EP3844119A1 - Vitrage texture et isolant pour serre - Google Patents

Vitrage texture et isolant pour serre

Info

Publication number
EP3844119A1
EP3844119A1 EP19765778.6A EP19765778A EP3844119A1 EP 3844119 A1 EP3844119 A1 EP 3844119A1 EP 19765778 A EP19765778 A EP 19765778A EP 3844119 A1 EP3844119 A1 EP 3844119A1
Authority
EP
European Patent Office
Prior art keywords
coating
glazing
layer
glazing according
micrometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19765778.6A
Other languages
German (de)
English (en)
Inventor
Michele Schiavoni
Vincent Reymond
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP3844119A1 publication Critical patent/EP3844119A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/256Ag
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/77Coatings having a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching

Definitions

  • the invention relates to the field of highly transparent and diffusing glazing, in particular for the manufacture of horticultural greenhouses.
  • glazings which have both a high light transmission and a strong scattering of incident light (measured by the level of blur, most often called haze according to the English term) are particularly suitable for entering the creation of greenhouses.
  • the blur is the ratio between the diffuse transmission and the total transmission of the glazing.
  • the strong transmission sought for these glazings is that which is called hemispherical light transmission (TLH, sometimes denoted T H EM), that is to say transmission in the visible range (380-780 nm) averaged over several angles of incidence. For each angle of incidence, the entire light intensity passing through the glazing is measured whatever the angle of emergence.
  • T H EM hemispherical light transmission
  • Hemispherical transmission is an essential characteristic of this type of glazing for the desired application and it is necessary that the glazing relates to substantially the same TLH after depositing the diffusing texture compared to a non-textured flat glass of the same nature and same mass. surface.
  • textured glazings whose texture is obtained by rolling have been well known but used in other technical fields such as photovoltaics.
  • the current textured glasses used in photovoltaics are configured to have a very high light transmission compared to the same non-textured glass without generally taking into account scattering effects of the light transmitted by said texturing, which can this time have a negative impact on horticultural production.
  • the textured glasses according to the invention are, on the contrary, configured to diffuse the light inside the greenhouse, which implies a positive impact for horticultural production as indicated above. Indeed, the diffusion effect avoids hot spots on the plants and allows better penetration of light in all areas of the greenhouse and ultimately obtaining more homogeneous lighting.
  • the applicant company has already developed a textured glass intended more particularly for use in horticultural greenhouses, as described in patent application WO2016 / 170261.
  • the texturing of the glazing has thus been adapted to such use, and in particular makes it possible to obtain high blur, while keeping a TLH substantially equal to that of an identical glass but devoid of texture.
  • Such glazing does not however describe means making it possible to effectively conserve heat in the greenhouse, in particular during periods of outside cold.
  • thermal insulation of greenhouses is also essential for optimizing their performance, whatever the season.
  • thermal insulation is generally measured by the heat transfer coefficient U (or K) of the glazing as defined in standard NF EN 673 (201 1) or in the reference publication "Glazing with reinforced thermal insulation, Techniques for the engineer, BE 9 080 ”.
  • the object of the present invention is to provide glazing which meets such specifications and such a need.
  • the present invention relates to a glazing unit comprising a glass substrate on which is deposited in succession, from a first surface of said substrate:
  • a first coating comprising a layer having properties of reflection of the infrared, very particularly whose wavelength is between 3 and 50 micrometers, or a set of layers of which at least one layer has properties of reflection of l infrared, a second coating above said first coating, comprising an organic or mineral layer, said second coating having a relief texture, said texture being such that the average slope P m of said textured face is less than or equal to 15 ° and the percentage of the surface having a slope greater than 5 ° is greater than 5%, preferably greater than or equal to 10%.
  • the second coating is advantageously textured on the surface (or the face) opposite its surface in contact with said first coating.
  • infrared radiation is meant in the sense of the present invention radiation of wavelength between 1 and 50 micrometers. According to preferred but not limiting embodiments of the present invention:
  • the mean slope P m of the textured face is less than 12 ° and more preferably is less than 10 °, or even less than 8 °, or even very preferably is less than 6 °,
  • the average slope P m of the textured face is greater than 1 ° and more preferably is greater than 2 °, or even greater than 3 °,
  • the percentage of the surface with a slope less than or equal to 5 ° is as large as possible (ideal value of 100%) but can however, and without departing from the scope of the invention, also be less than 100%, even less than 90% or even less than 80%, 70% or 60%.
  • the blur as measured at an angle of 2.5 °, is greater than 10%, even greater than 15%, greater than 20%, or even greater than 30%, or even greater than 40%. According to an advantageous embodiment, the blurring is greater than 50%, or even greater than 60% or even greater than 80%. According to the invention, the blur is as large as possible (ideal value of 100%) but can be less than 100%, even less than 90%, or even less than 85% without departing from the scope of the invention.
  • the ratio between the hemispherical light transmission (TLH) of the glazing comprising the second coating and the TLH of the glazing before the deposition of the second coating is greater than 0.8, more preferably is greater than 0.9, and very preferably is greater than 0.95. Ideally this ratio is substantially equal to 1.
  • the glass substrate is a non-textured glass on the face comprising said first and second coatings.
  • the glass substrate is a float glass whose initial surface has not undergone any texturing treatment or aimed at accentuating the roughness, before the deposition of the first coating.
  • the layer (s) exhibiting infrared reflection properties in the first coating is silver-based.
  • the first coating consists of a stack comprising at least one silver-based layer and dielectric layers.
  • the first coating has a thickness of between 5 nanometers and 1 micrometer, in particular between 20 and 500 nm.
  • the second textured coating is an organic layer.
  • the organic layer may in particular consist of a polymer chosen from a chlorinated polyvinyl diene, a styrene-butadiene copolymer, a polyacrylonitrile, a polymethacrylonitrile or also a polycycloolefin or a polypropylene.
  • the second textured coating is a layer of a mineral material, said mineral material preferably being chosen from oxides or nitrides.
  • the textured coating may in particular be a layer based on silicon oxide.
  • the refractive index of the material constituting the texture is in the range from 1.40 to 1.80 to 587 nm, preferably ranging from 1.40 to 1.65 to 587 nm.
  • the average thickness of the second coating is between 1 and 50 micrometers, preferably between 1 and 10 micrometers.
  • the roughness of the textured surface of the second coating is such that its average R sm is between 10 and 100 micrometers.
  • the roughness of the textured surface of the second coating is such that its average R a is between 0.5 and 5 micrometers.
  • the texture includes contiguous patterns of size in the range from 10 to 100 micrometers.
  • Said glazing further comprises an anti-reflection coating on one or both of its faces.
  • the second main face of the glazing also has a texture, identical or different from that printed on the second coating.
  • the texture of the second main face can advantageously take up all of the characteristics described above, in particular an average slope Pm of the textured face less than or equal to 15 ° and a percentage of the textured surface having a slope greater than 5 ° greater than 5%.
  • the invention also relates to a horticultural greenhouse equipped with at least one glazing as previously described.
  • the invention relates to a first method of manufacturing such glazing which comprises the following steps:
  • a first coating comprising a layer having infrared reflection properties or a set of layers at least one layer of which has infrared reflection properties, preferably by sputtering, said layer preferably being silver-based,
  • a second coating consisting of a mineral layer having a thickness in particular between 1 and 30 micrometers, texturing of said second coating, in particular by an embossing, rolling or acid attack process, preferably by a rolling process,
  • An alternative method of manufacturing a glazing unit according to the invention comprises the following steps:
  • a first coating comprising a layer having infrared reflection properties or a set of layers at least one layer of which has infrared reflection properties, preferably by sputtering, said layer preferably being silver-based,
  • a glass matrix which is not very absorbent such as Diamant® glass or Albarino® glass sold by the applicant company, is used as substrate.
  • a glass is used whose TLH is greater than 78%, preferably greater than 79%, or even greater than 80%.
  • the level of blurring of the glazing according to the invention is preferably greater than 50%, preferably greater than 60%, more preferably still greater than 70% , or even more than 80%.
  • the measurement can in particular be carried out according to the principles described in standard ISO 13468 (illuminant D65).
  • the TLH is measured according to the methods detailed in the article “Transvision: A light transmission measurement System for greenhouse covering materials” published in the acts of “Proc 7th IS on light in Horticultural Systems, Eds: S. Hemming and E. Heuvelink, Acta Hort.956, ISHS 2012 ”.
  • the textured surface of the glazing according to the invention allows the diffusion of light, the surface having an average slope P m of a few degrees, that is to say typically less than or equal to 15 ° in the sense described above.
  • the measurement of a blur level at an angle of 2.5 ° means that the blur level is measured by the ratio between:
  • FIG. 1 A diagram allowing a better understanding of the measurement of the blur according to the invention has been transferred to FIG. 1 attached for purely illustrative purposes.
  • the slope at a point A of the textured surface of the glazing corresponds to the angle alpha (a) formed between the tangent plane at this point and the general plane of the support sheet (here the face of the glass substrate).
  • the measurement of the slope at point A is carried out from the measurement of the variation in height in the vicinity of this point and with respect to the general plane of the sheet.
  • the devices or profilometers
  • the measurements were carried out in the context of the present invention using a MIME profilometer, using chromatic confocal technology.
  • the measurement of the average slope P m of the surface and the percentage of the surface having a slope greater than 5 ° is determined from the measurement of slopes at points distributed over a square mesh of period 1 micrometer. We then calculate the average of the slope of all these points. On the basis of the same measurement of the texture profile of the second coating, it is also possible to calculate the percentage of the surface having a slope greater than 5 °.
  • the textured surface according to the invention allows in particular the diffusion of light and the appearance of blur, the surface having in this regard an average slope Pm of a few degrees, that is to say equal to or less than 15 °.
  • patterns are preferably produced whose size is of the order of 10 to 100 micrometers. Through size means the diameter of the smallest circle containing the pattern. Preferably the patterns are joined.
  • the Rs m (average period or not average) of a profile (that is to say along a straight line) of a surface is defined by the relation: in which S, is the distance between two zero crossings (center line) and amounts, n + 1 being the number of zero crossings going up in the profile considered.
  • S is the distance between two zero crossings (center line) and amounts, n + 1 being the number of zero crossings going up in the profile considered.
  • R Sm is representative of the distance between peaks, that is to say of the pitch of the texture parallel to the general plane of the sheet.
  • the values of Rs m are given after using Gaussian filters with cutoffs (or basic length, cut-off in English) at 0.8 micrometers and 250 micrometers (elimination of the periods less than 0.8 micrometers and greater than 250 micrometers) .
  • the measurements of R sm are carried out over a distance of at least 1250 micrometers.
  • the R sm around said point corresponds to the arithmetic mean of the R sm for 10 profiles starting in star starting from the point considered.
  • the R sm around a point we remove the values greater than or equal to 1250 micrometers. This avoids taking into account profiles in certain guidelines of particular textures such as that of parallel prisms or straight lines between aligned pyramids (value of R sm infinite or non-calculable).
  • We define the mean R sm of a textured surface by calculating the arithmetic mean of the R sm around a point, the points being chosen on a square grid with a pitch of 5 cm.
  • the average R sm of the textured surface is included in the range from 10 micrometers to 100 micrometers and preferably in the range ranging from 20 to 80 micrometers and even in the range ranging from 30 micrometers to 70 micrometers or even in the range from 40 micrometers to 60 micrometers. More preferably, the R sm around any point on the textured surface is in the range from 10 micrometers to 100 micrometers and preferably in the range from 20 to 80 micrometers and even in the range from 30 micrometers to 70 micrometers or even in the range from 40 micrometers to 60 micrometers.
  • the texture patterns can be parallel linear patterns like parallel prisms or be patterns that can fit in a circle like cones or pyramids.
  • the patterns of the texture for example have an average depth (or average height) of between approximately 0.5 and 3 micrometers, on the basis of the same measurement conditions as described above and according to standard IS04287 (1997).
  • the first coating according to the invention comprising at least one layer having infrared reflection properties, in particular thermal reflection (that is to say between 3 and 50 micrometers) or a set of layers of which at least one layer has reflective properties of infrared, especially thermal. It is preferably made up of a stack of layers comprising at least one silver-based layer and preferably at least two or even three layers of silver, separated by layers of dielectric materials.
  • the normal emissivity of said first coating (that is to say of the surface of a glazing unit coated with such a coating), in the sense described in standard EN 12898 (2001), is preferably less than 0.15, more preferably less than 0.1 and very preferably less than 0.05.
  • Said first stack also comprises layers of dielectric materials whose indices, location in the succession of layers and thicknesses are optimized to give the glazing an optimal TLH, that is to say maximum, according to techniques well known in the art. the domain. Its thickness varies from a few nanometers) to a few hundred nanometers, for example between 10 and 300 nanometers.
  • the heat transfer coefficient U of the single glazing according to the invention is generally less than 4 W / m 2 .K, and preferably less than 3.5 W / m 2 .K.
  • the second coating can be, according to the invention, of organic or mineral nature.
  • this coating is organic in nature.
  • This coating can advantageously be a polymer.
  • the material chosen is, for example, a polymer chosen from PVDC (chlorinated polyvinyldiene) as described in application WO2016 / 097599, a styrene-butadiene copolymer as described in application WO2017 / 103465, polyacrylonitrile ( PAN) or polymethacrylonitrile (PMAN) as described in application WO2013 / 089185 or else polycycloolefin or polypropylene, or in general, any polymer sufficiently mechanically and chemically resistant to preserve the first underlying stack and in particular the reflective layers infrared of such stacks, in particular the layer or layers based on silver.
  • PVDC chlorinated polyvinyldiene
  • PAN polyacrylonitrile
  • PMAN polymethacrylonitrile
  • the polymer is advantageously chosen to be transparent in the visible range (380-780 nm) and preferably also transparent in the near infrared (780-2500 nm).
  • Said coating is according to the invention advantageously little or not absorbent in the thermal infrared field (that is to say of wavelength between 3 and 50 microns).
  • the coating is mineral in nature.
  • Such a coating may for example be based on silicon oxide, in particular obtained by a sol-gel process then heating or any other dielectric mineral compound transparent in the visible range (380-780 nm) and preferably also transparent in the near infrared (780-2500 nm).
  • Said coating is according to the invention advantageously little or not absorbent in the thermal infrared field (that is to say of wavelength between 3 and 50 microns).
  • the thickness of the second coating is preferably less than 10 micrometers, and more preferably less than 5 micrometers. In particular in the case where the second coating is of mineral nature, its thickness may even be less than 3 micrometers or even less than 2 micrometers.
  • Such a texture of the second organic or mineral protective coating can be obtained by any known means, in particular by embossing, by lamination, by etching (in particular by means of a pre-printed roller), by thermoforming, by embossing, or even by etching. acid.
  • the texture is obtained by etching the surface of said second coating by means of a roller, the patterns of which are printed in negative, with possibly a step of heating its surface until reaching a softening temperature at least on the surface. of said second coating or alternatively to densify said coating (in particular in the case of a sol-gel layer).
  • the glazing may also include one or more anti-reflective layers to increase light transmission (TLH).
  • the anti-reflective coating can be deposited on one or both sides of the glazing, and in particular on the non-textured side. This anti-reflective effect can be obtained by depositing a layer or several layers forming a stack, by chemical attack or any other suitable technique.
  • the anti-reflection effect is chosen to be effective at wavelengths 400-700 nm.
  • An anti-reflection coating (anti-reflection layer or stack of anti-reflection effect layers) generally has a thickness in the range from 10 to 500 nm.
  • Such antireflection layers are in particular advantageously chosen from layers of porous silicon oxide, in particular of the type of those described in the publication WO2008 / 059170.
  • the invention is useful for acting as glazing allowing light to pass through greenhouses for horticulture, as well as for other applications requiring a high TLH and significant blurring such as a horticultural greenhouse but also a veranda, a reception hall. , a public space.
  • FIG. 1 describes an example of a glazing according to the invention:
  • the glazing comprises a transparent substrate 1, the TLH light transmission of which is greater than 80%, in particular greater than 82% or even greater than 83%. It is in particular an extra-clear float glass marketed by the applicant company under the reference Diamant®.
  • an anti-reflective coating 2 of any known type is deposited, in particular based on porous silicon oxide.
  • a first coating 3 called “low-e” and comprising at least one layer reflecting infrared, in particular thermal infrared, in particular a layer based on silver.
  • the stack has a normal emissivity of less than 0.1, or even less than 0.05.
  • This first coating is chosen, on the one hand, to impart thermal insulation properties to the glazing, without substantially reducing the TLH, according to the principles described above.
  • a second protective coating 4 based on mineral or organic as described above, is present above the first coating, with reference to the surface of the substrate.
  • This protective layer has on the opposite surface (face) a texturing 5 specifically adapted to bring the level of blurring to a value at least equal to 10% and preferably greater than 50%, in the sense described above, while retaining a value TLH equal to at least 80% and preferably equal to at least 85%, or even 90% of the initial value of the glazing (provided with the first coating) before the deposition of this second protective coating.
  • Glazing is thus obtained which has both good thermal insulation properties and a high level of haze, while retaining a high TLH light transmission and ultimately a glazing which is perfectly suited for use in a horticultural greenhouse.
  • a glazing is printed by rolling as described above and comprising:
  • a first coating consisting of an Eclaz II ® stack based on silver marketed by the company Saint-Gobain Glass France,
  • the heat transfer coefficient U of the glazing according to the invention is 3.4 W / m 2 .K, while it was 5.8 W / m 2 .K for the bare substrate.
  • the blur level is around 60%, which ensures optimal light distribution in the greenhouse.
  • an extra-clear float substrate for example a diamond® substrate from the applicant company
  • a first coating having infrared reflection properties known in the field under the name "low-e”
  • This stack of layers comprises at least one layer based on silver, preferably in silver, and the stack is configured in such a way that the TLH of the substrate-first coating assembly is maximized. More preferably, the stack is configured to minimize the value of the heat transfer coefficient U, in particular by the selection of a stack whose normal emissivity value is minimal, in the sense described above.
  • the selected low-e stack is of the “quenching” type, and furthermore does not exhibit any significant variation in its colorimetry during the toughening of the glazing.
  • a temporary protective coating is applied to the coating with infrared reflection properties.
  • This layer is for example deposited by the liquid route and is for example from a composition based on methacrylates (easypro layer) as described in application WO2015 / 019022.
  • a second step which can in particular be carried out by resuming the glazing obtained according to the preceding step, for example on another site, the glass is cut to the desired size, the anti-reflective layer (or precursor of said layer, in particular) is deposited a silica gel according to a process called “wet deposition”) on the opposite face in accordance with the embodiment already described in connection with FIG. 1.
  • the glazing is quenched under the usual conditions (for example heating at 620 ° C. for 5 minutes then rapid cooling).
  • the anti-reflective layer becomes porous and the low-e stack achieves the desired properties.
  • a permanent protective coating of the low-e stack is deposited immediately after the tempering step by means of a roller having the texture required to give the glazing a relief generating haze without substantially reducing the TLH, with possibly a intermediate or final baking to harden the material.
  • the material chosen is, for example, a polymer chosen from PVDC (chlorinated polyvinyldiene) as described in application WO2016 / 097599, a styrene-butadiene copolymer as described in application WO2017 / 103465, polyacrylonitrile (PAN) or polymethacrylonitrile (PMAN ) as described in application WO2013 / 089185 or else polycycloolefin or polypropylene.
  • PVDC chlorinated polyvinyldiene
  • PAN polyacrylonitrile
  • PMAN polymethacrylonitrile
  • a permanent protective coating is directly applied to the coating with infrared reflection properties.
  • This layer is, for example, a sol-gel silica layer deposited by the liquid route which is then polymerized and subjected to a hardening treatment by heat treatment, then (or at the same time) textured according to conventional techniques of printing by etching.
  • This protective layer is transparent to IR thermal, hardenable and has the texture required to give the glazing a relief generating haze without substantially reducing the TLH.
  • a third step which can in particular be carried out by resuming the glazing obtained according to the preceding step, for example on another site, the glass is cut to the desired size, the anti-reflective layer is deposited (for example made of porous silica such as described in publication W02008 / 059170 on the opposite face in accordance with the embodiment already described in connection with FIG. 1 and the glazing is quenched under the usual conditions The anti-reflective layer becomes porous and the low-e stack reaches the properties wanted.
  • a glazing unit is obtained according to the invention and capable of being advantageously used in horticultural greenhouses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Greenhouses (AREA)

Abstract

Vitrage, comprenant un substrat de verre sur lequel est déposé en succession, depuis une première surface dudit substrat : un premier revêtement comprenant une couche présentant des propriétés de réflexion de l'infrarouge ou un ensemble de couches dont au moins une couche présente des propriétés de réflexion de l'infrarouge, un second revêtement au-dessus dudit premier revêtement comprenant une couche organique ou minérale, ledit second revêtement présentant une texture en relief, ladite texture étant telle que sa pente moyenne Pm est inférieure ou égale à 5° et le pourcentage de la surface texturée ayant une pente supérieure à 5° est supérieur à 5 %.

Description

VITRAGE TEXTURE ET ISOLANT POUR SERRE
L’invention concerne le domaine des vitrages à forte transparence et diffusants, notamment pour la fabrication de serres horticoles.
Actuellement, des vitrages plans non texturés en surface sont majoritairement utilisés pour la constitution de serres utilisées pour l’horticulture.
Cependant, depuis quelques années, les vitrages pour serres horticoles deviennent des produits de plus en plus techniques. En effet, tout particulièrement dans les climats tempérés, la productivité de la serre augmente proportionnellement au rayonnement solaire que reçoivent les plantes, notamment pendant les périodes à faible ensoleillement.
Par ailleurs, une transmission diffuse de la lumière solaire incidente à travers le vitrage de la serre permet d’augmenter significativement la productivité. Il s’ensuit que des vitrages qui présentent tout à la fois une haute transmission lumineuse et une forte diffusion de la lumière incidente (mesurée par le niveau de flou, le plus souvent nommé haze selon le terme anglais) sont tout particulièrement appropriés pour entrer dans la constitution de serres. Le flou est le rapport entre la transmission diffuse et la transmission totale du vitrage. La forte transmission recherchée pour ces vitrages est celle que l’on appelle la transmission lumineuse hémisphérique (TLH, parfois notée THEM) , c’est-à-dire la transmission dans le domaine du visible (380-780 nm) moyennée sur plusieurs angles d’incidence. Pour chaque angle d’incidence, on mesure toute l’intensité lumineuse traversant le vitrage quel que soit l’angle d’émergence. La transmission hémisphérique est une caractéristique essentielle de ce genre de vitrage pour l’application recherchée et il est nécessaire que le vitrage concerne sensiblement la même TLH après dépôt de la texture diffusante par rapport à un verre plan non- texturé de même nature et même masse surfacique.
Depuis quelques années, des vitrages texturés dont la texture est obtenue par laminage sont bien connus mais utilisés dans d’autres domaines technique comme le photovoltaïque. Cependant, les verres texturés actuels utilisés dans le photovoltaïque sont configurés pour présenter une très forte transmission lumineuse comparée au même verre non-texturé sans tenir compte généralement des effets de diffusion de la lumière transmise par ladite texturation, ce qui peut avoir cette fois un impact négatif pour la production horticole.
Les verres texturés selon l’invention sont au contraire configurés pour diffuser la lumière à l’intérieur de la serre, ce qui implique un impact positif pour la production horticole comme indiqué précédemment. En effet, l’effet de diffusion évite les points chauds sur les plantes et permet une meilleure pénétration de la lumière dans toutes les zones de la serre et au final l’obtention d’un éclairage plus homogène.
La société déposante a déjà développé un verre texturé destiné plus particulièrement à un usage pour serres horticoles, tel que décrit dans la demande brevet WO2016/170261. La texturation du vitrage a ainsi été adaptée à une telle utilisation, et permet en particulier l’obtention d’un flou élevé, tout en gardant une TLH sensiblement égale à celle d’un verre identique mais dépourvu de texture. Un tel vitrage ne décrit cependant pas de moyens permettant de conserver efficacement la chaleur dans la serre, notamment pendant les périodes de froid extérieur.
Par ailleurs et tout particulièrement dans les pays à climat tempéré, dans lesquels les températures extérieures peuvent être relativement froides une grande partie de l’année, l’isolation thermique des serres est également primordiale pour l’optimisation de leur rendement, quelle que soit la saison. Une telle isolation thermique est en général mesurée par le coefficient de transfert thermique U (ou K) du vitrage tel que défini dans la norme NF EN 673 (201 1 ) ou dans la publication de référence « Vitrages à isolation thermique renforcée, Les techniques de l’ingénieur, BE 9 080 ».
Dans cette optique, l’utilisation des doubles vitrages (DGU pour Double Glass Unit) semblerait la plus indiquée pour augmenter de manière très sensible l’isolation thermique de la serre. Des DGU à haute transmission lumineuse pourraient donc être envisagés. Néanmoins, un DGU a plusieurs inconvénients : il est lourd, il est plus cher et surtout il réduit sensiblement la transmission lumineuse vis-à-vis d’un vitrage simple (SGU pour Single Glass Unit). La présente invention se rapporte ainsi à de tels vitrages simples SGU. Il existe donc actuellement un besoin dans le domaine spécifique des vitrages pour serre horticole d’un vitrage simple présentant tout à la fois un niveau élevé de flou, une transmission lumineuse hémisphérique élevée, et une bonne isolation thermique permettant de conserver la chaleur dans la serre.
L’objet de la présente invention est de proposer un vitrage répondant à un tel cahier des charges et à un tel besoin.
Plus précisément, la présente invention concerne un vitrage comprenant un substrat de verre sur lequel est déposé en succession, depuis une première surface dudit substrat :
- un premier revêtement comprenant une couche présentant des propriétés de réflexion de l’infrarouge, tout particulièrement dont la longueur d’onde est comprise entre 3 et 50 micromètres, ou un ensemble de couches dont au moins une couche présente des propriétés de réflexion de l’infrarouge, un second revêtement au-dessus dudit premier revêtement, comprenant une couche organique ou minérale, ledit second revêtement présentant une texture en relief, ladite texture étant telle que la pente moyenne Pm de ladite face texturée est inférieure ou égale à 15° et le pourcentage de la surface ayant une pente supérieure à 5° est supérieur à 5%, de préférence supérieur ou égal à 10%.
Selon l’invention, le second revêtement est avantageusement texturé sur la surface (ou la face) opposée à sa surface au contact dudit premier revêtement.
Par rayonnement infrarouge, on entend au sens de la présente invention le rayonnement de longueur d’onde compris entre 1 et 50 micromètres. Selon des modes de réalisation préférés mais non limitatifs de la présente invention :
- la pente moyenne Pm de la face texturée est inférieure à 12° et de préférence encore est inférieure à 10°, voire inférieure à 8°, ou même très préférentiellement est inférieure à 6°,
la pente moyenne Pm de la face texturée est supérieure à 1 ° et de préférence encore est supérieur à 2°, voire supérieure à 3°,
- le pourcentage de la surface ayant une pente supérieure à 5° est supérieur à
10%, voire supérieur à 15%, et de préférence encore est supérieur à 20%, ou même supérieur à 30%, voire supérieur à 40%, ou très préférentiellement supérieur à 50%. Le pourcentage de la surface ayant une pente inférieure ou égale à 5° est aussi grand que possible (valeur idéale de 100%) mais peut cependant et sans sortir du cadre de l’invention, également être inférieur à 100%, voire inférieur à 90% ou même inférieur à 80%, 70% ou 60%.
Le flou, tel que mesuré sur un angle de 2,5°, est supérieur à 10%, voire supérieur à 15%, supérieur à 20%, ou même supérieur à 30%, voire supérieur à 40%. Selon un mode de réalisation avantageux, le flou est supérieur à 50%, voire supérieure à 60% ou même supérieure à 80%. Le flou est selon l’invention aussi grand que possible (valeur idéale de 100%) mais peut être inférieur à 100%, voire inférieure à 90%, voire inférieur à 85% sans sortir du cadre de l’invention.
- Le rapport entre la transmission lumineuse hémisphérique (TLH) du vitrage comprenant le second revêtement et la TLH du vitrage avant le dépôt du second revêtement est supérieur à 0,8, de préférence encore est supérieur à 0,9, et de manière très préférée est supérieure à 0,95. Idéalement ce rapport est sensiblement égal à 1.
- Le substrat de verre est un verre non texturé sur la face comprenant lesdits premier et second revêtements. Par exemple, le substrat de verre est un verre float dont la surface initiale n’a subi aucun traitement de texturation ou visant à en accentuer la rugosité, avant le dépôt du premier revêtement.
La ou les couche(s) présentant des propriétés de réflexion de l’infrarouge dans le premier revêtement est à base d’argent.
Le premier revêtement est constitué par un empilement comprenant au moins une couche à base d’argent et des couches diélectriques.
Le premier revêtement a une épaisseur comprise entre 5 nanomètres et 1 micromètre, notamment entre 20 et 500 nm.
- Le second revêtement texturé est une couche organique. La couche organique peut notamment être constituée d’un polymère choisi parmi un polyvinyldiène chloré, un copolymère styrène-butadiène, un polyacrylonitrile, un polyméthacrylonitrile ou encore une polycyclooléfine ou un polypropylène. Le second revêtement texturé est une couche d’un matériau minéral, ledit matériau minéral étant de préférence choisi parmi les oxydes, ou les nitrures.
Le revêtement texturé peut notamment être une couche à base d’oxyde de silicium. L’indice de réfraction du matériau constituant la texture est compris dans le domaine allant de 1 ,40 à 1 ,80 à 587nm, de préférence allant de 1 ,40 à 1 ,65 à 587 nm.
L’épaisseur moyenne du second revêtement est comprise entre 1 et 50 micromètres, de préférence entre 1 et 10 micromètres.
La rugosité de la surface texturée du second revêtement est telle que son Rsm moyen compris entre 10 et 100 micromètres.
La rugosité de la surface texturée du second revêtement est telle que son Ra moyen compris entre 0,5 et 5 micromètres.
La texture comprend des motifs jointifs de taille comprise dans le domaine allant de 10 à 100 micromètres.
Ledit vitrage comprend en outre un revêtement anti-reflet sur une ou sur ses deux faces.
La deuxième face principale du vitrage présente également une texture, identique ou différente de celle imprimée sur le second revêtement. La texture de la deuxième face principale peut avantageusement reprendre l’ensemble des caractéristiques précédemment décrites, en particulier une pente moyenne Pm de la face texturée inférieure ou égale à 15° et un pourcentage de la surface texturée ayant une pente supérieure à 5° supérieur à 5 %.
L’invention concerne également une serre horticole équipée d’au moins un vitrage tel que précédemment décrit.
Enfin l’invention se rapporte à un premier procédé de fabrication d’un tel vitrage qui comprend les étapes suivantes :
dépôt sur un substrat verrier d’un premier revêtement comprenant une couche présentant des propriétés de réflexion de l’infrarouge ou un ensemble de couches dont au moins une couche présente des propriétés de réflexion de l’infrarouge, de préférence par pulvérisation cathodique, ladite couche étant de préférence à base d’argent,
dépôt sur le premier revêtement obtenu après l’étape précédente d’un second revêtement constitué une couche minérale d’épaisseur notamment comprise entre 1 et 30 micromètres, texturation dudit second revêtement, notamment par un procédé de gaufrage, de laminage ou par attaque acide, de préférence par un procédé de laminage,
de préférence traitement thermique de trempe du vitrage.
Un procédé alternatif de fabrication d’un vitrage selon l’invention comprend les étapes suivantes :
dépôt sur un substrat verrier d’un premier revêtement comprenant une couche présentant des propriétés de réflexion de l’infrarouge ou un ensemble de couches dont au moins une couche présente des propriétés de réflexion de l’infrarouge, de préférence par pulvérisation cathodique, ladite couche étant de préférence à base d’argent,
traitement thermique de trempe du vitrage,
dépôt d’un second revêtement constitué d’une couche organique de préférence d’épaisseur comprise entre 1 et 10 micromètres,
texturation dudit second revêtement, notamment par un procédé de gaufrage, de laminage, de gravure notamment au moyen d’un rouleau préimprimé, ou par attaque acide, de préférence par un procédé de laminage. Selon des modes avantageux de la présente invention, on utilise comme substrat une matrice verrière peu absorbante telle que le verre Diamant® ou encore Albarino® commercialisé par la société déposante. On utilise en particulier un verre dont la TLH est supérieure à 78%, de préférence supérieure à 79%, voire supérieure à 80%.
Le niveau de flou du vitrage selon l’invention, tel que mesuré selon un angle de 2,5° sur un Hazemeter Byk-Gardner est de préférence supérieur à 50%, de préférence supérieur à 60%, de préférence encore supérieur à 70%, voire même supérieur à 80%. La mesure peut notamment être effectuée selon les principes décrits dans la norme ISO 13468 (illuminant D65).
Au sens de la présente invention et dans le cadre de la présente demande (et notamment dans les exemples), la TLH est mesurée selon les méthodes détaillées dans l’article“Transvision: A light transmission measurement System for greenhouse covering materials” publié dans les actes de « Proc 7th IS on light in Horticultural Systems, Eds : S. Hemming and E. Heuvelink, Acta Hort.956, ISHS 2012 » .
La surface texturée du vitrage selon l’invention permet la diffusion de la lumière, la surface ayant une pente moyenne Pm de quelques degrés, c'est-à-dire typiquement inférieure ou égale à 15° au sens décrit précédemment.
Au sens de la présente invention, la mesure d’un niveau de flou selon un angle de 2,5° signifie que le niveau de flou est mesuré par le rapport entre :
la quantité de lumière transmise diffusée au-delà d’un cône de demi- angle 2,5° autour de la normale à la surface du vitrage et
- la quantité totale de lumière transmise à travers le vitrage.
On a reporté sur la figure 1 ci-jointe à titre purement illustratif un schéma permettant une meilleure compréhension de la mesure du flou selon l’invention. La pente en un point A de la surface texturée du vitrage correspond à l’angle alpha (a) formé entre le plan tangent en ce point et le plan général de la feuille de support (ici la face du substrat verrier). La mesure de la pente au point A est réalisée à partir de la mesure de la variation de hauteur au voisinage de ce point et par rapport au plan général de la feuille. L’homme du métier connaît les appareils (ou profilomètres) capables de réaliser ces mesures de hauteur. Notamment, les mesures ont été effectuées dans le cadre de la présente invention grâce à un profilomètre MIME, utilisant une technologie confocale chromatique. La mesure de la pente moyenne Pm de la surface et du pourcentage de la surface ayant une pente supérieure à 5° est déterminée à partir de la mesure de pentes en des points répartis sur un maillage carré de période 1 micromètre. On calcule alors la moyenne de la pente de tous ces points. Sur la base de la même mesure du profil de la texture du second revêtement, on peut également calculer le pourcentage de la surface ayant une pente supérieure à 5°.
La surface texturée selon l’invention permet en particulier la diffusion de la lumière et l’apparition de flou, la surface ayant dans cette optique une pente moyenne Pm de quelques degrés, c'est-à -dire égale ou inférieure à 15°.
Pour obtenir une texture proche de celle souhaitée, on réalise de préférence des motifs dont la taille est de l’ordre de 10 à 100 micromètres. Par taille, on entend le diamètre du plus petit cercle contenant le motif. De préférence les motifs sont jointifs.
On rappelle que le Rsm (période moyenne ou pas moyen) d’un profil (c’est- à-dire selon un segment de droite) d’une surface est défini par la relation : dans laquelle S, est la distance entre deux passages par zéro (ligne médiane) et montants, n+1 étant le nombre de passage par zéro en montant dans le profil considéré. Pour plus de détails, on pourra également se référer à norme IS04287 (1997). Ce paramètre RSm est représentatif de la distance entre pics, c’est-à-dire du pas de la texture parallèlement au plan général de la feuille. Les valeurs de Rsm sont données après utilisation de filtres gaussiens avec coupures (ou longueur de base, cut-off en anglais) à 0,8 micromètres et 250 micromètres (suppression des périodes inférieures à 0,8 micromètres et supérieures à 250 micromètres). Les mesures de Rsm sont réalisées sur une distance d’au moins 1250 micromètres. Pour tout point de la surface texturée, le Rsm autour dudit point correspond à la moyenne arithmétique des Rsm pour 10 profils partant en étoile à partir du point considéré. Pour le calcul du Rsm autour d’un point, on enlève les valeurs supérieures ou égales à 1250 micromètres. Cela évite de prendre en compte des profils dans certaines lignes directrices de textures particulières comme celle de prismes parallèles ou de lignes droites entre des pyramides alignées (valeur de Rsm infini ou non-calculable). On définit le Rsm moyen d’une surface texturée en calculant la moyenne arithmétique des Rsm autour d’un point, les points étant choisis sur un quadrillage carré avec un pas de 5 cm.
De préférence, le Rsm moyen de la surface texturée est compris dans le domaine allant de 10 micromètres à 100 micromètres et de préférence dans le domaine allant de 20 à 80 micromètres et même dans le domaine allant de 30 micromètres à 70 micromètres voire dans le domaine allant de 40 micromètres à 60 micromètres. De manière encore préférée, le Rsm autour de tout point de la surface texturée est compris dans le domaine allant de 10 micromètres à 100 micromètres et de préférence dans le domaine allant de 20 à 80 micromètres et même dans le domaine allant de 30 micromètres à 70 micromètres voire même dans le domaine allant de 40 micromètres à 60 micromètres.
Les motifs de la texture peuvent être des motifs linéaires parallèles comme des prismes parallèles ou être des motifs pouvant s’inscrire dans un cercle comme des cônes ou des pyramides.
Les motifs de la texture présentent par exemple une profondeur moyenne (ou hauteur moyenne) comprise entre environ 0,5 et 3 micromètres, sur la base des mêmes conditions de mesures que décrites précédemment et selon la norme IS04287 (1997).
Le premier revêtement selon l’invention comprenant au moins une couche présentant des propriétés de réflexion de l’infrarouge en particulier thermique (c'est-à-dire compris entre 3 et 50 micromètres) ou un ensemble de couches dont au moins une couche présente des propriétés de réflexion de l’infrarouge notamment thermique. Il est de préférence constitué par un empilement de couches comprenant au moins une couche à base d’argent et de préférence au moins deux, voire trois couches d’argent, séparées par des couches de matériaux diélectriques. L’émissivité normale dudit premier revêtement (c'est-à-dire de la surface d’un vitrage revêtu par un tel revêtement), au sens décrit dans la norme EN 12898 (2001 ), est de préférence inférieure à 0,15, de préférence encore inférieur à 0,1 et de manière très préférée inférieure à 0,05. Ledit premier empilement comprend également des couches de matériaux diélectriques dont les indices, l’emplacement dans la succession de couches et les épaisseurs sont optimisés pour conférer au vitrage une TLH optimale, c'est-à-dire maximale, selon des techniques bien connues dans le domaine. Son épaisseur varie de quelques nanomètres) à quelques centaines de nanomètres, par exemple entre 10 et 300 nanomètres.
C’est par exemple un empilement bas émissif comprenant une couche fonctionnelle à base d’argent et commercialisé par la société déposante sous la référence Eclaz II, dont l’émissivité normale est de 3% et la TLH de 81 % lorsqu’il est déposé sur un verre clair tel que le verre Planiclear également commercialisé par la société déposante. Muni d’une telle couche, le coefficient de transfert thermique U du vitrage simple selon l’invention est en général inférieur à 4 W/m2.K, et de préférence inférieure à 3,5 W/m2.K. Le second revêtement peut être selon l’invention de nature organique ou de nature minérale.
Selon un premier mode, ce revêtement est de nature organique. Ce revêtement peut être avantageusement un polymère Le matériau choisi est par exemple un polymère choisi parmi le PVDC (polyvinyldiène chloré) tel que décrit dans la demande WO2016/097599, un copolymère styrène-butadiène comme décrit dans la demande WO2017/103465, le polyacrylonitrile (PAN) ou le polyméthacrylonitrile (PMAN) tels que décrits dans la demande WO2013/089185 ou encore le polycyclooléfine ou le polypropylène, ou de manière général, tout polymère suffisamment résistant mécaniquement et chimiquement pour préserver le premier empilement sous-jacent et notamment les couches réfléchissants l’infra-rouge de tels empilements, notamment la ou les couches à base d’argent.
Le polymère est avantageusement choisi transparent dans le domaine du visible (380-780 nm) et de préférence également transparent dans l’infrarouge proche (780-2500 nm). Ledit revêtement est selon l’invention avantageusement peu ou pas absorbant dans le domaine de l’infrarouge thermique (c'est-à-dire de longueur d’onde comprise entre 3 et 50 microns). Selon un mode alternatif, le revêtement est de nature minérale. Un tel revêtement peut être par exemple à base d’oxyde de silicium notamment obtenu par un procédé sol-gel puis chauffage ou encore tout autre composé minéral diélectrique transparent dans le domaine du visible (380-780 nm) et de préférence également transparent dans l’infrarouge proche (780-2500 nm). Ledit revêtement est selon l’invention avantageusement peu ou pas absorbant dans le domaine de l’infrarouge thermique (c'est-à-dire de longueur d’onde comprise entre 3 et 50 microns).
L’épaisseur du second revêtement est de préférence inférieure à 10 micromètres, et de préférence encore inférieure à 5 micromètres. Notamment dans le cas où le second revêtement est de nature minérale, son épaisseur peut même être inférieure à 3 micromètres ou même inférieure à 2 micromètres.
Après dépôt du second revêtement, celui-ci est texturé au sens de la présente invention, de manière à en augmenter le flou selon les critères définis précédemment, sans en diminuer sensiblement la TLH. Une telle texture du second revêtement de protection organique ou minéral peut être obtenue par tout moyen connu, en particulier par embossage, par laminage, par gravure (notamment au moyen d’un rouleau préimprimé), par thermoformage, par gaufrage, ou encore par attaque acide.
Avantageusement cependant, la texture est obtenue par gravure de la surface dudit second revêtement au moyen d’un rouleau dont les motifs sont imprimés en négatif, avec éventuellement une étape de chauffage de sa surface jusqu’à atteindre une température de ramollissement au moins en surface dudit second revêtement ou alternativement pour densifier ledit revêtement (notamment dans le cas d’une couche sol-gel).
Le vitrage peut comprendre également une ou plusieurs couches antireflets pour augmenter la transmission lumineuse (TLH). Le revêtement antireflet peut être déposé sur l’une ou les deux faces du vitrage, et notamment sur la face non texturée. Cet effet antireflet peut être obtenu par le dépôt d’une couche ou de plusieurs couches formant un empilement, par attaque chimique ou toute autre technique adaptée. L’effet antireflet est choisi pour être efficace aux longueurs d’onde 400-700 nm. Un revêtement anti-reflet (couche anti-reflet ou empilement de couches à effet anti-reflet) a généralement une épaisseur comprise dans le domaine allant de 10 à 500 nm. De telles couches antireflets sont notamment avantageusement choisies parmi les couches en oxyde de silicium poreux, notamment du type de ceux décrits dans la publication W02008/059170.
L’invention est utile pour faire office de vitrage laissant passer la lumière de serres pour l’horticulture, ainsi que pour d’autres applications nécessitant une forte TLH et un flou important comme une serre horticole mais également une véranda, un hall d’accueil, un espace public.
La figure 1 décrit un exemple d’un vitrage selon l’invention :
Le vitrage comprend un substrat transparent 1 , dont la transmission lumineuse TLH, est supérieure à 80 %, en particulier supérieure à 82% ou même supérieure à 83%. Il s’agit notamment d’un verre float extra-clair commercialisé par la société déposante sous la référence Diamant®. Sur une première face de ce substrat verrier, est déposé un revêtement antireflet 2 de tout type connu, en particulier à base d’oxyde de silicium poreux. Sur l’autre face du substrat, sont présents en succession un premier revêtement 3 dit « low-e » et comprenant au moins une couche réfléchissant les infrarouges notamment thermiques, en particulier une couche à base d’argent. De préférence, l’empilement présente une émissivité normale inférieure à 0,1 , voire même inférieure à 0,05. Ce premier revêtement est choisi d’une part pour conférer des propriétés d’isolation thermique au vitrage, sans en diminuer substantiellement la TLH, selon les principes décrits précédemment. Un second revêtement 4 de protection, à base minérale ou organique comme décrit précédemment, est présent au-dessus du premier revêtement, par référence à la surface du substrat. Cette couche de protection comporte sur la surface (face) opposée une texturation 5 spécifiquement adaptée pour porter le niveau de flou à une valeur au moins égale à 10% et de préférence supérieure à 50%, au sens précédemment décrit, tout en conservant une valeur de la TLH égale à au moins 80% et de préférence égale à au moins 85%, voire 90% de la valeur initiale du vitrage (muni du premier revêtement) avant le dépôt de ce second revêtement de protection.
On obtient ainsi un vitrage présentant tout à la fois de bonnes propriétés d’isolation thermique et un fort niveau de flou, tout en conservant une forte transmission lumineuse TLH et au final un vitrage parfaitement adapté à une utilisation dans une serre horticole.
Un exemple de réalisation non limitatif d’un tel vitrage est donné ci-après :
Dans cet exemple, on imprime par laminage un vitrage tel que décrit précédemment et comprenant :
- Un substrat verrier clair Planiclear® commercialisé par la société Saint-Gobain
Glass France,
- Un premier revêtement constitué par un empilement Eclaz II ® à base d’argent commercialisé par la société Saint-Gobain Glass France,
- Un second revêtement d’un polymère organique à base de copolymère de styrène-butadiène comme décrit dans la demande WO2017/103465, d’épaisseur totale égale à environ 5 micromètres.
On imprime, au moyen d’un rouleau imprimé, sur la face extérieure de ce second revêtement une texture constituée par une répétition de motifs pyramidaux à base irrégulière en creux de tailles différentes, comme représenté sur la figure 2 ci-jointe. Sur la figure 2, la profondeur est la différence de hauteur entre les points les plus clairs et les plus sombres de cette figure. Le tableau 1 ci-dessous indique les principales valeurs de la texture induite sur le second revêtement :
Tableau 1
On mesure que la TLH est diminuée de l’ordre de 5% par rapport au substrat de verre initial sans les deux revêtements. Le coefficient de transfert thermique U du vitrage selon l’invention est de 3,4 W/m2.K, alors qu’il était de 5,8 W/m2.K pour le substrat nu. Le niveau de flou est lui de l’ordre de 60%, ce qui assure une diffusion optimale de la lumière dans la serre.
On donne ci-après différentes méthodes de fabrication d’un vitrage selon l’invention, en relation avec la figure 3 ci-jointe :
Selon une première étape, un substrat float extra-clair, par exemple un substrat diamant® de la société déposante, est sélectionné. Un premier revêtement présentant des propriétés de réflexion de l’infrarouge, connu dans le domaine sous l’appelation « low-e », est déposé sur le substrat extra-clair par les techniques bien connues de pulvérisation sous vide assistée par magnétron. Cet empilement de couches comprend au moins une couche à base d’argent, de préférence en argent, et l’empilement est configuré de telle façon que la TLH de l’ensemble substrat- premier revêtement soit maximisée. De préférence encore, l’empilement est configuré pour minimiser la valeur du coefficient de transfert thermique U, notamment par la sélection d’un empilement dont la valeur de l’émissivité normale est minimale, au sens précédemment décrit. Avantageusement, l’empilement low-e sélectionné est du type « à tremper », et ne présente en outre pas de variation significative de sa colorimétrie lors de la trempe du vitrage. Selon un mode avantageux mais optionnel, on peut déposer sur cette empilement magnétron un revêtement de protection temporaire est appliqué sur le revêtement à propriétés de réflexion de l’infra-rouge. Cette couche est par exemple déposée par voie liquide et est par exemple issue d’une composition à base de méthacrylates (couche easypro) telle que décrite dans la demande WO2015/019022. A- Selon une première réalisation
- selon une seconde étape :
Dans une seconde étape qui peut notamment est effectué en reprise du vitrage obtenu selon l’étape précédente, par exemple sur un autre site, on découpe le verre à la taille souhaitée, on dépose optionnellement la couche antireflet (ou précurseur de ladite couche, notamment un gel de silice selon un procédé dit « dépôt wet ») sur la face opposée conformément à la réalisation déjà décrite en connexion avec la figure 1. On effectue une trempe du vitrage dans les conditions habituelles (par exemple chauffage à 620 °C pendant 5 minutes puis refroidissement rapide). La couche antireflet devient poreuse et l’empilement low- e atteint les propriétés recherchées.
- selon une troisième étape :
On dépose immédiatement après l’étape de trempe un revêtement de protection permanent de l’empilement low-e au moyen d’un rouleau présentant la texture requise pour conférer au vitrage un relief générant du flou sans en diminuer substantiellement la TLH, avec éventuellement une cuisson intermédiaire ou finale pour durcir le matériau. Le matériau choisi est par exemple un polymère choisi parmi le PVDC (polyvinyldiène chloré) tel que décrit dans la demande WO2016/097599, un copolymère styrène-butadiène comme décrit dans la demande WO2017/103465, le polyacrylonitrile (PAN) ou le polyméthacrylonitrile (PMAN) tels que décrits dans la demande WO2013/089185 ou encore le polycyclooléfine ou le polypropylène.
B- Selon une seconde réalisation
- dans une seconde étape :
Un revêtement de protection permanent est directement appliqué sur le revêtement à propriétés de réflexion de l’infra-rouge. Cette couche est par exemple une couche silice de sol-gel déposée par voie liquide qui est ensuite polymérisée et soumis à un traitement de durcissement par traitement thermique, puis (ou dans le même temps) texturée selon les techniques classiques d’impression par gravure. Cette couche de protection est transparente aux IR thermique, trempable et présente la texture requise pour conférer au vitrage un relief générant du flou sans en diminuer substantiellement la TLH.
- selon une troisième étape :
Dans une troisième étape, qui peut notamment être effectuée en reprise du vitrage obtenu selon l’étape précédente, par exemple sur un autre site, on découpe le verre à la taille souhaitée, on dépose la couche antireflet (par exemple en silice poreuse telle que décrite dans la publication W02008/059170 sur la face opposée conformément à la réalisation déjà décrite en connexion avec la figure 1 et on effectue une trempe du vitrage dans les conditions habituelles. La couche antireflets devient poreuse et l’empilement low-e atteint les propriétés recherchées.
On obtient au final un vitrage selon l’invention et apte à être avantageusement utilisé dans des serres horticoles.

Claims

REVENDICATIONS
1 Vitrage, comprenant un substrat de verre sur lequel est déposé en succession, depuis une première surface dudit substrat :
un premier revêtement comprenant une couche présentant des propriétés de réflexion de l’infrarouge ou un ensemble de couches dont au moins une couche présente des propriétés de réflexion de l’infrarouge,
un second revêtement disposé au-dessus dudit premier revêtement comprenant une couche organique ou minérale, ledit second revêtement présentant une texture en relief, ladite texture étant telle que sa pente moyenne Pm est inférieure ou égale à 15°, et que le pourcentage de la surface texturée ayant une pente supérieure à 5° est supérieur à 5%.
2. Vitrage selon la revendication 1 , présentant un flou, tel que mesuré selon un angle de 2,5°, supérieur à 10%, de préférence supérieur à 50%.
3. Vitrage selon l’une des revendications précédentes, dans lequel le rapport entre la transmission lumineuse hémisphérique (TLH) du vitrage comprenant le second revêtement et la transmission lumineuse hémisphérique du vitrage avant le dépôt du second revêtement est supérieur à 0,8.
4. Vitrage selon l’une des revendications précédentes, dans lequel le substrat de verre est un verre non texturé sur la face comprenant lesdits premier et second revêtements.
5. Vitrage selon l’une des revendications précédentes, dans lequel le second revêtement texturé est une couche organique.
6 Vitrage selon la revendication précédente, dans lequel la couche organique est constituée d’un polymère choisi parmi un polyvinyldiène chloré, un copolymère styrène-butadiène, un polyacrylonitrile, un polyméthacrylonitrile ou encore une polycyclooléfine ou un polypropylène.
7. Vitrage selon l’une des revendications 1 à 4, dans lequel le second revêtement texturé est une couche d’un matériau minéral, ledit matériau minéral étant de préférence choisi parmi les oxydes, ou les nitrures.
8. Vitrage selon la revendication précédente, dans lequel le revêtement texturé est une couche à base d’oxyde de silicium.
9. Vitrage selon l’une des revendications précédentes, dans lequel la ou les couche(s) présentant des propriétés de réflexion de l’infrarouge est à base d’argent.
10. Vitrage selon l’une des revendications précédentes, caractérisé en ce que l’indice de réfraction du matériau constituant le second revêtement est compris dans le domaine allant de 1 ,40 à 1 ,80 à 587 nm.
11. Vitrage selon l’une des revendications précédentes, caractérisé en ce que l’épaisseur moyenne dudit second revêtement est comprise entre 1 et 50 micromètres, de préférence entre 1 et 10 micromètres.
12. Vitrage selon l’une des revendications précédentes, caractérisé en ce que la rugosité de la surface texturée du second revêtement est telle que le Rsm moyen compris entre 10 et 100 micromètres.
13. Vitrage selon l’une des revendications précédentes, caractérisé en ce que la rugosité de la surface texturée du second revêtement est telle que son Ra moyen est compris entre 0,5 et 5 micromètres.
14. Vitrage selon l’une des revendications précédentes, caractérisé en ce que la texture comprend des motifs jointifs de taille comprise dans le domaine allant de 10 à 100 micromètres.
15. Vitrage selon l’une des revendications précédentes, caractérisé en ce qu’elle comprend un revêtement anti-reflet sur une ou sur ses deux faces.
16. Vitrage selon l’une des revendications précédentes, caractérisé en ce que sa deuxième face principale présente également une texture, identique ou différente de celle imprimée sur le second revêtement.
17. Vitrage selon la revendication précédente, caractérisé en ce que la texture de la deuxième face principale a une pente moyenne Pm de la face texturée est inférieure ou égale à 15° et le pourcentage de la surface texturée ayant une pente supérieure à 5° est supérieur à 5 %.
18. Serre horticole comprenant au moins un vitrage selon l’une des revendications précédentes.
19. Procédé de fabrication d’un vitrage selon l’une des revendications 1 à 17 comprenant les étapes suivantes :
dépôt sur un substrat verrier d’un premier revêtement comprenant une couche présentant des propriétés de réflexion de l’infrarouge ou un ensemble de couches dont au moins une couche présente des propriétés de réflexion de l’infrarouge, de préférence par pulvérisation cathodique, ladite couche étant de préférence à base d’argent, dépôt sur le premier revêtement obtenu après l’étape précédente d’un second revêtement constitué une couche minérale d’épaisseur notamment comprise entre 1 et 30 micromètres,
texturation dudit second revêtement, notamment par un procédé de gaufrage, de laminage ou par attaque acide, de préférence par un procédé de laminage,
de préférence traitement thermique de trempe du vitrage.
20. Procédé de fabrication d’un vitrage selon l’une des revendications 1 à 17 comprenant les étapes suivantes :
dépôt sur un substrat verrier d’un premier revêtement comprenant une couche présentant des propriétés de réflexion de l’infrarouge ou un ensemble de couches dont au moins une couche présente des propriétés de réflexion de l’infrarouge, de préférence par pulvérisation cathodique, ladite couche étant de préférence à base d’argent, traitement thermique de trempe du vitrage,
dépôt d’un second revêtement constitué d’une couche organique de préférence d’épaisseur comprise entre 1 et 10 micromètres,
texturation dudit second revêtement, notamment par un procédé de gaufrage, de laminage, de gravure notamment au moyen d’un rouleau préimprimé, ou par attaque acide, de préférence par un procédé de laminage.
EP19765778.6A 2018-08-31 2019-08-02 Vitrage texture et isolant pour serre Withdrawn EP3844119A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857831A FR3085372B1 (fr) 2018-08-31 2018-08-31 Vitrage texture et isolant pour serre
PCT/FR2019/051897 WO2020043973A1 (fr) 2018-08-31 2019-08-02 Vitrage texture et isolant pour serre

Publications (1)

Publication Number Publication Date
EP3844119A1 true EP3844119A1 (fr) 2021-07-07

Family

ID=65494247

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19765778.6A Withdrawn EP3844119A1 (fr) 2018-08-31 2019-08-02 Vitrage texture et isolant pour serre

Country Status (5)

Country Link
US (1) US20210253472A1 (fr)
EP (1) EP3844119A1 (fr)
CA (1) CA3107964A1 (fr)
FR (1) FR3085372B1 (fr)
WO (1) WO2020043973A1 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2908406B1 (fr) 2006-11-14 2012-08-24 Saint Gobain Couche poreuse, son procede de fabrication et ses applications.
US9499436B2 (en) * 2011-04-01 2016-11-22 Guardian Industries Corp. Light scattering coating for greenhouse applications, and/or coated article including the same
JP2013145358A (ja) 2011-12-16 2013-07-25 Nitto Denko Corp 赤外線反射フィルム
FR3009302B1 (fr) 2013-08-05 2018-01-12 Saint-Gobain Glass France Substrat portant un revetement fonctionnel et une couche de protection temporaire
FR3030496B1 (fr) 2014-12-17 2016-12-30 Saint Gobain Vitrage de controle thermique muni d'un film polymere protecteur
FR3035397A1 (fr) 2015-04-23 2016-10-28 Saint Gobain Verre texture pour serre
FR3045034B1 (fr) 2015-12-15 2019-06-07 Saint-Gobain Glass France Vitrage de controle thermique muni d'un film polymere protecteur

Also Published As

Publication number Publication date
FR3085372A1 (fr) 2020-03-06
WO2020043973A1 (fr) 2020-03-05
CA3107964A1 (fr) 2020-03-05
FR3085372B1 (fr) 2020-08-28
US20210253472A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
EP2822909B1 (fr) Vitrage anticondensation
EP2598455B1 (fr) Vitrage
EP3286149B1 (fr) Verre texturé pour serres et procédé de fabrication associé
EP2153471A2 (fr) Substrat transparent muni d'une couche electrode perfectionnee
FR2908406A1 (fr) Couche poreuse, son procede de fabrication et ses applications.
WO2010139908A1 (fr) Procede de depot de couche mince et produit obtenu
EP3554826A1 (fr) Element en couches transparent comportant une zone ecran
WO2007077373A1 (fr) Substrat transparent comportant un revetement antireflet
EP2523919B1 (fr) Materiau photocatalytique et vitrage ou cellule photovoltaique comprenant ce materiau
FR2928147A1 (fr) Substrat texture muni d'un empilement a proprietes thermiques
WO2015032618A1 (fr) Feuille de verre texturée à motifs rectilignes
WO2014131610A1 (fr) Feuille de verre texturée à motifs rectilignes
EP3844119A1 (fr) Vitrage texture et isolant pour serre
FR3074091B1 (fr) Vitrage fonctionnel muni d'un film protecteur permanent
EP4128365B1 (fr) Bipv integrant un element transparent ou translucide a reflexion diffuse
FR3088634A1 (fr) Verre texture luminescent pour serre
BE1019211A3 (fr) Substrat conducteur transparent pour dispositifs optoelectroniques.
WO2011107554A2 (fr) Substrat conducteur transparent pour dispositifs optoélectroniques

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20210331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220202

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220614