EP3842830A1 - Device for the two-dimensional scanning beam deflection of a light beam - Google Patents

Device for the two-dimensional scanning beam deflection of a light beam Download PDF

Info

Publication number
EP3842830A1
EP3842830A1 EP20214999.3A EP20214999A EP3842830A1 EP 3842830 A1 EP3842830 A1 EP 3842830A1 EP 20214999 A EP20214999 A EP 20214999A EP 3842830 A1 EP3842830 A1 EP 3842830A1
Authority
EP
European Patent Office
Prior art keywords
optical component
wavelength
deflection
prisms
deflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20214999.3A
Other languages
German (de)
French (fr)
Inventor
Frank HÖLLER
Kerstin Winkler
Felix Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss AG
Original Assignee
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG filed Critical Carl Zeiss AG
Publication of EP3842830A1 publication Critical patent/EP3842830A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • G02B26/0883Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements the refracting element being a prism
    • G02B26/0891Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements the refracting element being a prism forming an optical wedge
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/106Scanning systems having diffraction gratings as scanning elements, e.g. holographic scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Definitions

  • the invention relates to a device for two-dimensional scanning beam deflection of a light beam.
  • the device can in particular be used for scanning beam deflection when determining distances between both moving and still objects and for determining the topography or shape of one or more spatially extended three-dimensional objects.
  • a measurement principle also known as LIDAR, in which an optical signal whose frequency changes continuously over time is emitted to the object in question and is evaluated after the object has been reflected back.
  • FIG 5a shows only a schematic representation of a basic structure known per se, in which a signal 51 emitted by a spectrally tunable light source 50 with a frequency changed over time (also referred to as "chirp") is split into two partial signals, this splitting via one not shown Beam splitter (e.g. a partially transparent mirror or a fiber optic splitter) takes place.
  • Beam splitter e.g. a partially transparent mirror or a fiber optic splitter
  • the two partial signals are coupled via a signal coupler 57 and superimposed on one another at a detector 58, the first partial signal reaching the signal coupler 57 and the detector 58 as a reference signal 53 without reflection at the object labeled "56".
  • the second partial signal arriving at the signal coupler 57 or the detector 58 runs as a measurement signal 52 via an optical circulator 54 and a scanning device 55 to the object 56, is reflected back by this and thus arrives with a time delay and correspondingly changed compared to the reference signal 53 Frequency to signal coupler 57 and detector 58.
  • the detector signal supplied by the detector 58 is evaluated relative to the measuring device or the light source 50 via an evaluation device (not shown), the detected signal at a specific point in time, in the diagram of FIG Figure 5b
  • the difference frequency 59 shown between the measurement signal 52 and the reference signal 53 is characteristic of the distance of the object 56 from the measurement device or the light source 50.
  • the time-dependent frequency profile of the signal 51 emitted by the light source 50 can also be designed in such a way that there are two sections in which the time derivative of the Light source 50 generated frequency is opposite to each other.
  • FOV field of view
  • the invention is initially based on the idea that, for the implementation of a two-dimensional scanning beam deflection (for the purpose of two-dimensional scanning of an object), an optical component (such as a grating or grating prism) that acts continuously or monotonically with regard to the wavelength-dependent beam deflection is combined with another component which during the scanning process causes a (in particular periodic) back and forth movement of the respective beam in another direction (typically perpendicular to the first beam deflection), in other words thus repeatedly traversing one and the same deflection angle range.
  • an optical component such as a grating or grating prism
  • the invention is based in particular on the concept of realizing a two-dimensional scanning beam deflection in that, in combination with at least one light source that is spectrally tunable in terms of its wavelength, at least two optical components are used which are arranged one after the other with respect to the direction of light propagation or through which the light passes one after the other one of these components causes a wavelength-dependent beam deflection and the other of these components has at least one prism pair of prisms arranged one behind the other in the beam path so as to be rotatable.
  • the invention for the implementation of a two-dimensional scanning process - in combination with a wavelength-dependent, E.g. first beam deflection caused by a grating or grating prism - the use of a pair of prisms made of prisms rotatably arranged one after the other in the beam path has the advantage, among other things, that through said pair of prisms a periodic back and forth movement of the respective beam is already carried out by a continuous counter-rotating movement the prisms can be brought about with the result that the prisms experience no acceleration (i.e. no optical elements have to be moved back and forth) and at the same time an equally robust and compact structure is achieved.
  • the compactness of the device according to the invention results from the fact that the lateral dimensions (ie the dimensions perpendicular to the optical beam path or to the direction of light propagation) ultimately do not have to be significantly larger than the corresponding beam dimensions.
  • a wavelength-dependent beam-deflecting first optical component e.g. grating or grating prism
  • grating or grating prism e.g. grating or grating prism
  • the use of a wavelength-dependent beam-deflecting first optical component in combination with the above pair of prisms according to the invention has the advantage that several light beams of different wavelengths or different tuning ranges (over the Use of several light sources and / or a frequency comb) can be processed.
  • the first optical component has at least one grating.
  • This grating can be a grating operated in transmission or else a grating operated in reflection.
  • the first optical component has at least one grating prism. Due to the design of the (wavelength-dependent) first optical component as a highly dispersive grating prism, the tuning range of the at least one light source required for the two-dimensional scanning process can be selected to be comparatively small (e.g. 1500 nm ⁇ 100 nm).
  • the prisms of the prism pair are designed as achromatic prisms. In this way, a wavelength-independent functioning of the second optical component (whose beam deflection should be based on the prism rotation and not on the wavelength tuning) can be ensured.
  • the second direction is perpendicular to the first direction.
  • the second optical component is arranged after the first optical component in relation to the direction of light propagation.
  • the angle of incidence of the light for the first component e.g. the grating prism
  • the second optical component can alternatively be arranged after or also in front of the first optical component.
  • the at least one spectrally tunable light source is designed to transmit a plurality of light beams in parallel, each with a wavelength varying over time.
  • the device also has at least one polarizer.
  • a polarizer can be used to set the polarization state of the at least one light beam emitted by the light source in such a way that the diffraction efficiency of a grating or grating prism forming the first component is maximized.
  • the invention also relates to the use of a device with the features described above in a LIDAR system for the scanning of the distance determination of an object.
  • the device according to the invention has at least one spectrally tunable (i.e. variable with regard to the wavelength of the emitted light) light source for emitting at least one light beam with a wavelength that varies over time.
  • at least one spectrally tunable (i.e. variable with regard to the wavelength of the emitted light) light source for emitting at least one light beam with a wavelength that varies over time.
  • several light beams of different wavelengths or different tuning ranges can also be provided for the purpose of temporal parallelization of the scanning process, which in turn can take place via the use of several light sources or alternatively also with the generation of a frequency comb.
  • the embodiments described below have in common that - for two-dimensional scanning beam deflection at least one light beam with a wavelength varying over time generated by a spectrally tunable light source - at least two separate optical components (each causing beam deflections in different directions) are used become.
  • One of these beam deflections takes place as a function of the wavelength (for example via a grating or grating prism), the other of these beam deflections being effected via a pair of prisms rotatably arranged one behind the other in the beam path.
  • a periodic variation of the deflection angle in the relevant - different from the beam deflection of the first optical component - is achieved in particular via a continuous and counter-rotating movement of the prisms, which does not require any acceleration or back and forth movement of the prisms.
  • Direction causes, ultimately a continuous rotational movement of the prisms converted into a periodic scanning movement of the respective measuring beam.
  • Figures 1a-1d and Figures 2a-2d show schematic illustrations to explain a first embodiment.
  • Light hits a (in Fig. 1-2 not shown) spectrally tunable light source first on the first component labeled "110" and in the exemplary embodiment designed as an (immovable) grating prism and then on the second component labeled "120" and formed by the above-mentioned pair of prisms.
  • Figures 1a-1d each show the arrangement in plan view (ie in the xz plane in the drawn-in coordinate system) and for different angles of rotation of the counter-rotating prisms of component 120, the position according to FIG Fig. 1a a relative angle of rotation of 0 °, the position according to Figure 1b a relative rotation angle of 90 °, the position according to Figure 1c a relative rotation angle of 180 ° and the position according to Fig. 1d one to each other corresponds to a relative angle of rotation of 270 °.
  • the counter-rotating prisms of component 120 in the embodiment shown are rounded prisms.
  • Figures 2a-2d show analogous representations for the side view (ie in the yz plane in the drawn coordinate system), the position according to FIG Fig. 2a an angle of rotation of 0 °, the position according to Figure 2b an angle of rotation of 90 °, the position according to Figure 2c an angle of rotation of 180 ° and the position according to Fig. 2d corresponds to a rotation angle of 270 °.
  • the two-dimensional beam deflection is in operation of the device from Fig. 1-2 achieved by tuning the wavelength of the light source (which leads to the in Figures 2a-2d schematically indicated beam deflection over the first component 110 or the grating prism in the yz plane), and on the other hand a continuous counter-rotating movement of the two prisms of the second component 120 takes place (which leads to the in Figures 1a-1d schematically indicated beam deflection leads in the xz plane).
  • the selected order of the optical components 110, 120 is advantageous, on the one hand, as the angle of incidence of the light for the first component 110 or the grating prism remains unchanged regardless of the angle of rotation of the prisms and, on the other hand, the lateral dimensions of the grating prism due to the placement at the light entrance can be minimized in the overall arrangement of the first and second components.
  • Figures 3a-3c show the arrangement in each case in plan view (ie in the xz plane in the drawing Coordinate system) and for different angles of rotation of the counter-rotating prisms of component 320, the position according to Fig. 3a an angle of rotation of 0 °, the position according to Figure 3b an angle of rotation of 90 ° and the position according to Figure 3c corresponds to an angle of rotation of 180 °.
  • the prisms of the component 320 can (without the invention being restricted to this), for example, be made of boron crown glass (such as the glass material commercially available from Schott under the name BK7®).
  • the wedge angle of the pair of prisms forming the component 320 is 10 ° in the exemplary embodiment, the resulting deflection angle varying between -17 ° and + 17 °.
  • the first optical component 310 or the grating prism is made of silicon (Si), the grating period being 413.2 nm (corresponding to a line density of 2420 lines / mm).
  • Figures 4a-4c show analogous representations for the side view (ie in the yz plane in the drawn coordinate system), the position according to FIG Figure 4a an angle of rotation of 0 °, the position according to Figure 4b an angle of rotation of 90 ° and the position according to Figure 4c corresponds to an angle of rotation of 180 °.
  • the chosen implementation of the first optical component 110 or 310 as a (highly dispersive) grating prism is particularly advantageous insofar as the tuning range of the at least one light source required for the two-dimensional scanning process is comparative can be low.
  • this takes account of the fact that the usable wavelength range in the vicinity of a typical working wavelength of 1500 nm is comparatively small with regard to the transmission properties to be guaranteed, meaning that a significant variation in the deflection angle is desirable even with a slight change in wavelength.
  • the dispersion of the first optical component 310 or the grating prism results in a change in the deflection angle of about 0.30 ° for a wavelength change of 1 nm at a wavelength of 1530 nm, and a change for a wavelength change of 1 nm at a wavelength of 1580 nm of the deflection angle by approx. 0.24 ° and for a wavelength change of 1 nm at a wavelength of 1625 nm a change in the deflection angle of approx. 0.21 °.
  • a “highly dispersive grating prism” is understood to mean a grating prism in which the change in the deflection angle when the wavelength is detuned by 1 nm is at least 0.1 °, in particular at least 0.2 °, further in particular at least 0.3 °.
  • a Arrangement of several gratings on the side of the first (ie the "wavelength-dependent working") optical component can be used.
  • the two-dimensional scanning beam deflection according to the invention can be used in an exemplary advantageous application in a LIDAR system on the basis of FIG Figures 5a-5b described conventional structure (with a corresponding configuration of the scanning device 55 with the arrangement according to the invention of first optical component and second optical component) can be used.

Abstract

Die Erfindung betrifft eine Vorrichtung zur zweidimensional scannenden Strahlablenkung eines Lichtstrahls, mit wenigstens einer spektral durchstimmbaren Lichtquelle zum Aussenden eines Lichtstrahls mit zeitlich variierender Wellenlänge, einer ersten optischen Komponente (110, 310) zur Erzeugung einer ersten Strahlablenkung, über welche aus dem Lichtstrahl hervorgegangene Teilstrahlen wellenlängenabhängig jeweils in einer ersten Richtung ablenkbar sind, und einer zweiten optischen Komponente (120, 320) zur Erzeugung einer zweiten Strahlablenkung, über welche die von der ersten optischen Komponente (110, 310) abgelenkten Teilstrahlen vor oder nach dieser Ablenkung jeweils in einer von der ersten Richtung verschiedenen zweiten Richtung abgelenkt werden, wobei die zweite optische Komponente (120, 320) wenigstens ein Prismen-Paar aus im Strahlengang hintereinander drehbar angeordneten Prismen aufweist.The invention relates to a device for two-dimensionally scanning beam deflection of a light beam, with at least one spectrally tunable light source for emitting a light beam with a time-varying wavelength, a first optical component (110, 310) for generating a first beam deflection via which partial beams emerging from the light beam are wavelength-dependent are each deflectable in a first direction, and a second optical component (120, 320) for generating a second beam deflection via which the partial beams deflected by the first optical component (110, 310) before or after this deflection in one of the first Direction different second direction are deflected, wherein the second optical component (120, 320) has at least one prism pair of prisms arranged one behind the other so as to be rotatable in the beam path.

Description

HINTERGRUND DER ERFINDUNGBACKGROUND OF THE INVENTION Gebiet der ErfindungField of invention

Die Erfindung betrifft eine Vorrichtung zur zweidimensional scannenden Strahlablenkung eines Lichtstrahls. Die Vorrichtung kann insbesondere zur scannenden Strahlablenkung bei der Ermittlung von Abständen sowohl bewegter als auch unbewegter Objekte und zur Ermittlung der Topographie bzw. Form eines oder mehrerer räumlich ausgedehnter dreidimensionaler Objekte verwendet werden.The invention relates to a device for two-dimensional scanning beam deflection of a light beam. The device can in particular be used for scanning beam deflection when determining distances between both moving and still objects and for determining the topography or shape of one or more spatially extended three-dimensional objects.

Stand der TechnikState of the art

Zur optischen Abstandsmessung von Objekten ist u.a. ein auch als LIDAR bezeichnetes Messprinzip bekannt, bei welchem ein kontinuierlich in seiner Frequenz zeitlich verändertes optisches Signal zu dem betreffenden Objekt hin ausgestrahlt und nach an dem Objekt erfolgter Rückreflexion ausgewertet wird.For optical distance measurement of objects, a measurement principle, also known as LIDAR, is known, in which an optical signal whose frequency changes continuously over time is emitted to the object in question and is evaluated after the object has been reflected back.

Fig. 5a zeigt lediglich in schematischer Darstellung einen für sich bekannten prinzipiellen Aufbau, in welchem ein von einer spektral durchstimmbaren Lichtquelle 50 ausgesandtes Signal 51 mit zeitlich veränderter Frequenz (auch als "Chirp" bezeichnet) in zwei Teilsignale aufgespalten wird, wobei diese Aufspaltung über einen nicht dargestellten Strahlteiler (z.B. einen teildurchlässigen Spiegel oder einen faseroptischen Splitter) erfolgt. Die beiden Teilsignale werden über einen Signalkoppler 57 gekoppelt und an einem Detektor 58 einander überlagert, wobei das erste Teilsignal als Referenzsignal 53 ohne Reflexion an dem mit "56" bezeichneten Objekt zum Signalkoppler 57 und zum Detektor 58 gelangt. Das zweite am Signalkoppler 57 bzw. am Detektor 58 eintreffende Teilsignal verläuft hingegen als Messsignal 52 über einen optischen Zirkulator 54 und einen Scan-Einrichtung 55 zum Objekt 56, wird von diesem zurückreflektiert und gelangt somit im Vergleich zum Referenzsignal 53 mit einer Zeitverzögerung und entsprechend veränderter Frequenz zum Signalkoppler 57 und zum Detektor 58. Figure 5a shows only a schematic representation of a basic structure known per se, in which a signal 51 emitted by a spectrally tunable light source 50 with a frequency changed over time (also referred to as "chirp") is split into two partial signals, this splitting via one not shown Beam splitter (e.g. a partially transparent mirror or a fiber optic splitter) takes place. The two partial signals are coupled via a signal coupler 57 and superimposed on one another at a detector 58, the first partial signal reaching the signal coupler 57 and the detector 58 as a reference signal 53 without reflection at the object labeled "56". The second partial signal arriving at the signal coupler 57 or the detector 58, on the other hand, runs as a measurement signal 52 via an optical circulator 54 and a scanning device 55 to the object 56, is reflected back by this and thus arrives with a time delay and correspondingly changed compared to the reference signal 53 Frequency to signal coupler 57 and detector 58.

Über eine (nicht dargestellte) Auswerteeinrichtung wird das vom Detektor 58 gelieferte Detektorsignal relativ zur Messvorrichtung bzw. der Lichtquelle 50 ausgewertet, wobei die zu einem bestimmten Zeitpunkt erfasste, im Diagramm von Fig. 5b dargestellte Differenzfrequenz 59 zwischen Messsignal 52 und Referenzsignal 53 charakteristisch für den Abstand des Objekts 56 von der Messvorrichtung bzw. der Lichtquelle 50 ist. Gemäß Fig. 5b kann dabei zum Erhalt zusätzlicher Information hinsichtlich der Relativgeschwindigkeit zwischen dem Objekt 56 und der Messvorrichtung bzw. der Lichtquelle 50 der zeitabhängige Frequenzverlauf des von der Lichtquelle 50 ausgesandten Signals 51 auch so beschaffen sein, dass zwei Abschnitte vorliegen, in denen die zeitliche Ableitung der von der Lichtquelle 50 erzeugten Frequenz zueinander entgegengesetzt ist.The detector signal supplied by the detector 58 is evaluated relative to the measuring device or the light source 50 via an evaluation device (not shown), the detected signal at a specific point in time, in the diagram of FIG Figure 5b The difference frequency 59 shown between the measurement signal 52 and the reference signal 53 is characteristic of the distance of the object 56 from the measurement device or the light source 50. According to Figure 5b To obtain additional information regarding the relative speed between the object 56 and the measuring device or the light source 50, the time-dependent frequency profile of the signal 51 emitted by the light source 50 can also be designed in such a way that there are two sections in which the time derivative of the Light source 50 generated frequency is opposite to each other.

In der Praxis besteht ein Bedarf, auch bei in größeren Abständen befindlichen (ggf. auch bewegten) Objekten, bei welchen es sich z.B. um Fahrzeuge im Straßenverkehr handeln kann, eine möglichst genaue und zuverlässige Abstandsmessung zu realisieren. Dabei ist im Hinblick auf eine möglichst hohe Zuverlässigkeit und Lebensdauer der Vorrichtung zur Abstandsermittlung weiter wünschenswert, beim Abscannen des jeweiligen Objekts den Einsatz von Scan- bzw. Ablenkspiegeln zu vermeiden oder zu minimieren.In practice, there is also a need for objects that are located at greater distances (possibly also moving) which can be vehicles in road traffic, for example, to achieve the most accurate and reliable distance measurement possible. With regard to the highest possible reliability and service life of the device for determining the distance, it is further desirable to avoid or minimize the use of scanning or deflecting mirrors when scanning the respective object.

Dabei besteht je nach Anwendung der Bedarf nach Realisierung eines möglichst großen Sichtfeldes (FOV = Field of View"), welches ortsaufgelöst von dem jeweiligen Messstrahl "abzurastern" ist. So erfordert beispielsweise der Einsatz im Straßenverkehr eine zweidimensionale Ortsauflösung (senkrecht zur Messstrahlrichtung) von N * M Messpunkten bzw. Pixeln, wobei N und M jeweils vorzugsweise größer als 100 sein sollten.Depending on the application, there is a need to realize the largest possible field of view (FOV), which is spatially resolved by the respective measuring beam. For example, use in road traffic requires a two-dimensional spatial resolution (perpendicular to the direction of the measuring beam) of N * M measuring points or pixels, where N and M should preferably be greater than 100.

Die Realisierung eines zweidimensionalen Scanvorgangs mit hinreichend hoher Geschwindigkeit und hoher Auflösung etwa beim Abscannen von Objekten wie Fahrzeugen stellt jedoch in der Praxis eine anspruchsvolle Herausforderung dar. Hierbei erweist es sich beispielsweise beim Einsatz MEMSbasierter Scanspiegel als problematisch, große Spiegeldurchmesser mit einer hinreichend hohen Scangeschwindigkeit zu kombinieren, wobei die erzielbaren Ablenkwinkel auch aufgrund der verwendeten Festkörpergelenke begrenzt sind. Weitere Ansätze auf Basis mechanischer Scanspiegel oder auf Basis einer Kombination von Rotations- und Dispersionsscannern besitzen u.a. den Nachteil eines vergleichsweise komplexen Aufbaus und eines erheblichen Bauraumerfordernisses.Realizing a two-dimensional scanning process with sufficiently high speed and high resolution, for example when scanning objects such as vehicles, is a demanding challenge in practice. When using MEMS-based scanning mirrors, for example, it is problematic to combine large mirror diameters with a sufficiently high scanning speed , the achievable deflection angles are also limited due to the solid joints used. Other approaches based on mechanical scanning mirrors or based on a combination of rotation and dispersion scanners have, among other things, the disadvantage of a comparatively complex structure and considerable space requirements.

Zum Stand der Technik wird lediglich beispielhaft auf US 2011/0285981 A1 und US 2018/0341003 A1 verwiesen.For the state of the art is only an example US 2011/0285981 A1 and US 2018/0341003 A1 referenced.

ZUSAMMENFASSUNG DER ERFINDUNGSUMMARY OF THE INVENTION

Vor dem obigen Hintergrund ist es eine Aufgabe der vorliegenden Erfindung, eine Vorrichtung zur zweidimensional scannenden Strahlablenkung eines Lichtstrahls bereitzustellen, welche einen hinreichend schnellen zweidimensionalen Scanvorgang unter Vermeidung der vorstehend beschriebenen Probleme ermöglicht.Against the above background, it is an object of the present invention to provide a device for two-dimensionally scanning beam deflection of a light beam which enables a sufficiently fast two-dimensional scanning process while avoiding the problems described above.

Diese Aufgabe wird durch die Merkmale des unabhängigen Patentanspruchs 1 gelöst.This object is achieved by the features of independent claim 1.

Eine erfindungsgemäße Vorrichtung zur zweidimensional scannenden Strahlablenkung eines Lichtstrahls weist auf:

  • wenigstens eine spektral durchstimmbare Lichtquelle zum Aussenden eines Lichtstrahls mit zeitlich variierender Wellenlänge;
  • eine erste optische Komponente zur Erzeugung einer ersten Strahlablenkung, über welche aus dem Lichtstrahl hervorgegangene Teilstrahlen wellenlängenabhängig jeweils in einer ersten Richtung ablenkbar sind; und
  • eine zweite optische Komponente zur Erzeugung einer zweiten Strahlablenkung, über welche die von der ersten optischen Komponente abgelenkten Teilstrahlen vor oder nach dieser Ablenkung jeweils in einer von der ersten Richtung verschiedenen zweiten Richtung abgelenkt werden;
  • wobei die zweite optische Komponente wenigstens ein Prismen-Paar aus im Strahlengang hintereinander drehbar angeordneten Prismen aufweist.
A device according to the invention for the two-dimensional scanning beam deflection of a light beam has:
  • at least one spectrally tunable light source for emitting a light beam with a wavelength that varies over time;
  • a first optical component for generating a first beam deflection by means of which partial beams emerging from the light beam can be deflected in a first direction depending on the wavelength; and
  • a second optical component for generating a second beam deflection, via which the partial beams deflected by the first optical component are deflected in a second direction different from the first direction before or after this deflection;
  • wherein the second optical component has at least one prism pair of prisms rotatably arranged one behind the other in the beam path.

Der Erfindung geht zunächst von der Überlegung aus, dass für die Realisierung einer zweidimensionalen scannenden Strahlablenkung (zwecks zweidimensionaler Abrasterung eines Objekts) eine kontinuierlich bzw. monoton hinsichtlich der wellenlängenabhängigen Strahlablenkung wirkende optische Komponente (wie z.B. ein Gitter oder Gitterprisma) mit einer weiteren Komponente kombiniert werden kann, welche während des Scanvorgangs in einer anderen (typischerweise zur ersten Strahlablenkung senkrechten) Richtung eine (insbesondere periodische) Hin- und Herbewegung des jeweiligen Strahls bewirkt, mit anderen Worten also ein- und denselben Ablenkwinkel-Bereich wiederholt durchläuft. Im Ergebnis kann so ein zweidimensionaler Scanvorgang mit hoher Geschwindigkeit erzielt werden.The invention is initially based on the idea that, for the implementation of a two-dimensional scanning beam deflection (for the purpose of two-dimensional scanning of an object), an optical component (such as a grating or grating prism) that acts continuously or monotonically with regard to the wavelength-dependent beam deflection is combined with another component which during the scanning process causes a (in particular periodic) back and forth movement of the respective beam in another direction (typically perpendicular to the first beam deflection), in other words thus repeatedly traversing one and the same deflection angle range. As a result, two-dimensional scanning can be achieved at high speed.

Der Erfindung liegt dabei insbesondere das Konzept zugrunde, eine zweidimensional scannende Strahlablenkung dadurch zu realisieren, dass in Kombination mit wenigstens einer in ihrer Wellenlänge spektral durchstimmbaren Lichtquelle wenigstens zwei bezogen auf die Lichtausbreitungsrichtung nacheinander angeordnete bzw. vom Licht nacheinander durchlaufene optische Komponenten eingesetzt werden, wobei die eine dieser Komponenten eine wellenlängenabhängige Strahlablenkung bewirkt und wobei die andere dieser Komponenten wenigstens ein Prismen-Paar aus im Strahlengang hintereinander drehbar angeordneten Prismen aufweist.The invention is based in particular on the concept of realizing a two-dimensional scanning beam deflection in that, in combination with at least one light source that is spectrally tunable in terms of its wavelength, at least two optical components are used which are arranged one after the other with respect to the direction of light propagation or through which the light passes one after the other one of these components causes a wavelength-dependent beam deflection and the other of these components has at least one prism pair of prisms arranged one behind the other in the beam path so as to be rotatable.

Der zur Realisierung eines zweidimensionalen Scanvorgangs erfindungsgemäß - in Kombination mit einer wellenlängenabhängigen, z.B. durch ein Gitter oder Gitterprisma bewirkten ersten Strahlablenkung - erfolgende Einsatz eines Prismen-Paars aus im Strahlengang nacheinander drehbar angeordneten Prismen hat dabei u.a. den Vorteil, dass durch besagtes Prismen-Paar eine periodische Hin- und Herbewegung des jeweiligen Strahls bereits durch eine kontinuierliche gegenläufige Drehbewegung der Prismen herbeigeführt werden kann mit der Folge, dass die Prismen keine Beschleunigung erfahren (also keine optischen Elemente hin- und her bewegt werden müssen) und zugleich ein gleichermaßen robuster wie kompakter Aufbau verwirklicht wird. Dabei resultiert die Kompaktheit der erfindungsgemäßen Vorrichtung aus dem Umstand, dass die lateralen Abmessungen (d.h. die Abmessungen senkrecht zum optischen Strahlengang bzw. zur Lichtausbreitungsrichtung) letztlich nicht signifikant größer als die entsprechenden Strahlabmessungen sein müssen.The invention for the implementation of a two-dimensional scanning process - in combination with a wavelength-dependent, E.g. first beam deflection caused by a grating or grating prism - the use of a pair of prisms made of prisms rotatably arranged one after the other in the beam path has the advantage, among other things, that through said pair of prisms a periodic back and forth movement of the respective beam is already carried out by a continuous counter-rotating movement the prisms can be brought about with the result that the prisms experience no acceleration (i.e. no optical elements have to be moved back and forth) and at the same time an equally robust and compact structure is achieved. The compactness of the device according to the invention results from the fact that the lateral dimensions (ie the dimensions perpendicular to the optical beam path or to the direction of light propagation) ultimately do not have to be significantly larger than the corresponding beam dimensions.

Des Weiteren hat der erfindungsgemäß in Kombination mit dem o.g. Prismen-Paar erfolgende Einsatz einer wellenlängenabhängig strahlablenkenden ersten optischen Komponente (z.B. Gitter oder Gitterprisma) den Vorteil, dass im Sinne einer zeitlichen Parallelisierung des Scanvorgangs auch mehrere Lichtstrahlen unterschiedlicher Wellenlänge bzw. unterschiedlichen Durchstimmbereichs (über den Einsatz mehrerer Lichtquellen und/oder eines Frequenzkamms) verarbeitet werden können.Furthermore, the use of a wavelength-dependent beam-deflecting first optical component (e.g. grating or grating prism) in combination with the above pair of prisms according to the invention has the advantage that several light beams of different wavelengths or different tuning ranges (over the Use of several light sources and / or a frequency comb) can be processed.

Gemäß einer Ausführungsform weist die erste optische Komponente wenigstens ein Gitter auf. Bei diesem Gitter kann es sich um ein in Transmission betriebenes oder auch um ein in Reflexion betriebenes Gitter handeln.According to one embodiment, the first optical component has at least one grating. This grating can be a grating operated in transmission or else a grating operated in reflection.

Gemäß einer Ausführungsform weist die erste optische Komponente wenigstens ein Gitterprisma auf. Aufgrund der Ausgestaltung der (wellenlängenabhängig arbeitenden) ersten optischen Komponente als hochgradig dispersives Gitterprisma kann der für den zweidimensionalen Scanvorgang benötigte Durchstimmbereich der wenigstens einen Lichtquelle vergleichsweise gering (z.B. 1500nm±100nm) gewählt werden.According to one embodiment, the first optical component has at least one grating prism. Due to the design of the (wavelength-dependent) first optical component as a highly dispersive grating prism, the tuning range of the at least one light source required for the two-dimensional scanning process can be selected to be comparatively small (e.g. 1500 nm ± 100 nm).

Gemäß einer Ausführungsform sind die Prismen des Prismen-Paars als achromatische Prismen ausgestaltet. Hierdurch kann eine wellenlängenunabhängige Funktionsweise der zweiten optischen Komponente (deren Strahlablenkung auf der Prismendrehung und nicht auf der Wellenlängendurchstimmung basieren soll) gewährleistet werden.According to one embodiment, the prisms of the prism pair are designed as achromatic prisms. In this way, a wavelength-independent functioning of the second optical component (whose beam deflection should be based on the prism rotation and not on the wavelength tuning) can be ensured.

Gemäß einer Ausführungsform ist die zweite Richtung senkrecht zur ersten Richtung.According to one embodiment, the second direction is perpendicular to the first direction.

Gemäß einer Ausführungsform ist die zweite optische Komponente bezogen auf die Lichtausbreitungsrichtung nach der ersten optische Komponente angeordnet. Dies ist insofern vorteilhaft, als die für die erste Komponente (z.B. das Gitterprisma) vorliegenden Einfallswinkel des Lichts unabhängig vom Verdrehwinkel der Prismen unverändert bleiben und ferner die lateralen Abmessungen der ersten Komponente des Gitterprismas aufgrund der Platzierung am Lichteintritt in der Gesamtanordnung aus erster und zweiter Komponente minimiert werden können. Es ist jedoch darauf hinzuweisen, dass grundsätzlich die zweite optische Komponente bezogen auf den optischen Strahlengang alternativ nach oder auch vor der ersten optischen Komponente angeordnet sein kann.According to one embodiment, the second optical component is arranged after the first optical component in relation to the direction of light propagation. This is advantageous in that the angle of incidence of the light for the first component (e.g. the grating prism) remains unchanged regardless of the angle of rotation of the prisms and also the lateral dimensions of the first component of the grating prism due to the placement at the light entrance in the overall arrangement of the first and second components can be minimized. It should be pointed out, however, that in principle the second optical component, with respect to the optical beam path, can alternatively be arranged after or also in front of the first optical component.

Gemäß einer Ausführungsform ist die wenigstens eine spektral durchstimmbare Lichtquelle zum parallelen Aussenden einer Mehrzahl von Lichtstrahlen mit jeweils zeitlich variierender Wellenlänge ausgelegt.According to one embodiment, the at least one spectrally tunable light source is designed to transmit a plurality of light beams in parallel, each with a wavelength varying over time.

Gemäß einer Ausführungsform weist die Vorrichtung ferner wenigstens einen Polarisator auf. Über einen solchen Polarisator kann der Polarisationszustand des wenigstens einen von der Lichtquelle ausgesandten Lichtstrahls derart eingestellt werden, dass die Beugungseffizienz eines die erste Komponente bildenden Gitters bzw. Gitterprismas maximiert wird.According to one embodiment, the device also has at least one polarizer. Such a polarizer can be used to set the polarization state of the at least one light beam emitted by the light source in such a way that the diffraction efficiency of a grating or grating prism forming the first component is maximized.

Die Erfindung betrifft weiter auch die Verwendung einer Vorrichtung mit den vorstehend beschriebenen Merkmalen in einem LIDAR-System zur scannenden Abstandsermittlung eines Objekts.The invention also relates to the use of a device with the features described above in a LIDAR system for the scanning of the distance determination of an object.

Die Erfindung betrifft weiter ein LIDAR-System zur scannenden Abstandsermittlung eines Objekts, mit

  • wenigstens einer spektral durchstimmbaren Lichtquelle zum Aussenden eines Lichtstrahls mit zeitlich variierender Wellenlänge;
  • einer Auswerteeinrichtung zur Ermittlung eines Abstandes des Objekts auf Basis von aus dem Lichtstrahl jeweils hervorgegangenen, an dem Objekt reflektierten Messsignalen und nicht an dem Objekt reflektierten Referenzsignalen; und
  • einer Scan-Einrichtung, welche eine wellenlängenabhängige Winkelverteilung der zu dem Objekt gelenkten Messsignale bewirkt;
  • wobei diese Scan-Einrichtung eine erste optische Komponente zur Erzeugung einer ersten Strahlablenkung, über welche aus dem Lichtstrahl hervorgegangene Teilstrahlen wellenlängenabhängig jeweils in einer ersten Richtung ablenkbar sind, und eine zweite optische Komponente zur Erzeugung einer zweiten Strahlablenkung, über welche die von der ersten optischen Komponente abgelenkten Teilstrahlen vor oder nach dieser Ablenkung wellenlängenabhängig jeweils in einer von der ersten Richtung verschiedenen zweiten Richtung abgelenkt werden, aufweist, wobei die zweite optische Komponente wenigstens ein Prismen-Paar aus im Strahlengang hintereinander drehbar angeordneten Prismen aufweist.
The invention further relates to a LIDAR system for the scanning distance determination of an object, with
  • at least one spectrally tunable light source for emitting a light beam with a wavelength that varies over time;
  • an evaluation device for determining a distance of the object on the basis of measurement signals which have respectively emerged from the light beam and which are reflected on the object and reference signals which are not reflected on the object; and
  • a scanning device which effects a wavelength-dependent angular distribution of the measurement signals directed to the object;
  • this scanning device having a first optical component for generating a first beam deflection, via which partial beams emerging from the light beam can be deflected in a first direction depending on the wavelength, and a second optical component for generating a second beam deflection via which the beam deflection from the first optical component deflected partial beams before or after this deflection are each deflected in a wavelength-dependent manner in a second direction different from the first direction, the second optical component having at least one prism pair of prisms rotatably arranged one behind the other in the beam path.

Weitere Ausgestaltungen der Erfindung sind der Beschreibung sowie den Unteransprüchen zu entnehmen.Further refinements of the invention can be found in the description and in the subclaims.

Die Erfindung wird nachstehend anhand von in den beigefügten Abbildungen dargestellten Ausführungsbeispielen näher erläutert.The invention is explained in more detail below with reference to the exemplary embodiments shown in the accompanying figures.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Es zeigen:

Figuren 1-4
schematische Darstellungen zur Erläuterung unterschiedlicher Ausführungsformen der Erfindung; und
Figuren 5a-5b
schematische Darstellungen zur Erläuterung von Aufbau und Wirkungsweise einer Vorrichtung zur Abstandsermittlung.
Show it:
Figures 1-4
schematic representations to explain different embodiments of the invention; and
Figures 5a-5b
schematic representations to explain the structure and mode of operation of a device for determining distance.

DETAILLIERTE BESCHREIBUNG BEVORZUGTER AUSFÜHRUNGSFORMENDETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Im Weiteren werden anhand unterschiedlicher Ausführungsformen der prinzipiell mögliche Aufbau sowie die Funktionsweise einer erfindungsgemäßen Vorrichtung zur zweidimensional scannenden Strahlablenkung unter Bezugnahme auf die schematischen Abbildungen von Fig. 1-4 beschrieben.In the following, the structure possible in principle and the mode of operation of a device according to the invention for two-dimensional scanning beam deflection are illustrated with reference to the schematic illustrations of FIG Fig. 1-4 described.

Die erfindungsgemäße Vorrichtung weist wenigstens eine spektral durchstimmbare (d.h. hinsichtlich der Wellenlänge des ausgesandten Lichts variierbare) Lichtquelle zum Aussenden wenigstens eines Lichtstrahls mit zeitlich variierender Wellenlänge auf. In weiteren Ausführungsformen können auch zwecks zeitlicher Parallelisierung des Scanvorgangs mehrere Lichtstrahlen unterschiedlicher Wellenlänge bzw. unterschiedlichen Durchstimmbereichs bereitgestellt werden, was wiederum über den Einsatz mehrerer Lichtquellen oder alternativ auch unter Erzeugung eines Frequenzkamms erfolgen kann.The device according to the invention has at least one spectrally tunable (i.e. variable with regard to the wavelength of the emitted light) light source for emitting at least one light beam with a wavelength that varies over time. In further embodiments, several light beams of different wavelengths or different tuning ranges can also be provided for the purpose of temporal parallelization of the scanning process, which in turn can take place via the use of several light sources or alternatively also with the generation of a frequency comb.

Den im Weiteren beschriebenen Ausführungsformen ist gemeinsam, dass - zur zweidimensional scannenden Strahlablenkung wenigstens eines von jeweils einer spektral durchstimmbaren Lichtquelle erzeugten Lichtstrahls mit zeitlich variierender Wellenlänge - wenigstens zwei separate (und jeweils Strahlablenkungen in voneinander verschiedener Richtung bewirkende) optische Komponenten eingesetzt werden. Dabei erfolgt die eine dieser Strahlablenkungen wellenlängenabhängig (z.B. über ein Gitter oder Gitter-Prisma), wobei die andere dieser Strahlablenkungen über ein Prismen-Paar aus im Strahlengang hintereinander drehbar angeordneten Prismen bewirkt wird. Dabei wird in dem zuletzt genannten Prismen-Paar insbesondere über eine kontinuierliche und gegenläufige Drehbewegung der Prismen, welche keine Beschleunigung bzw. Hin- und Herbewegung der Prismen erfordert, eine periodische Variation des Ablenkwinkels in der betreffenden - von der Strahlablenkung der ersten optischen Komponente verschiedenen - Richtung bewirkt, letztlich also eine kontinuierliche Drehbewegung der Prismen in eine periodische Scanbewegung des jeweiligen Messstrahls umgewandelt.The embodiments described below have in common that - for two-dimensional scanning beam deflection at least one light beam with a wavelength varying over time generated by a spectrally tunable light source - at least two separate optical components (each causing beam deflections in different directions) are used become. One of these beam deflections takes place as a function of the wavelength (for example via a grating or grating prism), the other of these beam deflections being effected via a pair of prisms rotatably arranged one behind the other in the beam path. In the last-mentioned pair of prisms, a periodic variation of the deflection angle in the relevant - different from the beam deflection of the first optical component - is achieved in particular via a continuous and counter-rotating movement of the prisms, which does not require any acceleration or back and forth movement of the prisms. Direction causes, ultimately a continuous rotational movement of the prisms converted into a periodic scanning movement of the respective measuring beam.

Fig. 1a-1d und Fig. 2a-2d zeigen schematische Darstellungen zur Erläuterung einer ersten Ausführungsform. Dabei trifft Licht einer (in Fig. 1-2 nicht dargestellten) spektral durchstimmbaren Lichtquelle zunächst auf die mit "110" bezeichnete und im Ausführungsbeispiel als (unbewegliches) Gitterprisma ausgestaltete erste Komponente und danach auf die mit "120" bezeichnete, durch das o.g. Prismen-Paar gebildete zweite Komponente. Figures 1a-1d and Figures 2a-2d show schematic illustrations to explain a first embodiment. Light hits a (in Fig. 1-2 not shown) spectrally tunable light source first on the first component labeled "110" and in the exemplary embodiment designed as an (immovable) grating prism and then on the second component labeled "120" and formed by the above-mentioned pair of prisms.

Die Darstellungen von Fig. 1a-1d zeigen die Anordnung jeweils in Draufsicht (d.h. in der x-z-Ebene im eingezeichneten Koordinatensystem) und für unterschiedliche Drehwinkel der gegenläufig rotierenden Prismen der Komponente 120, wobei die Stellung gemäß Fig. 1a einem zueinander relativen Drehwinkel von 0°, die Stellung gemäß Fig. 1b einem zueinander relativen Drehwinkel von 90°, die Stellung gemäß Fig. 1c einem zueinander relativen Drehwinkel von 180° und die Stellung gemäß Fig. 1d einem zueinander relativen Drehwinkel von 270° entspricht. Dabei handelt es sich bei den gegenläufig rotierenden Prismen der Komponente 120 in der gezeigten Ausführungsform um abgerundete Prismen.The representations of Figures 1a-1d each show the arrangement in plan view (ie in the xz plane in the drawn-in coordinate system) and for different angles of rotation of the counter-rotating prisms of component 120, the position according to FIG Fig. 1a a relative angle of rotation of 0 °, the position according to Figure 1b a relative rotation angle of 90 °, the position according to Figure 1c a relative rotation angle of 180 ° and the position according to Fig. 1d one to each other corresponds to a relative angle of rotation of 270 °. The counter-rotating prisms of component 120 in the embodiment shown are rounded prisms.

Fig. 2a-2d zeigen analoge Darstellungen für die Seitenansicht (d.h. in der y-z-Ebene im eingezeichneten Koordinatensystem), wobei wiederum die Stellung gemäß Fig. 2a einem Drehwinkel von 0°, die Stellung gemäß Fig. 2b einem Drehwinkel von 90°, die Stellung gemäß Fig. 2c einem Drehwinkel von 180° und die Stellung gemäß Fig. 2d einem Drehwinkel von 270° entspricht. Figures 2a-2d show analogous representations for the side view (ie in the yz plane in the drawn coordinate system), the position according to FIG Fig. 2a an angle of rotation of 0 °, the position according to Figure 2b an angle of rotation of 90 °, the position according to Figure 2c an angle of rotation of 180 ° and the position according to Fig. 2d corresponds to a rotation angle of 270 °.

Die zweidimensionale Strahlablenkung wird im Betrieb der Vorrichtung von Fig. 1-2 dadurch erreicht, dass zum einen die Wellenlänge der Lichtquelle durchgestimmt wird (was zu der in Fig. 2a-2d schematisch angedeuteten Strahlablenkung über die erste Komponente 110 bzw. das Gitterprisma in der y-z-Ebene führt), und zum anderen eine kontinuierliche gegenläufige Drehbewegung der beiden Prismen der zweiten Komponente 120 erfolgt (was zu der in Fig. 1a-1d schematisch angedeuteten Strahlablenkung in der x-z-Ebene führt).The two-dimensional beam deflection is in operation of the device from Fig. 1-2 achieved by tuning the wavelength of the light source (which leads to the in Figures 2a-2d schematically indicated beam deflection over the first component 110 or the grating prism in the yz plane), and on the other hand a continuous counter-rotating movement of the two prisms of the second component 120 takes place (which leads to the in Figures 1a-1d schematically indicated beam deflection leads in the xz plane).

Wesentlich für das Funktionsprinzip ist hierbei, dass hinsichtlich der gemäß Fig. 1a-1d stattfindenden Strahlablenkung in der x-z-Ebene die erste Komponente 110 bzw. das Gitterprisma selbst keine Strahlablenkung bewirkt, so dass die Strahlablenkung insoweit allein auf der zweiten Komponente 120 (d.h. dem Prismen-Paar) beruht.It is essential for the functional principle that with regard to the according to Figures 1a-1d If the beam deflection takes place in the xz plane, the first component 110 or the grating prism itself does not cause any beam deflection, so that the beam deflection is based solely on the second component 120 (ie the pair of prisms).

Umgekehrt erscheint für die gemäß Fig. 2a-2d stattfindende Strahlablenkung in der y-z-Ebene, welche infolge der Wellenlängendurchstimmung durch die erste Komponente 110 bzw. das Gitterprisma bewirkt wird, die zweite Komponente 120 bzw. das Prismen-Paar effektiv im Wesentlichen jederzeit als Planplatte (mit infolge der Drehung zeitlich variierendem Durchmesser) und bewirkt somit ihrerseits in dieser Richtung bzw. in der y-z-Ebene keine Strahlablenkung im Sinne eines Ablenkwinkels (wobei ggf. lediglich ein seitlicher Versatz des Strahlbündels, der im Allgemeinen unkritisch ist, aber auch rechnerisch korrigiert werden kann, bewirkt wird).The reverse appears for the according to Figures 2a-2d taking place beam deflection in the yz-plane, which as a result of the Wavelength tuning is brought about by the first component 110 or the grating prism, the second component 120 or the pair of prisms effectively at all times as a plane plate (with a diameter that varies over time as a result of the rotation) and thus in turn causes it in this direction or in the yz -Plane no beam deflection in the sense of a deflection angle (where, if necessary, only a lateral offset of the beam, which is generally not critical, but can also be corrected mathematically, is brought about).

Die in der Ausführungsform von Fig. 1-2 gewählte Reihenfolge der optischen Komponenten 110, 120 ist zum einen insofern vorteilhaft, als die für die erste Komponente 110 bzw. das Gitterprisma vorliegenden Einfallswinkel des Lichts unabhängig vom Verdrehwinkel der Prismen unverändert bleiben und zum anderen auch die lateralen Abmessungen des Gitterprismas aufgrund der Platzierung am Lichteintritt in der Gesamtanordnung aus erster und zweiter Komponente minimiert werden können.In the embodiment of Fig. 1-2 The selected order of the optical components 110, 120 is advantageous, on the one hand, as the angle of incidence of the light for the first component 110 or the grating prism remains unchanged regardless of the angle of rotation of the prisms and, on the other hand, the lateral dimensions of the grating prism due to the placement at the light entrance can be minimized in the overall arrangement of the first and second components.

Die Erfindung ist jedoch nicht auf die vorstehend beschriebene Reihenfolge beschränkt. Hierzu zeigen Fig. 3a-3c und Fig. 4a-4c analoge Darstellungen einer weiteren möglichen Ausführungsform mit entsprechend vertauschter Reihenfolge, so dass auf die Anordnung auftreffendes, von der durchstimmbaren Lichtquelle erzeugtes Licht hier zunächst auf die zweite optische Komponente 320 (d.h. das Prismen-Paar) und erst dann auf die erste optische Komponente 310 (bzw. das Gitterprisma) trifft.However, the invention is not restricted to the sequence described above. Show this Figures 3a-3c and Figures 4a-4c Analog representations of a further possible embodiment with a correspondingly reversed order, so that light generated by the tunable light source impinging on the arrangement is here initially on the second optical component 320 (ie the pair of prisms) and only then on the first optical component 310 (or . the grating prism) hits.

Die Darstellungen von Fig. 3a-3c zeigen die Anordnung jeweils in Draufsicht (d.h. in der x-z-Ebene im eingezeichneten Koordinatensystem) und für unterschiedliche Drehwinkel der gegenläufig rotierenden Prismen der Komponente 320, wobei die Stellung gemäß Fig. 3a einem Drehwinkel von 0°, die Stellung gemäß Fig. 3b einem Drehwinkel von 90° und die Stellung gemäß Fig. 3c einem Drehwinkel von 180° entspricht.The representations of Figures 3a-3c show the arrangement in each case in plan view (ie in the xz plane in the drawing Coordinate system) and for different angles of rotation of the counter-rotating prisms of component 320, the position according to Fig. 3a an angle of rotation of 0 °, the position according to Figure 3b an angle of rotation of 90 ° and the position according to Figure 3c corresponds to an angle of rotation of 180 °.

Die Prismen der Komponente 320 können (ohne dass die Erfindung hierauf beschränkt wäre) z.B. aus Bor-Kronglas (wie z.B. dem unter der Bezeichnung BK7® kommerziell erhältlichen Glasmaterial der Firma Schott) gefertigt sein. Der Keilwinkel des die Komponente 320 bildenden Prismenpaars beträgt im Ausführungsbeispiel 10°, wobei der resultierende Ablenkwinkel zwischen -17° und +17° variiert. Des Weiteren ist im Ausführungsbeispiel (jedoch ohne dass die Erfindung hierauf beschränkt wäre) die erste optische Komponente 310 bzw. das Gitterprisma aus Silizium (Si) gefertigt, wobei die Gitterperiode 413.2 nm (entsprechend einer Liniendichte von 2420 Linien/mm) beträgt.The prisms of the component 320 can (without the invention being restricted to this), for example, be made of boron crown glass (such as the glass material commercially available from Schott under the name BK7®). The wedge angle of the pair of prisms forming the component 320 is 10 ° in the exemplary embodiment, the resulting deflection angle varying between -17 ° and + 17 °. Furthermore, in the exemplary embodiment (but without the invention being restricted to this) the first optical component 310 or the grating prism is made of silicon (Si), the grating period being 413.2 nm (corresponding to a line density of 2420 lines / mm).

Fig. 4a-4c zeigen analoge Darstellungen für die Seitenansicht (d.h. in der y-z-Ebene im eingezeichneten Koordinatensystem), wobei wiederum die Stellung gemäß Fig. 4a einem Drehwinkel von 0°, die Stellung gemäß Fig. 4b einem Drehwinkel von 90° und die Stellung gemäß Fig. 4c einem Drehwinkel von 180° entspricht. Figures 4a-4c show analogous representations for the side view (ie in the yz plane in the drawn coordinate system), the position according to FIG Figure 4a an angle of rotation of 0 °, the position according to Figure 4b an angle of rotation of 90 ° and the position according to Figure 4c corresponds to an angle of rotation of 180 °.

Die in den vorstehend beschriebenen Ausführungsformen von Fig. 1 bis Fig. 4 gewählte Realisierung der ersten optischen Komponente 110 bzw. 310 als (hochgradig dispersives) Gitterprisma ist insofern besonders vorteilhaft, als der für den zweidimensionalen Scanvorgang benötigte Durchstimmbereich der wenigstens einen Lichtquelle vergleichsweise gering sein kann. Hierdurch wird zum einen dem Umstand Rechnung getragen, dass der insoweit nutzbare Wellenlängenbereich in der Umgebung einer typischen Arbeitswellenlänge von 1500nm im Hinblick auf die zu gewährleistenden Transmissionseigenschaften vergleichsweise klein, ein bereits bei geringfügiger Wellenlängenänderung signifikante Variation des Ablenkwinkels also wünschenswert ist. Im o.g. Ausführungsbeispiel ergibt sich infolge der Dispersion der ersten optischen Komponente 310 bzw. des Gitterprismas für eine Wellenlängenänderung um 1nm bei einer Wellenlänge 1530 nm eine Änderung des Ablenkwinkels um ca. 0.30°, für eine Wellenlängenänderung um 1nm bei einer Wellenlänge von 1580 nm eine Änderung des Ablenkwinkels um ca. 0.24° und für eine Wellenlängenänderung um 1nm bei einer Wellenlänge von 1625 nm eine Änderung des Ablenkwinkels um ca. 0.21°.The in the above-described embodiments of FIGS. 1 to 4 The chosen implementation of the first optical component 110 or 310 as a (highly dispersive) grating prism is particularly advantageous insofar as the tuning range of the at least one light source required for the two-dimensional scanning process is comparative can be low. On the one hand, this takes account of the fact that the usable wavelength range in the vicinity of a typical working wavelength of 1500 nm is comparatively small with regard to the transmission properties to be guaranteed, meaning that a significant variation in the deflection angle is desirable even with a slight change in wavelength. In the above embodiment, the dispersion of the first optical component 310 or the grating prism results in a change in the deflection angle of about 0.30 ° for a wavelength change of 1 nm at a wavelength of 1530 nm, and a change for a wavelength change of 1 nm at a wavelength of 1580 nm of the deflection angle by approx. 0.24 ° and for a wavelength change of 1 nm at a wavelength of 1625 nm a change in the deflection angle of approx. 0.21 °.

Zum anderen kann bei entsprechender Minimierung des Durchstimmbereichs der Lichtquelle infolge Verwendung eines hochgradig dispersiven Gitterprismas der gegebenenfalls unerwünschte Effekt einer Wellenlängenabhängigkeit der Strahlablenkung auf Seiten der zweiten Komponente 120 bzw. 320 bzw. des Prismen-Paars, die prinzipiell zu einem trapezförmigen Bildfeld führen würde, gering gehalten werden. Dabei wird hier unter einem "hochgradig dispersiven Gitterprisma" ein Gitterprisma verstanden, bei welchem die Änderung des Ablenkwinkels bei Verstimmung der Wellenlänge um 1nm wenigstens 0.1°, insbesondere wenigstens 0.2°, weiter insbesondere wenigstens 0.3°, beträgt.On the other hand, with a corresponding minimization of the tuning range of the light source due to the use of a highly dispersive grating prism, the possibly undesirable effect of a wavelength dependency of the beam deflection on the side of the second component 120 or 320 or the prism pair, which in principle would lead to a trapezoidal image field, can be small being held. Here, a “highly dispersive grating prism” is understood to mean a grating prism in which the change in the deflection angle when the wavelength is detuned by 1 nm is at least 0.1 °, in particular at least 0.2 °, further in particular at least 0.3 °.

In weiteren Ausführungsformen kann anstelle eines einzigen Gitters zur Erhöhung der Winkelablenkung bzw. Vergrößerung des realisierbaren Winkelbereichs der Winkelablenkung eine Anordnung von mehreren Gittern auf Seiten der ersten (d.h. der "wellenlängenabhängig arbeitenden") optischen Komponente verwendet werden.In further embodiments, instead of a single grid for increasing the angular deflection or enlarging the realizable angular range of the angular deflection, a Arrangement of several gratings on the side of the first (ie the "wavelength-dependent working") optical component can be used.

Die erfindungsgemäße zweidimensional scannende Strahlablenkung kann in einer beispielhaften vorteilhaften Anwendung in einem LIDAR-System ausgehend von dem anhand von Fig. 5a-5b beschriebenen herkömmlichen Aufbau (unter entsprechender Ausgestaltung der Scan-Einrichtung 55 mit der erfindungsgemäßen Anordnung aus erster optischer Komponente und zweiter optischer Komponente) eingesetzt werden.The two-dimensional scanning beam deflection according to the invention can be used in an exemplary advantageous application in a LIDAR system on the basis of FIG Figures 5a-5b described conventional structure (with a corresponding configuration of the scanning device 55 with the arrangement according to the invention of first optical component and second optical component) can be used.

Die Erfindung ist jedoch nicht auf diese Anwendung beschränkt, sondern ganz allgemein in Anwendungen vorteilhaft realisierbar, in welchen eine schnelle zweidimensionale Strahlablenkung gewünscht ist.However, the invention is not restricted to this application, but rather can be advantageously implemented quite generally in applications in which rapid two-dimensional beam deflection is desired.

Wenn die Erfindung auch anhand spezieller Ausführungsformen beschrieben wurde, erschließen sich für den Fachmann zahlreiche Variationen und alternative Ausführungsformen, z.B. durch Kombination und/oder Austausch von Merkmalen einzelner Ausführungsformen. Dementsprechend versteht es sich für den Fachmann, dass derartige Variationen und alternative Ausführungsformen von der vorliegenden Erfindung mit umfasst sind und die Reichweite der Erfindung nur im Sinne der beigefügten Patentansprüche und deren Äquivalente beschränkt ist.Even if the invention has been described on the basis of specific embodiments, numerous variations and alternative embodiments will be apparent to the person skilled in the art, for example by combining and / or exchanging features of individual embodiments. Accordingly, it is understood by a person skilled in the art that such variations and alternative embodiments are also included in the present invention and that the scope of the invention is limited only within the meaning of the attached patent claims and their equivalents.

Claims (10)

Vorrichtung zur zweidimensional scannenden Strahlablenkung eines Lichtstrahls, mit • wenigstens einer spektral durchstimmbaren Lichtquelle zum Aussenden wenigstens eines Lichtstrahls mit zeitlich variierender Wellenlänge; • einer ersten optischen Komponente (110, 310) zur Erzeugung einer ersten Strahlablenkung, über welche aus dem Lichtstrahl hervorgegangene Teilstrahlen wellenlängenabhängig jeweils in einer ersten Richtung ablenkbar sind; und • einer zweiten optischen Komponente (120, 320) zur Erzeugung einer zweiten Strahlablenkung, über welche die von der ersten optischen Komponente (110, 310) abgelenkten Teilstrahlen vor oder nach dieser Ablenkung jeweils in einer von der ersten Richtung verschiedenen zweiten Richtung abgelenkt werden; • wobei die zweite optische Komponente (120, 320) wenigstens ein Prismen-Paar aus im Strahlengang hintereinander drehbar angeordneten Prismen aufweist. Device for two-dimensional scanning beam deflection of a light beam, with • at least one spectrally tunable light source for emitting at least one light beam with a wavelength that varies over time; • a first optical component (110, 310) for generating a first beam deflection, via which partial beams emerging from the light beam can be deflected in a first direction depending on the wavelength; and • a second optical component (120, 320) for generating a second beam deflection, via which the partial beams deflected by the first optical component (110, 310) are deflected in a second direction different from the first direction before or after this deflection; • wherein the second optical component (120, 320) has at least one prism pair of prisms arranged one behind the other so as to be rotatable in the beam path. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die erste optische Komponente (110, 310) wenigstens ein Gitter aufweist.Device according to Claim 1, characterized in that the first optical component (110, 310) has at least one grating. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erste optische Komponente (110, 310) wenigstens ein Gitterprisma aufweist.Device according to Claim 1 or 2, characterized in that the first optical component (110, 310) has at least one grating prism. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Prismen der Prismen-Paars als achromatische Prismen ausgestaltet sind.Device according to one of Claims 1 to 3, characterized characterized in that the prisms of the prism pairs are designed as achromatic prisms. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Richtung senkrecht zur ersten Richtung ist.Device according to one of the preceding claims, characterized in that the second direction is perpendicular to the first direction. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite optische Komponente (120) bezogen auf die Lichtausbreitungsrichtung nach der ersten optische Komponente (110) angeordnet ist.Device according to one of the preceding claims, characterized in that the second optical component (120) is arranged after the first optical component (110) in relation to the direction of light propagation. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die wenigstens eine spektral durchstimmbare Lichtquelle zum parallelen Aussenden einer Mehrzahl von Lichtstrahlen mit jeweils zeitlich variierender Wellenlänge ausgelegt ist.Device according to one of the preceding claims, characterized in that the at least one spectrally tunable light source is designed for the parallel emission of a plurality of light beams, each with a wavelength varying over time. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass diese ferner wenigstens einen Polarisator aufweist.Device according to one of the preceding claims, characterized in that it also has at least one polarizer. Verwendung einer Vorrichtung nach einem der vorhergehenden Ansprüche in einem LIDAR-System zur scannenden Abstandsermittlung eines Objekts.Use of a device according to one of the preceding claims in a LIDAR system for the scanning distance determination of an object. LIDAR-System zur scannenden Abstandsermittlung eines Objekts, mit • wenigstens einer spektral durchstimmbaren Lichtquelle (50) zum Aussenden wenigstens eines Lichtstrahls (51) mit zeitlich variierender Wellenlänge; • einer Auswerteeinrichtung zur Ermittlung eines Abstandes des Objekts (56) auf Basis von aus dem Lichtstrahl jeweils hervorgegangenen, an dem Objekt (56) reflektierten Messsignalen (52) und nicht an dem Objekt (56) reflektierten Referenzsignalen (53); und • einer Scan-Einrichtung (55), welche eine wellenlängenabhängige Winkelverteilung der zu dem Objekt (56) gelenkten Messsignale (52) bewirkt, wobei diese Scan-Einrichtung (55) aufweist: - eine erste optische Komponente (110, 310) zur Erzeugung einer ersten Strahlablenkung, über welche aus dem Lichtstrahl hervorgegangene Teilstrahlen wellenlängenabhängig jeweils in einer ersten Richtung ablenkbar sind; und - eine zweite optische Komponente (120, 320) zur Erzeugung einer zweiten Strahlablenkung, über welche die von der ersten optischen Komponente (110, 310) abgelenkten Teilstrahlen vor oder nach dieser Ablenkung jeweils in einer von der ersten Richtung verschiedenen zweiten Richtung abgelenkt werden; - wobei die zweite optische Komponente (120, 320) wenigstens ein Prismen-Paar aus im Strahlengang hintereinander drehbar angeordneten Prismen aufweist. LIDAR system for scanning the distance of an object, with • at least one spectrally tunable light source (50) for emitting at least one light beam (51) with a wavelength that varies over time; • an evaluation device for determining a distance of the object (56) on the basis of measurement signals (52) which have respectively emerged from the light beam and which are reflected on the object (56) and reference signals (53) which are not reflected on the object (56); and • a scanning device (55) which effects a wavelength-dependent angular distribution of the measurement signals (52) directed to the object (56), this scanning device (55) having: - A first optical component (110, 310) for generating a first beam deflection, via which partial beams emerging from the light beam can be deflected in a first direction depending on the wavelength; and - A second optical component (120, 320) for generating a second beam deflection, via which the partial beams deflected by the first optical component (110, 310) are deflected in a second direction different from the first direction before or after this deflection; - wherein the second optical component (120, 320) has at least one prism pair of prisms rotatably arranged one behind the other in the beam path.
EP20214999.3A 2019-12-23 2020-12-17 Device for the two-dimensional scanning beam deflection of a light beam Withdrawn EP3842830A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019135759.4A DE102019135759B4 (en) 2019-12-23 2019-12-23 LIDAR system for scanning distance determination of an object

Publications (1)

Publication Number Publication Date
EP3842830A1 true EP3842830A1 (en) 2021-06-30

Family

ID=73546875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20214999.3A Withdrawn EP3842830A1 (en) 2019-12-23 2020-12-17 Device for the two-dimensional scanning beam deflection of a light beam

Country Status (3)

Country Link
US (1) US20210191110A1 (en)
EP (1) EP3842830A1 (en)
DE (1) DE102019135759B4 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722787B1 (en) * 2017-12-07 2024-03-27 Yokogawa Electric Corporation Spectroscopic analyzer
US11402270B2 (en) * 2018-06-13 2022-08-02 National University Corporation Kagawa University Spectral measurement device and spectral measurement method
CN115144861B (en) * 2022-09-05 2022-11-04 天津帆探科技有限公司 Hybrid solid-state laser radar and scanning method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110285981A1 (en) 2010-05-18 2011-11-24 Irvine Sensors Corporation Sensor Element and System Comprising Wide Field-of-View 3-D Imaging LIDAR
US20180341003A1 (en) 2017-05-24 2018-11-29 Honeywell International Inc. Risley prism based star tracker and celestial navigation systems
DE102018203316A1 (en) * 2018-03-06 2019-09-12 Carl Zeiss Smt Gmbh Device for scanning distance determination of an object
DE102019107574A1 (en) * 2018-04-03 2019-10-10 GM Global Technology Operations LLC TAXED PATTERN PATTERN IN A COHERENT LIDAR
WO2019232585A1 (en) * 2018-06-07 2019-12-12 Baraja Pty Ltd An optical beam director
EP3797328A1 (en) * 2018-09-30 2021-03-31 SZ DJI Technology Co., Ltd. Optical scanning device with beam compression and expansion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118518A (en) 1999-02-24 2000-09-12 International Business Machines Corporation Assembly comprising a pocket 3-D scanner
US10016238B2 (en) 2009-09-14 2018-07-10 Memorial Sloan Kettering Cancer Center Apparatus, system and method for providing laser steering and focusing for incision, excision and ablation of tissue in minimally-invasive surgery
US20130241761A1 (en) * 2012-03-16 2013-09-19 Nikon Corporation Beam steering for laser radar and other uses
US10591600B2 (en) * 2015-11-30 2020-03-17 Luminar Technologies, Inc. Lidar system with distributed laser and multiple sensor heads
CN110226103B (en) * 2016-12-16 2023-08-01 博莱佳私人有限公司 Environmental spatial contour estimation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110285981A1 (en) 2010-05-18 2011-11-24 Irvine Sensors Corporation Sensor Element and System Comprising Wide Field-of-View 3-D Imaging LIDAR
US20180341003A1 (en) 2017-05-24 2018-11-29 Honeywell International Inc. Risley prism based star tracker and celestial navigation systems
DE102018203316A1 (en) * 2018-03-06 2019-09-12 Carl Zeiss Smt Gmbh Device for scanning distance determination of an object
DE102019107574A1 (en) * 2018-04-03 2019-10-10 GM Global Technology Operations LLC TAXED PATTERN PATTERN IN A COHERENT LIDAR
WO2019232585A1 (en) * 2018-06-07 2019-12-12 Baraja Pty Ltd An optical beam director
EP3797328A1 (en) * 2018-09-30 2021-03-31 SZ DJI Technology Co., Ltd. Optical scanning device with beam compression and expansion

Also Published As

Publication number Publication date
DE102019135759B4 (en) 2024-01-18
DE102019135759A1 (en) 2020-12-17
US20210191110A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
EP3842830A1 (en) Device for the two-dimensional scanning beam deflection of a light beam
DE10207186C1 (en) Low coherence interferometry device for object scanning has variable wavelength selection device used for varying selected wavelengths of detection beam dependent on scanning position
DE102010049672B3 (en) Laser Doppler line distance sensor for three-dimensional shape measurement of moving solids
EP3056934B1 (en) Measuring head of an endoscopic device and method of inspecting and measuring an object
EP1421427B1 (en) Optical arrangement and scan microscope
DE10038049A1 (en) Optical arrangement for the selection and detection of the spectral range of a light beam
DE202016008334U1 (en) scanning microscope
DE102015208796A1 (en) Static Fourier transform spectrometer
DE102018203315A1 (en) Device for scanning distance determination of an object
EP1931939B1 (en) Interferometric measuring device
DE102018216636A1 (en) Device for scanning the distance of an object
EP3333611A1 (en) Optical device with at least one spectrally selective component
DE102018203316B4 (en) Device for scanning the distance of an object
EP3857257A1 (en) Apparatus and method for determining the distance of an object by scanning
DE112019006963T5 (en) OPTICAL DISTANCE MEASURING DEVICE
DE102018117792A1 (en) Device for spatially resolved distance and / or speed determination of an object
DE102018129152A1 (en) Device for two-dimensionally scanning beam deflection of a light beam
WO2019170703A2 (en) Device for scanned distance determination of an object
DE102018126754B4 (en) Device for scanning the distance of an object
DE102006014766A1 (en) Interferometric measuring device for e.g. optical distance measurement in quality control, has reference and modulation interferometers, and dispersive optical component that is arranged in one of optical paths of reference interferometer
DE102016108384B3 (en) Device and method for light sheet-like illumination of a sample
DE102012101344A1 (en) Optical scanning microscope with two scanning units
DE102018216632B4 (en) Device for scanning the distance of an object
DE102021124048A1 (en) Optical thickness gauge
DE102022110651A1 (en) Compact optical spectrometer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220104