EP3838408B1 - Microfluidic device with paper-based substrates - Google Patents

Microfluidic device with paper-based substrates Download PDF

Info

Publication number
EP3838408B1
EP3838408B1 EP20213724.6A EP20213724A EP3838408B1 EP 3838408 B1 EP3838408 B1 EP 3838408B1 EP 20213724 A EP20213724 A EP 20213724A EP 3838408 B1 EP3838408 B1 EP 3838408B1
Authority
EP
European Patent Office
Prior art keywords
substrate
membrane
cavity
layer
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20213724.6A
Other languages
German (de)
French (fr)
Other versions
EP3838408A1 (en
Inventor
Raphaël TROUILLON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3838408A1 publication Critical patent/EP3838408A1/en
Application granted granted Critical
Publication of EP3838408B1 publication Critical patent/EP3838408B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/126Paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0638Valves, specific forms thereof with moving parts membrane valves, flap valves

Definitions

  • the present invention relates to a microfluidic device.
  • This microfluidic device has the particularity of having at least two paper-based substrates.
  • microfluidic devices equipped with a paper-based substrate having a hydrophobic surface treatment.
  • Such solutions are described in particular in the patent application WO2013/181656A1 and in the patent application EP3053652A1 .
  • the micro-fluidic circuit produced by embossing can be closed from above with a transparent adhesive film using mainly materials based on poly(ethylene terephthalate) (PET) or ethylene-vinyl acetate. (EVA).
  • PET poly(ethylene terephthalate)
  • EVA ethylene-vinyl acetate.
  • the object of the invention is therefore to propose a microfluidic device capable of carrying out certain functions and which remains easy to manufacture and to transport, reliable, simple to operate and at low cost.
  • said pattern is a first cavity covered by said second substrate so as to form a chamber and the device comprises a first orifice and a second orifice opening into said chamber.
  • the second substrate comprises a second cavity, made opposite the first cavity and forming said chamber with said first cavity.
  • the device comprises a deformable membrane produced in the form of a pellet deposited on only part of said external surface, interposed and held between the two substrates, said membrane comprising a deformation zone covering said first cavity, said first orifice passing through the first substrate and said second orifice passing through said second substrate along an axis passing through the deformation zone of the membrane.
  • the second layer of the second substrate comprises a recess, made over its entire thickness and defining the zone of deformation of the membrane.
  • the second substrate comprises a recess made around its recess to accommodate the membrane.
  • the first substrate comprises a recess made on the periphery of its cavity and configured to accommodate the membrane coming to cover its cavity.
  • the second substrate comprises a second cavity, made opposite the first cavity and forming said chamber with said first cavity, said membrane separating said chamber into two hermetic spaces one with respect to the 'other.
  • the membrane is made of a material of the silicone or polysiloxane polymer type.
  • the device comprises a third orifice made through the first substrate.
  • the invention also relates to a microfluidic system comprising pneumatic equipment, said system comprising at least one microfluidic device equipped with a membrane according to one of the embodiments described above, said pneumatic equipment being connected to said second orifice of the device to allow actuation of the membrane.
  • the membrane is deposited by thermal sealing.
  • said concavity is a first cavity and the method comprises a step of producing a second cavity in said second substrate, produced opposite the first cavity and forming a chamber with said first cavity, said membrane separating said chamber into two airtight spaces relative to each other.
  • the first cavity is produced by embossing the first substrate and the second cavity is produced by embossing the second substrate.
  • the microfluidic device of the invention comprises two substrates 2.1, 2.2 (general reference 2) endowed with an identical structure.
  • Each substrate is formed of at least two layers 20, 21, advantageously only two layers.
  • the paper used is sold under the “Powercoat” brand (registered trademark) having a basis weight of 219 g/m 2 .
  • the second layer 21 of the substrate 2 is deposited on the first "Powercoat" layer.
  • the second layer 21 is according to the invention a vinylidene polymer, advantageously “polyvinylidene chloride” (hereinafter PVDC) or polyvinylidene fluoride (PVDF), advantageously polyvinylidene chloride PVDC.
  • PVDC polyvinylidene chloride
  • PVDF polyvinylidene fluoride
  • PVDC layer 21 can thus be deposited on this new substrate (P5N coated with 12 gm -2 PVDC).
  • the figure 1 shows an example of the manufacturing process for substrate 2.
  • PVDC layer 21 of PVDC is deposited on first layer 20 of paper by coating.
  • the PVDC layer is deposited at a thickness of between 5 and 20 ⁇ m, which corresponds to basis weights of between 15 and 25 g/m 2 .
  • This technique makes it possible to deposit a PVDC-based preparation on the paper then to scrape off the excess to keep only a thin functional layer. Drying is then carried out to evaporate the excess water. Drying can be carried out at ambient temperature; it is possible to carry it out at temperatures up to 70°C or even 90°C to speed up the process.
  • the PVDC used can be a commercial aqueous emulsion called Diofan A050 (Solvay-registered trademark).
  • the figure 2 illustrates a variant embodiment of the method of the figure 1 .
  • This embodiment variant consists in using a mask 28 deposited on the first layer 20, in order to make a recess and to delimit a zone not coated with PVDC.
  • the picture 3 illustrates the principle of embossing a substrate 2 obtained for example according to the method of figure 1 .
  • This step consists in carrying out an embossing of the substrate 2 obtained in order to functionalize it.
  • the embossing is carried out on the upper face of the second layer.
  • the embossing can consist of placing the substrate between two dies of a press, a hollow lower die M1 and a raised upper die M2. During the press, the reliefs are duplicated on said upper face of the substrate so as to form an imprint.
  • Other techniques can of course be envisaged.
  • a hollow or concavity pattern is produced by embossing said substrate 2, forming for example a cavity 22 as shown in the picture 3 .
  • E32 A substrate 2 is thus obtained provided with the cavity 22 obtained by embossing.
  • the cavity 22 may have a hollow shape of constant section over its entire height, with a circular outline. In this case, it may for example have a diameter of 8mm and a depth of 0.5mm.
  • the embossing can thus make it possible to produce a pattern forming a concavity on the upper face of the second layer of the substrate.
  • This concavity can take any possible form. It will be seen that it can for example take the form of a longitudinal channel, for example of square section.
  • the fixing of the membrane 3 on the second PVDC layer 21 of a substrate and the assembly between the two substrates 2.1, 2.2 by their second layer can be made by any known solution, for example by bonding, according to the invention by thermal sealing.
  • the thermal sealing will be carried out by maintaining the layers against each other, for example substrate+membrane or substrate+substrate, for a determined period (for example 20 minutes) and under a suitable temperature, which can range from 130°C and 170°C. During the sealing period, the temperature can be kept constant or vary in the range from 130°C to 170°C.
  • the membrane 3 is for example composed of a film made of a bi-component hyper-elastic polymer material, for example a silicone or polysiloxane polymer. It may in particular be an elastomer of the PDMS type (for Polydimethylsiloxane) or ECOFLEX (trademark registered by the company “Smooth-On”—for example Ecoflex 00-50). Its thickness can be between 20 and 500 ⁇ m.
  • the membrane 3 can be in the form of a pellet or disc deposited in a localized manner between the two substrates and adhering to only part of each external surface of the two substrates.
  • the second substrate 2.2 carries an orifice 24.2 forming a control channel around which the membrane 3 is capable of deforming when a control fluid (for example air) is injected through said orifice. or when air is sucked out of a chamber.
  • the deformation of the membrane 3 is carried out on a targeted deformation zone, less than the total surface of the membrane.
  • the membrane comprises a fixing or adhesion zone by which it is fixed, from above and from below, on the upper PVDC layer of the first substrate 2.1 and on the lower PVDC layer of the second substrate 2.2.
  • the device of the invention is intended to be used in a system incorporating pneumatic equipment 5.
  • the pneumatic equipment 5 may comprise a pump capable of sucking in or injecting air to control the displacement of the membrane.
  • the system may also include a control unit responsible for controlling said pump.
  • the first embodiment of the microfluidic device is obtained by assembling two substrates, a first substrate 2.1 (V1) embossed and a second planar and non-embossed substrate (V10).
  • the figure 6 illustrates the architecture of this first achievement.
  • the first substrate 2.1 is embossed so as to present a cavity 22.1.
  • the embossing can be carried out according to the principle described above in connection with the picture 3 .
  • the second substrate is flat.
  • the second substrate 2.2 is turned over relative to the first substrate 2.1 so as to present its second layer of PVDC facing the second layer of PVDC of the first substrate 2.1.
  • the second substrate 2.2 is thus deposited on the upper face of the first substrate 2.1 so as to cover the opening of its cavity 22.1 and to close the latter.
  • the second substrate 2.2 is hermetically affixed to the surface of the first substrate 2.1.
  • the cavity 22.1 of the first substrate and the second substrate 2.2 thus define a chamber 23.1 having an internal space of non-zero volume and fluid-tight.
  • the second substrate 2.2 can be fixed, not its second layer, on the first substrate 2.1 by any suitable fixing solution, for example by thermal sealing as already indicated above.
  • E62 The first substrate 2.1 is pierced with two orifices 24.1, 25.1 each opening independently into the chamber 23.1. Each orifice forms a fluid inlet/outlet channel. A fitting can be fitted through each port to connect a hose thereto.
  • the two orifices 24.1, 25.1 could be made through the second substrate.
  • the figure 7 illustrates the principle of operation of this first embodiment of the device. We can see a fluid which is injected into the chamber 23.1 through the orifice 24.1 and then sucked out of the chamber through the second orifice 25.1.
  • the device is thus used as a storage or reaction chamber.
  • the second embodiment of the microfluidic device is obtained by assembling two substrates, a first substrate 2.1 (V6) embossed to form a channel and a second flat and non-embossed substrate 2.2 (V10).
  • the figure 8 illustrates the architecture of this first achievement.
  • the first substrate 2.1 is embossed so as to present a pattern forming a channel 220.1.
  • the embossing can be carried out according to the principle described above in connection with the picture 3 .
  • the second substrate is flat.
  • the second substrate 2.2 is turned over relative to the first substrate 2.1 so as to present its second layer of PVDC facing the second layer of PVDC of the first substrate 2.1.
  • the second substrate 2.2 is thus deposited on the upper face of the first substrate 2.1 so as to cover its channel 220.1 and to form a conduit 230.1.
  • the second substrate 2.2 is fixed, by its second layer, to the first substrate 2.1 by thermal sealing as indicated above.
  • the figure 9 illustrates the principle of operation of this first embodiment of the device. We can see a fluid which is injected through the conduit 230.1.
  • This third embodiment is a variant of the first embodiment described above. It differs from the first embodiment in that the second substrate 2.2 is also embossed to present a cavity 22.2 (V11).
  • the figure 10 illustrates the architecture of this second embodiment.
  • the first substrate 2.1 and the second substrate 2.2 are each embossed so as to each have a distinct cavity 22.1, 22.2.
  • the embossing can be carried out according to the principle described above in connection with the picture 3 .
  • the second substrate 2.2 is turned over relative to the first substrate 2.1 so as to present its second layer 21.2 of PVDC facing the second layer 21.1 of PVDC of the first substrate 2.1.
  • the second substrate 2.2 is thus deposited on the upper face of the first substrate 2.1 so as to cover the opening of its cavity 22.1 and to close the latter.
  • the second substrate 2.2 is hermetically affixed to the surface of the first substrate 2.1.
  • E102 The cavity 22.1 of the first substrate and that of the second substrate 2.2 thus define a chamber 23.1 having an internal space of non-zero volume and fluid-tight.
  • the second substrate 2.2 is fixed, by its second layer, to the first substrate 2.1 by thermal sealing as indicated above.
  • E103 The first substrate is pierced with two orifices 24.1, 25.1 each opening independently into the chamber 23.1. Each orifice forms a fluid inlet/outlet channel. A fitting can be fitted through each port to connect a hose thereto.
  • the two substrates being symmetrical, it should be noted that the two orifices 24.1, 25.1 could be made through the second substrate 2.2.
  • the figure 11 illustrates the principle of operation of this first variant embodiment of the device. We can see a fluid which is injected into the chamber 23.1 through the orifice 24.1 and then sucked out of the chamber through the second orifice 25.1.
  • the device is thus used as a storage or reaction chamber.
  • the fourth embodiment of the microfluidic device consists of a fluidic valve, using a deformable membrane 3 inserted between the two substrates 2.1, 2.2.
  • the first substrate has a cavity 22.1 (V1) and the second substrate has a recess 29.2 and a recess 26.2 to house the membrane 3 (V14).
  • the device comprises two substrates 2.1, 2.2.
  • the second hollow substrate 2.2 is also embossed so as to create a recess 26.2.
  • the recess 26.2 may have a circular outline and a depth at least equivalent to the thickness of the membrane 3.
  • the recess may be produced by embossing according to the principle described above in conjunction with the picture 3 .
  • the first substrate 2.1 has a cavity 22.1, for example produced by embossing according to the principle described above in connection with the picture 3 .
  • the two PVDC layers of the two substrates 2.1, 2.2 face each other.
  • the membrane 3 for example in the form of a disc, is housed in the recess 26.2.
  • the membrane 3 housed in the recess is fixed by its upper face to the lower face of the second substrate 2.2 around the recess 29.2, leaving a free deformation zone at the level of the recess 29.2.
  • the membrane 3 is also affixed and fixed via its fixing zone, by its lower layer on the upper PVDC layer of the first substrate 2.1 at the periphery of its cavity 22.1 to cover the latter and close it hermetically, forming a chamber 23.1 .
  • the zone of deformation of the membrane corresponds for example to the section of the cavity 22.1.
  • E122 An orifice 24.2, forming a control channel, is made through the second substrate 2.2, advantageously in the axis of the deformation zone of the membrane 3 to open into the recess 29.2.
  • Two orifices 24.1, 25.1 are for example made through the first substrate 2.1, each opening into the chamber 23.1.
  • the device comprises two substrates 2.1, 2.2.
  • the first substrate 2.1 has a cavity 22.1, for example produced by embossing according to the principle described above in conjunction with the picture 3 as well as an annular counterbore 27.1 produced on the periphery of the cavity 22.1 and on which the membrane 3 (V4) will bear. Countersinking can also be carried out by embossing according to the same principle.
  • the counterbore may have a depth at least equivalent to the thickness of the membrane 3.
  • the second substrate 2.2 comprises a recess 29.2 on its second layer 2.2, defining the zone of deformation of the membrane 3.
  • the two PVDC layers of the two substrates 2.1, 2.2 face each other.
  • the membrane 3 for example in the form of a disc, comes to rest and is fixed by its periphery on the counterbore 27.1, thus covering the cavity 22.1 and closing it hermetically, forming the chamber 23.1.
  • the membrane 3 thus housed and fixed on the second substrate is also fixed on the underside of the second substrate 2.2, around the recess 29.2, on part of its contact surface only, leaving its deformation zone free.
  • the zone of deformation of the membrane 3 corresponds for example to the section of the recess 29.2 produced.
  • E142 The orifice 24.2, forming the control channel, is made through the second substrate 2.2, advantageously in the axis of the deformation zone of the membrane 3.
  • the two orifices 24.1, 25.1 are for example made through the second substrate 2.2, each opening into the chamber 23.1.
  • This embodiment consists of a fluidic valve, capable of sucking in a fluid and then expelling it.
  • the first substrate 2.1 is embossed, for example according to the method described on the picture 3 , so as to form a cavity 22.1 (V1).
  • the second substrate 2.2 also has a cavity 22.2 and a counterbore 27.2 around its cavity to accommodate the membrane (V16). This counterbore 27.2 has the same characteristics as that described above in connection with the figures 14 and 15 .
  • the two second PVDC layers face each other and the deformable membrane 3 is inserted between these two layers to close the two cavities and separate them from each other in a hermetic manner, forming two spaces 230.1, 230.2.
  • the first substrate 2.1 and the second substrate 2.2 are each embossed so as to each have a distinct cavity 22.1, 22.2.
  • the embossing can be carried out according to the principle described above in connection with the picture 3 .
  • the second substrate also carries the counterbore intended to house the membrane 3.
  • the second embossed substrate 2.2 is turned over relative to the first substrate 2.1 so as to present its second layer of PVDC facing the second layer of PVDC of the first substrate 2.1.
  • the membrane 3 is inserted between the two substrates 2.1, 2.2, being fixed, via its fixing zone, to the counterbore 27.2 on one side and to the periphery of the cavity 22.1 on the other side, leaving its deformation zone free to deform towards the inside of the second cavity 22.2 or towards the inside of the first cavity 22.1.
  • E161 The three elements are assembled together.
  • the assembly can be carried out by any suitable fixing solution, for example by thermal sealing or by gluing.
  • the two layers of PVDC adhere to each other.
  • the membrane adheres to the two layers of PVDC located above and below. The membrane thus delimits two spaces 230.1, 230.2 sealed with respect to each other.
  • E162 The first substrate 2.1 is pierced with two orifices 24.1, 25.1 each opening independently into the first space 230.1. Each orifice forms a fluid inlet/outlet channel. A fitting can be fitted through each port to connect a hose thereto. The other substrate 2.2 is pierced with a single orifice 24.2 opening into the second space 230.2. This orifice forms an inlet/outlet channel for a control fluid making it possible to actuate the membrane 3. A connector can be added through this orifice to allow the connection of a connector intended to be connected to pneumatic equipment. By way of example, the orifice may have a diameter of 3.5 mm.
  • the pneumatic equipment 5 may comprise a pump capable of injecting air inside the space 230.2 or of sucking in the air present in this space 230.2.
  • the figure 17 illustrates the principle of operation of this last alternative embodiment of the microfluidic device.
  • E170 Pneumatic equipment 5, for example a pump, is connected by a connection to the endpiece arranged through the orifice 24.2 in order to be able to control the movement of the membrane 3.
  • the connection between the second space 230.2 and the pneumatic equipment 5 is airtight.
  • Vacuum control is applied to the pneumatic equipment.
  • the membrane 3 is deformed towards the interior of the cavity 22.2 to suck the air present in the first space 230.1 through the orifice 24.1.
  • the fluid is stored in the chamber 230.1.
  • the depression is maintained to maintain the membrane 3 in position.
  • a control fluid for example air
  • the membrane 3 deforms in the other direction towards the interior of the cavity 22.1 .
  • the membrane 3 pushes the fluid out of the first space through the second orifice 25.1.
  • E172 The fluid is totally evacuated from the first space 230.1. If the pressure is released, the membrane 3 returns to its rest position by elastic effect.
  • This embodiment consists of a fluidic valve making it possible to block or allow a fluid F to pass through a channel.
  • the figures 18 and 19 are sectional views longitudinal.
  • the membrane 3 is therefore taken between the two layers 21.1, 21.2 of the two substrates in transverse view.
  • the first substrate 2.1 is embossed to form a channel 220.1 (V6).
  • the second substrate 2.2 (V14) has a recess 29.2 to define the zone of deformation of the membrane 3, and a recess 26.2 to house the membrane between the two substrates 2.1, 2.2.
  • the orifice 24.2 made through the second substrate allows control of the membrane.
  • E181 The assembly between the three elements makes it possible to create a channel whose flow is controlled by the membrane 3.
  • the figure 20 illustrates the production on the same support of several microfluidic valves of the type of the invention.
  • the support for all the valves is composed of two substrates 2.1, 2.2 only, each embossed with several cavities to form each valve.
  • a membrane 3 in the form of a pellet is inserted between the two substrates.
  • Each valve can for example be addressed individually by the pneumatic equipment 5.

Description

Domaine technique de l'inventionTechnical field of the invention

La présente invention se rapporte à un dispositif micro-fluidique. Ce dispositif micro-fluidique présente la particularité de présenter au moins deux substrats à base de papier.The present invention relates to a microfluidic device. This microfluidic device has the particularity of having at least two paper-based substrates.

Etat de la techniqueState of the art

Dans différents domaines, notamment dans le domaine de l'analyse biologique, il a été proposé d'employer des dispositifs micro-fluidiques dotés d'un substrat à base de papier présentant un traitement de surface hydrophobe. De telles solutions sont notamment décrites dans la demande de brevet WO2013/181656A1 et dans la demande de brevet EP3053652A1 . In various fields, in particular in the field of biological analysis, it has been proposed to use microfluidic devices equipped with a paper-based substrate having a hydrophobic surface treatment. Such solutions are described in particular in the patent application WO2013/181656A1 and in the patent application EP3053652A1 .

Le document WO2018/197814A1 décrit pour sa part la réalisation d'un substrat à base de papier.The document WO2018/197814A1 describes for its part the production of a paper-based substrate.

Dans ces solutions antérieures, le circuit micro-fluidique réalisé par embossage peut être fermé par le dessus avec un film adhésif transparent en utilisant principalement des matériaux à base de poly(téréphtalate d'éthylène) (PET) ou d'éthylène-acétate de vinyle (EVA). L'écoulement des échantillons biologiques est alors possible en imposant une pression positive en entrée du circuit à l'aide d'une ou plusieurs pompes.In these prior solutions, the micro-fluidic circuit produced by embossing can be closed from above with a transparent adhesive film using mainly materials based on poly(ethylene terephthalate) (PET) or ethylene-vinyl acetate. (EVA). The flow of the biological samples is then possible by imposing a positive pressure at the inlet of the circuit using one or more pumps.

Un dispositif micro-fluidique peut être amené à remplir différentes fonctions :

  • Chambre ou réservoir de stockage d'un fluide dans un circuit micro-fluidique
  • Vanne micro-fluidique ;
A micro-fluidic device can be required to fulfill different functions:
  • Chamber or reservoir for storing a fluid in a microfluidic circuit
  • Micro-fluidic valve;

Le but de l'invention est donc de proposer un dispositif micro-fluidique capable de réaliser certaines fonctions et qui reste facile à fabriquer et à transporter, fiable, simple de fonctionnement et à faible coût.The object of the invention is therefore to propose a microfluidic device capable of carrying out certain functions and which remains easy to manufacture and to transport, reliable, simple to operate and at low cost.

Exposé de l'inventionDisclosure of Invention

Ce but est atteint par un dispositif micro-fluidique qui comporte :

  • Un premier substrat et un deuxième substrat,
  • Chaque substrat étant composé d'au moins deux couches superposées, une première couche réalisée en papier et une deuxième couche déposée sur la première couche, réalisée dans un matériau à base de polymère de vinylidène, et présentant une surface externe,
  • Le premier substrat comprenant un premier motif formant une concavité sur sa surface externe,
  • Lesdits substrats étant assemblés entre eux par leur deuxième couche par scellement thermique, le deuxième substrat recouvrant ladite concavité.
This goal is achieved by a micro-fluidic device which comprises:
  • A first substrate and a second substrate,
  • Each substrate being composed of at least two superimposed layers, a first layer made of paper and a second layer deposited on the first layer, made of a material based on vinylidene polymer, and having an outer surface,
  • The first substrate comprising a first pattern forming a concavity on its outer surface,
  • Said substrates being assembled together by their second layer by thermal sealing, the second substrate covering said concavity.

Selon une réalisation particulière, ledit motif est une première cavité recouverte par ledit deuxième substrat de manière à former une chambre et le dispositif comporte un premier orifice et un deuxième orifice débouchant à l'intérieur de ladite chambre.According to a particular embodiment, said pattern is a first cavity covered by said second substrate so as to form a chamber and the device comprises a first orifice and a second orifice opening into said chamber.

Selon une autre réalisation particulière, le deuxième substrat comporte une deuxième cavité, réalisée en vis-à-vis de la première cavité et formant ladite chambre avec ladite première cavité.According to another particular embodiment, the second substrate comprises a second cavity, made opposite the first cavity and forming said chamber with said first cavity.

Selon une autre réalisation particulière, le dispositif comporte une membrane déformable réalisée sous la forme d'une pastille déposée sur une partie uniquement de ladite surface externe, intercalée et maintenue entre les deux substrats, ladite membrane comprenant une zone de déformation recouvrant ladite première cavité, ledit premier orifice traversant le premier substrat et ledit deuxième orifice traversant ledit deuxième substrat suivant un axe traversant la zone de déformation de la membrane.According to another particular embodiment, the device comprises a deformable membrane produced in the form of a pellet deposited on only part of said external surface, interposed and held between the two substrates, said membrane comprising a deformation zone covering said first cavity, said first orifice passing through the first substrate and said second orifice passing through said second substrate along an axis passing through the deformation zone of the membrane.

Selon une autre réalisation particulière, la deuxième couche du deuxième substrat comporte un évidement, réalisé sur toute son épaisseur et définissant la zone de déformation de la membrane.According to another particular embodiment, the second layer of the second substrate comprises a recess, made over its entire thickness and defining the zone of deformation of the membrane.

Selon une autre réalisation particulière, le deuxième substrat comporte un renfoncement réalisé autour de son évidement pour accueillir la membrane.According to another particular embodiment, the second substrate comprises a recess made around its recess to accommodate the membrane.

Selon une autre réalisation particulière, le premier substrat comporte un renfoncement réalisé en périphérie de sa cavité et configuré pour accueillir la membrane venant recouvrir sa cavité.According to another particular embodiment, the first substrate comprises a recess made on the periphery of its cavity and configured to accommodate the membrane coming to cover its cavity.

Selon une autre réalisation particulière, le deuxième substrat comporte une deuxième cavité, réalisée en vis-à-vis de la première cavité et formant ladite chambre avec ladite première cavité, ladite membrane séparant ladite chambre en deux espaces hermétiques l'un par rapport à l'autre.According to another particular embodiment, the second substrate comprises a second cavity, made opposite the first cavity and forming said chamber with said first cavity, said membrane separating said chamber into two hermetic spaces one with respect to the 'other.

Selon une particularité, la membrane est réalisée dans un matériau de type polymère silicone ou polysiloxane.According to one feature, the membrane is made of a material of the silicone or polysiloxane polymer type.

Selon une autre réalisation particulière, le dispositif comporte un troisième orifice réalisé à travers le premier substrat.According to another particular embodiment, the device comprises a third orifice made through the first substrate.

L'invention concerne également un système micro-fluidique comprenant un équipement pneumatique, ledit système comportant au moins un dispositif micro-fluidique équipé d'une membrane selon l'une des réalisations décrites ci-dessus, ledit équipement pneumatique étant raccordé sur ledit deuxième orifice du dispositif pour permettre un actionnement de la membrane.The invention also relates to a microfluidic system comprising pneumatic equipment, said system comprising at least one microfluidic device equipped with a membrane according to one of the embodiments described above, said pneumatic equipment being connected to said second orifice of the device to allow actuation of the membrane.

L'invention concerne également un procédé de fabrication d'un dispositif micro-fluidique tel que défini ci-dessus, ce procédé comportant les étapes suivantes :

  • Fabrication d'un premier substrat et d'un deuxième substrat composés chacun d'au moins deux couches superposées, une première couche réalisée en papier et une deuxième couche déposée sur la première couche et réalisée dans un matériau à base de polymère de vinylidène, ledit premier substrat comportant un premier motif formant une concavité,
  • Superposition et fixation du premier substrat et du deuxième substrat par leur deuxième couche par scellement thermique de manière à recouvrir ladite concavité.
The invention also relates to a method for manufacturing a microfluidic device as defined above, this method comprising the following steps:
  • Manufacture of a first substrate and a second substrate each composed of at least two superposed layers, a first layer made of paper and a second layer deposited on the first layer and made of a material based on vinylidene polymer, said first substrate comprising a first pattern forming a concavity,
  • Superposition and fixing of the first substrate and of the second substrate by their second layer by thermal sealing so as to cover said concavity.

Selon une réalisation particulière, le procédé comporte :

  • Une étape de dépôt d'une membrane déformable entre les deux substrats, ladite membrane comprenant une zone de déformation vers l'intérieur de ladite concavité.
According to a particular embodiment, the method comprises:
  • A step of depositing a deformable membrane between the two substrates, said membrane comprising a zone of deformation towards the inside of said concavity.

Selon une autre réalisation particulière, la membrane est déposée par scellement thermique.According to another particular embodiment, the membrane is deposited by thermal sealing.

Selon une autre réalisation particulière, ladite concavité est une première cavité et le procédé comporte une étape de réalisation d'une deuxième cavité dans ledit deuxième substrat, réalisée en vis-à-vis de la première cavité et formant une chambre avec ladite première cavité, ladite membrane séparant ladite chambre en deux espaces hermétiques l'un par rapport à l'autre.According to another particular embodiment, said concavity is a first cavity and the method comprises a step of producing a second cavity in said second substrate, produced opposite the first cavity and forming a chamber with said first cavity, said membrane separating said chamber into two airtight spaces relative to each other.

Selon une autre réalisation particulière, la première cavité est réalisée par embossage du premier substrat et la deuxième cavité est réalisée par embossage du deuxième substrat.According to another particular embodiment, the first cavity is produced by embossing the first substrate and the second cavity is produced by embossing the second substrate.

Brève description des figuresBrief description of figures

D'autres caractéristiques et avantages vont apparaître dans la description détaillée qui suit faite en regard des dessins annexés dans lesquels :

  • La figure 1 illustre le procédé de réalisation d'un substrat employé dans le dispositif micro-fluidique de l'invention ;
  • La figure 2 illustre le procédé de réalisation d'un substrat employé dans le dispositif micro-fluidique de l'invention, selon une variante de réalisation ;
  • La figure 3 illustre le principe d'embossage d'un substrat employé dans le dispositif micro-fluidique conforme à l'invention ;
  • La figure 4 représente différentes variantes possibles du premier substrat employé dans le dispositif micro-fluidique de l'invention ;
  • La figure 5 représente différentes variantes possibles du deuxième substrat employé dans le dispositif micro-fluidique de l'invention ;
  • La figure 6 représente les étapes de réalisation d'une première réalisation du dispositif micro-fluidique conforme à l'invention ;
  • La figure 7 illustre le principe de fonctionnement de la première variante de réalisation du dispositif micro-fluidique de la figure 6 ;
  • La figure 8 représente les étapes de réalisation d'une deuxième réalisation du dispositif micro-fluidique conforme à l'invention ;
  • La figure 9 illustre le principe de fonctionnement de la deuxième réalisation du dispositif micro-fluidique de la figure 8 ; La figure 9 est une vue en coupe selon A-A de la figure 8 ;
  • La figure 10 représente les étapes de réalisation d'une troisième réalisation du dispositif micro-fluidique conforme à l'invention ;
  • La figure 11 illustre le principe de fonctionnement de la troisième réalisation du dispositif micro-fluidique de la figure 10 ;
  • La figure 12A représente les étapes de réalisation d'une quatrième réalisation du dispositif micro-fluidique conforme à l'invention ; La figure 12B montre une variante de réalisation du dispositif de la figure 12A ;
  • La figure 13A illustre le principe de fonctionnement de la troisième réalisation du dispositif micro-fluidique de la figure 12A ; La figure 13B illustre le principe de fonctionnement du dispositif de la figure 12B ;
  • La figure 14 représente les étapes de réalisation d'une cinquième réalisation du dispositif micro-fluidique conforme à l'invention ;
  • La figure 15 illustre le principe de fonctionnement de la cinquième réalisation du dispositif micro-fluidique de la figure 14 ;
  • La figure 16 représente les étapes de réalisation d'une sixième réalisation du dispositif micro-fluidique conforme à l'invention ;
  • La figure 17 illustre le principe de fonctionnement de la sixième réalisation du dispositif micro-fluidique de la figure 16 ;
  • La figure 18 représente les étapes de réalisation d'une septième réalisation du dispositif micro-fluidique conforme à l'invention ;
  • La figure 19 illustre le principe de fonctionnement de la septième réalisation du dispositif micro-fluidique de la figure 18 ; Les figures 18 et 19 sont des vues en coupe longitudinale ;
  • La figure 20 représente un dispositif micro-fluidique à plusieurs vannes juxtaposées ;
Other characteristics and advantages will appear in the detailed description which follows given with regard to the appended drawings in which:
  • The figure 1 illustrates the process for producing a substrate used in the microfluidic device of the invention;
  • The figure 2 illustrates the process for producing a substrate used in the microfluidic device of the invention, according to a variant embodiment;
  • The picture 3 illustrates the principle of embossing a substrate used in the microfluidic device according to the invention;
  • The figure 4 represents different possible variants of the first substrate employed in the microfluidic device of the invention;
  • The figure 5 represents different possible variants of the second substrate used in the microfluidic device of the invention;
  • The figure 6 represents the steps for producing a first embodiment of the microfluidic device in accordance with the invention;
  • The figure 7 illustrates the principle of operation of the first embodiment variant of the microfluidic device of the figure 6 ;
  • The figure 8 represents the steps for making a second embodiment of the microfluidic device according to the invention;
  • The figure 9 illustrates the operating principle of the second embodiment of the microfluidic device of the figure 8 ; The figure 9 is a sectional view according to AA of the figure 8 ;
  • The figure 10 represents the steps for making a third embodiment of the microfluidic device according to the invention;
  • The figure 11 illustrates the operating principle of the third embodiment of the microfluidic device of the figure 10 ;
  • The Figure 12A represents the steps for producing a fourth embodiment of the microfluidic device in accordance with the invention; The figure 12B shows a variant embodiment of the device of the Figure 12A ;
  • The Figure 13A illustrates the operating principle of the third embodiment of the microfluidic device of the Figure 12A ; The Figure 13B illustrates the principle of operation of the device of the figure 12B ;
  • The figure 14 represents the steps for producing a fifth embodiment of the microfluidic device in accordance with the invention;
  • The figure 15 illustrates the operating principle of the fifth embodiment of the microfluidic device of the figure 14 ;
  • The figure 16 represents the steps for producing a sixth embodiment of the microfluidic device in accordance with the invention;
  • The figure 17 illustrates the operating principle of the sixth embodiment of the microfluidic device of the figure 16 ;
  • The figure 18 represents the steps for producing a seventh embodiment of the microfluidic device in accordance with the invention;
  • The figure 19 illustrates the principle of operation of the seventh embodiment of the micro-fluidic device of the figure 18 ; The figures 18 and 19 are views in longitudinal section;
  • The figure 20 represents a microfluidic device with several juxtaposed valves;

Description détaillée d'au moins un mode de réalisationDetailed description of at least one embodiment

Dans la suite de la description, les termes "supérieur", "inférieur", "au-dessus", "au-dessous" sont à comprendre en prenant comme référence un axe tracé verticalement sur la feuille.In the rest of the description, the terms “upper”, “lower”, “above”, “below” are to be understood by taking as reference an axis traced vertically on the sheet.

Le dispositif micro-fluidique de l'invention comporte deux substrats 2.1, 2.2 (référence générale 2) dotés d'une structure identique. Chaque substrat est formé d'au moins deux couches 20, 21, avantageusement uniquement deux couches.The microfluidic device of the invention comprises two substrates 2.1, 2.2 (general reference 2) endowed with an identical structure. Each substrate is formed of at least two layers 20, 21, advantageously only two layers.

La première couche 20 du substrat 2 est formée d'un papier présentant les propriétés suivantes :

  • Bonne résistance mécanique à la traction et bonne cohésion de surface préalable,
  • Faible absorption d'eau,
  • Énergie de surface permettant l'étalement de la préparation de couchage.
The first layer 20 of the substrate 2 is formed of a paper having the following properties:
  • Good mechanical tensile strength and good prior surface cohesion,
  • Low water absorption,
  • Surface energy allowing the spreading of the coating preparation.

De manière non limitative, le papier employé est vendu sous la marque « Powercoat » (marque déposée) présentant un grammage de 219 g/m2.In a non-limiting manner, the paper used is sold under the “Powercoat” brand (registered trademark) having a basis weight of 219 g/m 2 .

La deuxième couche 21 du substrat 2 est déposée sur la première couche en « Powercoat ».The second layer 21 of the substrate 2 is deposited on the first "Powercoat" layer.

Cette deuxième couche doit avantageusement présenter les caractéristiques suivantes :

  • Être thermoscellable (selon l'invention):
  • Être imperméable aux fluides (gaz notamment pour actionner la membrane
  • voir ci-après) ;
  • Être résistante à l'embossage ;
  • Pouvant être étalée ou laminée sur le papier, et y adhérer solidement ;
  • Être déformable par embossage à température ambiante ;
  • Être résistante à la déchirure ;
This second layer must advantageously have the following characteristics:
  • Be heat sealable (according to the invention):
  • Be impermeable to fluids (gas in particular to activate the membrane
  • see below) ;
  • Be resistant to embossing;
  • Able to be spread or laminated on the paper, and adhere firmly to it;
  • Be deformable by embossing at room temperature;
  • Be tear-resistant;

La deuxième couche 21 est selon l'invention un polymère de vinylidène, avantageusement du "polychlorure de vinylidène" (ci-après PVDC) ou du polyfluorure de vinylidène (PVDF), avantageusement du polychlorure de vinylidène PVDC. Dans la suite de la description, de manière non limitative, on choisit d'employer une deuxième couche 21 à base de PVDC.The second layer 21 is according to the invention a vinylidene polymer, advantageously "polyvinylidene chloride" (hereinafter PVDC) or polyvinylidene fluoride (PVDF), advantageously polyvinylidene chloride PVDC. In the remainder of the description, in a non-limiting manner, it is chosen to use a second layer 21 based on PVDC.

Le PVDC désigne différents copolymères à base de chlorure de vinylidène qui peuvent être associés à d'autres polymères aux propriétés complémentaires. La copolymérisation du chlorure de vinylidène avec différents co-monomères conduit à une gamme de polymères semi-cristallins aux propriétés spécifiques remarquables (imperméabilité à l'oxygène, à différents gaz et à la vapeur d'eau, scellabilité, imprimabilité, transparence...). Les principaux co-monomères utilisés sont :

  • les acrylates de méthyle, d'éthyle ou de butyle ;
  • l'acrylonitrile, le méthacrylate de méthyle, le méthacrylonitrile ;
  • le chlorure de vinyle ;
  • des acides carboxyliques insaturés ;
PVDC designates various copolymers based on vinylidene chloride which can be combined with other polymers with complementary properties. The copolymerization of vinylidene chloride with different comonomers leads to a range of semi-crystalline polymers with remarkable specific properties (impermeability to oxygen, to various gases and to water vapour, sealability, printability, transparency... ). The main co-monomers used are:
  • methyl, ethyl or butyl acrylates;
  • acrylonitrile, methyl methacrylate, methacrylonitrile;
  • vinyl chloride;
  • unsaturated carboxylic acids;

Il faut noter qu'il est cependant possible de remplacer la première couche 20 du substrat (par exemple de type "Powercoat HD") par un papier semi-transparent, similaire à du papier calque (par exemple du P5N (marque déposée), produit par la société Arjowiggins). La couche 21 de PVDC peut ainsi être déposée sur ce nouveau substrat (P5N enduit du PVDC à 12 g m-2).It should be noted that it is however possible to replace the first layer 20 of the substrate (for example of the "Powercoat HD" type) by a semi-transparent paper, similar to tracing paper (for example P5N (registered trademark), produced by the company Arjowiggins). PVDC layer 21 can thus be deposited on this new substrate (P5N coated with 12 gm -2 PVDC).

La figure 1 représente un exemple du procédé de fabrication du substrat 2.The figure 1 shows an example of the manufacturing process for substrate 2.

E10 : La couche 21 de PVDC est déposée sur la première couche 20 de papier par enduction. La couche de PVDC est déposée à une épaisseur comprise entre 5 et 20 µm, ce qui correspond à des grammages compris entre 15 et 25 g/m2. Cette technique permet de déposer une préparation à base de PVDC sur le papier puis de racler l'excès pour ne garder qu'une fine couche fonctionnelle. Un séchage est ensuite effectué pour évaporer le surplus d'eau. Le séchage peut être réalisé à température ambiante il est possible de le réaliser à des températures allant jusqu'à 70°C voire 90°C pour accélérer le processus. Le PVDC utilisé peut être une émulsion aqueuse commerciale nommée Diofan A050 (Solvay-marque déposée).E10: Layer 21 of PVDC is deposited on first layer 20 of paper by coating. The PVDC layer is deposited at a thickness of between 5 and 20 μm, which corresponds to basis weights of between 15 and 25 g/m 2 . This technique makes it possible to deposit a PVDC-based preparation on the paper then to scrape off the excess to keep only a thin functional layer. Drying is then carried out to evaporate the excess water. Drying can be carried out at ambient temperature; it is possible to carry it out at temperatures up to 70°C or even 90°C to speed up the process. The PVDC used can be a commercial aqueous emulsion called Diofan A050 (Solvay-registered trademark).

E11 : le substrat 2 obtenu comporte ainsi les deux couches 20, 21 superposées.E11: the substrate 2 obtained thus comprises the two superposed layers 20, 21.

La figure 2 illustre une variante de réalisation du procédé de la figure 1. Cette variante de réalisation consiste à employer un masque 28 déposé sur la première couche 20, afin de réaliser un évidement et de délimiter une zone non enduite par du PVDC.The figure 2 illustrates a variant embodiment of the method of the figure 1 . This embodiment variant consists in using a mask 28 deposited on the first layer 20, in order to make a recess and to delimit a zone not coated with PVDC.

E20 : Le masque 28 est déposé sur la première couche 20. Le principe d'enduction est ensuite similaire à celui décrit pour l'étape E10 ci-dessus.E20: Mask 28 is deposited on first layer 20. The coating principle is then similar to that described for step E10 above.

E21 : L'enduction avec la couche de PVDC est terminée.E21: The coating with the PVDC layer is finished.

E22 : Le masque 28 est retiré, laissant un évidement 29 formant une zone non enduite de deuxième couche 21 sur la première couche 20.E22: Mask 28 is removed, leaving a recess 29 forming an uncoated area of second layer 21 over first layer 20.

La figure 3 illustre le principe d'embossage d'un substrat 2 obtenu par exemple selon le procédé de la figure 1.The picture 3 illustrates the principle of embossing a substrate 2 obtained for example according to the method of figure 1 .

E30 : Cette étape consiste à réaliser un embossage du substrat 2 obtenu afin de le fonctionnaliser. L'embossage est réalisé sur la face supérieure de la deuxième couche.E30: This step consists in carrying out an embossing of the substrate 2 obtained in order to functionalize it. The embossing is carried out on the upper face of the second layer.

De manière connue, comme illustré sur la figure 3, l'embossage peut consister à placer le substrat entre deux matrices d'une presse, une matrice M1 inférieure en creux et une matrice M2 supérieure en relief. Lors de la presse, les reliefs sont dupliqués sur ladite face supérieure du substrat de manière à former une empreinte. D'autres techniques peuvent bien entendu être envisagés.In a known manner, as illustrated in the picture 3 , the embossing can consist of placing the substrate between two dies of a press, a hollow lower die M1 and a raised upper die M2. During the press, the reliefs are duplicated on said upper face of the substrate so as to form an imprint. Other techniques can of course be envisaged.

E31 : Un motif en creux ou concavité est réalisé par embossage dudit substrat 2, formant par exemple une cavité 22 comme représenté sur la figure 3.E31: A hollow or concavity pattern is produced by embossing said substrate 2, forming for example a cavity 22 as shown in the picture 3 .

E32 : On obtient ainsi un substrat 2 doté de la cavité 22 obtenue par embossage.E32: A substrate 2 is thus obtained provided with the cavity 22 obtained by embossing.

A titre d'exemple, la cavité 22 peut présenter une forme en creux de section constante sur toute sa hauteur, avec un contour circulaire. Dans ce cas, elle peut par exemple présenter un diamètre de 8mm et une profondeur de 0.5mm.By way of example, the cavity 22 may have a hollow shape of constant section over its entire height, with a circular outline. In this case, it may for example have a diameter of 8mm and a depth of 0.5mm.

Selon un aspect particulier, l'embossage peut ainsi permettre de réaliser un motif formant une concavité sur la face supérieure de la deuxième couche du substrat. Cette concavité peut se présenter sous toute forme possible. On verra qu'elle peut par exemple prendre la forme d'un canal longitudinal par exemple à section carrée.According to a particular aspect, the embossing can thus make it possible to produce a pattern forming a concavity on the upper face of the second layer of the substrate. This concavity can take any possible form. It will be seen that it can for example take the form of a longitudinal channel, for example of square section.

Plusieurs motifs pourront être réalisés de manière juxtaposée sur un même substrat afin d'obtenir plusieurs éléments juxtaposés (voir figure 20).Several patterns can be made juxtaposed on the same substrate in order to obtain several juxtaposed elements (see figure 20 ).

Partant de deux substrats 2.1, 2.2, par exemple obtenus selon le procédé décrit ci-dessus en liaison avec la figure 1 et/ou la figure 2, on peut, à titre d'exemples, réaliser différents dispositifs micro-fluidiques :

  • Des variantes de réalisation du dispositif micro-fluidique, sous la forme d'une chambre ou d'un réservoir micro-fluidique ;
  • Des variantes de réalisation du dispositif micro-fluidique, sous la forme d'une vanne micro-fluidique et comportant une membrane déformable ;
Starting from two substrates 2.1, 2.2, for example obtained according to the method described above in connection with the figure 1 and/or the picture 2 , it is possible, by way of example, to produce various microfluidic devices:
  • Alternative embodiments of the micro-fluidic device, in the form of a chamber or a micro-fluidic reservoir;
  • Alternative embodiments of the micro-fluidic device, in the form of a micro-fluidic valve and comprising a deformable membrane;

Dans ces différentes réalisations, la fixation de la membrane 3 sur la deuxième couche 21 en PVDC d'un substrat et l'assemblage entre les deux substrats 2.1, 2.2 par leur deuxième couche (c'est-à-dire par la couche en PVDC) peuvent être réalisés par toute solution connue, par exemple par collage, selon l'invention par scellement thermique. Le scellement thermique sera réalisé en maintenant les couches l'une contre l'autre, par exemple substrat+membrane ou substrat+substrat, pendant une durée déterminée (par exemple 20 minutes) et sous une température adaptée, pouvant aller de 130°C et 170°C. Pendant la durée du scellement, la température peut être maintenue constante ou varier dans la gamme allant de 130°C à 170°C.In these various embodiments, the fixing of the membrane 3 on the second PVDC layer 21 of a substrate and the assembly between the two substrates 2.1, 2.2 by their second layer (that is to say by the PVDC layer ) can be made by any known solution, for example by bonding, according to the invention by thermal sealing. The thermal sealing will be carried out by maintaining the layers against each other, for example substrate+membrane or substrate+substrate, for a determined period (for example 20 minutes) and under a suitable temperature, which can range from 130°C and 170°C. During the sealing period, the temperature can be kept constant or vary in the range from 130°C to 170°C.

La membrane 3 est par exemple composée d'un film réalisé dans un matériau polymère bi-composant hyper-élastique par exemple un polymère silicone ou polysiloxane. Il peut notamment s'agir d'un élastomère de type PDMS (pour Polydimethylsiloxane) ou ECOFLEX (marque déposée par la société "Smooth-On"-par exemple Ecoflex 00-50). Son épaisseur peut être comprise entre 20 et 500µm.The membrane 3 is for example composed of a film made of a bi-component hyper-elastic polymer material, for example a silicone or polysiloxane polymer. It may in particular be an elastomer of the PDMS type (for Polydimethylsiloxane) or ECOFLEX (trademark registered by the company “Smooth-On”—for example Ecoflex 00-50). Its thickness can be between 20 and 500 μm.

La membrane 3 peut se présenter sous la forme d'une pastille ou disque déposée de manière localisée entre les deux substrats et venant adhérer à une partie uniquement de chaque surface externe des deux substrats.The membrane 3 can be in the form of a pellet or disc deposited in a localized manner between the two substrates and adhering to only part of each external surface of the two substrates.

Pour commander le déplacement de la membrane, le deuxième substrat 2.2 porte un orifice 24.2 formant un canal de commande autour duquel la membrane 3 est apte à se déformer lorsqu'un fluide de commande (par exemple de l'air) est injecté par ledit orifice ou lorsque l'air est aspiré en dehors d'une chambre. La déformation de la membrane 3 est réalisée sur une zone de déformation ciblée, inférieure à la surface totale de la membrane. Autour de sa zone de déformation, la membrane comporte une zone de fixation ou d'adhésion par laquelle elle est fixée, par le dessus et par le dessous, sur la couche de PVDC supérieure du premier substrat 2.1 et sur la couche de PVDC inférieure du deuxième substrat 2.2.To control the movement of the membrane, the second substrate 2.2 carries an orifice 24.2 forming a control channel around which the membrane 3 is capable of deforming when a control fluid (for example air) is injected through said orifice. or when air is sucked out of a chamber. The deformation of the membrane 3 is carried out on a targeted deformation zone, less than the total surface of the membrane. Around its deformation zone, the membrane comprises a fixing or adhesion zone by which it is fixed, from above and from below, on the upper PVDC layer of the first substrate 2.1 and on the lower PVDC layer of the second substrate 2.2.

Dans sa version vanne fluidique, le dispositif de l'invention est destiné à être employé dans un système intégrant un équipement pneumatique 5. L'équipement pneumatique 5 peut comporter une pompe capable d'aspirer ou d'injecter de l'air pour commander le déplacement de la membrane.In its fluidic valve version, the device of the invention is intended to be used in a system incorporating pneumatic equipment 5. The pneumatic equipment 5 may comprise a pump capable of sucking in or injecting air to control the displacement of the membrane.

Le système peut également comporter une unité de commande chargée de commander ladite pompe.The system may also include a control unit responsible for controlling said pump.

Le dispositif micro-fluidique de l'invention pourra être réalisé en combinant un premier substrat 2.1 et un deuxième substrat 2.2 réalisé selon les différentes variantes représentées respectivement sur la figure 4 pour le premier substrat 2.1 et sur la figure 5 pour le deuxième substrat :

  • Figure 4
    • V1 : Premier substrat 2.1 doté d'un motif formant une cavité 22.1, par exemple réalisée par embossage ;
    • V2 : Premier substrat 2.1 comprenant un motif formant une cavité et un orifice 24.1 débouchant dans la cavité 22.1 ;
    • V3 : Premier substrat 2.1 comprenant un motif formant une cavité et deux orifices 24.1, 25.1 débouchant dans la cavité 22.1 ;
    • V4 : Premier substrat 2.1 doté d'un lamage 27.1 autour de sa cavité pour loger la membrane 3 venant recouvrir sa cavité 22.1, avec un orifice 24.1 ou deux orifices 24.1, 25.1 ;
    • V5 : Premier substrat 2.1 doté d'un motif formant un canal 220.1, par exemple réalisé par embossage ;
  • Figure 5
    • V10 : Deuxième substrat 2.2 plan ;
    • V11 : Deuxième substrat 2.2 doté d'une cavité 22.2 réalisée de manière symétrique par rapport à celle du premier substrat 2.1 ;
    • V12 : Deuxième substrat 2.2 doté d'un motif sur sa deuxième couche 21.2, formant un canal 220.2 ;
    • V13 : Deuxième substrat 2.2 comprenant un évidement 29.2 sur toute l'épaisseur de sa deuxième couche 21.2 et doté d'un orifice 24.2 traversant la première couche 2.2 du substrat au niveau dudit évidement ; L'évidement permet de conférer à la membrane une zone de déformation libre, c'est-à-dire non adhérente à la surface du substrat ;
    • V14 : Deuxième substrat 2.2 doté d'un évidement 29.2 réalisé sur toute l'épaisseur de la deuxième sur sa deuxième couche et d'un renfoncement annulaire autour de l'évidement pour loger la membrane 3 ; deuxième substrat doté d'un orifice 24.2 traversant la première couche 2.2 du substrat au niveau de l'évidement 29.2 ;
    • V15 : Deuxième substrat 2.2 doté d'une cavité 22.2 refermée par la membrane 3 pour former un espace 230.2 ; deuxième substrat doté d'un orifice 24.2 traversant le substrat et débouchant dans l'espace 230.2 ;
    • V16 : Par rapport à V15, deuxième substrat doté en plus d'un lamage 27.2 réalisé autour de sa cavité 22.2 de manière à y loger la membrane 3 ;
    • V17 : Deuxième substrat 2.2 avec un orifice 24.2 élargi pour définir une zone de déformation suffisante à la membrane ;
  • Partant de ces différentes variantes de réalisation, on pourra réaliser :
    • Différents dispositifs, sans membrane 3, faisant office de réservoir fluidique ;
    • Différents dispositifs dotés chacun d'une membrane 3 déformable réalisée sous la forme d'une pastille venant se loger dans le renfoncement ou l'un des lamages réalisés sur l'un des deux substrats ; La membrane est fixée de part et d'autre aux deux substrats situés au-dessus et au-dessous, par adhésion avec une couche de PVDC, tout en conservant une zone de déformation libre de toute fixation, lui permettant de se déformer (en se bombant par pression ou dépression). Le déplacement de la membrane pourra être commandé en pression et/ou en dépression selon l'architecture du dispositif ;
  • Pour chaque réalisation du dispositif qui est décrite ci-dessous, il faut comprendre que les étapes sont indiquées à titre indicatif et que leur ordre peut bien entendu varier selon le procédé de fabrication envisagé.
The micro-fluidic device of the invention can be produced by combining a first substrate 2.1 and a second substrate 2.2 produced according to the different variants represented respectively on the figure 4 for the first substrate 2.1 and on the figure 5 for the second substrate:
  • Figure 4
    • V1: First substrate 2.1 provided with a pattern forming a cavity 22.1, for example produced by embossing;
    • V2: First substrate 2.1 comprising a pattern forming a cavity and an orifice 24.1 opening into the cavity 22.1;
    • V3: First substrate 2.1 comprising a pattern forming a cavity and two orifices 24.1, 25.1 opening into the cavity 22.1;
    • V4: First substrate 2.1 provided with a counterbore 27.1 around its cavity to house the membrane 3 coming to cover its cavity 22.1, with an orifice 24.1 or two orifices 24.1, 25.1;
    • V5: First substrate 2.1 provided with a pattern forming a channel 220.1, for example produced by embossing;
  • Figure 5
    • V10: Second substrate 2.2 plane;
    • V11: Second substrate 2.2 provided with a cavity 22.2 made symmetrically with respect to that of the first substrate 2.1;
    • V12: Second substrate 2.2 provided with a pattern on its second layer 21.2, forming a channel 220.2;
    • V13: Second substrate 2.2 comprising a recess 29.2 over the entire thickness of its second layer 21.2 and provided with an orifice 24.2 passing through the first layer 2.2 of the substrate at the level of said recess; The recess makes it possible to give the membrane a zone of free deformation, that is to say not adhering to the surface of the substrate;
    • V14: Second substrate 2.2 provided with a recess 29.2 made over the entire thickness of the second on its second layer and with an annular recess around the recess to house the membrane 3; second substrate provided with an orifice 24.2 passing through the first layer 2.2 of the substrate at the level of the recess 29.2;
    • V15: Second substrate 2.2 provided with a cavity 22.2 closed by the membrane 3 to form a space 230.2; second substrate provided with an orifice 24.2 passing through the substrate and opening into space 230.2;
    • V16: Compared to V15, second substrate additionally provided with a counterbore 27.2 made around its cavity 22.2 so as to house the membrane 3 therein;
    • V17: Second substrate 2.2 with an enlarged orifice 24.2 to define a sufficient deformation zone for the membrane;
  • Starting from these different embodiments, it is possible to achieve:
    • Different devices, without membrane 3, acting as a fluid reservoir;
    • Different devices each provided with a deformable membrane 3 made in the form of a pellet which is housed in the recess or one of the counterbores made on one of the two substrates; The membrane is attached on either side to the two substrates located above and below, by adhesion with a layer of PVDC, while maintaining a deformation zone free of any attachment, allowing it to deform (by bulging by pressure or depression). The displacement of the membrane can be controlled in pressure and/or in depression according to the architecture of the device;
  • For each embodiment of the device which is described below, it should be understood that the steps are indicated by way of indication and that their order may of course vary according to the manufacturing method envisaged.

Les descriptions des différentes réalisations du dispositif sont à considérer de manière non limitative et il faut considérer que certaines autres combinaisons pourraient être envisagées.The descriptions of the various embodiments of the device are to be considered in a non-limiting manner and it must be considered that certain other combinations could be envisaged.

Première réalisation : Figures 6 et 7First realization: Figures 6 and 7

En référence à la figure 6, la première réalisation du dispositif micro-fluidique est obtenue en assemblant deux substrats, un premier substrat 2.1 (V1) embossé et un deuxième substrat plan et non embossé (V10).With reference to the figure 6 , the first embodiment of the microfluidic device is obtained by assembling two substrates, a first substrate 2.1 (V1) embossed and a second planar and non-embossed substrate (V10).

La figure 6 illustre l'architecture de cette première réalisation.The figure 6 illustrates the architecture of this first achievement.

E60 : Le premier substrat 2.1 est embossé de manière à présenter une cavité 22.1. L'embossage peut être réalisé selon le principe décrit ci-dessus en liaison avec la figure 3. Le deuxième substrat est plan.E60: The first substrate 2.1 is embossed so as to present a cavity 22.1. The embossing can be carried out according to the principle described above in connection with the picture 3 . The second substrate is flat.

E61 : Le deuxième substrat 2.2 est retourné par rapport au premier substrat 2.1 de manière à présenter sa deuxième couche de PVDC en vis-à-vis de la deuxième couche de PVDC du premier substrat 2.1. Le deuxième substrat 2.2 est ainsi déposé sur la face supérieure du premier substrat 2.1 de manière à recouvrir l'ouverture de sa cavité 22.1 et à refermer celle-ci. Le deuxième substrat 2.2 est apposé de manière hermétique sur la surface du premier substrat 2.1. La cavité 22.1 du premier substrat et le deuxième substrat 2.2 définissent ainsi une chambre 23.1 présentant un espace interne de volume non nul et étanche aux fluides.E61: The second substrate 2.2 is turned over relative to the first substrate 2.1 so as to present its second layer of PVDC facing the second layer of PVDC of the first substrate 2.1. The second substrate 2.2 is thus deposited on the upper face of the first substrate 2.1 so as to cover the opening of its cavity 22.1 and to close the latter. The second substrate 2.2 is hermetically affixed to the surface of the first substrate 2.1. The cavity 22.1 of the first substrate and the second substrate 2.2 thus define a chamber 23.1 having an internal space of non-zero volume and fluid-tight.

Le deuxième substrat 2.2 peut être fixé, pas sa deuxième couche, sur le premier substrat 2.1 par toute solution de fixation adaptée, par exemple par scellement thermique comme déjà indiqué ci-dessus.The second substrate 2.2 can be fixed, not its second layer, on the first substrate 2.1 by any suitable fixing solution, for example by thermal sealing as already indicated above.

E62 : Le premier substrat 2.1 est percé de deux orifices 24.1, 25.1 débouchant chacun de manière indépendante dans la chambre 23.1. Chaque orifice forme un canal d'entrée/sortie de fluide. Un embout peut être adapté à travers chaque orifice pour y connecter un flexible.E62: The first substrate 2.1 is pierced with two orifices 24.1, 25.1 each opening independently into the chamber 23.1. Each orifice forms a fluid inlet/outlet channel. A fitting can be fitted through each port to connect a hose thereto.

Dans cette réalisation, il faut noter que les deux orifices 24.1, 25.1 pourraient être réalisés à travers le deuxième substrat.In this embodiment, it should be noted that the two orifices 24.1, 25.1 could be made through the second substrate.

La figure 7 illustre le principe de fonctionnement de cette première réalisation du dispositif. On peut voir un fluide qui est injecté dans la chambre 23.1 par l'orifice 24.1 puis aspiré en dehors de la chambre à travers le deuxième orifice 25.1.The figure 7 illustrates the principle of operation of this first embodiment of the device. We can see a fluid which is injected into the chamber 23.1 through the orifice 24.1 and then sucked out of the chamber through the second orifice 25.1.

Le dispositif est ainsi employé comme chambre de stockage ou de réaction.The device is thus used as a storage or reaction chamber.

Deuxième réalisation - Figures 8 et 9Second embodiment - Figures 8 and 9

En référence à la figure 8, la deuxième réalisation du dispositif micro-fluidique est obtenue en assemblant deux substrats, un premier substrat 2.1 (V6) embossé pour former un canal et un deuxième substrat 2.2 plan et non embossé (V10).With reference to the figure 8 , the second embodiment of the microfluidic device is obtained by assembling two substrates, a first substrate 2.1 (V6) embossed to form a channel and a second flat and non-embossed substrate 2.2 (V10).

La figure 8 illustre l'architecture de cette première réalisation.The figure 8 illustrates the architecture of this first achievement.

E80 : Le premier substrat 2.1 est embossé de manière à présenter un motif formant un canal 220.1. L'embossage peut être réalisé selon le principe décrit ci-dessus en liaison avec la figure 3. Le deuxième substrat est plan.E80: The first substrate 2.1 is embossed so as to present a pattern forming a channel 220.1. The embossing can be carried out according to the principle described above in connection with the picture 3 . The second substrate is flat.

E81 : Le deuxième substrat 2.2 est retourné par rapport au premier substrat 2.1 de manière à présenter sa deuxième couche de PVDC en vis-à-vis de la deuxième couche de PVDC du premier substrat 2.1. Le deuxième substrat 2.2 est ainsi déposé sur la face supérieure du premier substrat 2.1 de manière à recouvrir son canal 220.1 et à former un conduit 230.1.E81: The second substrate 2.2 is turned over relative to the first substrate 2.1 so as to present its second layer of PVDC facing the second layer of PVDC of the first substrate 2.1. The second substrate 2.2 is thus deposited on the upper face of the first substrate 2.1 so as to cover its channel 220.1 and to form a conduit 230.1.

Le deuxième substrat 2.2 est fixé, par sa deuxième couche, sur le premier substrat 2.1 par scellement thermique comme indiqué ci-dessus.The second substrate 2.2 is fixed, by its second layer, to the first substrate 2.1 by thermal sealing as indicated above.

La figure 9 illustre le principe de fonctionnement de cette première réalisation du dispositif. On peut voir un fluide qui est injecté à travers le conduit 230.1.The figure 9 illustrates the principle of operation of this first embodiment of the device. We can see a fluid which is injected through the conduit 230.1.

Troisième réalisation - Figures 10 et 11Third realization - Figures 10 and 11

Cette troisième réalisation est une variante de la première réalisation décrite ci-dessus. Elle diffère de la première réalisation en ce que le deuxième substrat 2.2 est également embossé pour présenter une cavité 22.2 (V11).This third embodiment is a variant of the first embodiment described above. It differs from the first embodiment in that the second substrate 2.2 is also embossed to present a cavity 22.2 (V11).

La figure 10 illustre l'architecture de cette deuxième réalisation.The figure 10 illustrates the architecture of this second embodiment.

E100 : Le premier substrat 2.1 et le deuxième substrat 2.2 sont chacun embossés de manière à présenter chacun une cavité 22.1, 22.2 distincte. L'embossage peut être réalisé selon le principe décrit ci-dessus en liaison avec la figure 3.E100: The first substrate 2.1 and the second substrate 2.2 are each embossed so as to each have a distinct cavity 22.1, 22.2. The embossing can be carried out according to the principle described above in connection with the picture 3 .

E101 : Le deuxième substrat 2.2 est retourné par rapport au premier substrat 2.1 de manière à présenter sa deuxième couche 21.2 de PVDC en vis-à-vis de la deuxième couche 21.1 de PVDC du premier substrat 2.1. Le deuxième substrat 2.2 est ainsi déposé sur la face supérieure du premier substrat 2.1 de manière à recouvrir l'ouverture de sa cavité 22.1 et à refermer celle-ci. Le deuxième substrat 2.2 est apposé de manière hermétique sur la surface du premier substrat 2.1.E101: The second substrate 2.2 is turned over relative to the first substrate 2.1 so as to present its second layer 21.2 of PVDC facing the second layer 21.1 of PVDC of the first substrate 2.1. The second substrate 2.2 is thus deposited on the upper face of the first substrate 2.1 so as to cover the opening of its cavity 22.1 and to close the latter. The second substrate 2.2 is hermetically affixed to the surface of the first substrate 2.1.

E102 : La cavité 22.1 du premier substrat et celle du deuxième substrat 2.2 définissent ainsi une chambre 23.1 présentant un espace interne de volume non nul et étanche aux fluides. Le deuxième substrat 2.2 est fixé, par sa deuxième couche, sur le premier substrat 2.1 par scellement thermique comme indiqué ci-dessus.E102: The cavity 22.1 of the first substrate and that of the second substrate 2.2 thus define a chamber 23.1 having an internal space of non-zero volume and fluid-tight. The second substrate 2.2 is fixed, by its second layer, to the first substrate 2.1 by thermal sealing as indicated above.

E103 : Le premier substrat est percé de deux orifices 24.1, 25.1 débouchant chacun de manière indépendante dans la chambre 23.1. Chaque orifice forme un canal d'entrée/sortie de fluide. Un embout peut être adapté à travers chaque orifice pour y connecter un flexible.E103: The first substrate is pierced with two orifices 24.1, 25.1 each opening independently into the chamber 23.1. Each orifice forms a fluid inlet/outlet channel. A fitting can be fitted through each port to connect a hose thereto.

Dans cette réalisation, les deux substrats étant symétriques, il faut noter que les deux orifices 24.1, 25.1 pourraient être réalisés à travers le deuxième substrat 2.2.In this embodiment, the two substrates being symmetrical, it should be noted that the two orifices 24.1, 25.1 could be made through the second substrate 2.2.

La figure 11 illustre le principe de fonctionnement de cette première variante de réalisation du dispositif. On peut voir un fluide qui est injecté dans la chambre 23.1 par l'orifice 24.1 puis aspiré en dehors de la chambre à travers le deuxième orifice 25.1.The figure 11 illustrates the principle of operation of this first variant embodiment of the device. We can see a fluid which is injected into the chamber 23.1 through the orifice 24.1 and then sucked out of the chamber through the second orifice 25.1.

Le dispositif est ainsi employé comme chambre de stockage ou de réaction.The device is thus used as a storage or reaction chamber.

Quatrième réalisation - Figures 12A, 12B et 13A, 13BFourth embodiment - Figures 12A, 12B and 13A, 13B

La quatrième réalisation du dispositif micro-fluidique consiste en une vanne fluidique, employant une membrane 3 déformable intercalée entre les deux substrats 2.1, 2.2. Le premier substrat présente une cavité 22.1 (V1) et le deuxième substrat comporte un évidement 29.2 et un renfoncement 26.2 pour loger la membrane 3 (V14).The fourth embodiment of the microfluidic device consists of a fluidic valve, using a deformable membrane 3 inserted between the two substrates 2.1, 2.2. The first substrate has a cavity 22.1 (V1) and the second substrate has a recess 29.2 and a recess 26.2 to house the membrane 3 (V14).

E120 : Le dispositif comporte deux substrats 2.1, 2.2. Le deuxième substrat 2.2 évidé est également embossé de manière à créer un renfoncement 26.2. Le renfoncement 26.2 peut présenter un contour circulaire et une profondeur au moins équivalente à l'épaisseur de la membrane 3. Le renfoncement peut être réalisé par embossage selon le principe décrit ci-dessus en liaison avec la figure 3. Le premier substrat 2.1 présente une cavité 22.1, par exemple réalisée par embossage selon le principe décrit ci-dessus en liaison avec la figure 3.E120: The device comprises two substrates 2.1, 2.2. The second hollow substrate 2.2 is also embossed so as to create a recess 26.2. The recess 26.2 may have a circular outline and a depth at least equivalent to the thickness of the membrane 3. The recess may be produced by embossing according to the principle described above in conjunction with the picture 3 . The first substrate 2.1 has a cavity 22.1, for example produced by embossing according to the principle described above in connection with the picture 3 .

Les deux couches en PVDC des deux substrats 2.1, 2.2 se font face.The two PVDC layers of the two substrates 2.1, 2.2 face each other.

La membrane 3, se présentant par exemple sous la forme d'un disque, est logée dans le renfoncement 26.2.The membrane 3, for example in the form of a disc, is housed in the recess 26.2.

La membrane 3 logée dans le renfoncement est fixée par sa face supérieure sur la face inférieure du deuxième substrat 2.2 autour de l'évidement 29.2, laissant une zone de déformation libre au niveau de l'évidement 29.2.The membrane 3 housed in the recess is fixed by its upper face to the lower face of the second substrate 2.2 around the recess 29.2, leaving a free deformation zone at the level of the recess 29.2.

La membrane 3 est également apposée et fixée via sa zone de fixation, par sa couche inférieure sur la couche supérieure en PVDC du premier substrat 2.1 en périphérie de sa cavité 22.1 pour recouvrir celle-ci et la refermer de manière hermétique, formant une chambre 23.1.The membrane 3 is also affixed and fixed via its fixing zone, by its lower layer on the upper PVDC layer of the first substrate 2.1 at the periphery of its cavity 22.1 to cover the latter and close it hermetically, forming a chamber 23.1 .

La zone de déformation de la membrane correspond par exemple à la section de la cavité 22.1.The zone of deformation of the membrane corresponds for example to the section of the cavity 22.1.

E121 : La membrane 3 est ainsi maintenue entre les deux substrats 2.1, 2.2, tout en conservant sa zone de déformation libre vers l'intérieur de la cavité 22.1.E121: The membrane 3 is thus held between the two substrates 2.1, 2.2, while retaining its free deformation zone towards the inside of the cavity 22.1.

E122 : Un orifice 24.2, formant un canal de commande, est réalisé à travers le deuxième substrat 2.2, avantageusement dans l'axe de la zone de déformation de la membrane 3 pour déboucher dans l'évidement 29.2.E122: An orifice 24.2, forming a control channel, is made through the second substrate 2.2, advantageously in the axis of the deformation zone of the membrane 3 to open into the recess 29.2.

Deux orifices 24.1, 25.1 sont par exemple réalisés à travers le premier substrat 2.1, chacun débouchant dans la chambre 23.1.Two orifices 24.1, 25.1 are for example made through the first substrate 2.1, each opening into the chamber 23.1.

En fonctionnement, selon la figure 13A :

  • E130 : Un fluide F peut être injecté dans la chambre 23.1 à travers le premier orifice 24.1 pour remplir ladite chambre.
  • E131 : La pompe de l'équipement pneumatique 5 est connectée via une liaison hermétique sur le canal de commande de la membrane 3. L'équipement pneumatique 5 injecte de l'air à travers le canal de commande. Mise sous pression, la membrane 3 se déforme vers l'intérieur de la cavité 22.1 en suivant sa zone de déformation. En se déformant, la membrane 3 pousse le fluide F en dehors de la chambre 23.1 à travers le deuxième orifice 25.1.
  • E132 : La membrane 3 peut se déformer jusqu'à expulser tout le fluide en dehors de la chambre 23.2.
In operation, according to Figure 13A :
  • E130: A fluid F can be injected into the chamber 23.1 through the first orifice 24.1 to fill said chamber.
  • E131: The pump of the pneumatic equipment 5 is connected via a hermetic connection to the control channel of the membrane 3. The pneumatic equipment 5 injects air through the control channel. Pressurized, the membrane 3 deforms towards the inside of the cavity 22.1 following its deformation zone. By deforming, the membrane 3 pushes the fluid F out of the chamber 23.1 through the second orifice 25.1.
  • E132: The membrane 3 can deform until all the fluid is expelled outside the chamber 23.2.

Selon les figures 12B et 13B, il est également possible d'inverser le sens de fonctionnement du dispositif. La commande est réalisée du côté du premier substrat 2.1 et le fluide est aspiré à travers le deuxième substrat 2.1. Un seul orifice à travers chaque substrat serait alors suffisant.According to figures 12B and 13B , it is also possible to reverse the operating direction of the device. The control is carried out on the side of the first substrate 2.1 and the fluid is sucked through the second substrate 2.1. A single orifice through each substrate would then be sufficient.

Cinquième réalisation : Figures 14 et 15Fifth realization: Figures 14 and 15

Cette réalisation est une variante de celle des figures 12A et 13A.This realization is a variant of that of figure 12A and 13A .

E140 : Le dispositif comporte deux substrats 2.1, 2.2. Le premier substrat 2.1 présente une cavité 22.1, par exemple réalisée par embossage selon le principe décrit ci-dessus en liaison avec la figure 3 ainsi qu'un lamage 27.1 annulaire réalisé en périphérie de la cavité 22.1 et sur laquelle va venir prendre appui la membrane 3 (V4). Le lamage peut également être réalisé par embossage selon le même principe. Le lamage peut présenter une profondeur au moins équivalente à l'épaisseur de la membrane 3. Le deuxième substrat 2.2 comporte un évidement 29.2 sur sa deuxième couche 2.2, définissant la zone de déformation de la membrane 3.E140: The device comprises two substrates 2.1, 2.2. The first substrate 2.1 has a cavity 22.1, for example produced by embossing according to the principle described above in conjunction with the picture 3 as well as an annular counterbore 27.1 produced on the periphery of the cavity 22.1 and on which the membrane 3 (V4) will bear. Countersinking can also be carried out by embossing according to the same principle. The counterbore may have a depth at least equivalent to the thickness of the membrane 3. The second substrate 2.2 comprises a recess 29.2 on its second layer 2.2, defining the zone of deformation of the membrane 3.

Les deux couches en PVDC des deux substrats 2.1, 2.2 se font face.The two PVDC layers of the two substrates 2.1, 2.2 face each other.

La membrane 3, se présentant par exemple sous la forme d'un disque, vient prendre appui et se fixer par sa périphérie sur le lamage 27.1, venant ainsi recouvrir la cavité 22.1 et la refermer de manière hermétique, formant la chambre 23.1.The membrane 3, for example in the form of a disc, comes to rest and is fixed by its periphery on the counterbore 27.1, thus covering the cavity 22.1 and closing it hermetically, forming the chamber 23.1.

La membrane 3 ainsi logée et fixée sur le deuxième substrat est également fixée sur la face inférieure du deuxième substrat 2.2, autour de l'évidement 29.2, sur une partie de sa surface de contact uniquement, laissant sa zone de déformation libre.The membrane 3 thus housed and fixed on the second substrate is also fixed on the underside of the second substrate 2.2, around the recess 29.2, on part of its contact surface only, leaving its deformation zone free.

La zone de déformation de la membrane 3 correspond par exemple à la section de l'évidement 29.2 réalisé.The zone of deformation of the membrane 3 corresponds for example to the section of the recess 29.2 produced.

E141 : La membrane 3 est ainsi maintenue entre les deux substrats 2.1, 2.2, tout en conservant sa zone de déformation libre vers l'intérieur de la cavité 22.1.E141: The membrane 3 is thus held between the two substrates 2.1, 2.2, while retaining its free deformation zone towards the inside of the cavity 22.1.

E142 : L'orifice 24.2, formant le canal de commande, est réalisé à travers le deuxième substrat 2.2, avantageusement dans l'axe de zone de déformation de la membrane 3.E142: The orifice 24.2, forming the control channel, is made through the second substrate 2.2, advantageously in the axis of the deformation zone of the membrane 3.

Les deux orifices 24.1, 25.1 sont par exemple réalisés à travers le deuxième substrat 2.2, chacun débouchant dans la chambre 23.1.The two orifices 24.1, 25.1 are for example made through the second substrate 2.2, each opening into the chamber 23.1.

En fonctionnement, selon la figure 15 :

  • E150 : Un fluide F peut être injecté dans la chambre à travers le premier orifice 24.1 pour remplir ladite chambre.
  • E151 : La pompe de l'équipement pneumatique 5 est connectée via une liaison hermétique sur le canal de commande de la membrane 3. L'équipement pneumatique 5 injecte de l'air à travers le canal de commande. Mise sous pression, la membrane 3 se déforme vers l'intérieur de la cavité 22.1 en suivant sa zone de déformation. En se déformant, la membrane 3 pousse le fluide F en dehors de la chambre 23.1 à travers le deuxième orifice 25.1.
  • E152 : La membrane 3 peut se déformer jusqu'à expulser tout le fluide en dehors de la chambre 23.1.
In operation, according to figure 15 :
  • E150: A fluid F can be injected into the chamber through the first orifice 24.1 to fill said chamber.
  • E151: The pump of the pneumatic equipment 5 is connected via a hermetic connection to the control channel of the membrane 3. The pneumatic equipment 5 injects air through the control channel. Pressurized, the membrane 3 deforms towards the inside of the cavity 22.1 following its deformation zone. By deforming, the membrane 3 pushes the fluid F out of the chamber 23.1 through the second orifice 25.1.
  • E152: Diaphragm 3 can deform until all the fluid is expelled from chamber 23.1.

Il faut noter que ce principe de lamage 27.1 pour loger la membrane 3 peut s'appliquer à d'autres réalisations décrites.It should be noted that this principle of facing 27.1 to accommodate the membrane 3 can be applied to other embodiments described.

Sixième réalisation - Figures 16 et 17Sixth realization - Figures 16 and 17

Cette réalisation consiste en une vanne fluidique, capable d'aspirer un fluide puis de l'expulser.This embodiment consists of a fluidic valve, capable of sucking in a fluid and then expelling it.

Le premier substrat 2.1 est embossé, par exemple selon le procédé décrit sur la figure 3, de manière à former une cavité 22.1 (V1). Le deuxième substrat 2.2 présente également une cavité 22.2 et un lamage 27.2 autour de sa cavité pour accueillir la membrane (V16). Ce lamage 27.2 présente les mêmes caractéristiques que celui décrit ci-dessus en liaison avec les figures 14 et 15.The first substrate 2.1 is embossed, for example according to the method described on the picture 3 , so as to form a cavity 22.1 (V1). The second substrate 2.2 also has a cavity 22.2 and a counterbore 27.2 around its cavity to accommodate the membrane (V16). This counterbore 27.2 has the same characteristics as that described above in connection with the figures 14 and 15 .

Les deux deuxièmes couches en PVDC se font face et la membrane 3 déformable est intercalée entre ces deux couches pour fermer les deux cavités et les séparer l'une de l'autre de manière hermétique, en formant deux espaces 230.1, 230.2.The two second PVDC layers face each other and the deformable membrane 3 is inserted between these two layers to close the two cavities and separate them from each other in a hermetic manner, forming two spaces 230.1, 230.2.

E160 : Le premier substrat 2.1 et le deuxième substrat 2.2 sont chacun embossés de manière à présenter chacun une cavité 22.1, 22.2 distincte. L'embossage peut être réalisé selon le principe décrit ci-dessus en liaison avec la figure 3. Le deuxième substrat porte également le lamage destiné à loger la membrane 3.E160: The first substrate 2.1 and the second substrate 2.2 are each embossed so as to each have a distinct cavity 22.1, 22.2. The embossing can be carried out according to the principle described above in connection with the picture 3 . The second substrate also carries the counterbore intended to house the membrane 3.

Le deuxième substrat 2.2 embossé est retourné par rapport au premier substrat 2.1 de manière à présenter sa deuxième couche de PVDC en vis-à-vis de la deuxième couche de PVDC du premier substrat 2.1. La membrane 3 est intercalée entre les deux substrats 2.1, 2.2, en étant fixée, par sa zone de fixation, sur le lamage 27.2 d'un côté et sur la périphérie de la cavité 22.1 de l'autre côté, laissant sa zone de déformation libre pour se déformer vers l'intérieur de la deuxième cavité 22.2 ou vers l'intérieur de la première cavité 22.1.The second embossed substrate 2.2 is turned over relative to the first substrate 2.1 so as to present its second layer of PVDC facing the second layer of PVDC of the first substrate 2.1. The membrane 3 is inserted between the two substrates 2.1, 2.2, being fixed, via its fixing zone, to the counterbore 27.2 on one side and to the periphery of the cavity 22.1 on the other side, leaving its deformation zone free to deform towards the inside of the second cavity 22.2 or towards the inside of the first cavity 22.1.

E161 : Les trois éléments sont assemblés entre eux. L'assemblage peut être réalisé par toute solution de fixation adaptée, par exemple par scellement thermique ou par collage. En périphérie des cavités et de la membrane, les deux couches de PVDC adhèrent entre elles. Au niveau des deux cavités, la membrane adhère aux deux couches de PVDC situées au-dessus et au-dessous. La membrane délimite ainsi deux espaces 230.1, 230.2 hermétiques l'un par rapport à l'autre.E161: The three elements are assembled together. The assembly can be carried out by any suitable fixing solution, for example by thermal sealing or by gluing. At the periphery of the cavities and of the membrane, the two layers of PVDC adhere to each other. At the level of the two cavities, the membrane adheres to the two layers of PVDC located above and below. The membrane thus delimits two spaces 230.1, 230.2 sealed with respect to each other.

E162 : Le premier substrat 2.1 est percé des deux orifices 24.1, 25.1 débouchant chacun de manière indépendante dans le premier espace 230.1. Chaque orifice forme un canal d'entrée/sortie de fluide. Un embout peut être adapté à travers chaque orifice pour y connecter un flexible. L'autre substrat 2.2 est percé d'un seul orifice 24.2 débouchant dans le deuxième espace 230.2. Cet orifice forme un canal d'entrée/sortie d'un fluide de commande permettant d'actionner la membrane 3. Un embout peut être ajouté à travers cet orifice pour permettre la connexion d'un raccord destiné à être relié à un équipement pneumatique. A titre d'exemple, l'orifice peut présenter un diamètre de 3.5mm.E162: The first substrate 2.1 is pierced with two orifices 24.1, 25.1 each opening independently into the first space 230.1. Each orifice forms a fluid inlet/outlet channel. A fitting can be fitted through each port to connect a hose thereto. The other substrate 2.2 is pierced with a single orifice 24.2 opening into the second space 230.2. This orifice forms an inlet/outlet channel for a control fluid making it possible to actuate the membrane 3. A connector can be added through this orifice to allow the connection of a connector intended to be connected to pneumatic equipment. By way of example, the orifice may have a diameter of 3.5 mm.

L'équipement pneumatique 5 peut comporter une pompe capable d'injecter de l'air à l'intérieur de l'espace 230.2 ou d'aspirer l'air présent dans cet espace 230.2.The pneumatic equipment 5 may comprise a pump capable of injecting air inside the space 230.2 or of sucking in the air present in this space 230.2.

La figure 17 illustre le principe de fonctionnement de cette dernière variante de réalisation du dispositif micro-fluidique.The figure 17 illustrates the principle of operation of this last alternative embodiment of the microfluidic device.

E170 : Un équipement pneumatique 5, par exemple une pompe, est connectée par une liaison sur l'embout agencé à travers l'orifice 24.2 en vue de pouvoir commander le déplacement de la membrane 3. La liaison entre le deuxième espace 230.2 et l'équipement pneumatique 5 est hermétique.E170: Pneumatic equipment 5, for example a pump, is connected by a connection to the endpiece arranged through the orifice 24.2 in order to be able to control the movement of the membrane 3. The connection between the second space 230.2 and the pneumatic equipment 5 is airtight.

Une commande en dépression est appliquée à l'équipement pneumatique. Par dépression, la membrane 3 se déforme vers l'intérieur de la cavité 22.2 pour aspirer l'air présent dans le premier espace 230.1 à travers l'orifice 24.1.Vacuum control is applied to the pneumatic equipment. By depression, the membrane 3 is deformed towards the interior of the cavity 22.2 to suck the air present in the first space 230.1 through the orifice 24.1.

Le fluide est stocké dans la chambre 230.1. La dépression est conservée pour maintenir la membrane 3 en position.The fluid is stored in the chamber 230.1. The depression is maintained to maintain the membrane 3 in position.

E171 : Un fluide de commande, par exemple de l'air, est injecté dans le deuxième espace 230.2 par l'équipement pneumatique 5. Mise sous pression, la membrane 3 se déforme dans l'autre sens vers l'intérieur de la cavité 22.1. En se déformant, la membrane 3 pousse le fluide en dehors du premier espace à travers le deuxième orifice 25.1.E171: A control fluid, for example air, is injected into the second space 230.2 by the pneumatic equipment 5. Pressurized, the membrane 3 deforms in the other direction towards the interior of the cavity 22.1 . By deforming, the membrane 3 pushes the fluid out of the first space through the second orifice 25.1.

E172 : Le fluide est totalement évacué du premier espace 230.1. Si la pression est relâchée, la membrane 3 revient vers sa position de repos par effet élastique.E172: The fluid is totally evacuated from the first space 230.1. If the pressure is released, the membrane 3 returns to its rest position by elastic effect.

Septième réalisation - Figures 18 et 19Seventh realization - Figures 18 and 19

Cette réalisation consiste en une vanne fluidique permettant de bloquer ou de laisser passer un fluide F dans un canal. Les figures 18 et 19 sont des vues en coupe longitudinale. La membrane 3 est donc prise entre les deux couches 21.1, 21.2 des deux substrats en vue transversale.This embodiment consists of a fluidic valve making it possible to block or allow a fluid F to pass through a channel. The figures 18 and 19 are sectional views longitudinal. The membrane 3 is therefore taken between the two layers 21.1, 21.2 of the two substrates in transverse view.

E180 : Le premier substrat 2.1 est embossé pour former un canal 220.1 (V6). Le deuxième substrat 2.2 (V14) est doté d'un évidement 29.2 pour définir la zone de déformation de la membrane 3, et d'un renfoncement 26.2 pour loger la membrane entre les deux substrats 2.1, 2.2.E180: The first substrate 2.1 is embossed to form a channel 220.1 (V6). The second substrate 2.2 (V14) has a recess 29.2 to define the zone of deformation of the membrane 3, and a recess 26.2 to house the membrane between the two substrates 2.1, 2.2.

L'orifice 24.2 réalisé à travers le deuxième substrat permet la commande de la membrane.The orifice 24.2 made through the second substrate allows control of the membrane.

E181 : L'assemblage entre les trois éléments permet de créer un canal dont l'écoulement est contrôlé par la membrane 3.E181: The assembly between the three elements makes it possible to create a channel whose flow is controlled by the membrane 3.

En fonctionnement, selon la figure 19 :

  • E190 : le canal est ouvert, laissant le fluide F s'écouler.
  • E191 : La membrane est actionnée par application d'une pression à travers l'orifice 24.2, venant gonfler la membrane à l'intérieur du canal et bloquer l'écoulement de fluide F.
In operation, according to figure 19 :
  • E190: the channel is open, letting fluid F flow.
  • E191: The membrane is actuated by applying pressure through the orifice 24.2, inflating the membrane inside the channel and blocking the flow of fluid F.

Il peut s'agit d'ouvrir ou de fermer le canal ou de contrôler la section d'écoulement dans le canal, en ajustant le niveau de gonflement de la membrane 3.It can be to open or close the channel or to control the flow section in the channel, by adjusting the level of swelling of the membrane 3.

La figure 20 illustre la réalisation sur un même support de plusieurs vannes micro-fluidiques du type de l'invention.The figure 20 illustrates the production on the same support of several microfluidic valves of the type of the invention.

Le support de l'ensemble des vannes est composé des deux substrats 2.1, 2.2 uniquement, chacun embossé de plusieurs cavités pour former chaque vanne. Pour chaque vanne, une membrane 3 en forme de pastille est intercalée entre les deux substrats. Chaque vanne peut par exemple être adressée individuellement par l'équipement pneumatique 5.The support for all the valves is composed of two substrates 2.1, 2.2 only, each embossed with several cavities to form each valve. For each valve, a membrane 3 in the form of a pellet is inserted between the two substrates. Each valve can for example be addressed individually by the pneumatic equipment 5.

On comprend de ce qui précède que la solution de l'invention présente beaucoup d'avantages :

  • Elle est simple à fabriquer ;
  • Elle est facile à transporter, car peu lourde et peu encombrante ;
  • Elle est d'un fonctionnement fiable, le scellement thermique permettant de garantir l'étanchéité ;
  • Elle est d'un coût particulièrement réduit, notamment du fait de l'utilisation d'un substrat à base de papier ;
It is understood from the above that the solution of the invention has many advantages:
  • It is simple to manufacture;
  • It is easy to transport, because it is light and not bulky;
  • It is reliable in operation, the thermal sealing making it possible to guarantee tightness;
  • It is of a particularly low cost, in particular due to the use of a paper-based substrate;

Claims (16)

  1. Microfluidic device, characterized in that it has:
    - a first substrate (2.1) and a second substrate (2.2),
    - each substrate being made up of at least two superposed layers, a first layer (20) made of paper and a second layer (21) deposited on the first layer, made of a material based on vinylidene polymer, and having an external surface,
    - the first substrate comprising a first pattern forming a cavity on its external surface,
    - said substrates being joined together via their second layer by heat sealing, the second substrate covering said concavity.
  2. Device according to Claim 1, characterized in that said pattern is a first cavity (22.1) that is covered by said second substrate (2.2) so as to form a chamber (23.1) and in that it has a first orifice and a second orifice opening inside said chamber.
  3. Device according to Claim 2, characterized in that the second substrate has a second cavity (22.2), created facing the first cavity (22.1) and forming said chamber (23.1) with said first cavity (23.1).
  4. Device according to Claim 2 or 3, characterized in that it has a deformable membrane (3) made in the form of a pellet deposited on only a part of said external surface, interposed and held between the two substrates, said membrane having a deformation zone covering said first cavity (22.1), said first orifice (24.1) passing through the first substrate (2.1) and said second orifice (24.2) passing through said second substrate (2.2) along an axis passing through the deformation zone of the membrane.
  5. Device according to Claim 4, characterized in that second layer (21.2) of the second substrate (2.2) has a cutout (29.2), created over its entire thickness and defining the deformation zone of the membrane.
  6. Device according to Claim 5, characterized in that the second substrate has an indentation (26.2) created around its cutout so as to receive the membrane (3).
  7. Device according to Claim 4, characterized in that the first substrate has an indentation (26.1) created at the periphery of its cavity (22.1) and configured to receive the membrane (3) covering its cavity.
  8. Device according to Claim 4, characterized in that the second substrate has a second cavity (22.2), created facing the first cavity (22.1) and forming said chamber with said first cavity (23.1), said membrane separating said chamber into two spaces (230.1, 230.2) that are hermetically sealed with respect to one another.
  9. Device according to one of Claims 4 to 6, characterized in that the membrane (3) is made from a material of the silicone polymer or polysiloxane type.
  10. Device according to one of Claims 2 to 7, characterized in that it has a third orifice (25.1) created through the first substrate (2.1).
  11. Microfluidic system comprising an item of pneumatic equipment (5), characterized in that it has at least one microfluidic device as defined in one of Claims 4 to 9, said item of pneumatic equipment (5) being connected to said second orifice (24.2).
  12. Method for manufacturing a microfluidic device as defined in one of Claims 1 to 11, characterized in that it involves the following steps:
    - manufacturing a first substrate (2.1) and a second substrate (2.2) that are each made up of at least two superposed layers, a first layer (20) made of paper and a second layer (21) deposited on the first layer and made of a material based on vinylidene polymer, said first substrate (2.1) having a first pattern forming a concavity,
    - superposing and attaching the first substrate and the second substrate via their second layer by heat sealing so as to cover said concavity.
  13. Method according to Claim 12, characterized in that it involves:
    - a step of depositing a deformable membrane between the two substrates (2.1, 2.2), said membrane having a zone of deformation towards the interior of said concavity.
  14. Method according to Claim 13, characterized in that the membrane (3) is deposited by heat sealing.
  15. Method according to Claim 13 or 14, characterized in that said concavity is a first cavity (22.1) and in that it involves a step of creating a second cavity (22.2) in said second substrate, created facing the first cavity (22.1) and forming a chamber with said first cavity (23.1), said membrane separating said chamber into two spaces (230.1, 230.2) that are hermetically sealed with respect to one another.
  16. Method according to Claim 15, characterized in that the first cavity (22.1) is created by embossing the first substrate (2.1) and in that the second cavity (22.2) is created by embossing the second substrate (2.2).
EP20213724.6A 2019-12-20 2020-12-14 Microfluidic device with paper-based substrates Active EP3838408B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1915053A FR3105026B1 (en) 2019-12-20 2019-12-20 Micro-fluidic device with paper-based substrates

Publications (2)

Publication Number Publication Date
EP3838408A1 EP3838408A1 (en) 2021-06-23
EP3838408B1 true EP3838408B1 (en) 2022-04-06

Family

ID=69811299

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20213724.6A Active EP3838408B1 (en) 2019-12-20 2020-12-14 Microfluidic device with paper-based substrates

Country Status (2)

Country Link
EP (1) EP3838408B1 (en)
FR (1) FR3105026B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181656A1 (en) 2012-06-01 2013-12-05 President And Fellows Of Harvard College Microfluidic devices formed from hydrophobic paper
FR3032132A1 (en) 2015-02-03 2016-08-05 Commissariat Energie Atomique MICROFLUIDIC DEVICE AND METHOD FOR PRODUCING A MICROFLUIDIC DEVICE
FR3065652B1 (en) * 2017-04-27 2021-07-23 Biomerieux Sa MALDI-TOF ANALYSIS PLATE WITH PAPER SUPPORT AND ITS USE

Also Published As

Publication number Publication date
FR3105026B1 (en) 2022-07-08
EP3838408A1 (en) 2021-06-23
FR3105026A1 (en) 2021-06-25

Similar Documents

Publication Publication Date Title
EP1950175B1 (en) Process for manufacturing a package for a component on a substrate
EP1672394B1 (en) Method for producing a device having a plastic membrane and device so manufactured
WO2001090577A1 (en) Micromachined fluidic device and method for making same
EP1709335B1 (en) Pyrotechnic microsystem and method for making same
EP2407416B1 (en) Method for manufacturing a membrane device retaining a fluid
WO2006018556A1 (en) Gas evacuation seal for caps
FR3021645B1 (en) ENCAPSULATION STRUCTURE WITH MULTIPLE CAVITIES HAVING ACCESS CHANNELS OF DIFFERENT HEIGHT
EP2450949A1 (en) Structure for encapsulating a microdevice comprising a getter material
EP3326717B1 (en) Method for manufacturing a microfluidic device and microfluidic device obtained by the method
EP3838408B1 (en) Microfluidic device with paper-based substrates
FR2864059A1 (en) Micro-valve for controlling fluid flow, has substrate including two operating layers, where one layer in valve zone is removed by actuator, and support in valve zone is removed from substrate, by actuator
EP1386085A1 (en) Pyrotechnic microactuators for microsystems
EP3838410A1 (en) Pneumatically actuated paper-based substrate device
EP3053652A1 (en) Microfluidic device and process for making a microfluidic device
EP1563193A1 (en) Double-effect pyrotechnic micro-actuator for microsystem and microsystem using same
EP1947482A1 (en) Formation of cavities filled with a fluidic material in an optical micro-technological compound
FR3075081A1 (en) METHOD AND TOOL FOR MANUFACTURING A HOLLOW DREAM
EP1467947B1 (en) Method and zone for sealing between two microstructure substrates
EP1967481B1 (en) Head for picking up items by suction with suction loss controlled by an elastically deformable material
EP3838409A1 (en) Microfluidic device produced by embossing a paper-based substrate
WO2010142700A9 (en) Microfluidic device for transporting a product by diffusion in a porous substrate
FR3046299A1 (en) METHOD OF MAKING A CLOSED CAVITY COMPRISING A CAVITY-PROTECTIVE CLOSURE WHEN CLOSED
EP3034460B1 (en) Multi-level getter structure and encapsulation structure comprising such a multi-level getter structure
WO2006056967A1 (en) Mechanical microfluidic device, method for producing an intermediate stack and this microfluidic device, and a micropump
EP4010126A1 (en) Fluid product spraying device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1480802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020002575

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220406

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1480802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220808

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020002575

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 4

Ref country code: DE

Payment date: 20231219

Year of fee payment: 4