EP3841392A1 - Dispositif lidar à analyse accélérée de la durée d'exécution - Google Patents

Dispositif lidar à analyse accélérée de la durée d'exécution

Info

Publication number
EP3841392A1
EP3841392A1 EP19737530.6A EP19737530A EP3841392A1 EP 3841392 A1 EP3841392 A1 EP 3841392A1 EP 19737530 A EP19737530 A EP 19737530A EP 3841392 A1 EP3841392 A1 EP 3841392A1
Authority
EP
European Patent Office
Prior art keywords
detector
lidar device
deflector
beams
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19737530.6A
Other languages
German (de)
English (en)
Inventor
Norman HAAG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3841392A1 publication Critical patent/EP3841392A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Definitions

  • the invention relates to a LIDAR device for scanning a
  • Scanning area comprising a transmission unit for generating rays and for deflecting the rays along the scanning area and comprising a receiving unit with at least one detector for receiving reflected rays. Furthermore, the invention relates to a control unit and a receiving unit.
  • LIDAR light detection and ranging
  • Detectors are used to detect the reflected rays. These are usually used to determine the transit time of the incoming beams for each
  • photodiodes or CCD sensors can be used as detectors.
  • CCD sensors can only be used as detectors to a limited extent, since the readout speed is low in comparison to detector arrays, which results in a limited depth resolution. Disclosure of the invention
  • the object on which the invention is based can be seen in particular in proposing a LIDAR device which has a
  • a lidar device for scanning a scan area is provided.
  • the LIDAR device has one
  • the LIDAR device has a receiving unit with at least one detector for receiving reflected rays, individual sections of the detector for detecting the reflected rays being able to be activated one after the other at defined time intervals, or the reflected rays being deflected individually by a deflector with a changing deflection angle Sections of the detector are deflectable.
  • a control unit for operating a LIDAR device is provided, the control unit being set up to control a deflector of the LIDAR device or a detector of the LIDAR device.
  • the control unit can be designed as an evaluation unit. The control unit can preferably use the signal received by the detector for further processing
  • the further processing can take place in highly parallel fashion and have processors operating in parallel, such as GPUs or FPGAs.
  • a receiving unit in particular for a LIDAR device, is provided.
  • the receiving unit has a detector, with individual sections of the detector successively can be activated at a uniform speed for detecting reflected rays, or the individual sections of the detector can be irradiated with reflected steels by a deflector with a uniformly changing degree of deflection.
  • the LIDAR device and the receiver unit used can be used to direct the beams to different locations on the chip or the detector at different times. This can cause a
  • the beams are preferably deflected across the detector with a constantly changing degree of deflection. In this way, reflected rays can be imaged from a minimum distance, for example in an edge section of the detector, and the rays reflected back from a maximum distance on an opposite one
  • Edge section to be steered.
  • the entire surface of the detector can thus serve as an indicator of the different possible transit times of the reflected rays. Based on the location or the section that detects the reflected rays, a propagation time of the corresponding rays can be derived.
  • the deflector can, for example, at a constant speed, the degree of deflection of the incoming rays along the surface of the
  • the deflector can, for example, adjust the degree of deflection such that the reflected ones
  • Beams are directed to an edge portion or a corner of the detector. As time goes on, the level of distraction changes continuously continue until the time it takes for reflected rays to return to the detector from a maximum distance of the LIDAR device. The deflector can then realign the degree of deflection to the edge of the detector surface. The deflector can do this
  • Deflection of the beams arriving at the detector can be configured in two dimensions along the entire surface of the detector.
  • the transit time can be assigned in a technically simple manner so that the detector no longer has to be completely read out by an evaluation unit. Rather, an identification of the section of the detector which perceived the beam is sufficient to determine the transit time of the corresponding beam and thus the distance.
  • the beams can be deflected onto the detector by the action of the deflector or by activating and deactivating individual areas of the detector by appropriate areas. By activating and deactivating different sections of the detector, the deflecting function of the deflector can be imitated by actuating individual pixels or surface sections of the detector.
  • the at least one detector is designed as a CCD sensor or as a detector array.
  • the measurement of the incoming beams can be made highly parallel and thus the efficiency can be increased.
  • the detector no longer has to be read quickly and often in order to generate a corresponding depth resolution.
  • Depth resolution comes solely from the beam movement over the sensor.
  • the CCD sensor can be activated section by section or row by row.
  • the activated Sections can detect incoming light or incoming rays.
  • a transit time can be assigned to the determined beams.
  • the complete signal or the reflected rays can be imaged on the entire CCD sensor.
  • the detector pixels can be switched to sensitive in rows, for example. The advantage of this design is that a deflector can be omitted.
  • Detector shaped like a point, surface or line.
  • the sections can thus be activated flexibly by a control unit or evaluation unit.
  • the principle can be used for the detection of an entire laser line, a so-called vertical flash.
  • the entire laser line is deflected and the transit time is thus detected on a two-dimensional sensor, and the location is detected in the other direction.
  • the principle is highly parallel and the signal obtained is preferably suitable for further processing in parallel processors such as GPUs or FPGAs.
  • the deflector is an acousto-optical modulator.
  • the receiving unit can be next to the
  • Detector have a deflector.
  • the deflector can be implemented in different ways. For example, acousto-optical deflectors, micromirrors or other deflectors can be used. These can preferably be coupled to the control unit and can be controlled by it.
  • the deflector directs the incident light onto one or more selected pixels or a selected line of the detector.
  • the deflector changes the degree of the at a constant speed
  • the LIDAR device has a
  • Control unit which is connected to the detector and / or the deflector.
  • the control unit can actively control the deflector and / or the detector.
  • the control unit can implement a continuous variation of the irradiated or activated areas of the detector.
  • each section of the detector can be activated or irradiated at least once within a time span corresponding to a range of the LIDAR device.
  • the achievable depth resolution of the detector concept generally depends on and from the number of detector pixels in the scanning direction along the detector surface
  • At least two beams reflected at different times can be detected by different activated sections of the detector or can be directed by the deflector to different sections of the detector or one after the other to the detector.
  • the repetition frequency can be reduced at the expense of the resolution by detecting a plurality of signals within one detector cycle.
  • the principle is freely scalable and can be adapted to the technical specifications.
  • several beams can be parallel or offset on each
  • the beams generated can be successively emitted in the scanning area in a pulse-like manner. These radiation pulses can be measured within a measurement cycle and can thus be imaged in succession on the detector.
  • a corresponding receiving unit is not only limited to LIDAR devices or applications and can generally be used in all applications which carry out time-of-flight measurements of beams.
  • FIG. 1 is a schematic representation of a LIDAR device according to an embodiment
  • FIG. 2 shows a schematic illustration of a receiving unit according to a first exemplary embodiment
  • Fig. 3 is a schematic representation of a receiving unit according to a second embodiment
  • Fig. 3 is a schematic representation of a receiving unit according to a third embodiment.
  • the LIDAR device 1 shows a schematic representation of a LIDAR device 1 according to an embodiment.
  • the LIDAR device 1 has a transmitting unit 2 and a receiving unit 4.
  • the transmission unit 2 is used to generate and emit beams 6 along a scanning area A.
  • the beams 6 generated can be designed as laser beams.
  • the transmission unit 4 has a laser, which is not shown for the sake of simplicity.
  • the transmission unit 2 can generate and emit the beams 6 with a defined pulse frequency. This can be coordinated and initiated by a control unit 8.
  • the receiving unit 4 has a detector 10 and a deflector 12.
  • the arriving at the receiving unit 4 or in the scanning area A reflected rays 14 are directed by the receiving unit 4 onto a deflector 12.
  • the deflector 12 is designed here as an acousto-optical modulator and is controlled by the control unit 8.
  • the incoming beams 14 are directed by the deflector 12 to continuously changing sections of the detector 10, as a result of which a transit time analysis can be carried out based on the location on the detector 10 which detects the beams 14.
  • FIG. 2 shows a schematic illustration of a receiving unit 4 according to a first exemplary embodiment.
  • incoming beams 14 through the deflector 12 are changed at a constant speed.
  • the detector 10 is shown as a line detector in order to clarify the principle of operation.
  • the detector 10 is not limited to this embodiment.
  • the sections 16 of the detector 10 are designed as detector pixels.
  • a first detector pixel thus corresponds to a point in time t1, which corresponds to the shortest transit time of the beams 14 and thus the shortest measurable distance.
  • all detector pixels 16 are coded with a transit time N , so that depending on which detector pixel 16 detects the incoming beams 14, a transit time can be determined.
  • FIG. 3 shows a schematic illustration of a receiving unit 4 according to a second exemplary embodiment. In contrast to the first
  • the receiving unit 4 has incoming beams 14 designed as a vertical laser line, which are deflected by the deflector 12 onto a detector 10.
  • the detector 10 can be designed here as a CCD sensor.
  • the beams 14 are directed as a vertical line onto sections 18 of the detector 10.
  • the sections 18 are configured here as lines of the detector 10, so that time information or respectively a transit time N is assigned to a line 18.
  • the respective columns X I -X N can be used for additional functions. For example, the transit time and different locations can thus be detected in parallel.
  • FIG. 4 shows a schematic illustration of a receiving unit 4 according to a third exemplary embodiment.
  • different sections 17, 18, 19 of the detector 10 are activated or deactivated again successively or in parallel with one another by the control unit 4.
  • the sensor array or detector 10 is subdivided to detect a plurality of beams 14, 20, 22.
  • the time resolution for each individual pulse 14, 20, 22 is reduced by a factor of three, but the necessary deflection frequency is also reduced, for example from 770 kHz Lowered 256 kHz.
  • Three signals 14, 20, 22 can thus be detected simultaneously in one detector image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

L'invention concerne un dispositif LIDAR permettant de balayer une zone de balayage, comprenant une unité émettrice pour générer des faisceaux et pour dévier les faisceaux le long de la zone de balayage ; et comprenant une unité réceptrice comportant au moins un détecteur pour recevoir des faisceaux réfléchis ; des sections individuelles du détecteur pouvant être activées, pour détecter les faisceaux réfléchis, l'une après l'autre à des intervalles temporels définis, ou les faisceaux réfléchis pouvant être déviés, à l'aide d'un déflecteur à un angle de déviation changeant, sur des sections individuelles du détecteur. En outre, l'invention concerne une unité de commande et une unité réceptrice.
EP19737530.6A 2018-08-22 2019-07-08 Dispositif lidar à analyse accélérée de la durée d'exécution Pending EP3841392A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018214182.7A DE102018214182A1 (de) 2018-08-22 2018-08-22 LIDAR-Vorrichtung mit einer beschleunigten Laufzeitanalyse
PCT/EP2019/068271 WO2020038645A1 (fr) 2018-08-22 2019-07-08 Dispositif lidar à analyse accélérée de la durée d'exécution

Publications (1)

Publication Number Publication Date
EP3841392A1 true EP3841392A1 (fr) 2021-06-30

Family

ID=67220817

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19737530.6A Pending EP3841392A1 (fr) 2018-08-22 2019-07-08 Dispositif lidar à analyse accélérée de la durée d'exécution

Country Status (7)

Country Link
US (1) US20210199776A1 (fr)
EP (1) EP3841392A1 (fr)
JP (1) JP2021534418A (fr)
KR (1) KR20210045456A (fr)
CN (1) CN113167862A (fr)
DE (1) DE102018214182A1 (fr)
WO (1) WO2020038645A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017214702B4 (de) * 2017-08-23 2022-08-11 Robert Bosch Gmbh LIDAR-Vorrichtung zur optischen Erfassung eines Sichtfeldes
KR20200066947A (ko) * 2018-12-03 2020-06-11 삼성전자주식회사 라이다 장치 및 이의 구동 방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613406B2 (ja) * 1999-11-05 2011-01-19 株式会社デンソー 受光素子、距離測定装置及び距離・画像測定装置
JP2007101342A (ja) * 2005-10-04 2007-04-19 Omron Corp 距離測定装置
JP2007316016A (ja) * 2006-05-29 2007-12-06 Mitsubishi Electric Corp レーダ装置
JP2013036928A (ja) * 2011-08-10 2013-02-21 Denso Corp データ解析装置、レーダ装置、およびデータ解析方法
US9841563B2 (en) * 2012-08-04 2017-12-12 Paul Lapstun Shuttered waveguide light field display
EP2708914A1 (fr) * 2012-09-18 2014-03-19 Sick Ag Capteur optoélectronique et procédé de détection d'une carte de profondeur
ES2512965B2 (es) * 2013-02-13 2015-11-24 Universitat Politècnica De Catalunya Sistema y método para escanear una superficie y programa de ordenador que implementa el método
US20160291154A1 (en) * 2015-04-01 2016-10-06 Vayavision, Ltd. Apparatus for acquiring 3-dimensional maps of a scene
DE102015217908A1 (de) * 2015-09-18 2017-03-23 Robert Bosch Gmbh Lidarsensor
US10324171B2 (en) * 2015-12-20 2019-06-18 Apple Inc. Light detection and ranging sensor
DE102016004334A1 (de) * 2016-04-13 2017-10-19 Wabco Gmbh Sensoreinrichtung zur Erfassung von Umgebungsinformationen und Verfahren zum Betreiben derselben
JP2017195569A (ja) * 2016-04-22 2017-10-26 コニカミノルタ株式会社 監視システム
US10267915B2 (en) * 2016-06-07 2019-04-23 Raytheon Company Optical system for object detection and location
DE102016211013A1 (de) * 2016-06-21 2017-12-21 Robert Bosch Gmbh Lidar-Vorrichtung und Verfahren zum Analysieren eines Objekts
US10884127B2 (en) * 2016-08-02 2021-01-05 Samsung Electronics Co., Ltd. System and method for stereo triangulation
CN106443635A (zh) * 2016-10-26 2017-02-22 上海博未传感技术有限公司 一种微型激光雷达系统
DE102016223892A1 (de) * 2016-12-01 2018-06-07 Zf Friedrichshafen Ag LiDAR mit preselektiertem Erfassungsbereich
CN110268282B (zh) * 2017-01-24 2023-11-14 美国亚德诺半导体公司 从动态位置提供接收光的动态视场
US11016193B2 (en) * 2017-07-05 2021-05-25 Ouster, Inc. Light ranging device having an electronically scanned emitter array
CN107272014B (zh) * 2017-08-05 2023-12-12 广州市杜格科技有限公司 一种固态的二维扫描激光雷达及其扫描方法
US10838222B2 (en) * 2018-02-12 2020-11-17 California Institute Of Technology Coherence artifacts suppression in integrated photonic systems

Also Published As

Publication number Publication date
CN113167862A (zh) 2021-07-23
WO2020038645A1 (fr) 2020-02-27
KR20210045456A (ko) 2021-04-26
US20210199776A1 (en) 2021-07-01
DE102018214182A1 (de) 2020-02-27
JP2021534418A (ja) 2021-12-09

Similar Documents

Publication Publication Date Title
EP3729137B1 (fr) Système lidar à impulsions multiples pour la détection multidimensionnelle d'objets
EP3168641B1 (fr) Procede et dispositif de mesure de distance optique
EP3724684B1 (fr) Unité de réception lidar
EP3388865B1 (fr) Capteur optoélectronique et procédé de détection d'un objet
EP3633405B1 (fr) Appareil de mesure pour balayage 3d géométrique d'un environnement comportant une pluralité de canaux d'émission et de capteurs photomultiplicateur à semi-conducteurs
EP3499267B1 (fr) Capteur photoélectrique trigonométrique
EP3220164B1 (fr) Procédé de fonctionnement d'un capteur écartométrique de surveillance et capteur écartométrique de surveillance
WO2020038645A1 (fr) Dispositif lidar à analyse accélérée de la durée d'exécution
EP3841402A1 (fr) Capteur lidar pour la détection optique d'un champ de vision, dispositif de travail ou véhicule pourvu d'un capteur lidar et procédé pour la détection optique d'un champ de vision
EP3712647A1 (fr) Capteur optoélectronique et procédé de détection d'objets
DE102017222970A1 (de) LIDAR Messsystem
WO2019110206A1 (fr) Système lidar de perception de l'environnement et procédé pour faire fonctionner un système lidar
WO2019007947A1 (fr) Dispositif de détection spatiale, en particulier dispositif lidar
EP3602126A1 (fr) Procédé et dispositif de balayage d'un angle solide
EP3599485B1 (fr) Procédé et dispositif de mesure de distance optique
DE102007032249C5 (de) Tastendes Lichtgitter
EP2463688B1 (fr) Procédé de détection d'objets à l'aide d'une grille lumineuse
EP3168655A1 (fr) Barrières lumineuses et procédé de détection d'objets
WO2021073824A1 (fr) Système lidar à impulsions multiples et procédé de capture d'un objet dans une région observée
EP3329300A1 (fr) Dispositif de capteur optique pour un véhicule automobile pour le balayage bidimensionnel d'une zone environnante du véhicule automobile, véhicule automobile ainsi que procédé
DE102021125131A1 (de) Lidar-system
EP3938804A1 (fr) Dispositif de balayage laser et procédé de mesure tridimensionnelle d'une scène à une distance élevée
EP4045938A1 (fr) Extension d'une plage dynamique de détecteurs spad
WO2016091619A1 (fr) Procédé et dispositif de détection d'objets pour un véhicule automobile

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)