected to a hot source return 21, preferably connected to the heating means such as a boiler.
  • the hot source from the second fluidic circuit is a steam condensate.
  • the circulation control module advantageously comprises a valve V cond arranged on the return from the hot source 21 which is open to allow the condensate to return to the heating means.
  • Valve V vap,2 is controlled according to the acquisition of the temperature T STW,to so that this temperature T STW,to is equal to a setpoint temperature.
  • the storage module ceases to supply the heat exchanger.
  • the heating of the main fluid 5 is then provided solely by the hot source, preferably the steam network, supplying according to the embodiment one part or both parts of the heat exchanger.
  • the heat exchanger works according to the picture 3 .
  • the temperature T R,1 of the storage fluid at the outlet of the storage module is lower than the temperature T STW,from of the main fluid 5 at the inlet 3 of the main circulation zone 2.
  • the valves V vap1 , V vap2 , V bypass and V cond are open.
  • the first fluidic circuit 6 is fluidically connected, preferably via the first pipe 10, to the hot source outlet 16.
  • the circulation control module advantageously comprises a valve V vap1 , arranged on the hot source outlet 16, which is open from so as to allow the entry of the hot source, preferably steam, into the first fluidic circuit 6.
  • the hot source circulates in the first fluidic circuit 6, preferably as far as the second conduit 11.
  • the hot source exchanges thermal energy to the main fluid 5 by exchange, advantageously by cross-current.
  • the hot source leaves the first fluidic circuit 6, preferably through the second pipe 11, fluidly connected to a hot source return 21, the valve V cond arranged on the hot source return 21 is open.
  • the main fluid 5 is also heated in the second part 9 of the heat exchanger.
  • the second fluidic circuit 8 is fluidically connected, preferably via the first pipe 12, to the hot source outlet 19, the valve V vap2 arranged on the hot source outlet 19 is open so as to allow the entry of the hot source, preferably of steam, in the second fluidic circuit 8.
  • the hot source circulates in the second fluidic circuit 8, preferably as far as the second conduit 13.
  • the hot source exchanges its thermal energy towards the main fluid 5, advantageously by cross-current exchange.
  • the hot source leaves the second fluidic circuit 8 preferentially through the second pipe 13, fluidically connected to a hot source return 21, the valve V cond arranged on the hot source return 21 is open.
  • the second conduit 11 of the first fluidic circuit 6 and the second conduit 13 of the second fluidic circuit 8 are advantageously fluidically connected by the fluid connection 22, the bypass valve V being open.
  • the hot source returns respectively of the first fluidic circuit 6 and of the second fluidic circuit 8 are fluidically connected to ensure a common return of the condensates from the hot source to, for example, the boiler.
  • the figures 4 to 7 illustrate the heat exchanger 1 in operation during the cooling phase of the main fluid, each figure corresponding to a time of this cooling phase.
  • the cooling phase of the sterilization device corresponds to the phase during which the thermal storage module is charged with thermal energy.
  • the figure 4 corresponds to the start of the cooling of the main fluid 5, that is to say after the phase of heating and possibly maintaining the temperature of the sterilization device.
  • the temperature T R,1 of the storage fluid at the outlet of the storage module is lower than the temperature T STW,from of the main fluid 5 at the inlet 3 of the main circulation zone 2.
  • the valves V stock, from , V stock, to1 , V bypass are open.
  • the cooling of the main fluid 5 is ensured solely by the storage fluid.
  • the first fluidic circuit 6 is fluidically connected, preferably via the first pipe 10, from the storage module 17, the valve V stock, from , allowing the storage fluid to exit the storage module and enter the first fluidic circuit 6, is open.
  • the storage fluid circulates in the first fluidic circuit 6 and exchanges with the main fluid 5 circulating in the first part 7 by local exchange, advantageously by cross-current, or by co-current as illustrated in figure 4 , or by counter-current as illustrated in figure 7 .
  • the counter-current circulation of the storage fluid and the main fluid 5 is defined according to the cycles of the sterilization device, in this case, the embodiment illustrated in figure 7 with counter-current circulation is chosen when the main fluid 5 is cooled by the storage fluid itself directly cooled in the storage module by a cold source.
  • the main fluid 5 transfers its thermal energy to the storage fluid.
  • the storage fluid emerges from the first fluidic circuit 6, preferably via the second conduit 11 fluidically connected preferentially to the second conduit 13 of the second fluidic circuit 8 via the fluidic connection 22, the bypass valve V being open.
  • the storage fluid enters the second fluidic circuit 8, preferably via the second pipe 13, and circulates in the second fluidic circuit 8.
  • the storage fluid exchanges with the main fluid 5 flowing in the second part 9.
  • the main fluid 5 yields its thermal energy to the storage fluid.
  • the storage fluid emerges from the second fluidic circuit 8 , preferably via the first pipe 12.
  • the second fluid circuit 8 is fluidically connected, preferably via the first pipe 12, to a storage return 20, a valve V stock, to being open.
  • the valve V stock,from is controlled according to the acquisition of the temperature T STW,to so that this temperature T STW,to is equal to a setpoint temperature.
  • the storage fluid can no longer ensure the cooling of the main fluid 5 on its own.
  • the exchanger then operates according to the embodiment illustrated in figure 5 .
  • the thermal energy that can be captured by the storage fluid thus makes it possible to precool the main fluid 5 at the outlet of the sterilization device by using the first part 7 of the partitioned heat exchanger.
  • the second part 9 of the heat exchanger is supplied by a cold source, preferably a cold network, and thus provides in the second part 9 the cooling necessary for the main fluid 5 exiting from the first part 7 of the heat exchanger.
  • the pre-cooling of the main fluid 5 is ensured by the storage fluid.
  • the first fluidic circuit 6 is fluidically connected, preferably via the first pipe 10, from the storage module 17, the valve V stock, from allowing the storage fluid to exit the storage module and enter the first fluidic circuit 6 is open.
  • the storage fluid circulates in the first fluidic circuit 6 and exchanges with the main fluid 5 by local exchange, advantageously by cross-current, in countercurrent particularly if the heat exchanger is composed of welded plates.
  • the main fluid 5 circulating in the first part 7 preferentially transfers its thermal energy to the storage fluid.
  • the storage fluid leaves the first fluidic circuit 6 via the second pipe 11.
  • the second pipe 11 is fluidly connected to the return to the storage module 18.
  • the first fluidic circuit 6 and the second fluidic circuit 8 are fluidically independent, the bypass valve V being closed.
  • the fluidic connection 22 is inactive.
  • the second fluidic circuit 8 is fluidically connected, preferably by the first conduit 12, from a cold source 24.
  • the cold source circulating in the second fluidic circuit 8 recovers the thermal energy transferred by the main fluid 5 circulating in the second part 9 preferably in cross-current, counter-current particularly if the heat exchanger is made up of welded plates.
  • the cold source emerges from the second fluidic circuit 8, preferably via the second pipe 13 fluidically connected to a cold source return 25, a valve V cool,out2 arranged on the cold source return 25 being open.
  • the valve V cool,in is controlled according to the acquisition of the temperature T STW,to so that this temperature T STW,to is equal to a setpoint temperature.
  • the storage fluid does not allows more to ensure the cooling of the main fluid 5.
  • the storage module stops supplying the heat exchanger.
  • the exchanger then operates according to the embodiment illustrated in figure 6 .
  • the cooling of the main fluid 5 is provided solely by the cold source, preferably the city water network, supplying according to the embodiment one part or both parts of the heat exchanger.
  • the circulation of the cold source takes place successively in the second part 9 then in the first part 7 of the heat exchanger.
  • This circulation of the cold source makes it possible to ensure a local exchange by cross-current with a counter-current orientation improving the heat exchange between the cold source and the main fluid 5.
  • the cold source penetrates into the second fluidic circuit 8, preferably via the second pipe 12 fluidly connected to the start of the cold source 24, the valve V cool,in being open to allow the entry of the cold source, preferably city water, into the second fluid circuit 8, preferably via the first pipe 12.
  • the cold source circulating in the second fluidic circuit 8 recovers the thermal energy released by the main fluid 5 circulating in the second part 9 preferably in cross-current with counter-current orientation.
  • the cold source emerges from the second fluid circuit 8, preferably via the second pipe 13 fluidly connected to the second pipe 11 of the first fluid circuit 6 via the fluid connection 22, the bypass valve V being open.
  • the cold source enters the first fluidic circuit 6 through which it circulates before exiting via the first pipe 10.
  • the first pipe 10 being fluidically connected to a cold source return 23, the valve V cool,out1 being open.
  • the valve V cool,in is controlled according to the acquisition of the temperature T STW,to so that this temperature T STW,to is equal to a setpoint temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Description

La présente invention concerne le domaine de la récupération d'énergie et de l'optimisation de l'utilisation de l'énergie thermique. Elle trouve pour application particulièrement avantageuse le domaine des stérilisateurs utilisant de la chaleur de manière discontinue pour la mise en oeuvre d'un cycle de stérilisation.The present invention relates to the field of energy recovery and optimization of the use of thermal energy. It finds a particularly advantageous application in the field of sterilizers using heat in a discontinuous manner for the implementation of a sterilization cycle.

ÉTAT DE LA TECHNIQUESTATE OF THE ART

L'optimisation écologique des appareils et process industriels est une démarche dans laquelle les industriels s'engagent de plus en plus. L'optimisation écologique, en plus d'avoir un effet positif sur l'environnement, contribue à l'image de l'entreprise. L'optimisation écologique passe couramment par une optimisation énergétique permettant une réduction des coûts.The ecological optimization of industrial devices and processes is an approach in which manufacturers are increasingly committed. Ecological optimization, in addition to having a positive effect on the environment, contributes to the image of the company. Ecological optimization commonly involves energy optimization allowing a reduction in costs.

Parmi les process industriels pouvant être optimisés, les dispositifs et procédés de stérilisation sont des grands consommateurs d'énergie et d'eau dont une majeure partie n'est pas recyclée.Among the industrial processes that can be optimized, sterilization devices and processes are major consumers of energy and water, a major part of which is not recycled.

On connait le document US 9,566,356 B2 décrivant un dispositif de stérilisation à récupération d'énergie.We know the document US 9,566,356 B2 describing an energy recovery sterilization device.

Le dispositif de ce document comprend une chambre de stérilisation dans laquelle les produits à stériliser sont déposés. La chambre de stérilisation est reliée à un circuit de fluide primaire. Les produits à stériliser dans la chambre de stérilisation sont pulvérisés avec de l'eau chaude issue du circuit de fluide primaire. Dans ledit circuit de fluide primaire, le fluide est chauffé ou refroidi au moyen d'un échangeur de chaleur. Ce premier échangeur de chaleur comprenant à cet effet une entrée de vapeur, une conduite d'alimentation d'un agent de refroidissement, une conduite de retour de l'agent de refroidissement et un drain de condensat. Un second échangeur de chaleur est agencé en série sur le circuit de fluide primaire et est connecté à un circuit de fluide secondaire. Le deuxième échangeur permet de chauffer ou de refroidir le circuit de fluide primaire grâce à un circuit de fluide secondaire. Le dispositif comprend également un réservoir de stockage stratifié. Lors d'un cycle de refroidissement du circuit de fluide primaire, l'énergie du circuit de fluide primaire est donc transmise via le deuxième échangeur de chaleur au circuit de fluide secondaire et peut être stockée dans le réservoir de stockage stratifié. Lorsque le refroidissement par transfert thermique au circuit de fluide secondaire n'est plus possible alors le circuit de fluide primaire est refroidi via la conduite d'alimentation d'un agent de refroidissement dans le premier échangeur de chaleur jusqu'à ce que la température cible soit atteinte. Lors d'un prochain chauffage de la chambre, le fluide chaud est déstocké de manière stratifiée en température depuis le réservoir de stockage stratifié vers le circuit de fluide primaire via le deuxième échangeur de chaleur tant que le transfert de chaleur vers le circuit de fluide primaire est possible, ensuite le circuit de fluide primaire est chauffé via la conduite de vapeur dans le premier échangeur de chaleur jusqu'à ce que la température cible soit atteinte.The device of this document comprises a sterilization chamber in which the products to be sterilized are deposited. The sterilization chamber is connected to a primary fluid circuit. The products to be sterilized in the sterilization chamber are sprayed with hot water from the primary fluid circuit. In said primary fluid circuit, the fluid is heated or cooled by means of a heat exchanger. This first heat exchanger comprising for this purpose a steam inlet, a supply line for a coolant, a return line for the coolant and a condensate drain. A second heat exchanger is arranged in series on the primary fluid circuit and is connected to a secondary fluid circuit. The second exchanger makes it possible to heat or cool the primary fluid circuit thanks to a secondary fluid circuit. The device also includes a laminated storage reservoir. During a cooling cycle of the primary fluid circuit, the energy of the primary fluid circuit is therefore transmitted via the second heat exchanger to the secondary fluid circuit and can be stored in the stratified storage tank. When cooling by heat transfer to the secondary fluid circuit is no longer possible then the primary fluid circuit is cooled via the supply line of a coolant in the first heat exchanger until the target temperature is reached. During a next heating of the chamber, the hot fluid is released in a temperature stratified way from the storage tank stratified to the primary fluid circuit via the second heat exchanger as long as heat transfer to the primary fluid circuit is possible, then the primary fluid circuit is heated via the steam line in the first heat exchanger to until the target temperature is reached.

Ce dispositif présente une perte de rendement du fait de l'utilisation de chaque échangeur pour une étape du cycle. Le dispositif ne permet pas une valorisation de l'énergie thermique stockée optimisée.This device presents a loss of efficiency due to the use of each exchanger for one stage of the cycle. The device does not allow optimized recovery of the stored thermal energy.

EP-A-3524919 divulgue un échangeur thermique selon le préambule de la revendication 1. EP-A-3524919 discloses a heat exchanger according to the preamble of claim 1.

Il existe donc le besoin d'améliorer la valorisation de l'énergie thermique récupérée et utilisée.There is therefore a need to improve the recovery of the thermal energy recovered and used.

Les autres objets, caractéristiques et avantages de la présente invention apparaîtront à l'examen de la description suivante et des dessins d'accompagnement. Il est entendu que d'autres avantages peuvent être incorporés.The other objects, features and advantages of the present invention will become apparent from a review of the following description and the accompanying drawings. It is understood that other benefits may be incorporated.

RÉSUMÉABSTRACT

Pour atteindre cet objectif, selon un mode de réalisation on prévoit un échangeur thermique comprenant :

  • une zone de circulation principale apte à recevoir un fluide principal, et
  • des moyens de circulation aptes à recevoir un fluide secondaire et configurés pour assurer un échange thermique avec la zone de circulation principale, la zone de circulation principale comprend une première partie et une deuxième partie, avantageusement distincte, et que les moyens de circulation comprennent
    • un premier circuit fluidique agencé en contact de la première partie de l'échangeur thermique et plus précisément de la zone de circulation principale et destiné à recevoir le fluide secondaire de sorte à assurer un échange thermique entre le fluide secondaire et le fluide principal circulant première partie, et
    • un deuxième circuit fluidique agencé en contact d'une deuxième partie de la zone de circulation principale et destiné à recevoir le fluide secondaire, de sorte à assurer un échange thermique entre le fluide secondaire et le fluide principal circulant dans la deuxième partie, caractérisé en ce que le premier circuit fluidique et le deuxième circuit fluidique étant configurés pour être alternativement indépendant fluidiquement ou être connectés fluidiquement l'un à l'autre.
To achieve this objective, according to one embodiment, a heat exchanger is provided comprising:
  • a main circulation zone capable of receiving a main fluid, and
  • circulation means capable of receiving a secondary fluid and configured to ensure heat exchange with the main circulation zone, the main circulation zone comprises a first part and a second part, advantageously distinct, and that the circulation means comprise
    • a first fluidic circuit arranged in contact with the first part of the heat exchanger and more precisely with the main circulation zone and intended to receive the secondary fluid so as to ensure a heat exchange between the secondary fluid and the main fluid circulating in the first part , and
    • a second fluidic circuit arranged in contact with a second part of the main circulation zone and intended to receive the secondary fluid, so as to ensure a heat exchange between the secondary fluid and the main fluid circulating in the second part, characterized in that that the first fluidic circuit and the second fluidic circuit being configured to be alternatively fluidically independent or to be fluidically connected to each other.

L'échangeur thermique de l'invention permet de réduire ou augmenter la surface d'échange de l'échangeur thermique en fonction des besoins en stockage ou en énergie thermique. Le dimensionnement de l'échangeur est ainsi facilité et avantageusement réduit. La modularité de l'échangeur thermique permet de dimensionner l'échangeur thermique suivant la fonctionnalité la plus contraignante. La structure en deux parties de l'échangeur et la présence de moyens de circulation pouvant avantageusement être pilotés en fonction des besoins permet d'utiliser un seul échangeur optimisé.The heat exchanger of the invention makes it possible to reduce or increase the exchange surface of the heat exchanger according to storage or energy needs. thermal. The dimensioning of the exchanger is thus facilitated and advantageously reduced. The modularity of the heat exchanger makes it possible to size the heat exchanger according to the most restrictive functionality. The two-part structure of the exchanger and the presence of circulation means which can advantageously be controlled according to requirements makes it possible to use a single optimized exchanger.

De manière facultative, l'échangeur est apte à être connecté fluidiquement à un module de stockage d'énergie thermique plus précisément le premier circuit fluidique et le deuxième circuit fluidique sont aptes à être connectés fluidiquement au module de stockage d'énergie de sorte que le l'énergie thermique échangée par l'échangeur puisse être stockée vers ou déstockée depuis le module de stockage.Optionally, the exchanger is able to be fluidically connected to a thermal energy storage module, more precisely the first fluidic circuit and the second fluidic circuit are able to be fluidically connected to the energy storage module so that the the thermal energy exchanged by the exchanger can be stored towards or withdrawn from the storage module.

L'invention concerne selon un autre aspect une unité de valorisation comprenant un échangeur thermique tel que décrit ci-dessus et un module de stockage d'énergie thermique connecté fluidiquement au premier circuit fluidique et au deuxième circuit fluidique de sorte à être apte à stocker et déstocker le fluide secondaire.The invention relates, according to another aspect, to an upgrading unit comprising a heat exchanger as described above and a thermal energy storage module fluidically connected to the first fluidic circuit and to the second fluidic circuit so as to be capable of storing and destock the secondary fluid.

L'invention concerne selon un autre aspect un dispositif de stérilisation comprenant un stérilisateur et une unité de valorisation telle que décrite ci-dessus, le fluide principal étant utilisé comme fluide de stérilisation dans le dispositif de stérilisation. L'unité de valorisation permet ainsi de stocker l'énergie thermique du fluide principal par le fluide secondaire dans le module de stockage en fin de cycle de stérilisation et de déstocker l'énergie thermique stockée dans le module de stockage pour chauffer ou au moins préchauffer le fluide principal destiné à être utilisé dans le dispositif de stérilisation.The invention relates according to another aspect to a sterilization device comprising a sterilizer and a recovery unit as described above, the main fluid being used as the sterilization fluid in the sterilization device. The recovery unit thus makes it possible to store the thermal energy of the main fluid by the secondary fluid in the storage module at the end of the sterilization cycle and to destock the thermal energy stored in the storage module to heat or at least preheat the main fluid intended for use in the sterilization device.

L'invention concerne l'utilisation d'une unité de valorisation telle que décrite ci-dessus dans un stérilisateur.The invention relates to the use of a recovery unit as described above in a sterilizer.

Un autre aspect concerne un procédé de valorisation de l'énergie thermique par une unité de valorisation telle que décrite ci-dessus dans lequel lors d'une étape de chauffage du fluide principal pour que la température TSTW, to, du fluide principal en sortie de zone de circulation principale atteigne une température de consigne :

  • quand la température du fluide de stockage en sortie du module de stockage TR,1 est supérieure à la température TSTW, from du fluide principal en entrée de la zone de circulation principale, le premier circuit fluidique et le deuxième circuit fluidique sont connectés fluidiquement, le fluide de stockage circule successivement dans le premier circuit fluidique puis le deuxième circuit fluidique de sorte à assurer un échange thermique du fluide de stockage vers le fluide principal dans la première partie et dans la deuxième partie, ou
  • quand la température du fluide de stockage en sortie du module de stockage TR,1 est supérieure à la température TSTW, from du fluide principal en entrée de la zone de circulation principale, et que la température TSTW, to du fluide principal en sortie de la zone de circulation principale est inférieure à une température de consigne ), le premier circuit fluidique et le deuxième circuit fluidique sont indépendants fluidiquement, le premier circuit fluidique assure le préchauffage du fluide principal par le fluide de stockage déstocké du module de stockage et circulant dans le premier circuit fluidique et le deuxième circuit fluidique assure le chauffage du fluide principal par une source chaude circulant dans le deuxième circuit fluidique, ou
  • quand la température du fluide de stockage en sortie du module de stockage TR,1 est inférieure à la température TSTW, from du fluide principal en entrée de la zone de circulation principale, le premier circuit fluidique et le deuxième circuit fluidique sont indépendants fluidiquement, le premier circuit fluidique assure le préchauffage du fluide principal par une source chaude et le deuxième circuit fluidique assure le chauffage du fluide principal par une source chaude. Selon une possibilité, les retours des sources chaudes respectivement du premier circuit fluidique et du deuxième circuit fluidique sont connectées fluidiquement pour assurer un retour commun des condensats de la source chaude vers par exemple la chaudière.
Another aspect relates to a process for recovering thermal energy by a recovery unit as described above in which during a step of heating the main fluid so that the temperature T STW, to, of the main fluid at the outlet of the main circulation zone reaches a set temperature:
  • when the temperature of the storage fluid at the outlet of the storage module T R,1 is greater than the temperature T STW, from of the main fluid at the inlet of the main circulation zone, the first fluidic circuit and the second fluidic circuit are fluidically connected , the storage fluid circulates successively in the first fluidic circuit then the second fluidic circuit so as to ensure heat exchange from the storage fluid to the main fluid in the first part and in the second part, or
  • when the temperature of the storage fluid at the outlet of the storage module T R,1 is greater than the temperature T STW, from of the main fluid at the inlet of the main circulation zone, and the temperature T STW, to of the main fluid at outlet of the main circulation zone is lower than a setpoint temperature), the first fluidic circuit and the second fluidic circuit are fluidically independent, the first fluidic circuit ensures the preheating of the main fluid by the storage fluid removed from the storage module and circulating in the first fluidic circuit and the second fluidic circuit ensures the heating of the main fluid by a hot source circulating in the second fluidic circuit, or
  • when the temperature of the storage fluid at the outlet of the storage module T R,1 is lower than the temperature T STW, from of the main fluid at the inlet of the main circulation zone, the first fluid circuit and the second fluid circuit are fluidically independent , the first fluidic circuit ensures the preheating of the main fluid by a hot source and the second fluidic circuit ensures the heating of the main fluid by a hot source. According to one possibility, the returns of the hot sources respectively of the first fluidic circuit and of the second fluidic circuit are fluidically connected to ensure a common return of the condensates from the hot source to, for example, the boiler.

Un autre aspect concerne un procédé de valorisation de l'énergie thermique par une unité de valorisation telle que décrite ci-dessus dans lequel lors d'une étape de refroidissement du fluide principal pour que la température TSTW, to, du fluide principal en sortie de zone de circulation principale atteigne une température de consigne :

  • quand la température du fluide de stockage en sortie du module de stockage TR,1 est inférieure à la température TSTW, from du fluide principal en entrée de la zone de circulation principale, le premier circuit fluidique et le deuxième circuit fluidique sont connectés fluidiquement, le fluide de stockage circule successivement dans le premier circuit fluidique puis le deuxième circuit fluidique de sorte à refroidir le fluide principal et stocker l'énergie thermique dans le module de stockage,
  • quand la température du fluide de stockage en sortie du module de stockage TR,1 est inférieure à la température TSTW, from du fluide principal en entrée de la zone de circulation principale, le premier circuit fluidique et le deuxième circuit fluidique sont indépendants fluidiquement, le premier circuit fluidique assure le prérefroidissement du fluide principal par le fluide de stockage déstocké du module de stockage et le deuxième circuit fluidique assure le refroidissement du fluide principal par une source froide,
  • quand la température du fluide de stockage en sortie du module de stockage TR,1 est supérieure à la température TSTW, from du fluide principal en entrée de la zone de circulation principale, le premier circuit fluidique et le deuxième circuit fluidique sont connectés fluidiquement, la source froide circulant successivement dans le deuxième circuit fluidique puis dans le premier circuit fluidique.
Another aspect relates to a process for recovering thermal energy by a recovery unit as described above in which during a step of cooling the main fluid so that the temperature T STW, to , of the main fluid at the outlet of the main circulation zone reaches a set temperature:
  • when the temperature of the storage fluid at the outlet of the storage module TR,1 is lower than the temperature TSTW, from the main fluid at the inlet of the main circulation zone, the first fluidic circuit and the second fluidic circuit are fluidically connected, the storage fluid circulates successively in the first fluidic circuit then the second fluidic circuit so as to cool the main fluid and store the thermal energy in the storage module,
  • when the temperature of the storage fluid at the outlet of the storage module TR,1 is lower than the temperature TSTW, from the main fluid at the inlet of the main circulation zone, the first fluidic circuit and the second fluidic circuit are fluidically independent, the first fluidic circuit ensures the precooling of the main fluid by the storage fluid removed from the storage module and the second fluidic circuit provides cooling of the main fluid by a cold source,
  • when the temperature of the storage fluid at the outlet of the storage module TR,1 is higher than the temperature TSTW, from the main fluid at the inlet of the main circulation zone, the first fluidic circuit and the second fluidic circuit are fluidically connected, the cold source circulating successively in the second fluidic circuit then in the first fluidic circuit.

L'invention permet d'envisager un seul échangeur thermique partitionné qui soit adapté à différentes sources chaudes et froides tel que de la vapeur se condensant, source diphasique ou de l'eau de refroidissement, source monophasique ou de l'eau chaude ou froide d'un module de stockage thermique, source monophasique.The invention makes it possible to envisage a single partitioned heat exchanger which is suitable for different hot and cold sources such as condensing steam, two-phase source or cooling water, single-phase source or hot or cold water. a thermal storage module, single-phase source.

BRÈVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF FIGURES

Les buts, objets, ainsi que les caractéristiques et avantages de l'invention ressortiront mieux de la description détaillée d'un mode de réalisation de cette dernière qui est illustré par les dessins d'accompagnement suivants dans lesquels :

  • La figure 1 représente l'unité de valorisation selon l'invention en mode chauffage du fluide principal par décharge du module de stockage d'énergie thermique
  • La figure 2 représente l'unité de valorisation selon l'invention en mode chauffage du fluide principal par décharge du module de stockage d'énergie thermique et appoint d'une source chaude
  • La figure 3 représente l'unité de valorisation selon l'invention en mode chauffage du fluide principal par la source chaude
  • La figure 4 représente l'unité de valorisation selon l'invention en mode refroidissement du fluide principal par la charge du module de stockage d'énergie thermique
  • La figure 5 représente l'unité de valorisation selon l'invention en mode refroidissement du fluide principal par la charge du module de stockage d'énergie thermique et appoint d'une source froide
  • La figure 6 représente l'unité de valorisation selon l'invention en mode refroidissement du fluide principal par la source froide
  • La figure 7 représente l'unité de valorisation selon l'invention en mode refroidissement du fluide principal selon la figure 4 dans laquelle le fluide principal circule à contre-courant. Dans ce mode de refroidissement, le fluide principal est refroidi par le module de stockage d'énergie thermique, dans une configuration où ce dernier est directement refroidi par une source froide. En somme, la source froide ne refroidit pas directement le fluide principal, mais refroidit une partie du module de stockage, qui refroidit à son tour le fluide principal.
The aims, objects, as well as the characteristics and advantages of the invention will emerge better from the detailed description of an embodiment of the latter which is illustrated by the following accompanying drawings in which:
  • The figure 1 represents the recovery unit according to the invention in heating mode of the main fluid by discharging the thermal energy storage module
  • The picture 2 represents the recovery unit according to the invention in heating mode of the main fluid by discharging the thermal energy storage module and back-up from a hot source
  • The picture 3 represents the recovery unit according to the invention in heating mode of the main fluid by the hot source
  • The figure 4 represents the upgrading unit according to the invention in cooling mode of the main fluid by charging the thermal energy storage module
  • The figure 5 represents the recovery unit according to the invention in cooling mode of the main fluid by charging the thermal energy storage module and backing up a cold source
  • The figure 6 represents the recovery unit according to the invention in cooling mode of the main fluid by the cold source
  • The figure 7 represents the recovery unit according to the invention in cooling mode of the main fluid according to the figure 4 in which the main fluid circulates against the current. In this cooling mode, the main fluid is cooled by the thermal energy storage module, in a configuration where the latter is directly cooled by a cold source. In short, the cold source does not directly cool the main fluid, but cools part of the storage module, which in turn cools the main fluid.

Les dessins sont donnés à titre d'exemple et ne sont pas limitatifs de l'invention. Ils constituent des représentations schématiques de principe destinées à faciliter la compréhension de l'invention et ne sont pas nécessairement à l'échelle des applications pratiques.The drawings are given by way of example and do not limit the invention. They constitute schematic representations of principle intended to facilitate understanding of the invention and are not necessarily at the scale of practical applications.

DESCRIPTION DÉTAILLÉEDETAILED DESCRIPTION

Avant d'entamer une revue détaillée de modes de réalisation de l'invention, sont énoncées ci-après des caractéristiques optionnelles qui peuvent éventuellement être utilisées en association ou alternativement.Before starting a detailed review of embodiments of the invention, optional characteristics are set out below which may optionally be used in combination or alternatively.

Avantageusement, l'échangeur thermique est un échangeur à plaques, préférentiellement à plaques soudées.Advantageously, the heat exchanger is a plate exchanger, preferably with welded plates.

Avantageusement, le premier circuit fluidique 6 et le deuxième circuit fluidique 8 sont aptes à être connectés à une source chaude et à une source froide, de sorte à assurer un chauffage du fluide principal alternativement par l'énergie thermique stockée dans le module de stockage ou par une source de chaleur ou par combinaison de l'énergie thermique stockée dans le module de stockage et par la source de chaleur et de sorte à assurer un refroidissement du fluide principal alternativement par l'énergie thermique stockée dans le module de stockage ou par une source froide ou par combinaison de l'énergie thermique stockée dans le module de stockage et par la source froide.Advantageously, the first fluidic circuit 6 and the second fluidic circuit 8 are able to be connected to a hot source and to a cold source, so as to provide heating of the main fluid alternately by the thermal energy stored in the storage module or by a heat source or by combining the thermal energy stored in the storage module and by the heat source and so as to provide cooling of the main fluid alternately by the thermal energy stored in the storage module or by a cold source or by combining the thermal energy stored in the storage module and by the cold source.

Avantageusement, le premier circuit fluidique est configuré pour être connecté fluidiquement, préférentiellement par la première conduite 10 :

  • à un départ du module de stockage de sorte à permettre l'entrée du fluide secondaire étant un fluide de stockage dans le premier circuit fluidique,
  • à une arrivée de source chaude de sorte à permettre l'entrée du fluide secondaire étant une source chaude dans le premier circuit fluidique,
  • à un retour de source froide de sorte à permettre la sortie du fluide secondaire étant une source froide hors du premier circuit fluidique.
Advantageously, the first fluidic circuit is configured to be fluidically connected, preferably by the first pipe 10:
  • at an outlet from the storage module so as to allow entry of the secondary fluid being a storage fluid into the first fluid circuit,
  • to a hot source inlet so as to allow entry of the secondary fluid being a hot source into the first fluid circuit,
  • to a cold source return so as to allow the output of the secondary fluid being a cold source out of the first fluidic circuit.

Avantageusement, le premier circuit fluidique est configuré pour être connecté fluidiquement, préférentiellement par une deuxième conduite 11 :

  • à un retour au module de stockage d'énergie thermique de sorte à permettre la sortie du fluide secondaire étant le fluide de stockage hors du premier circuit fluidique et permettre le stockage d'énergie thermique dans le module de stockage d'énergie thermique
  • à la deuxième conduite 13 du deuxième circuit fluidique de sorte à mettre en connexion fluidique le premier circuit fluidique et le deuxième circuit fluidique,
  • à un retour de la source chaude de sorte à permettre la sortie du fluide secondaire étant la source chaude hors du premier circuit fluidique.
Advantageously, the first fluidic circuit is configured to be fluidically connected, preferably by a second pipe 11:
  • to a return to the thermal energy storage module so as to allow the exit of the secondary fluid being the storage fluid from the first circuit fluidic and enable thermal energy storage in the thermal energy storage module
  • to the second pipe 13 of the second fluidic circuit so as to bring the first fluidic circuit and the second fluidic circuit into fluidic connection,
  • to a return of the hot source so as to allow the output of the secondary fluid being the hot source out of the first fluidic circuit.

Avantageusement, le deuxième circuit fluidique est configuré pour être connecté fluidiquement, préférentiellement par une première conduite 12 :

  • à une arrivée d'une source chaude de sorte à permettre l'entrée du fluide secondaire étant la source chaude dans le deuxième circuit fluidique
  • à un retour vers le module de stockage d'énergie thermique de sorte à permettre la sortie du fluide secondaire étant le fluide de stockage hors du deuxième circuit fluidique et permettre le stockage d'énergie thermique dans le module de stockage d'énergie thermique
  • à un départ d'une source froide de sorte à permettre l'entrée du fluide secondaire étant la source froide dans le deuxième circuit fluidique.
Advantageously, the second fluidic circuit is configured to be fluidically connected, preferably by a first pipe 12:
  • at an inlet of a hot source so as to allow entry of the secondary fluid being the hot source into the second fluidic circuit
  • to a return to the thermal energy storage module so as to allow the exit of the secondary fluid being the storage fluid from the second fluidic circuit and to allow the storage of thermal energy in the thermal energy storage module
  • at a departure from a cold source so as to allow entry of the secondary fluid being the cold source into the second fluid circuit.

Avantageusement, le deuxième circuit fluidique est configuré pour être connecté fluidiquement, préférentiellement par une deuxième conduite 13 :

  • à la deuxième conduite 9 du premier circuit fluidique de sorte à mettre en connexion fluidique le premier circuit fluidique et le deuxième circuit fluidique
  • à un retour de la source chaude de sorte à permettre la sortie du fluide secondaire étant la source chaude hors du deuxième circuit fluidique
  • à un retour de source froide de sorte à permettre la sortie du fluide secondaire étant la source froide hors du deuxième circuit fluidique.
Advantageously, the second fluidic circuit is configured to be fluidically connected, preferably by a second pipe 13:
  • to the second conduit 9 of the first fluidic circuit so as to bring the first fluidic circuit and the second fluidic circuit into fluidic connection
  • to a return of the hot source so as to allow the exit of the secondary fluid being the hot source from the second fluidic circuit
  • to a cold source return so as to allow the output of the secondary fluid being the cold source out of the second fluidic circuit.

Avantageusement, la source chaude est de la vapeur issue d'une chaudière Avantageusement, la source froide est de l'eau issue d'un réseau froid.Advantageously, the hot source is steam from a boiler. Advantageously, the cold source is water from a cold network.

Avantageusement, l'unité de valorisation comprend un module de contrôle de la circulation du fluide principal et du fluide secondaire, celui-ci étant notamment la source chaude, la source froide et/ou le fluide de stockage. Le module de contrôle de la circulation comprenant avantageusement une pluralité de vannes.Advantageously, the upgrading unit comprises a module for controlling the circulation of the main fluid and of the secondary fluid, the latter being in particular the hot source, the cold source and/or the storage fluid. The traffic control module advantageously comprising a plurality of valves.

Avantageusement, suivant les différents modes de fonctionnement de cet échangeur thermique, l'écoulement des fluides, fluide principal et fluide secondaire, observé entre les bornes entrée et sortie s'apparente soit à un écoulement en courant croisé, soit à un écoulement en contre-courant, soit à un écoulement en co-courant.Advantageously, depending on the different modes of operation of this heat exchanger, the flow of fluids, main fluid and secondary fluid, observed between the input and output terminals is similar either to a flow in cross current, or to a flow in counter- current, or to co-current flow.

Il est précisé que dans le cadre de la présente invention, le terme « agencé sur », ou ses équivalents signifient « en connexion fluidique ».It is specified that in the context of the present invention, the term “arranged on”, or its equivalents means “in fluidic connection”.

Dans la présente description, l'expression « A fluidiquement raccordé à B» est synonyme de « A est en connexion fluidique avec B » ne signifie pas nécessairement qu'il n'existe pas d'organe entre A et B. Les expressions «agencée sur » ou « sur » sont synonymes de « raccordé fluidiquement à ».In the present description, the expression "A fluidically connected to B" is synonymous with "A is in fluidic connection with B" does not necessarily mean that there is no organ between A and B. The expressions "arranged on” or “on” are synonymous with “fluidly connected to”.

L'amont et l'aval en un point donné sont pris en référence au sens de circulation du fluide dans le circuit.The upstream and downstream at a given point are taken in reference to the direction of circulation of the fluid in the circuit.

L'échangeur thermique 1 illustré aux figures 1 à 7 est avantageusement apte à être utilisé associé à un module de stockage non représenté et avantageusement à un dispositif de stérilisation également dénommé stérilisateur ou autoclave.The heat exchanger 1 shown in figures 1 to 7 is advantageously suitable for use associated with a storage module, not shown, and advantageously with a sterilization device also called a sterilizer or autoclave.

Un dispositif de stérilisation est un dispositif destiné à stériliser des produits notamment par pulvérisation d'eau chaude ou de vapeur d'eau chaude.A sterilization device is a device intended to sterilize products in particular by spraying hot water or hot water vapor.

Le fonctionnement des dispositifs de stérilisation est cyclique avec comme étapes successives : chauffe, maintien en température, puis refroidissement en cycle continu.The operation of sterilization devices is cyclical with successive stages: heating, maintaining the temperature, then cooling in a continuous cycle.

Classiquement, lors d'un procédé de stérilisation, la charge à l'intérieur de l'autoclave subit un cycle thermique assuré en chauffage par une source chaude telle qu'une chaudière et en refroidissement par une source froide telle que de l'eau de ville. La chaleur évacuée dans l'eau de ville lors des cycles de stérilisation représente un gisement énergétique conséquent qui peut s'élever à environ 300 kWh (contenu dans 7 m3 d'eau) par cycle de stérilisation effectué avec un des modèles le plus vendu. Sachant que sur certains sites industriels, les stérilisateurs font jusqu'à 20 cycles par jour, les rejets sont supérieurs à 2 TWh et 50 000 m3 d'eau par an et par stérilisateur.Conventionally, during a sterilization process, the load inside the autoclave undergoes a thermal cycle provided by heating by a hot source such as a boiler and cooling by a cold source such as water from town. The heat evacuated into the tap water during the sterilization cycles represents a substantial energy deposit which can amount to around 300 kWh (contained in 7 m 3 of water) per sterilization cycle carried out with one of the best-selling models. . Knowing that on certain industrial sites, the sterilizers make up to 20 cycles per day, the discharges are greater than 2 TWh and 50,000 m 3 of water per year and per sterilizer.

Le procédé de stérilisation est cadencé par lot, également dénommé par « batch » ne permettant pas l'utilisation d'un simple échangeur thermique pour préchauffer l'eau entrant dans la chaudière. Le recours à l'utilisation d'un moyen de stockage pour récupérer et stocker la chaleur fatale en vue de sa valorisation lors d'un cycle suivant permet de s'affranchir du fait que les phases de chauffage et de refroidissement sont déphasées et interviennent à des moments différents.The sterilization process is timed by batch, also called by “batch” not allowing the use of a simple heat exchanger to preheat the water entering the boiler. The use of a storage means to recover and store the waste heat with a view to its recovery during a following cycle makes it possible to overcome the fact that the heating and cooling phases are out of phase and occur at different times.

Le module de stockage d'énergie thermique est choisi parmi un stockage de chaleur sensible pouvant être combiné à un stockage de chaleur latente. Le module de stockage peut-être stratifié, c'est à dire stratifié en température. À titre d'exemple, le module de stockage comprend un réservoir partitionné en plusieurs volumes variables. Avantageusement, chaque volume est à une température homogène différente des autres volumes. Préférentiellement, les volumes variables sont séparés physiquement par des membranes déformables.The thermal energy storage module is chosen from sensible heat storage which can be combined with latent heat storage. The storage module can be stratified, ie temperature stratified. By way of example, the storage module comprises a reservoir partitioned into several variable volumes. Advantageously, each volume is at a homogeneous temperature different from the others volumes. Preferably, the variable volumes are physically separated by deformable membranes.

L'échangeur thermique selon l'invention permet avantageusement de partager en deux parties, une première partie 7 et une deuxième partie 9 distinctes, l'échangeur thermique, plus précisément une zone de circulation principale 2. On entend notamment par distinct que l'échangeur comprend une enceinte unique dont les deux parties ne se recoupent pas. L'échangeur comprend une enceinte dans laquelle sont agencés un premier circuit fluidique et un deuxième fluidique, avantageusement non superposés et ne se recoupant pas.The heat exchanger according to the invention advantageously makes it possible to divide the heat exchanger into two distinct parts, a first part 7 and a second part 9, more precisely a main circulation zone 2. Separate is understood to mean that the heat exchanger comprises a single enclosure whose two parts do not overlap. The exchanger comprises an enclosure in which are arranged a first fluidic circuit and a second fluidic circuit, advantageously not superposed and not overlapping.

L'échangeur thermique, c'est-à-dire la première partie 7 et la deuxième partie 9, est ainsi connecté fluidiquement et donc alimenté par une source chaude telle que par exemple un réseau de vapeur, par une source froide telle que par exemple un réseau de refroidissement et/ou par un fluide de stockage stocké dans le module de stockage. L'invention permet ainsi d'améliorer la valorisation de l'énergie thermique en valorisant plus durablement la chaleur restituée par le stockage de chaleur qui est utilisée pour chauffer dans un premier temps le fluide principal puis dans un second temps pour préchauffer le fluide principal destiné au stérilisateur.The heat exchanger, that is to say the first part 7 and the second part 9, is thus fluidically connected and therefore supplied by a hot source such as for example a steam network, by a cold source such as for example a cooling network and/or by a storage fluid stored in the storage module. The invention thus makes it possible to improve the recovery of the thermal energy by recovering more durably the heat restored by the heat storage which is used to heat in a first time the main fluid then in a second time to preheat the main fluid intended in the sterilizer.

L'échangeur thermique et l'unité de valorisation selon l'invention sont destinés à être utilisés dans un dispositif de stérilisation. Le fluide principal de l'échangeur étant le fluide de stérilisation.The heat exchanger and the recovery unit according to the invention are intended to be used in a sterilization device. The main fluid of the exchanger being the sterilization fluid.

Sur les figures 1 à 7, l'échangeur thermique 1 est de type tubes - calandre pour faciliter l'illustration. Préférentiellement, l'échangeur thermique est à plaques soudées. Avantageusement, dans l'échangeur selon l'invention l'échange de chaleur local entre les fluides circulant s'effectue avantageusement en courant croisé, pouvant être à orientation à contre-courant ou à co-courant.On the figures 1 to 7 , the heat exchanger 1 is of the shell and tube type to facilitate the illustration. Preferably, the heat exchanger has welded plates. Advantageously, in the exchanger according to the invention, the local heat exchange between the circulating fluids advantageously takes place in cross-current, which can be in counter-current or co-current orientation.

L'échangeur thermique 1 comprend une zone de circulation principale 2, avantageusement définie dans une enceinte, destinée à recevoir un fluide principal 5. La zone de circulation principale 2 comprend une entrée 3 pour permettre l'entrée du fluide principal 5 dans l'échangeur thermique 1 et une sortie 4 pour permettre la sortie du fluide principal 5 de l'échangeur thermique 1. Le fluide principal 5 circule dans la zone de circulation principale 2 entre l'entrée 3 et la sortie 4.The heat exchanger 1 comprises a main circulation zone 2, advantageously defined in an enclosure, intended to receive a main fluid 5. The main circulation zone 2 comprises an inlet 3 to allow the main fluid 5 to enter the heat exchanger. 1 and an outlet 4 to allow the exit of the main fluid 5 from the heat exchanger 1. The main fluid 5 circulates in the main circulation zone 2 between the inlet 3 and the outlet 4.

La zone de circulation principale 2 comprend une première partie 7 et une deuxième partie 9. La première partie 7 et la deuxième partie 9 sont agencées préférentiellement en série suivant la circulation du fluide principal 5. La zone de circulation principale 2 définit un volume extérieur, correspondant sur les figures 1 à 7 à une enceinte, et dans le cas d'un échangeur thermique à plaques au pourtour de l'assemblage extérieur des plaques.The main circulation zone 2 comprises a first part 7 and a second part 9. The first part 7 and the second part 9 are preferably arranged in series following the circulation of the main fluid 5. The main circulation zone 2 defines an exterior volume, corresponding on the figures 1 to 7 to an enclosure, and in the case of a plate heat exchanger around the outer assembly of the plates.

L'échangeur thermique 1 comprend des moyens de circulation comprenant un premier circuit fluidique 6 apte à recevoir un fluide secondaire. Le premier circuit fluidique 6 est agencé dans la première partie 7 de l'échangeur 1. On entend que le premier circuit fluidique 6 est agencé dans la première partie 7 en ce que le premier circuit fluidique 6 est agencé dans le volume de la première partie 7 et en particulier au contact de la première partie 7 de la zone de circulation principale 2. Le premier circuit fluidique 6 est destiné à assurer l'échange thermique entre le fluide principal 5 circulant dans la première partie 7 et le fluide secondaire circulant dans ledit premier circuit fluidique 6. Le premier circuit fluidique 6 comprend une première conduite 10 destinée à l'entrée et/ou à la sortie du fluide secondaire et une deuxième conduite 11 destinée à l'entrée et/ou à la sortie du fluide secondaire. Le fluide secondaire circule dans le premier circuit fluidique 6 entre la première conduite 10 destinée à l'entrée du fluide secondaire et la deuxième conduite 11 destinée à la sortie fluide secondaire ou inversement entre la deuxième conduite 11 destinée à l'entrée du fluide secondaire et la première conduite 10 destinée à sortie fluide secondaire. Avantageusement, le fluide principal 5 et le fluide secondaire circulent dans la première partie 7 selon un courant croisé à co-courant ou contre-courant.The heat exchanger 1 comprises circulation means comprising a first fluidic circuit 6 capable of receiving a secondary fluid. The first fluidic circuit 6 is arranged in the first part 7 of the exchanger 1. It is understood that the first fluidic circuit 6 is arranged in the first part 7 in that the first fluidic circuit 6 is arranged in the volume of the first part 7 and in particular in contact with the first part 7 of the main circulation zone 2. The first fluidic circuit 6 is intended to ensure the heat exchange between the main fluid 5 circulating in the first part 7 and the secondary fluid circulating in said first fluidic circuit 6. The first fluidic circuit 6 comprises a first pipe 10 intended for the inlet and/or the outlet of the secondary fluid and a second pipe 11 intended for the inlet and/or the outlet of the secondary fluid. The secondary fluid circulates in the first fluidic circuit 6 between the first pipe 10 intended for the secondary fluid inlet and the second pipe 11 intended for the secondary fluid outlet or vice versa between the second pipe 11 intended for the secondary fluid inlet and the first conduit 10 intended for secondary fluid outlet. Advantageously, the main fluid 5 and the secondary fluid circulate in the first part 7 according to a cross-current with co-current or counter-current.

L'échangeur thermique 1 comprend des moyens de circulation comprenant un deuxième circuit fluidique 8 apte à recevoir un fluide secondaire. Le deuxième circuit fluidique 8 est agencé dans la deuxième partie 9 de l'échangeur 1. On entend que le deuxième circuit fluidique 8 est agencé dans la deuxième partie 9 en ce que le deuxième circuit fluidique 8 est agencé dans le volume de la deuxième partie 8 et en particulier au contact de la deuxième partie 8 de la zone de circulation principale 2. Le deuxième circuit fluidique 8 est destiné à assurer l'échange thermique entre le fluide principal 5 circulant dans la deuxième partie 9 et le fluide secondaire circulant dans ledit deuxième circuit fluidique 8. Le deuxième circuit fluidique 8 comprend une première conduite 12 destinée à l'entrée et/ou à la sortie du fluide secondaire et une deuxième conduite 13 destinée à l'entrée et/ou à la sortie du fluide secondaire. Le fluide secondaire circule dans le deuxième circuit fluidique 8 entre la première conduite 12 destinée à l'entrée du fluide secondaire et la deuxième conduite 13 destinée à la sortie fluide secondaire ou inversement entre la deuxième conduite 13 destinée à l'entrée du fluide secondaire et la première conduite 12 destinée à sortie fluide secondaire. Avantageusement, le fluide principal 5 et le fluide secondaire circulent dans la deuxième partie 9 selon un courant croisé à co- courant ou contre-courant.The heat exchanger 1 comprises circulation means comprising a second fluidic circuit 8 capable of receiving a secondary fluid. The second fluidic circuit 8 is arranged in the second part 9 of the exchanger 1. It is understood that the second fluidic circuit 8 is arranged in the second part 9 in that the second fluidic circuit 8 is arranged in the volume of the second part 8 and in particular in contact with the second part 8 of the main circulation zone 2. The second fluidic circuit 8 is intended to ensure the heat exchange between the main fluid 5 circulating in the second part 9 and the secondary fluid circulating in said second fluidic circuit 8. The second fluidic circuit 8 comprises a first pipe 12 intended for the inlet and/or the outlet of the secondary fluid and a second pipe 13 intended for the inlet and/or the outlet of the secondary fluid. The secondary fluid circulates in the second fluidic circuit 8 between the first conduit 12 intended for the secondary fluid inlet and the second conduit 13 intended for the secondary fluid outlet or vice versa between the second conduit 13 intended for the secondary fluid inlet and the first conduit 12 intended for secondary fluid outlet. Advantageously, the main fluid 5 and the secondary fluid circulate in the second part 9 according to a cross-current with co-current or counter-current.

Le fluide secondaire est choisi parmi une source chaude, une source froide et/ou un fluide de stockage. Selon les modes de réalisation, le fluide secondaire circulant dans le premier circuit fluidique 6 est identique au fluide secondaire circulant dans le deuxième circuit fluidique 8 ou bien le fluide secondaire circulant dans le premier circuit fluidique 6 est différent du fluide secondaire circulant dans le deuxième circuit fluidique 8.The secondary fluid is chosen from a hot source, a cold source and/or a storage fluid. According to the embodiments, the secondary fluid circulating in the first fluid circuit 6 is identical to the secondary fluid circulating in the second fluid circuit 8 or else the secondary fluid circulating in the first fluid circuit 6 is different from the secondary fluid circulating in the second circuit fluidics 8.

La source chaude est un fluide destiné à apporter de l'énergie thermique dans l'échangeur thermique 1. La source chaude est avantageusement de l'eau chaude ou de la vapeur d'eau chaude, préférentiellement issue d'un moyen de chauffage tel que par exemple une chaudière au gaz, au fioul, électrique ou biomasse.The hot source is a fluid intended to provide thermal energy in the heat exchanger 1. The hot source is advantageously hot water or hot water vapor, preferably from a heating means such as for example a gas, oil, electric or biomass boiler.

La source froide est un fluide destiné à récupérer de l'énergie thermique dans l'échangeur thermique 1. La source froide est avantageusement de l'eau de ville issue d'un réseau froid, refroidi par une tour aéroréfrigérante, un groupe frigorifique ou par échange thermique avec de l'eau de nappe, d'un fleuve.The cold source is a fluid intended to recover thermal energy in the heat exchanger 1. The cold source is advantageously city water from a cold network, cooled by a cooling tower, a refrigeration unit or by heat exchange with groundwater, a river.

Le fluide de stockage est avantageusement un fluide caloporteur choisi pour fonctionner dans la température de l'application, en l'espèce pour un dispositif de stérilisation. À titre d'exemple, le fluide de stockage est de l'eau facilitant ainsi la circulation successive du fluide de stockage, de la source chaude et de la source froide dans le premier circuit fluidique 6 et le deuxième circuit fluidique 8. Avantageusement, l'eau demeure le fluide stockage le plus avantageux. L'eau est préférentiellement pressurisée et potentiellement surchauffée. D'autres fluides peuvent être envisagés comme l'huile thermique.The storage fluid is advantageously a heat transfer fluid chosen to operate at the temperature of the application, in this case for a sterilization device. By way of example, the storage fluid is water, thus facilitating the successive circulation of the storage fluid, of the hot source and of the cold source in the first fluidic circuit 6 and the second fluidic circuit 8. Advantageously, the Water remains the most advantageous storage fluid. The water is preferentially pressurized and potentially overheated. Other fluids can be envisaged such as thermal oil.

Le premier circuit fluidique 6 est avantageusement connecté fluidiquement à un départ du module de stockage 17, de sorte que le fluide secondaire étant le fluide de stockage soit déstocké du module de stockage et pénètre dans le premier circuit fluidique 6.The first fluidic circuit 6 is advantageously fluidically connected to an outlet of the storage module 17, so that the secondary fluid being the storage fluid is removed from the storage module and enters the first fluidic circuit 6.

Le premier circuit fluidique 6 est également avantageusement connecté fluidiquement à un départ de source chaude 16 de sorte que le fluide secondaire étant une source chaude pénètre dans le premier circuit fluidique 6.The first fluidic circuit 6 is also advantageously fluidically connected to a hot source outlet 16 so that the secondary fluid being a hot source enters the first fluidic circuit 6.

Le premier circuit fluidique 6 est également avantageusement connecté fluidiquement à un retour de source froide 23 de sorte que le fluide secondaire étant une source froide ressorte du premier circuit fluidique 6.The first fluidic circuit 6 is also advantageously fluidically connected to a cold source return 23 so that the secondary fluid being a cold source emerges from the first fluidic circuit 6.

Selon une possibilité non représentée aux figures, le premier circuit fluidique 6 est connecté fluidiquement à un départ du module de stockage 17, à un départ de source chaude 16, et à un retour de source froide 23 par trois connexions fluidiques distinctes. Selon une autre possibilité représentée aux figures, le premier circuit fluidique 6 est connecté fluidiquement à un départ du module de stockage 17, à un départ de source chaude 16 et à un retour de source froide 23 par une première conduite 10 commune.According to a possibility not shown in the figures, the first fluidic circuit 6 is fluidically connected to an outlet of the storage module 17, to a hot source outlet 16, and to a cold source return 23 by three separate fluidic connections. According to another possibility represented in the figures, the first fluidic circuit 6 is fluidly connected to a start of the storage module 17, to a hot source start 16 and to a cold source return 23 by a first common pipe 10.

Le premier circuit fluidique 6 est avantageusement connecté fluidiquement à un retour au module de stockage 18, de sorte que le fluide secondaire étant le fluide de stockage soit stocké dans le module de stockage en sortant du premier circuit fluidique 6.The first fluidic circuit 6 is advantageously fluidically connected to a return to the storage module 18, so that the secondary fluid being the storage fluid is stored in the storage module on leaving the first fluidic circuit 6.

Le premier circuit fluidique 6 est avantageusement connecté fluidiquement à un retour de source chaude 21, de sorte que le fluide secondaire étant une source chaude sorte du premier circuit fluidique 6 et retourne avantageusement vers le moyen de chauffage.The first fluidic circuit 6 is advantageously fluidically connected to a hot source return 21, so that the secondary fluid being a hot source leaves the first fluidic circuit 6 and advantageously returns to the heating means.

Le premier circuit fluidique 6 est également avantageusement connecté fluidiquement au deuxième circuit fluidique 8 de sorte à connecter fluidiquement le premier circuit fluidique 6 et le deuxième circuit fluidique 8.The first fluidic circuit 6 is also advantageously fluidically connected to the second fluidic circuit 8 so as to fluidically connect the first fluidic circuit 6 and the second fluidic circuit 8.

Selon une possibilité non représentée aux figures, le premier circuit fluidique 6 est connecté fluidiquement à un retour au module de stockage 18, à un retour de source chaude 21 et au deuxième circuit fluidique 8, par trois connexions fluidiques distinctes. Selon une autre possibilité représentée aux figures, le premier circuit fluidique 6 est connecté fluidiquement à un retour au module de stockage 18, à un retour de source chaude 21 et au deuxième circuit fluidique 8, par une deuxième conduite 11 commune.According to a possibility not shown in the figures, the first fluidic circuit 6 is fluidically connected to a return to the storage module 18, to a hot source return 21 and to the second fluidic circuit 8, by three separate fluidic connections. According to another possibility shown in the figures, the first fluidic circuit 6 is fluidically connected to a return to the storage module 18, to a hot source return 21 and to the second fluidic circuit 8, by a second common pipe 11.

Le deuxième circuit fluidique 8 est avantageusement connecté fluidiquement à un retour au module de stockage 20, de sorte que le fluide secondaire étant le fluide de stockage soit stocké dans le module de stockage en sortant du deuxième circuit fluidique 8.The second fluidic circuit 8 is advantageously fluidically connected to a return to the storage module 20, so that the secondary fluid being the storage fluid is stored in the storage module on leaving the second fluidic circuit 8.

Le deuxième circuit fluidique 8 est avantageusement également connecté fluidiquement à un départ de source chaude 19 de sorte que le fluide secondaire étant une source chaude pénètre dans le deuxième circuit fluidique 8.The second fluidic circuit 8 is advantageously also fluidically connected to a hot source outlet 19 so that the secondary fluid being a hot source enters the second fluidic circuit 8.

Le deuxième circuit fluidique 8 est avantageusement également connecté fluidiquement à un départ de source froide 24 de sorte que le fluide secondaire étant une source froide pénètre dans le deuxième circuit fluidique 8.The second fluidic circuit 8 is advantageously also fluidically connected to a cold source outlet 24 so that the secondary fluid being a cold source enters the second fluidic circuit 8.

Selon une possibilité non représentée aux figures, le deuxième circuit fluidique 8 est connecté fluidiquement à un retour au module de stockage 20, à un départ de source chaude 19 et à un départ de source froide 24 par trois connexions fluidiques distinctes. Selon une autre possibilité représentée aux figures, le premier circuit fluidique 8 est connecté fluidiquement à un retour au module de stockage 20, à un départ de source chaude 19 et à un départ de source froide 24 par une première conduite 12 commune.According to a possibility not shown in the figures, the second fluidic circuit 8 is fluidically connected to a return to the storage module 20, to a hot source outlet 19 and to a cold source outlet 24 by three separate fluidic connections. According to another possibility shown in the figures, the first fluidic circuit 8 is fluidically connected to a return to the storage module 20, to a hot source outlet 19 and to a cold source outlet 24 by a first common pipe 12.

Le deuxième circuit fluidique 8 est avantageusement connecté fluidiquement à un retour de source chaude 21, de sorte que le fluide secondaire étant une source chaude sorte du deuxième circuit fluidique 8.The second fluidic circuit 8 is advantageously fluidically connected to a hot source return 21, so that the secondary fluid being a hot source leaves the second fluidic circuit 8.

Le deuxième circuit fluidique 8 est avantageusement connecté fluidiquement à un retour de source froide 25, de sorte que le fluide secondaire étant une source froide sorte du deuxième circuit fluidique 8 et avantageusement retourne soit vers le réseau de refroidissement soit vers un module de refroidissement intérmédiaire..The second fluidic circuit 8 is advantageously fluidically connected to a cold source return 25, so that the secondary fluid being a cold source leaves the second fluidic circuit 8 and advantageously returns either to the cooling network or to an intermediate cooling module. .

Le deuxième circuit fluidique 8 est également avantageusement également connecté fluidiquement au premier circuit fluidique 6 de sorte à connecter fluidiquement le premier circuit fluidique 6 et le deuxième circuit fluidique 8.The second fluidic circuit 8 is also advantageously also fluidically connected to the first fluidic circuit 6 so as to fluidically connect the first fluidic circuit 6 and the second fluidic circuit 8.

Selon une possibilité non représentée aux figures, le deuxième circuit fluidique 8 est connecté fluidiquement à un retour de source chaude 21, à un retour de source froide 25 et au premier circuit fluidique 6 par trois connexions fluidiques distinctes. Selon une autre possibilité représentée aux figures, le premier circuit fluidique 8 est connecté fluidiquement à un retour de source chaude 21, à un retour de source froide 25 et au premier circuit fluidique 6 par une deuxième conduite 13 commune.According to a possibility not shown in the figures, the second fluidic circuit 8 is fluidically connected to a hot source return 21, to a cold source return 25 and to the first fluidic circuit 6 by three separate fluidic connections. According to another possibility shown in the figures, the first fluidic circuit 8 is fluidically connected to a hot source return 21, to a cold source return 25 and to the first fluidic circuit 6 by a second common pipe 13.

L'échangeur thermique 1 comprend un module de contrôle de la circulation du fluide principal 5 et du fluide secondaire étant la source chaude, la source froide et/ou le fluide de stockage et comprenant une pluralité de vannes.The heat exchanger 1 comprises a module for controlling the circulation of the main fluid 5 and of the secondary fluid being the hot source, the cold source and/or the storage fluid and comprising a plurality of valves.

L'échangeur thermique comprend un module de mesure de paramètres physiques de l'échangeur thermique, tels que la température TSTW,from du fluide principal 5 en entrée 3 de la zone de circulation principale 2 et/ou la température TSTW,to du fluide principal 5 en sortie 4 de la zone de circulation principale 2 et/ou la température TR,1 du fluide secondaire en entrée du premier circuit fluidique 6.The heat exchanger comprises a module for measuring physical parameters of the heat exchanger, such as the temperature T STW, from of the main fluid 5 at the inlet 3 of the main circulation zone 2 and/or the temperature T STW, to of the main fluid 5 at the outlet 4 of the main circulation zone 2 and/or the temperature T R,1 of the secondary fluid at the inlet of the first fluidic circuit 6.

La description des figures est faite pour l'application de l'échangeur thermique et de l'unité de valorisation dans un dispositif de stérilisation, mais cela peut-être adaptait à tout type de dispositif nécessitant un chauffage et un refroidissement de fluide décalés dans le temps.

  • Les figures 1 à 3 illustrent l'échangeur thermique 1 en fonctionnement lors de la phase de chauffe du fluide principal, chaque figure correspond à un temps de cette phase de chauffe.
  • La figure 1 illustre un échangeur thermique 1 en phase de chauffe du fluide principal 5 uniquement par décharge de l'énergie thermique stockée dans le module de stockage.
The description of the figures is made for the application of the heat exchanger and the recovery unit in a sterilization device, but this may be adapted to any type of device requiring heating and cooling of fluid shifted in the time.
  • The figures 1 to 3 illustrate the heat exchanger 1 in operation during the heating phase of the main fluid, each figure corresponds to a time of this heating phase.
  • The figure 1 illustrates a heat exchanger 1 in the heating phase of the main fluid 5 solely by discharging the thermal energy stored in the storage module.

En figure 1, il est supposé que le module de stockage d'énergie thermique est chargé en énergie thermique. Le module de stockage a été préalablement chargé en récupérant la chaleur lors d'une phase de refroidissement d'un cycle précédent.In figure 1 , it is assumed that the thermal energy storage module is charged with thermal energy. The storage module has been previously charged by recovering the heat during a cooling phase of a previous cycle.

Au début de la chauffe du dispositif de stérilisation, l'énergie thermique restituée par le module de stockage thermique est à un niveau de température suffisant pour permettre au fluide principal 5 destiné à alimenter le dispositif de stérilisation de suivre une température de consigne. La température TR,1 du fluide de stockage au niveau du départ du module de stockage est supérieure à la température TSTW,from du fluide principal 5 en entrée 3 de la zone de circulation principale 2 de l'échangeur thermique 1. Le fluide principal 5 est chauffé uniquement par l'énergie thermique du module de stockage. Le fluide de stockage sort du module de stockage par le départ du module de stockage 17 avantageusement connecté fluidiquement à la première conduite 10 du premier circuit fluidique 6. Le fluide de stockage pénètre dans le premier circuit fluidique 6 et circule pour échanger avec le fluide principal 5 circulant la première partie de la zone circulation principale 2 entre l'entrée 3 et la sortie 4. Avantageusement, l'échange entre le fluide de stockage et le fluide principal 5 se fait localement par courant croisé avec une orientation à co-courant, Le fluide de stockage ressort du premier circuit fluidique 6 avantageusement par la deuxième conduite 11.At the start of the heating of the sterilization device, the thermal energy restored by the thermal storage module is at a sufficient temperature level to allow the main fluid 5 intended to supply the sterilization device to follow a set temperature. The temperature T R,1 of the storage fluid at the start of the storage module is higher than the temperature T STW,from of the main fluid 5 at the inlet 3 of the main circulation zone 2 of the heat exchanger 1. The fluid main 5 is heated only by thermal energy from the storage module. The storage fluid leaves the storage module through the start of the storage module 17 advantageously fluidically connected to the first pipe 10 of the first fluid circuit 6. The storage fluid enters the first fluid circuit 6 and circulates to exchange with the main fluid 5 circulating the first part of the main circulation zone 2 between the inlet 3 and the outlet 4. Advantageously, the exchange between the storage fluid and the main fluid 5 takes place locally by cross-current with a co-current orientation, The storage fluid emerges from the first fluidic circuit 6 advantageously via the second pipe 11.

Selon une première possibilité préférée, la deuxième conduite 11 du premier circuit fluidique 6 est connectée fluidiquement à la deuxième conduite 13 du deuxième circuit fluidique 8 de sorte que le premier circuit fluidique 6 et le deuxième circuit fluidique 8 sont connectés fluidiquement par une connexion fluidique 22. Le fluide de stockage circule également dans le deuxième circuit fluidique 8 pour échanger avec le fluide principal 5, avant de ressortir, préférentiellement par la première conduite 12, du deuxième circuit fluidique 8. Avantageusement, l'échange entre le fluide de stockage et le fluide principal 5 se fait localement par courant croisé avec une orientation à co-courant, Le fluide de stockage retourne vers le module de stockage par le retour 20. Le module de contrôle de la circulation comprend avantageusement une vanne Vstock,from destinée à contrôler la sortie du fluide de stockage hors du module de stockage préférentiellement agencée sur le départ du module de stockage 17. Le module de contrôle de la circulation comprend avantageusement une vanne Vbypass destinée à connecter fluidiquement le premier circuit fluidique 6 et le deuxième circuit fluidique 8 préférentiellement agencée sur la connexion fluidique 22. Le module de contrôle de la circulation comprend avantageusement une vanne Vstock, to destinée à mettre en connexion fluidique la première conduite 12 du deuxième circuit fluidique 8 avec le module de stockage pour permettre retour du fluide de stockage depuis le deuxième circuit fluidique 8 vers le module de stockage, préférentiellement agencée sur le retour vers le module de stockage 20. Les vannes Vstock,from, Vbypass, Vstock, to sont ouvertes dans la configuration de la figure 1. Selon cette première possibilité, les deux parties, la première partie 7 et la deuxième partie 9, de l'échangeur thermique, plus précisément de la zone de circulation principale 2, sont utilisées ce qui présente l'avantage d'exploiter une plus grande surface d'échange.According to a first preferred possibility, the second conduit 11 of the first fluidic circuit 6 is fluidically connected to the second conduit 13 of the second fluidic circuit 8 so that the first fluidic circuit 6 and the second fluidic circuit 8 are fluidically connected by a fluidic connection 22 The storage fluid also circulates in the second fluidic circuit 8 to exchange with the main fluid 5, before exiting, preferably via the first pipe 12, from the second fluidic circuit 8. Advantageously, the exchange between the storage fluid and the main fluid 5 is done locally by cross-current with a co-current orientation. The storage fluid returns to the storage module via the return 20. The circulation control module advantageously comprises a valve V stock, from intended to control the outlet of the storage fluid from the storage module preferably arranged on the outlet of the storage module e 17. The circulation control module advantageously comprises a valve V bypass intended to fluidically connect the first fluidic circuit 6 and the second fluidic circuit 8 preferably arranged on the fluidic connection 22. The circulation control module advantageously comprises a valve V stock, to intended to put the first pipe 12 of the second fluid circuit 8 in fluidic connection with the storage module to allow return of the fluid from storage from the second fluidic circuit 8 to the storage module, preferably arranged on the return to the storage module 20. The valves V stock, from , V bypass , V stock, to are open in the configuration of the figure 1 . According to this first possibility, the two parts, the first part 7 and the second part 9, of the heat exchanger, more precisely of the main circulation zone 2, are used, which has the advantage of exploiting a larger surface. exchange.

Selon une deuxième possibilité, la deuxième conduite 11 du premier circuit fluidique 6 n'est pas connectée fluidiquement à la deuxième conduite 13 du deuxième circuit fluidique 8, de sorte que le fluide de stockage circule dans le premier circuit fluidique 6 et ressort de celui-ci par la deuxième conduite 11 connectée fluidiquement au module de stockage de sorte que fluide de stockage retour au module de stockage, sans circuler dans le deuxième circuit fluidique 8. Cette configuration est mise en place par exemple lorsque la température TR, 1 est très élevée par rapport à la température TSTW, from et par rapport à la température de consigne. Cette configuration évite ainsi d'entrainer inutilement des pertes de charge au fluide de stockage lorsque sa circulation seulement dans le premier circuit fluidique 6 suffit à la chauffe du fluide principal 5.According to a second possibility, the second pipe 11 of the first fluidic circuit 6 is not fluidly connected to the second pipe 13 of the second fluidic circuit 8, so that the storage fluid circulates in the first fluidic circuit 6 and comes out of it. ci by the second pipe 11 fluidly connected to the storage module so that the storage fluid returns to the storage module, without circulating in the second fluidic circuit 8. This configuration is implemented for example when the temperature T R , 1 is very high in relation to the temperature T STW, from and in relation to the setpoint temperature. This configuration thus avoids causing unnecessary pressure drops in the storage fluid when its circulation only in the first fluidic circuit 6 is sufficient to heat the main fluid 5.

La vanne Vstock,from est pilotée en fonction de l'acquisition de la température TSTW,to du fluide principal en sortie 4 de la zone de circulation principale 2, de sorte que la température TSTW,to atteigne une température de consigne.The valve V stock,from is controlled according to the acquisition of the temperature T STW,to of the main fluid at the outlet 4 of the main circulation zone 2, so that the temperature T STW,to reaches a setpoint temperature.

Dès l'instant où la température du fluide de stockage et donc l'énergie thermique restituée par le module de stockage ne permet plus au fluide principal 5, destiné à être utilisé par le dispositif de stérilisation, de suivre une température de consigne alors, l'échangeur thermique selon l'invention fonctionne selon la figure 2.As soon as the temperature of the storage fluid and therefore the thermal energy restored by the storage module no longer allows the main fluid 5, intended to be used by the sterilization device, to follow a set temperature then, the heat exchanger according to the invention operates according to the figure 2 .

Le mode de fonctionnement de la figure 2 est ainsi mis en oeuvre lorsque la température TR,1 du fluide de stockage en sortie du module de stockage est supérieure à la température TSTW,from du fluide principal en entrée 3 de la zone de circulation principale 2, mais que la température TSTW,to est inférieure à une température de consigne.The mode of operation of the figure 2 is thus implemented when the temperature T R,1 of the storage fluid at the outlet of the storage module is greater than the temperature T STW,from of the main fluid at the inlet 3 of the main circulation zone 2, but the temperature T STW,to is below a set temperature.

L'énergie thermique restituée par le module de stockage permet ainsi le préchauffage du fluide principal destiné à alimenter le dispositif de stérilisation en utilisant la première partie 7 de l'échangeur thermique partitionné. Pour atteindre une température de consigne du fluide principal 5, la seconde partie 9 de l'échangeur thermique est alimentée par une source chaude, préférentiellement un réseau de vapeur, et apporte ainsi l'appoint de chaleur au fluide principal 5 sortant de la première partie 7.The thermal energy restored by the storage module thus allows the preheating of the main fluid intended to supply the sterilization device by using the first part 7 of the partitioned heat exchanger. To reach a setpoint temperature of the main fluid 5, the second part 9 of the heat exchanger is fed by a hot source, preferably a steam network, and thus provides additional heat to the main fluid 5 exiting from the first part. 7.

Le fluide principal 5 est préchauffé par l'énergie thermique du module de stockage au niveau du premier circuit fluidique 6. Le fluide de stockage sort du module de stockage par le départ du module de stockage 17 connecté fluidiquement au premier circuit fluidique 6, préférentiellement par la première conduite 10. Le fluide de stockage pénètre dans le premier circuit fluidique 6 et circule pour échanger, avantageusement en courant croisé, avec le fluide principal 5 circulant dans la première partie 7 de la zone circulation principale 2 entre l'entrée 3 et la sortie 4. Le fluide de stockage ressort du premier circuit fluidique 6, avantageusement par la deuxième conduite 11, pour retourner au module de stockage par le retour 18. Le module de contrôle de la circulation comprend avantageusement une vanne Vstock, to 2 destinée à mettre en connexion fluidique la deuxième conduite 11 du premier circuit fluidique 6 avec le module de stockage pour permettre le retour du fluide de stockage depuis le premier circuit fluidique 6 vers le module de stockage. La vanne Vstock, to 2 préférentiellement agencée sur le retour au module de stockage 18 est ouverte. La vanne V bypass est fermée de sorte que la connexion fluidique 22 entre le premier circuit fluidique 6 et le deuxième circuit fluidique 8 est inactive. Le premier circuit fluidique 6 et le deuxième circuit fluidique 8 sont indépendants fluidiquement.The main fluid 5 is preheated by the thermal energy of the storage module at the level of the first fluidic circuit 6. The storage fluid leaves the storage module by the outlet of the storage module 17 fluidically connected to the first fluidic circuit 6, preferably by the first pipe 10. The storage fluid enters the first fluidic circuit 6 and circulates to exchange, advantageously in cross-current, with the main fluid 5 circulating in the first part 7 of the main circulation zone 2 between the inlet 3 and the outlet 4. The storage fluid leaves the first fluidic circuit 6, advantageously through the second pipe 11, to return to the storage module through the return 18. The circulation control module advantageously comprises a valve V stock, to 2 intended to put the second pipe 11 of the first fluid circuit 6 in fluidic connection with the storage module to allow the return of the storage fluid from the first fluid circuit 6 to the storage module. The valve V stock, to 2 preferably arranged on the return to the storage module 18 is open. The bypass valve V is closed so that the fluidic connection 22 between the first fluidic circuit 6 and the second fluidic circuit 8 is inactive. The first fluidic circuit 6 and the second fluidic circuit 8 are fluidically independent.

Le fluide principal 5 est ensuite chauffé par la source chaude dans la deuxième partie 9 de l'échangeur thermique. Le deuxième circuit fluidique 8 est connecté fluidiquement au départ de source chaude 19, préférentiellement par la première conduite 12. Le module de contrôle de la circulation comprend avantageusement une vanne Vvap,2 destinée à mettre en connexion fluidique la première conduite 12 du deuxième circuit fluidique 8 avec la source chaude pour permettre à la source chaude par exemple depuis des moyens de chauffage de pénétrer dans le deuxième circuit fluidique 8 préférentiellement par la première conduite 12. La vanne Vvap,2 préférentiellement agencée sur un départ départ de source chaude 19 est ouverte. La source chaude est avantageusement de la vapeur d'eau, par exemple issue de moyens de chauffage tel qu'une chaudière. La source chaude circule dans le deuxième circuit fluidique 8 et transmet l'énergie thermique au fluide principal 5 circulant dans la deuxième partie 9 de la zone de circulation principale 2 en direction de la sortie 4. La source chaude sort du deuxième circuit fluidique 8, préférentiellement par la deuxième conduite 13 connectée fluidiquement à un retour de source chaude 21, préférentiellement connecté au moyen de chauffage tel qu'une chaudière. La source chaude issue du deuxième circuit fluidique est un condensat de vapeur. Le module de contrôle de la circulation comprend avantageusement une vanne Vcond agencée sur le retour de la source chaude 21 qui est ouverte pour permettre le retour du condensat vers le moyen de chauffage. La vanne Vvap,2 est pilotée en fonction de l'acquisition de la température TSTW,to de sorte que cette température TSTW,to soit égale à une température de consigne.The main fluid 5 is then heated by the hot source in the second part 9 of the heat exchanger. The second fluidic circuit 8 is fluidically connected to the start of the hot source 19, preferably via the first pipe 12. The circulation control module advantageously comprises a valve V vap,2 intended to put the first pipe 12 of the second circuit into fluidic connection. fluid circuit 8 with the hot source to allow the hot source, for example from heating means, to enter the second fluid circuit 8 preferably via the first pipe 12. The valve V vap,2 preferably arranged on a hot source outlet 19 is open. The hot source is advantageously steam, for example from heating means such as a boiler. The hot source circulates in the second fluidic circuit 8 and transmits the thermal energy to the main fluid 5 circulating in the second part 9 of the main circulation zone 2 in the direction of the outlet 4. The hot source leaves the second fluidic circuit 8, preferably by the second pipe 13 fluidically connected to a hot source return 21, preferably connected to the heating means such as a boiler. The hot source from the second fluidic circuit is a steam condensate. The circulation control module advantageously comprises a valve V cond arranged on the return from the hot source 21 which is open to allow the condensate to return to the heating means. Valve V vap,2 is controlled according to the acquisition of the temperature T STW,to so that this temperature T STW,to is equal to a setpoint temperature.

Dès l'instant où l'énergie thermique restituée par le module de stockage est inférieure à la température du fluide principal 5 en entrée de l'échangeur thermique, le module de stockage cesse d'alimenter l'échangeur thermique. Le chauffage du fluide principal 5 est alors assuré uniquement par la source chaude, préférentiellement le réseau de vapeur, alimentant selon le mode de réalisation une partie ou les deux parties de l'échangeur thermique. L'échangeur thermique fonctionne selon la figure 3.As soon as the thermal energy restored by the storage module is lower than the temperature of the main fluid 5 at the inlet of the heat exchanger, the storage module ceases to supply the heat exchanger. The heating of the main fluid 5 is then provided solely by the hot source, preferably the steam network, supplying according to the embodiment one part or both parts of the heat exchanger. The heat exchanger works according to the picture 3 .

À la figure 3, la température TR,1 du fluide de stockage en sortie du module de stockage est inférieure à la température TSTW,from du fluide principal 5 en entrée 3 de la zone de circulation principale 2. Les vannes Vvap1, Vvap2, Vbypass et Vcond sont ouvertes.To the picture 3 , the temperature T R,1 of the storage fluid at the outlet of the storage module is lower than the temperature T STW,from of the main fluid 5 at the inlet 3 of the main circulation zone 2. The valves V vap1 , V vap2 , V bypass and V cond are open.

Le premier circuit fluidique 6 est connecté fluidiquement, préférentiellement par la première conduite 10, au départ de source chaude 16. Le module de contrôle de la circulation comprend avantageusement une vanne Vvap1 ,agencée sur le départ de source chaude 16, qui est ouverte de sorte à permettre l'entrée de la source chaude préférentiellement de la vapeur dans le premier circuit fluidique 6. La source chaude circule dans le premier circuit fluidique 6, préférentiellement jusqu'à la deuxième conduite 11. La source chaude échange de l'énergie thermique vers le fluide principal 5 par échange avantageusement par courant croisé. La source chaude sort du premier circuit fluidique 6, préférentiellement par la deuxième conduite 11, connectée fluidiquement à un retour de source chaude 21, la vanne Vcond agencée sur le retour de source chaude 21 est ouverte.The first fluidic circuit 6 is fluidically connected, preferably via the first pipe 10, to the hot source outlet 16. The circulation control module advantageously comprises a valve V vap1 , arranged on the hot source outlet 16, which is open from so as to allow the entry of the hot source, preferably steam, into the first fluidic circuit 6. The hot source circulates in the first fluidic circuit 6, preferably as far as the second conduit 11. The hot source exchanges thermal energy to the main fluid 5 by exchange, advantageously by cross-current. The hot source leaves the first fluidic circuit 6, preferably through the second pipe 11, fluidly connected to a hot source return 21, the valve V cond arranged on the hot source return 21 is open.

Selon une possibilité, le fluide principal 5 est également chauffé dans la deuxième partie 9 de l'échangeur thermique. Le deuxième circuit fluidique 8 est connecté fluidiquement, préférentiellement par la première conduite 12, au départ de source chaude 19, la vanne Vvap2 agencée sur le départ de source chaude 19 est ouverte de sorte à permettre l'entrée de la source chaude, préférentiellement de vapeur, dans le deuxième circuit fluidique 8. La source chaude circule dans le deuxième circuit fluidique 8, préférentiellement jusqu'à la deuxième conduite 13. La source chaude échange son énergie thermique vers le fluide principal 5, avantageusement par échange en courant croisé. La source chaude sort du deuxième circuit fluidique 8 préférentiellement par la deuxième conduite 13, connectée fluidiquement à un retour de source chaude 21, la vanne Vcond agencée sur le retour de source chaude 21 est ouverte. Selon cette possibilité, la deuxième conduite 11 du premier circuit fluidique 6 et la deuxième conduite 13 du deuxième circuit fluidique 8 sont avantageusement connectées fluidiquement par la connexion fluidique 22, la vanne Vbypass étant ouverte. De cette manière, les retours de source chaude respectivement du premier circuit fluidique 6 et du deuxième circuit fluidique 8 sont connectées fluidiquement pour assurer un retour commun des condensats de la source chaude vers par exemple la chaudière.According to one possibility, the main fluid 5 is also heated in the second part 9 of the heat exchanger. The second fluidic circuit 8 is fluidically connected, preferably via the first pipe 12, to the hot source outlet 19, the valve V vap2 arranged on the hot source outlet 19 is open so as to allow the entry of the hot source, preferably of steam, in the second fluidic circuit 8. The hot source circulates in the second fluidic circuit 8, preferably as far as the second conduit 13. The hot source exchanges its thermal energy towards the main fluid 5, advantageously by cross-current exchange. The hot source leaves the second fluidic circuit 8 preferentially through the second pipe 13, fluidically connected to a hot source return 21, the valve V cond arranged on the hot source return 21 is open. According to this possibility, the second conduit 11 of the first fluidic circuit 6 and the second conduit 13 of the second fluidic circuit 8 are advantageously fluidically connected by the fluid connection 22, the bypass valve V being open. In this way, the hot source returns respectively of the first fluidic circuit 6 and of the second fluidic circuit 8 are fluidically connected to ensure a common return of the condensates from the hot source to, for example, the boiler.

Les figures 4 à 7 illustrent l'échangeur thermique 1 en fonctionnement lors de phase de refroidissement du fluide principal, chaque figure correspondant à un temps de cette phase de refroidissement.The figures 4 to 7 illustrate the heat exchanger 1 in operation during the cooling phase of the main fluid, each figure corresponding to a time of this cooling phase.

La phase de refroidissement du dispositif de stérilisation correspond à la phase durant laquelle le module de stockage thermique se charge en énergie thermique.The cooling phase of the sterilization device corresponds to the phase during which the thermal storage module is charged with thermal energy.

La figure 4 correspond au début du refroidissement du fluide principal 5 c'est-à-dire après la phase de chauffe et éventuellement de maintien en température du dispositif de stérilisation. La température TR,1 du fluide de stockage en sortie du module de stockage est inférieure à la température TSTW,from du fluide principal 5 en entrée 3 de la zone de circulation principale 2. Les vannes Vstock,from, Vstock, to1, Vbypass sont ouvertes.The figure 4 corresponds to the start of the cooling of the main fluid 5, that is to say after the phase of heating and possibly maintaining the temperature of the sterilization device. The temperature T R,1 of the storage fluid at the outlet of the storage module is lower than the temperature T STW,from of the main fluid 5 at the inlet 3 of the main circulation zone 2. The valves V stock, from , V stock, to1 , V bypass are open.

Le refroidissement du fluide principal 5 est assuré uniquement par le fluide de stockage. Le premier circuit fluidique 6 est connecté fluidiquement, préférentiellement par la première conduite 10, au départ du module de stockage 17, la vanne Vstock,from ,permettant au fluide de stockage de sortir du module de stockage et de pénétrer dans le premier circuit fluidique 6, est ouverte. Le fluide de stockage circule dans le premier circuit fluidique 6 et échange avec le fluide principal 5 circulant dans la première partie 7 par échange local, avantageusement par courant croisé, soit par co-courant comme illustré à la figure 4, soit par contre-courant comme illustré à la figure 7. La circulation à contre-courant du fluide de stockage et du fluide principal 5 est définie en fonction des cycles du dispositif de stérilisation, en l'espèce, le mode de réalisation illustré à la figure 7 avec une circulation à contre-courant est choisi lorsque le fluide principal 5 est refroidi par le fluide de stockage lui-même directement refroidi dans le module de stockage par une source froide. Le fluide principal 5 cède son énergie thermique au fluide de stockage. Le fluide de stockage ressort du premier circuit fluidique 6, préférentiellement par la deuxième conduite 11 connectée fluidiquement préférentiellement à la deuxième conduite 13 du deuxième circuit fluidique 8 par la connexion fluidique 22, la vanne Vbypass étant ouverte. Le fluide de stockage pénètre dans le deuxième circuit fluidique 8 , préférentiellement par la deuxième conduite 13, et circule dans le deuxième circuit fluidique 8. Le fluide de stockage échange avec le fluide principal 5 circulant dans la deuxième partie 9. Le fluide principal 5 cède son énergie thermique au fluide de stockage. Le fluide de stockage ressort du deuxième circuit fluidique 8 , préférentiellement par la première conduite 12. Le deuxième circuit fluidique 8 est connecté fluidiquement, préférentiellement par la première conduite 12, à un retour de stockage 20, une vanne Vstock, to étant ouverte. La vanne Vstock,from est pilotée en fonction de l'acquisition de la température TSTW,to de sorte que cette température TSTW,to soit égale à une température de consigne.The cooling of the main fluid 5 is ensured solely by the storage fluid. The first fluidic circuit 6 is fluidically connected, preferably via the first pipe 10, from the storage module 17, the valve V stock, from , allowing the storage fluid to exit the storage module and enter the first fluidic circuit 6, is open. The storage fluid circulates in the first fluidic circuit 6 and exchanges with the main fluid 5 circulating in the first part 7 by local exchange, advantageously by cross-current, or by co-current as illustrated in figure 4 , or by counter-current as illustrated in figure 7 . The counter-current circulation of the storage fluid and the main fluid 5 is defined according to the cycles of the sterilization device, in this case, the embodiment illustrated in figure 7 with counter-current circulation is chosen when the main fluid 5 is cooled by the storage fluid itself directly cooled in the storage module by a cold source. The main fluid 5 transfers its thermal energy to the storage fluid. The storage fluid emerges from the first fluidic circuit 6, preferably via the second conduit 11 fluidically connected preferentially to the second conduit 13 of the second fluidic circuit 8 via the fluidic connection 22, the bypass valve V being open. The storage fluid enters the second fluidic circuit 8, preferably via the second pipe 13, and circulates in the second fluidic circuit 8. The storage fluid exchanges with the main fluid 5 flowing in the second part 9. The main fluid 5 yields its thermal energy to the storage fluid. The storage fluid emerges from the second fluidic circuit 8 , preferably via the first pipe 12. The second fluid circuit 8 is fluidically connected, preferably via the first pipe 12, to a storage return 20, a valve V stock, to being open. The valve V stock,from is controlled according to the acquisition of the temperature T STW,to so that this temperature T STW,to is equal to a setpoint temperature.

Dès l'instant où TSTW,to devient supérieure à une température de consigne, le fluide de stockage ne permet plus d'assurer à lui seul le refroidissement du fluide principal 5. L'échangeur fonctionne alors selon le mode de réalisation illustré à la figure 5.As soon as T STW,to becomes greater than a set temperature, the storage fluid can no longer ensure the cooling of the main fluid 5 on its own. The exchanger then operates according to the embodiment illustrated in figure 5 .

L'énergie thermique pouvant être captée par le fluide de stockage permet ainsi de prérefroidir le fluide principal 5 en sortie du dispositif de stérilisation en utilisant la première partie 7 de l'échangeur thermique partitionné. Pour atteindre une température de consigne du fluide principal 5, la seconde partie 9 de l'échangeur thermique est alimentée par une source froide, préférentiellement un réseau de froid, et apporte ainsi dans la deuxième partie 9 le refroidissement nécessaire au fluide principal 5 sortant de la première partie 7 de l'échangeur thermique.The thermal energy that can be captured by the storage fluid thus makes it possible to precool the main fluid 5 at the outlet of the sterilization device by using the first part 7 of the partitioned heat exchanger. To reach a setpoint temperature of the main fluid 5, the second part 9 of the heat exchanger is supplied by a cold source, preferably a cold network, and thus provides in the second part 9 the cooling necessary for the main fluid 5 exiting from the first part 7 of the heat exchanger.

Le pré refroidissement du fluide principal 5 est assuré par le fluide de stockage. Le premier circuit fluidique 6 est connecté fluidiquement, préférentiellement par la première conduite 10, au départ du module de stockage 17, la vanne Vstock,from permettant au fluide de stockage de sortir du module de stockage et de pénétrer dans le premier circuit fluidique 6 est ouverte. Le fluide de stockage circule dans le premier circuit fluidique 6 et échange avec le fluide principal 5 par échange local avantageusement par courant croisé, à contre-courant particulièrement si l'échangeur thermique est composé de plaques soudées. Le fluide principal 5 circulant dans la première partie 7, préférentiellement cède son énergie thermique au fluide de stockage. Le fluide de stockage ressort du premier circuit fluidique 6 par la deuxième conduite 11. La deuxième conduite 11 est connectée fluidiquement au retour au module de stockage 18. Le fluide de stockage retournant vers le module de stockage sans circuler dans le deuxième circuit fluidique 8. Le premier circuit fluidique 6 et le deuxième circuit fluidique 8 sont indépendants fluidiquement, la vanne Vbypass étant fermée. La connexion fluidique 22 est inactive.The pre-cooling of the main fluid 5 is ensured by the storage fluid. The first fluidic circuit 6 is fluidically connected, preferably via the first pipe 10, from the storage module 17, the valve V stock, from allowing the storage fluid to exit the storage module and enter the first fluidic circuit 6 is open. The storage fluid circulates in the first fluidic circuit 6 and exchanges with the main fluid 5 by local exchange, advantageously by cross-current, in countercurrent particularly if the heat exchanger is composed of welded plates. The main fluid 5 circulating in the first part 7 preferentially transfers its thermal energy to the storage fluid. The storage fluid leaves the first fluidic circuit 6 via the second pipe 11. The second pipe 11 is fluidly connected to the return to the storage module 18. The storage fluid returning to the storage module without circulating in the second fluidic circuit 8. The first fluidic circuit 6 and the second fluidic circuit 8 are fluidically independent, the bypass valve V being closed. The fluidic connection 22 is inactive.

Le deuxième circuit fluidique 8 est connecté fluidiquement, préférentiellement par la première conduite 12, au départ d'une source froide 24. Une vanne Vcool,in agencée sur le départ de source froide 24 étant ouverte pour permettre l'entrée de la source froide préférentiellement de l'eau de ville dans le deuxième circuit fluidique 8, préférentiellement par la première conduite 12. La source froide circulant dans le deuxième circuit fluidique 8 récupère l'énergie thermique cédée par le fluide principal 5 circulant dans la deuxième partie 9 préférentiellement en courant croisé, à contre-courant particulièrement si l'échangeur thermique est composé de plaques soudées. La source froide ressort de deuxième circuit fluidique 8, préférentiellement par la deuxième conduite 13 connectée fluidiquement un retour de source froide 25, une vanne Vcool,out2 agencée sur le retour de source froide 25 étant ouverte.The second fluidic circuit 8 is fluidically connected, preferably by the first conduit 12, from a cold source 24. A valve V cool, in arranged on the cold source outlet 24 being open to allow the entry of the cold source preferably city water in the second fluidic circuit 8, preferably via the first pipe 12. The cold source circulating in the second fluidic circuit 8 recovers the thermal energy transferred by the main fluid 5 circulating in the second part 9 preferably in cross-current, counter-current particularly if the heat exchanger is made up of welded plates. The cold source emerges from the second fluidic circuit 8, preferably via the second pipe 13 fluidically connected to a cold source return 25, a valve V cool,out2 arranged on the cold source return 25 being open.

La vanne Vcool,in est pilotée en fonction de l'acquisition de la température TSTW,to de sorte que cette température TSTW,to soit égale à une température de consigne.The valve V cool,in is controlled according to the acquisition of the temperature T STW,to so that this temperature T STW,to is equal to a setpoint temperature.

Dès l'instant où la température TR,1 du fluide de stockage en sortie du module de stockage est supérieure à la température TSTW,from du fluide principal 5 en entrée 3 de la zone de circulation principale 2, le fluide de stockage ne permet plus d'assurer le refroidissement du fluide principal 5. Le module de stockage cesse d'alimenter l'échangeur thermique. L'échangeur fonctionne alors selon le mode de réalisation illustré à la figure 6.As soon as the temperature T R,1 of the storage fluid at the outlet of the storage module is greater than the temperature T STW,from of the main fluid 5 at the inlet 3 of the main circulation zone 2, the storage fluid does not allows more to ensure the cooling of the main fluid 5. The storage module stops supplying the heat exchanger. The exchanger then operates according to the embodiment illustrated in figure 6 .

Le refroidissement du fluide principal 5 est assuré uniquement par la source froide, préférentiellement le réseau d'eau de ville, alimentant selon le mode de réalisation une partie ou les deux parties de l'échangeur thermique.The cooling of the main fluid 5 is provided solely by the cold source, preferably the city water network, supplying according to the embodiment one part or both parts of the heat exchanger.

Selon une première possibilité, la circulation de la source froide se fait successivement dans la deuxième partie 9 puis dans la première partie 7 de l'échangeur thermique. Cette circulation de la source froide permet d'assurer un échange local par courant croisé avec une orientation à contre-courant améliorant l'échange thermique entre la source froide et le fluide principal 5.La source froide pénètre dans le deuxième circuit fluidique 8 , préférentiellement par la deuxième conduite 12 connectée fluidiquement au départ de source froide 24, la vanne Vcool,in étant ouverte pour permettre l'entrée de la source froide préférentiellement de l'eau de ville dans le deuxième circuit fluidique 8 , préférentiellement par la première conduite 12. La source froide circulant dans le deuxième circuit fluidique 8 récupère l'énergie thermique cédée par le fluide principal 5 circulant dans la deuxième partie 9 préférentiellement en courant croisé avec orientation à contre-courant. La source froide ressort de deuxième circuit fluidique 8 , préférentiellement par la deuxième conduite 13 connectée fluidiquement à la deuxième conduite 11 du premier circuit fluidique 6 par la connexion fluidique 22, la vanne Vbypass étant ouverte. La source froide pénètre dans le premier circuit fluidique 6 au travers duquel elle circule avant de ressortir par la première conduite 10. La première conduite 10 étant connectée fluidiquement à un retour de source froide 23, la vanne Vcool,out1 étant ouverte.According to a first possibility, the circulation of the cold source takes place successively in the second part 9 then in the first part 7 of the heat exchanger. This circulation of the cold source makes it possible to ensure a local exchange by cross-current with a counter-current orientation improving the heat exchange between the cold source and the main fluid 5. The cold source penetrates into the second fluidic circuit 8, preferably via the second pipe 12 fluidly connected to the start of the cold source 24, the valve V cool,in being open to allow the entry of the cold source, preferably city water, into the second fluid circuit 8, preferably via the first pipe 12. The cold source circulating in the second fluidic circuit 8 recovers the thermal energy released by the main fluid 5 circulating in the second part 9 preferably in cross-current with counter-current orientation. The cold source emerges from the second fluid circuit 8, preferably via the second pipe 13 fluidly connected to the second pipe 11 of the first fluid circuit 6 via the fluid connection 22, the bypass valve V being open. The cold source enters the first fluidic circuit 6 through which it circulates before exiting via the first pipe 10. The first pipe 10 being fluidically connected to a cold source return 23, the valve V cool,out1 being open.

La vanne Vcool,in est pilotée en fonction de l'acquisition de la température TSTW,to de sorte que cette température TSTW,to soit égale à une température de consigne.The valve V cool,in is controlled according to the acquisition of the temperature T STW,to so that this temperature T STW,to is equal to a setpoint temperature.

LISTE DES REFERENCESLIST OF REFERENCES

  • 1 Echangeur thermique1 heat exchanger
  • 2 Zone de circulation principale2 Main traffic area
  • 3 Entrée fluide principal3 Main fluid inlet
  • 4 Sortie fluide principal4 Main fluid outlet
  • 5 Fluide principal5 Main fluid
  • 6 Premier circuit fluidique6 First fluid circuit
  • 7 Première partie7 Part One
  • 8 Deuxième circuit fluidique8 Second fluidic circuit
  • 9 Deuxième partie9 Part two
  • 10 Première conduite10 First Ride
  • 11 Deuxième conduite11 Second drive
  • 12 Première conduite12 First drive
  • 13 Deuxième conduite13 Second drive
  • 16 Départ source chaude16 Hot spring flow
  • 17 Départ module de stockage17 Storage module outlet
  • 18 Retour module de stockage18 Storage module return
  • 19 Départ source chaude19 Hot spring outlet
  • 20 Retour module de stockage20 Return storage module
  • 21 Retour source chaude21 Hot source return
  • 22 Connexion fluidique entre premier circuit fluidique et deuxième circuit fluidique22 Fluidic connection between first fluidic circuit and second fluidic circuit
  • 23 Retour source froide23 Cold source return
  • 24 Départ source froide24 Cold source flow
  • 25 Retour source froide25 Cold source return
  • Vvap,1 vanne contrôlant l'entrée de la source chaude dans la première conduite du premier circuit fluidiqueV vap,1 valve controlling the entry of the hot source into the first pipe of the first fluidic circuit
  • Vvap2 vanne contrôlant l'entrée de la source chaude dans la première conduite du deuxième circuit fluidiqueV vap2 valve controlling the inlet of the hot source in the first pipe of the second fluidic circuit
  • Vstock, from vanne contrôlant l'entrée du fluide de stockage dans la première conduite du premier circuit fluidiqueV stock, from valve controlling the entry of the storage fluid into the first pipe of the first fluidic circuit
  • Vstock, to1 vanne contrôlant la sortie du fluide de stockage par la première conduite du deuxième circuit fluidiqueV stock, to1 valve controlling the outlet of the storage fluid through the first pipe of the second fluidic circuit
  • Vstock, to2 vanne contrôlant la sortie du fluide de stockage par la deuxième conduite du premier circuit fluidiqueV stock, to2 valve controlling the outlet of the storage fluid through the second line of the first fluidic circuit
  • Vcool, in, vanne contrôlant l'entrée de la source froide par la première conduite du deuxième circuit fluidiqueV cool, in, valve controlling the entry of the cold source through the first pipe of the second fluidic circuit
  • Vcond vanne contrôlant la sortie de la source chaude par la deuxième conduite du deuxième circuit fluidiqueV cond valve controlling the output of the hot source through the second pipe of the second fluidic circuit
  • Vcool, out1 vanne contrôlant la sortie de la source froide par la première conduite du premier circuit fluidiqueV cool, out1 valve controlling the output of the cold source by the first pipe of the first fluidic circuit
  • Vcool, out2 vanne contrôlant la sortie de la source froide par la deuxième conduite du deuxième circuit fluidiqueV cool, out2 valve controlling the output of the cold source by the second line of the second fluidic circuit
  • TR,1 température du fluide de stockage en sortie du module de stockage en entrée du premier circuit fluidiqueT R,1 temperature of the storage fluid at the outlet of the storage module at the inlet of the first fluidic circuit
  • TSTW, from température du fluide principal en entrée de la zone de circulation principaleT STW, from temperature of the main fluid entering the main circulation zone
  • TSTW, to température du fluide principal en sortie de la zone de circulation principaleT STW, to temperature of the main fluid leaving the main circulation zone

Claims (15)

  1. Heat exchanger (1) comprising:
    - a primary circulation area (2) capable of receiving a primary fluid (5), and
    - circulation means capable of receiving a secondary fluid and configured to ensure heat is exchanged with the primary circulation area (2), where
    - the primary circulation area (2) comprises a first part (7) and a second part (9), and
    - the circulation means comprise
    • a first fluid circuit (6) arranged such that it is in contact with the first part (7) of the heat exchanger (1) and intended to receive the secondary fluid so as to ensure heat is exchanged between the secondary fluid and the primary fluid (5) circulating in the first part (7),
    • a second fluid circuit (8) arranged such that it is in contact with the second part (9) of the heat exchanger (1) and intended to receive the secondary fluid so as to ensure heat is exchanged between the secondary fluid and the primary fluid (5) circulating in the second part (9), characterised in that
    • the first fluid circuit (6) and the second fluid circuit (8) being configured such that they are alternately in fluid isolation or in fluid communication with one another.
  2. Heat exchanger (1) according to the preceding claim, wherein the heat exchanger is a plate heat exchanger.
  3. Recovery unit comprising a heat exchanger (1) according to any one of the preceding claims and a thermal energy storage module in fluid communication with the first fluid circuit (6) and with the second fluid circuit (8) such that it is able to store and draw off the secondary fluid.
  4. Recovery unit according to the preceding claim, wherein the first fluid circuit (6) and the second fluid circuit (8) are capable of being connected to a heat source and to a cold source, so as to ensure the primary fluid (5) is alternately heated by the thermal energy stored in the storage module or by a heat source or by a combination of the thermal energy stored in the storage module and by the heat source, and so as to ensure the primary fluid (5) is alternately cooled by the thermal energy stored in the storage module or by a cold source or by a combination of the thermal energy stored in the storage module and by the cold source
  5. Recovery unit according to any one of claims 3 or 4, wherein the first fluid circuit (6) is configured such that it is in fluid communication with:
    - an outlet of the storage module (17) so as to allow the secondary fluid, which is a storage fluid, to enter the first fluid circuit (6),
    - an inlet of the heat source (16) so as to allow the secondary fluid, which is a heat source, to enter the first fluid circuit (6),
    - a return line of the cold source (23) so as to allow the secondary fluid, which is a cold source, to exit the first fluid circuit (6).
  6. Energy recovery unit according to any one of claims 3 to 5, wherein the first fluid circuit (6) is configured such that it is in fluid communication with:
    - a return line to the thermal energy storage module (18) so as to allow the secondary fluid, which is the storage fluid, to exit the first fluid circuit (6) and allow thermal energy to be stored in the thermal energy storage module,
    - a second line (13) of the second fluid circuit (8) so as to bring the first fluid circuit (6) into fluid communication with the second fluid circuit (8),
    - a return line of the heat source (21) so as to allow the secondary fluid, which is the heat source, to exit the first fluid circuit (6).
  7. Recovery unit according to any one of claims 3 to 6, wherein the second fluid circuit (8) is configured such that it is in fluid communication with:
    - an inlet of a heat source (19) so as to allow the secondary fluid, which is the heat source, to enter the second fluid circuit (8),
    - a return line to the thermal energy storage module (20) so as to allow the secondary fluid, which is the storage fluid, to exit the second fluid circuit (8) and allow thermal energy to be stored in the thermal energy storage module,
    - an outlet of a cold source (24) so as to allow the secondary fluid, which is the cold source, to enter the second fluid circuit (8).
  8. Energy recovery unit according to any one of claims 3 to 7, wherein the second fluid circuit (8) is configured such that it is in fluid communication with:
    - a second line (11) of the first fluid circuit (6) so as to bring the first fluid circuit (6) into fluid communication with the second fluid circuit (8),
    - a return line of the heat source (21) so as to allow the secondary fluid, which is the heat source, to exit the second fluid circuit (8),
    - a return line of the cold source (25) so as to allow the secondary fluid, which is the cold source, to exit the second fluid circuit (8).
  9. Recovery unit according to any one of claims 3 to 8, wherein the heat source is steam from a boiler.
  10. Recovery unit according to any one of claims 3 to 9, wherein the cold source is water from a cold network.
  11. Recovery unit according to any one of claims 3 to 10, comprising a module for controlling the circulation of the primary fluid and of the secondary fluid, the secondary fluid being the heat source, the cold source and/or the storage fluid, comprising a plurality of valves.
  12. Sterilisation device comprising a steriliser and a recovery unit according to any one of claims 3 to 11, the primary fluid being used as a sterilisation fluid in the sterilisation device.
  13. Use of a recovery unit according to any one of claims 3 to 11 in a steriliser.
  14. Method for recovering thermal energy with a recovery unit according to any one of claims 3 to 11, wherein, in a step of heating the primary fluid (5) so that the temperature TSTW, to, of the primary fluid (5) at the outlet (4) of the primary circulation area (2) reaches a temperature setpoint:
    - when the temperature of the storage fluid at the outlet of the storage module TR,1 is higher than the temperature TSTW, from of the primary fluid (5) at the inlet (3) of the primary circulation area (2), the first fluid circuit (6) and the second fluid circuit (8) are in fluid communication, and the storage fluid circulates successively in the first fluid circuit (6) and then in the second fluid circuit (8) so that heat is exchanged from the storage fluid to the primary fluid (5), or
    - when the temperature of the storage fluid at the outlet of the storage module TR,1 is higher than the temperature TSTW, from of the primary fluid (5) at the inlet (3) of the primary circulation area (2) and when the temperature TSTW, to of the primary fluid (5) at the outlet (4) of the primary circulation area (2) is lower than a temperature setpoint, the first fluid circuit (6) and the second fluid circuit (8) are in fluid isolation, and the first fluid circuit (6) preheats the primary fluid (5) via the storage fluid drawn from the storage module and circulating in the first fluid circuit (6) and the second fluid circuit (8) heats the primary fluid (5) via a heat source circulating in the second fluid circuit (8), or
    - when the temperature of the storage fluid at the outlet of the storage module TR,1 is lower than the temperature TSTW, from of the primary fluid (5) at the inlet (3) of the primary circulation area (2), the first fluid circuit (6) and the second fluid circuit (8) are in fluid isolation, and the first fluid circuit (6) preheats the primary fluid (5) via a heat source and the second fluid circuit (8) heats the primary fluid (5) via a heat source.
  15. Method for recovering thermal energy with a recovery unit according to any one of claims 3 to 11, wherein, in a step of cooling the primary fluid so that the temperature TSTW, to, of the primary fluid at the outlet of the primary circulation area reaches a temperature setpoint:
    - when the temperature of the storage fluid at the outlet of the storage module TR,1 is lower than the temperature TSTW, from of the primary fluid (5) at the inlet (3) of the primary circulation area (2), the first fluid circuit (6) and the second fluid circuit (8) are in fluid communication, and the storage fluid circulates successively in the first fluid circuit (6) and then in the second fluid circuit (8) so as to cool the primary fluid (5) and store thermal energy in the storage module,
    - when the temperature of the storage fluid at the outlet of the storage module TR,1 is lower than the temperature TSTW, from of the primary fluid (5) at the inlet (3) of the primary circulation area (2), the first fluid circuit (6) and the second fluid circuit (8) are in fluid isolation, and the first fluid circuit (6) precools the primary fluid (5) via the storage fluid drawn from the storage module and the second fluid circuit (8) cools the primary fluid (5) via a cold source,
    - when the temperature of the storage fluid at the outlet of the storage module TR,1 is higher than the temperature TSTW, from of the primary fluid (5) at the inlet (3) of the primary circulation area (2), the first fluid circuit (6) and the second fluid circuit (8) are in fluid communication, the cold source circulating successively in the second fluid circuit (8) and then in the first fluid circuit (6).
EP21150572.2A 2020-01-10 2021-01-07 Partitioned heat exchanger, thermal energy recovery unit and associated sterilisation device Active EP3848659B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2000194A FR3106198B1 (en) 2020-01-10 2020-01-10 Partitioned heat exchanger, thermal energy recovery unit and associated sterilization device

Publications (2)

Publication Number Publication Date
EP3848659A1 EP3848659A1 (en) 2021-07-14
EP3848659B1 true EP3848659B1 (en) 2022-03-09

Family

ID=69903629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21150572.2A Active EP3848659B1 (en) 2020-01-10 2021-01-07 Partitioned heat exchanger, thermal energy recovery unit and associated sterilisation device

Country Status (2)

Country Link
EP (1) EP3848659B1 (en)
FR (1) FR3106198B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT394100B (en) * 1988-09-14 1992-01-27 Sgp Va Energie Umwelt HEAT STEAM GENERATOR
DE4303613C2 (en) * 1993-02-09 1998-12-17 Steinmueller Gmbh L & C Process for generating steam in a once-through steam generator
RU2193726C2 (en) * 1997-06-30 2002-11-27 Сименс Акциенгезелльшафт Waste heat-powered steam generator
US20110061388A1 (en) * 2009-09-15 2011-03-17 General Electric Company Direct evaporator apparatus and energy recovery system
DE102013202188A1 (en) 2013-02-11 2014-08-14 Robert Bosch Gmbh Sterilization device and sterilization process with energy recovery
US10488117B1 (en) * 2018-02-08 2019-11-26 Hamilton Sundstrand Corporation Aircraft heat exchanger defrost system

Also Published As

Publication number Publication date
EP3848659A1 (en) 2021-07-14
FR3106198A1 (en) 2021-07-16
FR3106198B1 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2014033132A1 (en) Steam heat storage system
EP3475638B1 (en) Method and facility for recovering thermal energy on a furnace with tubular side members and for converting same into electricity by means of a turbine producing the electricity by implementing a rankine cycle
FR3041420B1 (en) HOT WATER PRODUCTION DEVICE USING WASTEWATER HEAT RECOVERY, AN INSTALLATION AND A PROCESS FOR THE PRODUCTION THEREOF
WO2007063119A1 (en) Refrigeration-generation solar unit for an air-conditioning system, heat-generation solar unit, corresponding devices and corresponding control method
FR3019854A1 (en) DEVICE FOR STORING AND RESORTING CALORIFIC ENERGY BY A CONSTANTLY-PRESSURIZED CALOPORATOR FLUID
EP3848659B1 (en) Partitioned heat exchanger, thermal energy recovery unit and associated sterilisation device
EP3828018B1 (en) Device for managing thermal energy in a vehicle
FR2939874A1 (en) THERMODYNAMIC DEVICE WITH MULTI-ENERGY HOT WATER BALLOON MULIT-SOURCES
EP2526352A2 (en) Thermal power upgrade facility
WO2013014178A1 (en) Device for storing renewable energy in the form of heat and method for regeneration by trigeneration
EP3155240A1 (en) System for controlling a rankine cycle
WO2018006183A1 (en) Thermal energy distribution network
FR2468851A1 (en) METHOD AND DEVICE FOR HEATING WATER USED IN AN APPARATUS CONNECTED TO A DOMESTIC WATER CIRCUIT
EP3910249B1 (en) System for producing and distributing heat and cold and method for managing same
EP1898056A1 (en) Device for heat extraction from the preheated condensate of the steam cycle of a combined cycle plant
WO2019073177A1 (en) Heat-exchanger system, in particular for a solar trigeneration
EP3627074A1 (en) Air conditioning system comprising an absorption machine and a mechanical compression machine
FR3046665A1 (en) CONTROL UNIT FOR CONTROLLING A TEMPERATURE OF A FIRST HEAT PUMP INTO A WATER / WATER HEAT PUMP
EP3234353B1 (en) Storage device intended for a thermal power plant and method for using same
EP3882555A1 (en) Recovery unit, sterilisation device comprising the recovery unit and associated method
BE1023347B1 (en) Control unit for controlling a temperature of a first heat transfer liquid at the inlet of a water / water heat pump
EP2224176B1 (en) Improved boiler installation
FR2523221A1 (en) Low grade differential heat engine - uses fluid volume alteration caused by alternate heating and cooling of suitable liquid
EP3627070A1 (en) System for producing and managing refrigeration by an absorption machine from residual energy derived from a combustion engine
WO2023233116A1 (en) Autonomous device for cooling an industrial process, in particular for a data processing centre, and data processing centre using the device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210927

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1474502

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021000020

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1474502

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220610

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220709

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602021000020

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

26N No opposition filed

Effective date: 20221212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230123

Year of fee payment: 3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230123

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230107

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 4