EP3830057A1 - Couche de protection pour produit refractaire - Google Patents

Couche de protection pour produit refractaire

Info

Publication number
EP3830057A1
EP3830057A1 EP19742399.9A EP19742399A EP3830057A1 EP 3830057 A1 EP3830057 A1 EP 3830057A1 EP 19742399 A EP19742399 A EP 19742399A EP 3830057 A1 EP3830057 A1 EP 3830057A1
Authority
EP
European Patent Office
Prior art keywords
treated
product
protective layer
less
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19742399.9A
Other languages
German (de)
English (en)
Inventor
Isabelle Cabodi
Frédéric Hoffmann
Pierrick Fabien VESPA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Publication of EP3830057A1 publication Critical patent/EP3830057A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/23Cooling the molten glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • B23K2101/35Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics

Definitions

  • the invention relates to a molten refractory product, in particular a block, covered, at least partially, by a protective layer.
  • It also relates to a process for treating the surface of an uncoated refractory product, by irradiation with laser radiation, in order to obtain a product according to the invention.
  • the invention finally relates to a glass furnace, the internal coating of which comprises at least one block according to the invention.
  • the molten blocks most often comprise an intergranular amorphous phase connecting crystallized grains.
  • the problems posed by sintered blocks and by molten blocks, and the technical solutions adopted to solve them, are therefore generally different.
  • a composition developed for manufacturing a sintered block is therefore not a priori usable as such for manufacturing a molten block, and vice versa.
  • Molten blocks are obtained by melting a mixture of appropriate raw materials in an electric arc furnace or by any other suitable technique. The molten material is then conventionally poured into a mold, then solidified. Generally, the product obtained then undergoes a controlled cooling cycle to bring it to room temperature without fracturing.
  • the molten blocks used for the refractory lining of a glass furnace can typically comprise between 10% and 95% of Zr0 2 .
  • Blocks with low or medium Zr0 2 content have good characteristics but can be improved with regard to exudation and corrosion by molten glass or by its vapors.
  • Molten blocks with high or even very high content of Zr0 2 generally comprising more than 80%, even more than 85% or even more than 90% by mass of Zr0 2 , are known for their very high resistance to corrosion and their ability not to stain glass product, not to generate defects in the glass and to slightly exude. Their resistance to glass vapors is still room for improvement.
  • US2007 / 0141348 describes a refractory product whose surface is exposed to laser irradiation in order to reduce the reactivity of its surface and the bubbling in contact with the molten glass. However, this treatment does not effectively protect a molten refractory block comprising more than 10% of Zr0 2 by mass.
  • An object of the invention is to respond, at least partially, to this need.
  • the invention relates to a method for treating a molten refractory product comprising more than 10% of Zr0 2 by mass, or “base product”, said method comprising the following steps:
  • the fusion of the Zr0 2 grains makes it possible to obtain a very dense and homogeneous protective layer which confers excellent resistance to corrosion by glass vapors. and greatly reduces the tendency for exudation from the treated surface.
  • the inventors also attribute the results obtained, and in particular the conservation of remarkable mechanical properties, and in particular the absence of cracks, by the very small thickness (measured according to the direction of the depth). of the protective layer.
  • the adhesion of the protective layer is also remarkable. Remarkably, the results are also obtained for molten base products comprising more than 80% by mass of ZG0 2 .
  • the surface to be treated is heated to a temperature above 2,500 ° C, preferably above 2,700 ° C, preferably above 2,750 ° C, preferably above 2,800 ° C , preferably greater than 2,900 ° C, preferably greater than 3,000 ° C;
  • the surface to be treated is irradiated by means of an incident laser beam or of plasma radiation, conventionally with a plasma torch;
  • the surface to be treated is heated, preferably by laser irradiation, to melt the base product to a depth greater than 50 ⁇ m, preferably greater than 100 ⁇ m, and / or preferably less than 1,500 ⁇ m, preferably less than 1,200 ⁇ m, less than 1,000 ⁇ m, preferably less than 700 ⁇ m, preferably less than 500 ⁇ m;
  • the surface to be treated is supplied with an exposure energy greater than 50 J / mm 3 , preferably greater than 100 J / mm 3, the exposure energy being the ratio between the surface power of the beam and the speed of movement of the incident beam on the surface to be treated;
  • the molten surface region is cooled by exposing it to the open air;
  • the cooling rate is greater than 100 ° C / second, preferably greater than 500 ° C / second;
  • the basic product is a block, preferably a block having a mass greater than 1 kg, preferably greater than 5 kg, or even greater than 10 kg;
  • the surface to be treated represents more than 10%, more than 30%, more than 60%, more than 80%, even 100% of the surface of a face, or even of several faces, or even of all the faces of the product basic ;
  • step a the product has, before step a), a chemical composition such as:
  • steps a) and b) make it possible to plug up surface imperfections or cracks on the basic product.
  • the invention therefore also relates to a method for sealing a cavity, for example a crack, on the surface of a basic product, said method comprising steps a) and b), and optionally c), the surface to be treated including said cavity, or even being specifically determined to include said cavity.
  • the surface to be treated does not extend continuously beyond a distance of 10 mm from the edge of said cavity.
  • the cavity is therefore treated locally.
  • the invention also relates to a molten refractory product protected by a protective layer, preferably manufactured according to a method according to the invention, the product comprising, under the protective layer, plus 10% of Zr0 2 by mass, the protective layer.
  • the average surface of the zirconia crystallites is less than 2 pm 2 , or even less than or equal to 1 pm 2 ;
  • the thickness of the protective layer is less than 1,500 ⁇ m, or even less than 1,000 ⁇ m;
  • the porosity of the protective layer is less than 10%, preferably less than 5%, preferably less than 3%, preferably less than 2%, preferably less than 1%, the porosity being the percentage of the surface occupied by pores in a cutting plane perpendicular to the surface to be treated. This porosity is preferably measured in a polished section, obtained with a scanning microscope along a section plane perpendicular to the treated surface.
  • the “hot face” is a face exposed inside the oven, that is to say in contact with the molten material, for example glass or a metal, and / or with the gaseous environment of this material.
  • the cold side is conventionally the opposite side to the hot side. The hot and cold sides of a block are interconnected
  • the thickness of a block is conventionally its smallest dimension. It conventionally measures the distance between the hot face, in contact with the atmosphere of the oven, and the opposite cold face.
  • the average surface of zirconia crystallites is the arithmetic average of the surfaces measured for each crystallite in a section plane perpendicular to the surface treated.
  • shots of the section plane are acquired using a scanning microscope, and then analyzed.
  • the area over which the surfaces of the crystallites is measured is preferably greater than 100 pm 2 , preferably greater than 500 pm 2 , preferably greater than 1000 pm 2 .
  • the magnification is conventionally adapted to the size of the crystallites to be measured. For example, a magnification of 5,000 to 10,000 makes it possible to measure surfaces of crystallites typically between 0.1 and 5 ⁇ m 2 . A magnification of 10,000 to 25,000 makes it possible to measure surfaces of crystallites typically between 0.01 and 0.5 ⁇ m 2 .
  • Conventional image analysis techniques possibly after binarization of the images to improve the contrast, can be implemented.
  • the - Porosity is the percentage of the surface occupied by pores in a section plane perpendicular to the surface to be treated.
  • the perpendicular cross-sectional plane can be arbitrary.
  • the section plane images used to measure the area occupied by pores are acquired by means of a Electronique scanning microscope. Those skilled in the art know that the area of the images used must be sufficient for the measurements to be significant.
  • the area of the protective layer on an image represents a surface greater than 100 ⁇ m 2 , preferably greater than 500 ⁇ m 2 , preferably greater than 1000 ⁇ m 2 in order to obtain a representative surface.
  • section plane images used represent the entire thickness of the protective layer.
  • the area occupied by the pores can be measured by conventional image analysis techniques, well known to those skilled in the art, possibly after binarization of the image in order to increase the contrast.
  • Porosity is the percentage ratio of the sum of pore surfaces on the surface of the protective layer shown in the image.
  • the equivalent diameter of the section of a beam is the diameter of a disc having the same area as this section.
  • a “grain” is a crystallized element, having a homogeneous composition or a eutectic composition, and having a size greater than 10 ⁇ m.
  • crystallite is a crystallized element having a surface greater than 0.1 pm 2 and less than 10 pm 2 , the surfaces being measured on an image taken by optical microscopy on a section of the product.
  • Gram size means the half-sum of the overall length and the overall width of a grain, the length and the width being measured on an image taken under optical microscopy on a section of the product, the width being measured in a direction perpendicular to said length.
  • grain of Zr0 2 is meant a grain comprising more than 80%, preferably more than 90%, preferably more than 95%, preferably more than 98% of Zr0 2 , in percentages by mass on the basis oxides.
  • FIG. 2A shows the structure of a block according to Comparative Example 1 and Figure 2B shows a detail of this structure showing grains of Zr0 2 not melted;
  • FIG. 3 to 5 show other blocks according to the present invention, having a different Zr0 2 content, the protective layer also being formed by laser irradiation;
  • FIG. 6 and 7 show, with greater magnification, the structure of the zirconia crystallites present in the protective layer of the blocks according to Figures 4 and 5 of the present invention, respectively;
  • Figures 8A to 8C show a cross section of an ER1681 block, and more precisely the structure of an amorphous phase of the protective layer before (Fig. 8A) and after annealing (Fig. 8B and 8C), Figure 8C showing, thanks to a high magnification, the appearance of new zirconia microcrystals within the protective layer of the annealed block;
  • FIGS. 9A to 9C show the appearance of a molten refractory block with a crack before treatment (FIG. 9A) and after exposure to a laser beam on different discoidal surfaces (FIG. 9B and 9C), FIG. 9C showing, thanks to a high magnification, the filling of crack 20.
  • Figures 3 to 5 show cracks. They are due to polishing during the preparation of the polished section.
  • step a a molten refractory product comprising more than 10% of Zr0 2 by mass, or “base product”, is treated.
  • the basic product is a dense molten product, that is to say having a total porosity, less than 10% by volume, the total porosity being given by the following relationship:
  • Total porosity 100 x (absolute density - apparent density) / absolute density
  • the measurement of the apparent density is carried out according to ISO5017 standard on a bar taken from the heart of the product, in a healthy zone.
  • the absolute density is measured on ground powder using a helium pycnometer.
  • the basic product is conventionally obtained by melting a charge composed of refractory grains, pouring the liquid bath thus obtained in a mold, then cooling to solidify the liquid mass.
  • the basic product is obtained by electrofusion.
  • the basic product is conventionally a molten refractory block.
  • this refractory block has a maximum thickness greater than 50 mm, or even greater than 100 millimeters.
  • the treatment method according to the invention does not lead to the appearance of macrocracks on the surface of such blocks.
  • the block can be chosen in particular from the group consisting of nose bricks, burner arches, tank blocks, but also parts of the superstructure of a glass furnace.
  • the surface to be treated is preferably a part or all of the hot face of the block, that is to say of the surface in contact with molten glass and / or with the gases which extend above the glass in fusion.
  • the surface to be treated comprises the entire outer surface of the block.
  • the basic product conventionally comprises an intergranular binding phase, connecting crystallized grains.
  • the crystallized grains comprise grains of Zr0 2 and, optionally, corundum-zirconia eutectics.
  • the zirconium in the basic product is mainly present in the form of grains. These grains, monocrystalline or polycrystalline, are preferably made of Zr0 2 for more than 95%, more than 98%, more than 99%, or substantially 100% of their mass.
  • the average grain size is preferably greater than 10 ⁇ m, preferably greater than 20 ⁇ m, preferably greater than or equal to 30 ⁇ m and / or less than 200 ⁇ m, preferably less than 100 ⁇ m.
  • the basic product preferably consists, for more than 90% of its mass, of one or more oxides chosen from the group consisting of Zr0 2 , AI 2 C> 3 , Si0 2 , Cr 2 Ü 3 , Y 2 C > 3 , and Ce0 2 .
  • Zr0 2 , AI 2 C> 3 and Si0 2 together represent more than 90% of the mass of the basic product.
  • the basic product preferably contains more than 15% of Zr0 2 , more preferably comprises between 26 and 95% of Zr0 2 .
  • the composition of the basic product is such that, for a total of more than 90%, more than 95%, or even more than 98%:
  • the binding phase preferably comprises one or more amorphous or glass-ceramic phases, preferably a silicate phase. It preferably represents between 5 and 50%, preferably between 10 and 40% by mass of the basic product.
  • the phase is a silicate phase whose mass proportion of Na 2 0 is less than 20%, preferably less than 10% and / or the mass proportion of AI 2 03 is less than 30%, in mass percentage over the base of the oxides of the silicate phase.
  • the mass content of Na 2 0 and B2O3 is less than 2%, in mass percentage based on the oxides of the basic product.
  • the basic product is initially dry, that is to say that it has a percentage of moisture is less than or equal to 1%, preferably less than 0.5%, in percentage by mass.
  • the surface to be treated is then irradiated by means of an incident beam, laser or plasma radiation, so as to transmit to this surface an exposure energy greater than 50 J / mm 3 , preferably greater than 75 J / mm 3 , preferably greater than 100 J / mm 3 , or even greater than 150 J / mm 3 and / or less than 500 J / mm 3 , 400 J / mm 3 or 300 J / mm 3 .
  • the exposure energy is the ratio between the surface power of the indicative beam and the speed of movement of the incident beam on the surface to be treated. It is adapted, depending on the composition of the Zr0 2 grains, in order to melt them. Preferably, the temperature is above 2800 ° C.
  • Areal power is the ratio of the power, in Watt, of the incident beam divided by the area, in mm 2 , of the section of the incident beam when it meets the surface of the basic product, or "impact surface".
  • the power of the incident beam is preferably greater than 10 W, 20 W, 30 W, 40 W and / or less than 400 W, 300 W, 200 W, 100 W.
  • the equivalent diameter of the section of the incident beam, at the level of the impact surface is preferably greater than 10 ⁇ m, preferably greater than 20 ⁇ m, and / or less than 100 ⁇ m, preferably less than 80 ⁇ m, 60 pm, 50 pm or 40 pm.
  • the cross-section of the incident beam can be of varied shape, for example of circular cross-section, or of rectangular cross-section (laser beam called "in line").
  • a rectangular section advantageously allows faster treatment of a large area.
  • the direction of advance of the incident beam is perpendicular to the long side of the rectangular section.
  • the smallest dimension (or "width") of the cross section of the incident beam at the impact surface is between 10 and 500 ⁇ m, preferably between 10 and 100 ⁇ m.
  • a beam moving along this width, close to that of the Zr0 2 grains on the surface of the molten base product, is particularly well suited to obtain a very dense and homogeneous protective layer.
  • the width of the beam is adapted as a function of the average size of the Zr0 2 grains present on the surface of the basic product.
  • the larger the average grain size the larger the beam width.
  • the beam width is between 0.5 and 2 times the average size of the Zr0 2 grains.
  • the surface power of the incident beam is preferably greater than 5,000 W / mm 2 , preferably greater than 7,000 W / mm 2 , preferably greater than 10,000 W / mm 2 , or even greater than 15,000 W / mm 2 , and / or preferably less than 50,000 W / mm 2 , preferably less than 30,000 W / mm 2 , or even less than 25,000 W / mm 2 .
  • the energy supplied to the impact surface must be supplied in a very short time, in order to limit the surface damage to the basic product and therefore the depth of reflow.
  • the incident beam must therefore move quickly.
  • the speed of movement of the incident beam at the impact surface relative to the surface to be treated, in mm / s, is preferably greater than 20 mm / s, preferably greater than 30 mm / s, greater than 40 mm / s, preferably greater than 50 mm / s, preferably greater than 75 mm / s, and / or less than 500 mm / s, or even less than 300 mm / s, or even less than 100 mm / s.
  • a laser is preferably used, preferably of the "CO2" type, of wavelength 1065 + 1-5 nanometers, and of average power of laser beam between 10 and 100 Watt, preferably between 20 and 60 W.
  • the laser equipment can include an aiming device helping to position the laser beam.
  • the laser equipment can for example be a laser processing machine supplied by CERLASE.
  • the incident beam is conventionally obtained by focusing a primary beam.
  • the equivalent diameter of the primary beam is less than 1000 micrometers.
  • the focal distance has an impact on the shape and size of the incident beam. In general, the shorter the focal distance, the higher the power per unit area.
  • the focal distance is preferably between 50 and 500 mm, preferably between 60 and 400 mm, more preferably between 70 and 300 mm. It is preferably between 150 mm and 200 mm.
  • the uniformity of the treatment, and therefore of the protective layer is improved.
  • such a focal distance is advantageously compatible with the widths of the laser beam described above, and in particular with a width of between 10 and 100 ⁇ m. It is possible to use a pulsed laser to heat the surface to be treated, which makes it possible to obtain very high powers during pulses (power peaks). However, such a laser emits only intermittently.
  • the laser used is not pulsed or is a pulsed laser in the pulse frequency is greater than 300 KHz.
  • Vectorization conventionally represents the distance, edge to edge, between two adjacent lines processed by the incident beam, in microns. If the vectorization is too high or too low, the fusion will be less homogeneous.
  • the vectorization is preferably between 0.2 and 2 times, preferably between 0.5 and 1.5 times the width of the beam, preferably between 20 and 80 microns, preferably between 30 and 50 microns.
  • the incident beam passes at most once over an area of the surface to be treated.
  • step b) the surface region of the molten base product is rapidly cooled to form the protective layer.
  • Additional cooling means for example for blowing air at room temperature or at a lower temperature, can also be used.
  • the protective layer can be thermally reprocessed, preferably by heating
  • the rate of temperature rise being preferably greater than 5 ° C / h 10 ° C / h, and / or preferably less than 80 ° C / h, preferably less than 50 ° C / h, preferably less than 30 ° C / h,
  • the rate of descent in temperature is preferably greater than 5 ° C / h 10 ° C / h, and / or preferably less than 80 ° C / h, preferably less than 50 ° C / h, preferably less than 30 ° C / h.
  • Step c) is preferably carried out in air, with a rate of temperature rise from 10 ° C / h to 1500 ° C, a plateau at this temperature for 24 hours, then a controlled descent to 50 ° C / h.
  • the Zr0 2 of the amorphous phase can thus recrystallize in the form of zirconia crystallites as shown in FIGS. 8A and 8B.
  • These crystallites preferably have an average surface of less than 5 pm 2 , 3 pm 2 , 2 pm 2 , or even less than 1 pm 2 , and / or greater than 0.1 pm 2 , 0.2 pm 2 , or 0, 5 pm 2 .
  • treated product The product resulting from the process is called "treated product". It consists of a substrate and the protective layer, which extends over the surface of the substrate.
  • the substrate is not significantly modified by the process for manufacturing the protective layer.
  • the characteristics relating to the basic product are therefore applicable to the substrate.
  • the average thickness of the protective layer depends on the nature of the basic product and on the parameters of exposure to the highly energetic beam, in particular the pfd and the relative speed of movement of the beam relative to the basic product.
  • the average thickness of the protective layer is preferably between 50 and 2000 ⁇ m, preferably between 100 and 1000 ⁇ m, more preferably between 100 and 700 ⁇ m, or even between 100 and 500 ⁇ m. It is preferably greater than 200 ⁇ m.
  • the protective layer has a composition substantially similar to that of the substrate, and therefore of the base product.
  • the characteristics relating to the composition of the basic product are therefore applicable to the protective layer.
  • the protective layer preferably comprises the elements Zr, Al, Si and O.
  • the protective layer however has a lower content by mass of elements Na and / or Si than that of the substrate. These elements can indeed volatilize during step a).
  • the mass ratio of the content of S1O2 in the protective layer to the content of S1O2 in the substrate is preferably less than 1.0, preferably less than 0.9, or even less than 0.8, and / or preferably more than 0, 1, preferably more than 0.3, preferably more than 0.5.
  • the mass ratio of the Zr0 2 content in the protective layer to the Zr0 2 content in the substrate is preferably greater than 1.0, preferably greater than 1.1, or even greater than 1.2, and / or preferably less than 2.0, preferably less than 1.8, more preferably less than 1.6.
  • the protective layer can be completely amorphous. It can also have some zirconia crystallites dispersed in an amorphous binder phase. Finally, it can be substantially made up of zirconia crystallites, the zirconia crystallites being almost contiguous until forming a substantially continuous phase, in particular when the basic product has a chemical composition comprising more than 80%, or even more than 90% of Zr0 2 in mass.
  • the protective layer consists, for more than 50%, more than 70%, more than 80%, or even more than 90% by volume, of a dense amorphous phase and / or of zirconia crystallites.
  • the zirconia crystallites are preferably single crystals, that is to say crystallites having the same structure as a zirconia single crystal.
  • the average surface of the zirconia crystallites is greater than 0.2 pm 2 , or even greater than 0.5 pm 2 , and / or preferably less than 5 pm 2 , preferably less than 3 pm 2 , preferably less at 2 pm 2 , preferably less than 1.0 pm 2 .
  • the protective layer may also comprise crystallites comprising AI 2 Ü 3 , or even corundum.
  • the protective layer consists, for more than 50%, more than 70%, more than 80%, even more than 90%, or even substantially 100% by volume, of a dense amorphous phase and / or of crystallites. zirconia and / or crystallites containing AI 2 C> 3 .
  • the protective layer comprises, in percentage by volume, more than 80%, more than 90%, more than 95%, or even substantially 100% of amorphous phase and of zirconia crystallites. This percentage can in particular be evaluated by image processing and observation with the EDX SEM.
  • FIG. 1 shows, on the surface of a substrate 8, the presence of a protective layer 10 comprising zirconia in the form of an AZS amorphous phase 12 and some seeds of zirconia crystallites 14. Zirconia crystallites 14 are also visible in Figures 6 and 7.
  • FIG. 2A illustrates the surface attack of the basic product and FIG. 2A shows in particular the presence on the surface of the grains of Zr0 2 16 which have not melted.
  • Figures 3 to 5 show cracks. They are due to polishing during the preparation of the polished section.
  • Basic products in the form of basic blocks of dimensions 500 mm x 500 mm x 500 mm were produced by a process of melting raw materials in an arc furnace, then casting in mold and solidification.
  • the basic blocks, dry and free of dust, were then subjected to a laser beam from a CERLASE treatment machine.
  • the treatment was carried out in air, at atmospheric pressure, the vectorization being 40 ⁇ m, with a single pass.
  • the operation of the laser was managed by a control unit directly connected to the laser fiber. The blocks obtained were then observed.
  • Table 1 presents the different laser exposure parameters, and the measurement and observation results on the blocks after exposure to radiation by the laser beam.
  • Example 1 according to the invention shows the presence of a dense protective layer ( Figure 1).
  • the microprobe and scanning electron microscope analysis by backscattered electron diffraction or EBSD ("Electron BackScatter Diffraction") of the protective layer reveals the absence of Kikuchi figures, and therefore the presence of an amorphous phase AZS, almost pure AI 2 O3 - Zr0 2 - S1O 2 (AI 2 O3: 50-51%, Zr0 2 : 39-41%, S1O 2 : 10-1 1%, percentages by mass).
  • the protective layer therefore has a higher Zr0 2 content than the base block (and therefore the substrate) and a significantly lower S1O 2 content.
  • a block according to Example 1 treated with a laser is then annealed in air (step c)) with a rise in temperature at 10 ° C / h to 1500 ° C, a plateau at this temperature for 24 h, then a descent temperature controlled at 10 ° C / h. It then has a dense amorphous protective layer containing zirconia crystallites with an average surface area of 0.68 ⁇ m 2 , as shown in FIGS. 8A to C.
  • Comparative example 1 shows that a basic block of composition identical to example 1 according to the invention, subjected to irradiation according to parameters close to those of US2007 / 0141348, does not have a homogeneous protective layer dense with zirconia, even with a low laser displacement speed and a high surface power.
  • This example confirms the impossibility of obtaining a protective layer according to the invention with such an exposure energy on a molten base product.
  • Examples 2 to 4 show that it is also possible to obtain a dense and perfectly adherent protective layer by laser irradiation of blocks having very different Zr0 2 contents, up to almost 95% by mass of ZG0 2 .
  • the composition of the protective layer is close to that of the substrate, with however a higher Zr0 2 content and a lower silica content than in said substrate.
  • Two sets of cylindrical test pieces with a diameter of 60 mm and a height of 40 mm were taken from a basic block, that is to say not treated with laser, from Example 1.
  • a base (discoid) surface of each cylindrical test piece of the first series was exposed to laser radiation as defined above.
  • the samples of the second series (control series) were not treated, and were kept as a control.
  • Each of the test pieces of the two series was then subjected to a corrosion test with sodium sulphate.
  • each of the test pieces was sealed with aluminous cement to a 50 mm diameter platinum crucible containing about 60 g of sodium hydroxide, in a position in which the base surface treated (for the test pieces of the first series) or not (for the test pieces of the second series) was above and in front of the sodium sulphate bath, so as to close the crucible.
  • These assemblies were placed in an oven at a temperature at 1500 ° C., for 100 h.
  • Table 1 provides the percentage reduction in the penetration depth of a test piece from the first series treated with laser on that of the control test piece according to the following calculation:
  • the lower base surface and partially the periphery of the test pieces of the first series were exposed to laser radiation. For the periphery, only 2/3 of the height of each test piece, starting from its lower base, was thus treated.
  • test pieces from the two series were not processed and were kept as a witness. Each of the test pieces from the two series was then placed in an oven, suspended by a key over a platinum crucible to collect the exudate.
  • % reduction of exudate 100 x (% vol. exuded sample control series -% vol. exuded sample first series) / (% vol. exuded sample series).
  • the lower base surface and partially the periphery of the test pieces of the first series were exposed to laser radiation. For the periphery, only 2/3 of the height of each test piece, starting from its lower base, was thus treated.
  • test pieces from the two series were then subjected to a test consisting in rotating the immersed samples in a soda-lime glass bath brought to 1500 ° C.
  • the speed of rotation around the axis of the sample holder was 6 revolutions per minute. Such a speed makes it possible to very frequently renew the corrosion interface and therefore makes the test much more demanding.
  • the test lasted 48 hours.
  • This percentage of change measures the improvement in the corrosion resistance of a laser-treated test piece compared to an untreated laser test piece.
  • Table 1 shows a significant improvement of the blocks according to the invention compared to the comparative blocks of the same composition.
  • the corrosion test in contact with the molten glass carried out for example n ° 4 shows that it is even possible to increase the performance of the block with a very high content of Zr0 2 .
  • the invention makes it possible to protect molten refractory products containing more than 10% of Zr02 by mass in order to give them better resistance against corrosion by molten glass vapors, and lower exudation.
  • steps a) and b) make it possible to plug cavities on the surface of a basic product, and in particular cracks or craters which may be sites of preferential corrosion.
  • the surface to be treated does not extend continuously, that is to say without being interrupted, beyond a distance of 10 mm, 5 mm, or 3 mm from the edge of said cavity .
  • the cavity has the shape of a crack 20.
  • FIG. 9B represents three discoidal surfaces to be treated 22, which extends along the crack 20.
  • the cavity is substantially a center of the surface to be treated. In one embodiment,
  • the length of the cavity is at least 1 cm or more than 10% of the length of the base block;
  • the depth of the cavity is preferably less than 1 cm; and or
  • the width of the cavity is greater than 100 pm and / or less than 1000 pm, the length and width of a cavity being that of its opening on the surface to be treated.
  • the cavity is plugged with a material identical to that of the protective layer.
  • This material can therefore include one or more of the characteristics of this protective layer.
  • the plugging does not create additional defects.
  • the invention therefore allows local healing of the basic product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

Procédé de traitement d'un produit réfractaire fondu comportant plus 10% de ZrO2 en masse, ou « produit de base », ledit procédé comportant les étapes suivantes : a) chauffage d'au moins une partie de la surface dudit produit, de manière à faire fondre des cristaux de ZrO2 dans une région superficielle s'étendant sur une profondeur inférieure à 2000 µm; et b) refroidissement de la région superficielle en fusion obtenue à l'étape précédente de manière à obtenir une couche de protection.

Description

COUCHE DE PROTECTION POUR PRODUIT REFRACTAIRE Domaine technique
L’invention se rapporte à un produit réfractaire fondu, en particulier un bloc, recouvert, au moins partiellement, par une couche de protection.
Elle concerne aussi un procédé de traitement de la surface d’un produit réfractaire non revêtu, par irradiation à un rayonnement laser, afin d’obtenir un produit selon l’invention.
L’invention concerne enfin un four verrier dont le revêtement interne comprend au moins un bloc selon l’invention.
Etat de la technique
Parmi les blocs réfractaires, on distingue les blocs fondus, bien connus pour la construction des fours de fusion du verre ou de métal, et les blocs frittés.
A la différence des blocs frittés, les blocs fondus comportent le plus souvent une phase amorphe intergranulaire reliant des grains cristallisés. Les problèmes posés par les blocs frittés et par les blocs fondus, et les solutions techniques adoptées pour les résoudre, sont donc généralement différents. Une composition mise au point pour fabriquer un bloc fritté n'est donc pas a priori utilisable telle quelle pour fabriquer un bloc fondu, et réciproquement.
Les blocs fondus, souvent appelés « électrofondus », sont obtenus par fusion d'un mélange de matières premières appropriées dans un four à arc électrique ou par toute autre technique adaptée. La matière en fusion est ensuite classiquement coulée dans un moule, puis solidifiée. Généralement, le produit obtenu subit alors un cycle de refroidissement contrôlé pour être amené à température ambiante sans fracturation.
Les blocs fondus utilisés pour le revêtement réfractaire d’un four verrier peuvent comporter typiquement entre 10% et 95% de Zr02.
Les blocs à faible ou moyenne teneur en Zr02 présentent de bonnes caractéristiques mais sont perfectibles vis-à-vis de l’exsudation et de la corrosion par le verre en fusion ou par ses vapeurs.
Les blocs fondus à forte, voire très forte teneur en Zr02 (THTZ), comportant généralement plus de 80%, voire plus de 85 % ou même plus de 90% en masse de Zr02, sont réputés pour leur très grande résistance à la corrosion et leur capacité à ne pas colorer le verre produit, à ne pas générer de défauts dans le verre et à peu exsuder. Leur résistance aux vapeurs de verre reste encore perfectible.
US2007/0141348 décrit un produit réfractaire dont la surface est exposée à une irradiation laser afin de réduire la réactivité de sa surface et le bullage au contact du verre en fusion. Ce traitement ne permet cependant pas de protéger efficacement un bloc réfractaire fondu comportant plus 10% de Zr02 en masse.
Il existe donc un besoin pour un produit réfractaire fondu comportant plus 10% de Zr02 en masse et présentant une meilleure résistance contre la corrosion par les vapeurs de verre en fusion, et une exsudation plus faible.
Un but de l’invention est de répondre, au moins partiellement, à ce besoin.
Résumé de l’invention
L’invention concerne un procédé de traitement d’un produit réfractaire fondu comportant plus 10% de Zr02 en masse, ou « produit de base », ledit procédé comportant les étapes suivantes :
a) chauffage d’au moins une partie de la surface dudit produit, ou « surface à traiter », de manière à faire fondre des grains de Zr02 dans une région superficielle s’étendant sur une profondeur inférieure à 2000 pm, ou « refusion » ; et
b) refroidissement de la région superficielle en fusion obtenue à l’étape précédente de manière à obtenir une couche de protection ;
c) optionnellement recristallisation, au moins partielle, de la zircone présente dans la phase amorphe de la couche de protection.
De manière surprenante et comme on le verra plus en détail dans la suite de la description, la fusion des grains de Zr02 permet d’obtenir une couche de protection très dense et homogène qui confère une excellente résistance à la corrosion par les vapeurs de verre et réduit considérablement la tendance à l’exsudation par la surface traitée. Sans pouvoir l’expliquer de manière théorique, les inventeurs attribuent également les résultats obtenus, et en particulier la conservation de propriétés mécaniques remarquables, et notamment l’absence de fissures, par l’épaisseur (mesurée selon la direction de la profondeur) très faible de la couche de protection.
L’adhésion de la couche de protection est également remarquable. De manière remarquable, les résultats sont également obtenus pour des produits de base fondus comportant plus de 80 % en masse de ZG02.
Le traitement décrit dans US2007/0141348 ne comporte pas un chauffage permettant une refusion.
Un procédé selon l’invention peut encore comporter une ou plusieurs des caractéristiques optionnelles suivantes :
- à l’étape a), on chauffe la surface à traiter à une température supérieure à 2 500°C, de préférence supérieure à 2 700°C, de préférence supérieure à 2 750°C, de préférence supérieure à 2 800°C, de préférence supérieure à 2 900°C, de préférence supérieure à 3 000°C ;
- à l’étape a), on irradie la surface à traiter au moyen d’un faisceau incident laser ou de rayonnement plasma, classiquement avec une torche à plasma ;
- à l’étape a), on chauffe la surface à traiter, de préférence par irradiation laser, pour faire fondre le produit de base sur une profondeur supérieure à 50 pm, de préférence supérieure à 100 pm, et/ou de préférence inférieure à 1 500 pm, de préférence inférieure à 1 200 pm, inférieure à 1 000 pm, de préférence inférieure à 700 pm, de préférence inférieure à 500 pm ;
- à l’étape a), on apporte à la surface à traiter une énergie d’exposition supérieure à 50 J/mm3, de préférence supérieure à 100 J/mm3 l’énergie d’exposition étant le rapport entre la puissance surfacique du faisceau et la vitesse de déplacement du faisceau incident sur la surface à traiter ;
- à l’étape b), on refroidit la région superficielle en fusion en l’exposant à l’air libre ;
- à l’étape b), la vitesse de refroidissement est supérieure à 100°C/seconde, de préférence supérieure à 500°C/seconde ;
- le produit de base est un bloc, de préférence un bloc présentant une masse supérieure à 1 Kg, de préférence supérieure à 5 Kg, voire supérieure à 10 Kg ;
- la surface à traiter représente plus de 10%, plus de 30%, plus de 60%, plus de 80%, voire 100% de la surface d’une face, voire de plusieurs faces, ou même de toutes les faces du produit de base ;
- le produit présente, avant l’étape a), une composition chimique telle que :
10% < Zr02 < 98% ; et/ou
0,5% < AI2O3 < 70% ; et/ou
1 ,5% < Si02 < 40%, pourvu que 90% < Zr02 + AI2O3 + S1O2, de préférence 95% < Z1Ό2 + AI2O3 + S1O2.
De manière surprenante, les inventeurs ont également découvert que les étapes a) et b) permettent de boucher des imperfections de surface ou des fissures sur le produit de base.
L’invention concerne donc encore un procédé pour boucher une cavité, par exemple une fissure, à la surface d’un produit de base, ledit procédé comportant les étapes a) et b), et optionnellement c), la surface à traiter incluant ladite cavité, voire étant spécifiquement déterminée pour inclure ladite cavité.
Dans un mode de réalisation, la surface à traiter ne s’étendant pas continûment au-delà d’une distance de 10 mm du bord de ladite cavité. On traite donc localement la cavité.
L’invention concerne également un produit réfractaire fondu protégé par une couche de protection, de préférence fabriqué suivant un procédé selon l’invention, le produit comportant, sous la couche de protection, plus 10% de Zr02 en masse, la couche de protection :
- comportant plus 10% de Zr02 en masse ;
- présentant une épaisseur inférieure à 2 000 pm ; et
- comprenant, pour plus de 50% en volume, voire étant sensiblement constituée par une phase amorphe et/ou par des cristallites de zircone dont la surface moyenne est inférieure à 5 pm2.
Une fusion à haute température et pendant une durée limitée permet d’obtenir cette combinaison spécifique de microstructure et d’épaisseur.
Un produit selon l’invention peut encore comporter une ou plusieurs des caractéristiques optionnelles suivantes :
- de préférence, la surface moyenne des cristallites de zircone est inférieure à 2 pm2, voire inférieure ou égale à 1 pm2 ;
- de préférence, l’épaisseur de la couche de protection est inférieure à 1 500 pm, voire inférieure à 1000 pm ;
- la porosité de la couche de protection est inférieure à 10%, de préférence inférieure à 5%, de préférence inférieure à 3%, de préférence inférieure à 2%, de préférence inférieure à 1 %, la porosité étant le pourcentage de la surface occupée par des pores dans un plan de coupe perpendiculaire à la surface à traiter. Cette porosité est de préférence mesurée dans une section polie, obtenue au microscope à balayage selon un plan de coupe perpendiculaire à la surface traitée.
Définitions
- « Comporter », « présenter » ou « comprendre » doivent être interprétés de manière large, non limitative.
- La « face chaude » est une face exposée à l’intérieur du four, c'est-à-dire en contact avec la matière en fusion, par exemple du verre ou un métal, et/ou avec l’environnement gazeux de cette matière. La face froide est classiquement la face opposée à la face chaude. Les faces chaude et froide d’un bloc sont reliées entre elles
- par des faces latérales, ou « faces de joint », en regard de faces latérales de blocs adjacents de la même rangée de blocs, et
- par des faces supérieure et inférieure, en regard de faces inférieure et supérieure d’au moins un bloc supérieur reposant sur ledit bloc et d’au moins un bloc inférieur sur lequel ledit bloc repose, respectivement.
- L’épaisseur d’un bloc est classiquement sa plus petite dimension. Elle mesure classiquement la distance entre la face chaude, en contact avec l’atmosphère du four, et la face froide opposée.
- La surface moyenne des cristallites de zircone est la moyenne arithmétique des surfaces mesurées pour chaque cristallite dans un plan de coupe perpendiculaire à la surface traitée. De préférence, on acquiert des clichés du plan de coupe au moyen d’un microscope à balayage, puis on les analyse. L’aire sur laquelle les surfaces des cristallites est mesurée est de préférence supérieure à 100 pm2, de préférence supérieure à 500 pm2, de préférence supérieure à 1000 pm2. Le grossissement est classiquement adapté à la taille des cristallites à mesurer. Par exemple, un grossissement de 5 000 à 10 000 permet de mesurer des surfaces de cristallites typiquement comprises entre 0,1 et 5 pm2. Un grossissement de 10 000 à 25 000 permet de mesurer des surfaces de cristallites typiquement comprises entre 0,01 et 0,5 pm2. Des techniques classiques d’analyse d’images, éventuellement après binarisation des images pour en améliorer le contraste, peuvent être mises en oeuvre.
- La porosité est le pourcentage de la surface occupée par des pores dans un plan de coupe perpendiculaire à la surface à traiter. Le plan de coupe transversale perpendiculaire peut être quelconque. De préférence, les images du plan de coupe utilisées pour mesurer la surface occupée par des pores sont acquises au moyen d’un microscope électronique à balayage. L’homme du métier sait que la surface des images utilisées doit être suffisante pour que les mesures soient significatives. De préférence, l’aire de la couche de protection sur une image représente une surface supérieure à 100 pm2, de préférence supérieure à 500 pm2, de préférence supérieure à 1000 pm2 afin d’obtenir une surface représentative.
De préférence encore, les images du plan de coupe utilisées représentent toute l’épaisseur de la couche de protection.
La surface occupée par les pores peut être mesurée par des techniques classiques d’analyse d’images, bien connues de l’homme du métier, éventuellement après une binarisation de l’image afin d’en augmenter le contraste. La porosité est le rapport en pourcentage de la somme de surfaces de pores sur la surface de la couche de protection représentée sur l’image.
- Le diamètre équivalent de la section d’un faisceau est le diamètre d’un disque présentant la même aire que cette section.
- On appelle « grain » un élément cristallisé, présentant une composition homogène ou une composition eutectique, et présentant une taille supérieure à 10 pm.
- On appelle « cristallite » un élément cristallisé présentant une surface supérieure à 0,1 pm2 et inférieure à 10 pm2, les surfaces étant mesurées sur une image prise en microscopie optique sur une coupe du produit.
- Par « taille de grain », on entend la demi-somme de la longueur hors tout et de la largeur hors tout d’un grain, la longueur et la largeur étant mesurées sur une image prise en microscopie optique sur une coupe du produit, la largeur étant mesurée dans une direction perpendiculaire à ladite longueur.
- Par « moyenne », on entend une moyenne arithmétique.
- Par « grains de Zr02 », on entend un grain comportant plus de 80%, de préférence plus de 90%, de préférence plus de 95%, de préférence plus de 98% de Zr02, en pourcentages en masse sur la base des oxydes.
- Sauf indication contraire, tous les pourcentages relatifs aux compositions sont des pourcentages en masse sur la base des oxydes.
Brève description des figures
D’autres caractéristiques et avantages de l’invention apparaîtront encore à la lecture de la description détaillée qui va suivre et à l’examen du dessin annexé, dans lequel : - la figure 1 montre la section, selon un plan de coupe perpendiculaire à la surface traitée, d’un bloc selon l’invention, traité par irradiation laser ;
- la figure 2A montre la structure d’un bloc selon l’exemple comparatif n°1 et la figure 2B montre un détail de cette structure montrant des grains de Zr02 non fondus ;
- les figures 3 à 5 montrent d’autres blocs selon la présente invention, ayant une teneur en Zr02 différente, la couche de protection étant également formée par irradiation laser ;
- les figures 6 et 7 montrent, avec un plus grand grossissement, la structure des cristallites de zircone présents dans la couche de protection des blocs selon les figures 4 et 5 de la présente invention, respectivement ;
- les figures 8A à 8C montrent une section transversale d’un bloc ER1681 , et plus précisément la structure d’une phase amorphe de la couche de protection avant (Fig. 8A) et après recuit (Fig. 8B et 8C), la figure 8C montrant, grâce à un fort grossissement, l’apparition de nouveaux microcristaux de zircone au sein de la couche de protection du bloc recuit ;
- les figures 9A à 9C montrent l’aspect d’un bloc réfractaire fondu avec une fissure avant traitement (Fig. 9A) et après exposition à un faisceau laser sur différentes surfaces discoïdales (Fig. 9B et 9C), la figure 9C montrant, grâce à un fort grossissement, le bouchage de la fissure 20.
Les figures 3 à 5 montrent des fissures. Elles sont dues au polissage lors de la préparation de la section polie.
Description détaillée
Procédé de fabrication
A l’étape a), on traite un produit réfractaire fondu comportant plus 10% de Zr02 en masse, ou « produit de base ».
Le produit de base est un produit fondu dense, c'est-à-dire présentant une porosité totale, inférieure à 10% en volume, la porosité totale étant donnée par la relation suivante :
Porosité totale = 100 x (densité absolue - densité apparente) / densité absolue
La mesure de la densité apparente est effectuée suivant la norme ISO5017 sur un barreau prélevé à cœur du produit, en zone saine. La densité absolue est mesurée sur poudre broyée au moyen d’un pycnomètre à hélium. Le produit de base est obtenu classiquement par fusion d’une charge composée de grains réfractaires, coulage dans un moule du bain de liquide ainsi obtenu, puis refroidissement pour solidifier la masse liquide. De préférence le produit de base est obtenu par électrofusion.
Le produit de base est classiquement un bloc réfractaire fondu.
De préférence, ce bloc réfractaire présente une épaisseur maximale supérieure à 50 mm, voire supérieure à 100 millimètres. De manière remarquable, le procédé de traitement selon l’invention ne conduit pas à l’apparition de macrofissures à la surface de tels blocs.
Le bloc peut être en particulier choisi dans le groupe constitué par les briques à nez, les arches de brûleurs, les blocs de cuve, mais également les pièces de superstructure d’un four verrier.
La surface à traiter est de préférence une partie ou toute la face chaude du bloc, c'est-à-dire de la surface en contact avec du verre en fusion et/ou avec les gaz qui s’étendent au- dessus du verre en fusion. Dans un mode de réalisation, la surface à traiter comprend toute la surface extérieure du bloc.
Le produit de base comporte classiquement une phase liante intergranulaire, reliant des grains cristallisés.
Les grains cristallisés comportent des grains de Zr02 et, optionnellement des eutectiques corindon-zircone.
Le zirconium dans le produit de base est principalement présent sous forme de grains. Ces grains, monocristallins ou polycristallins, sont de préférence constitués de Zr02 pour plus de 95%, plus de 98%, plus de 99%, ou sensiblement 100% de leur masse.
La taille moyenne des grains est de préférence supérieure à 10 pm, de préférence supérieure à 20 pm, de préférence supérieure ou égale à 30 pm et/ou inférieure à 200 pm, de préférence inférieure à 100 pm.
Le produit de base est de préférence constitué, pour plus de 90% de sa masse, d’un ou plusieurs oxydes choisis dans le groupe constitué par Zr02, AI2C>3, Si02, Cr2Ü3, Y2C>3, et Ce02. De préférence Zr02, AI2C>3 et Si02 représentent ensemble plus de 90% de la masse du produit de base.
Le produit de base comporte de préférence plus de 15% de Zr02, de manière plus préférée comporte entre 26 et 95% de Zr02. Dans différents modes de réalisation préférés, la composition du produit de base est telle que, pour un total de plus de 90%, plus de 95%, voire plus de 98% :
- Zr02 : 26 à 45% ;
- Al203 : 40 à 60% ;
- Si02 : 5 à 35% ;
ou telle que
- Zr02 : 50 à moins de 80 % ;
- AI2O3 : 15 à 30% ;
- Si02 : 5 à 15%.
ou telle que
- Zr02 : 80 à 98% ;
- AI2O3 : 5 à 20% ;
- Si02 : 1 à 12%,
ou telle que
- 10% < Zr02 £ 25% ;
- 50% < AI2O3 < 75% ;
- 5% < Si02 <35%.
La phase liante comporte, de préférence est constituée d’une ou plusieurs phases amorphes ou vitrocéramiques, de préférence une phase silicatée. Elle représente de préférence entre 5 et 50%, de préférence entre 10 et 40% en masse du produit de base.
De préférence, la phase est une phase silicatée dont la proportion massique de Na20 est inférieure à 20%, de préférence inférieure 10% et/ou la proportion massique d’AI203 est inférieure à 30%, en pourcentage massique sur la base des oxydes de la phase silicatée.
De préférence, en particulier pour tous ces modes de réalisation, la teneur massique de Na20 et B2O3 est inférieure à 2%, en pourcentage massique sur la base des oxydes du produit de base.
Pour créer une couche de protection sur la surface à traiter du produit de base, on concentre une grande énergie sur une petite surface, pendant un temps très court.
De préférence, le produit de base est initialement sec, c'est-à-dire qu’il présente un pourcentage d’humidité est inférieur ou égal à 1 %, de préférence inférieur à 0,5%, en pourcentage en masse. On irradie alors la surface à traiter au moyen d’un faisceau incident, laser ou de rayonnement plasma, de manière à transmettre à cette surface une énergie d’exposition supérieure à 50 J/mm3, de préférence supérieure à 75 J/mm3, de préférence supérieure à 100 J/mm3, voire supérieure à 150 J/mm3 et/ou inférieure à 500 J/mm3, à 400 J/mm3 ou à 300 J/mm3.
L’énergie d’exposition est le rapport entre la puissance surfacique du faisceau indicent et la vitesse de déplacement du faisceau incident sur la surface à traiter. Elle est adaptée, en fonction de la composition des grains de Zr02, afin de les faire fondre. De préférence, la température est supérieure à 2800°C.
La puissance surfacique est le rapport de la puissance, en Watt, du faisceau incident divisée par la surface, en mm2, de la section du faisceau incident lorsqu’il rencontre la surface du produit de base, ou « surface d’impact ».
La puissance du faisceau incident est de préférence supérieure à 10 W, 20 W, 30 W, 40 W et/ou inférieure à 400W, 300 W, 200 W, 100 W.
Le diamètre équivalent de la section du faisceau incident, au niveau de la surface d’impact, est de préférence supérieur à 10 pm, de préférence supérieur à 20 pm, et/ou inférieur à 100 pm, de préférence inférieur à 80 pm, 60 pm, 50 pm ou 40 pm.
La section du faisceau incident peut être de forme variée, par exemple de section circulaire, ou de section rectangulaire (faisceau laser dit « en ligne »). Une section rectangulaire permet avantageusement un traitement plus rapide d’une grande surface. De préférence, la direction d’avancement du faisceau incident est perpendiculaire au grand côté de la section rectangulaire.
De préférence, la plus petite dimension (ou « largeur ») de la section transversale du faisceau incident au niveau de la surface d’impact est comprise entre 10 et 500 pm, de préférence entre 10 et 100 pm. Un faisceau se déplaçant selon cette largeur, proche de celle des grains de Zr02 à la surface du produit de base fondu, est particulièrement bien adapté pour obtenir une couche de protection très dense et homogène.
De préférence, la largeur du faisceau est adaptée en fonction de la taille moyenne des grains de Zr02 présents à la surface du produit de base. De préférence, plus la taille moyenne des grains est grande, plus la largeur du faisceau est grande. De préférence, la largeur du faisceau est comprise entre 0,5 et 2 fois la taille moyenne des grains de Zr02. La puissance surfacique du faisceau incident est de préférence supérieure à 5 000 W/mm2, de préférence supérieure à 7 000 W/mm2, de préférence supérieure à 10 000 W/mm2, voire supérieure à 15 000 W/mm2, et/ou de préférence inférieure à 50 000 W/mm2, de préférence inférieure à 30 000 W/mm2, voire inférieure à 25 000 W/mm2.
L’énergie apportée à la surface d’impact doit être apportée en un temps très court, afin de limiter l’endommagement superficiel du produit de base et par conséquent la profondeur de refusion. Le faisceau incident doit donc se déplacer rapidement.
La vitesse de déplacement du faisceau incident au niveau de la surface d’impact par rapport à la surface à traiter, en mm/s, est de préférence supérieure à 20 mm/s, de préférence supérieure à 30 mm/s, supérieure à 40 mm/s, de préférence supérieure 50 mm/s, de préférence supérieure à 75 mm/s, et/ou inférieure à 500 mm/s, voire inférieure à 300 mm/s, ou même inférieure à 100 mm/s.
Pour traiter la surface à traiter, on utilise de préférence un laser, de préférence du type « CO2 », de longueur d’onde 1065 +1-5 nanomètres, et de puissance moyenne de faisceau laser comprise entre 10 et 100 Watt, de préférence entre 20 et 60 W. L’équipement laser peut comprendre un dispositif de visée aidant au positionnement du faisceau laser. L’équipement laser peut être par exemple une machine de traitement laser fourni par CERLASE.
Le faisceau incident est classiquement obtenu par focalisation d’un faisceau primaire.
De préférence, le diamètre équivalent du faisceau primaire est inférieur à 1000 micromètres.
La distance focale a un impact sur la forme et la taille du faisceau incident. De manière générale, plus la distance focale est courte, plus la puissance surfacique est élevée.
La distance focale est de préférence comprise entre 50 et 500 mm, de préférence entre 60 et 400 mm, de manière plus préférée entre 70 et 300 mm. Elle est de préférence comprise entre 150 mm et 200 mm. Avantageusement, l’homogénéité du traitement, et donc de la couche de protection, en est améliorée.
Par ailleurs, une telle distance focale est avantageusement compatible avec les largeurs de faisceau laser décrites ci-dessus, et en particulier avec une largeur comprise entre 10 et 100 pm. Il est possible d’utiliser un laser pulsé pour chauffer la surface à traiter, ce qui permet d’obtenir des puissances très élevées lors des puises (crêtes de puissance). Cependant, un tel laser n’émet que par intermittence.
De préférence, le laser utilisé n’est pas pulsé ou est un laser pulsé dans la fréquence de pulsation est supérieure à 300 KHz.
La vectorisation représente classiquement la distance, bord à bord, entre deux lignes adjacentes traitées par le faisceau incident, en microns. Si la vectorisation est trop élevée ou trop faible, la fusion sera moins homogène. La vectorisation est de préférence comprise entre 0,2 et 2 fois, de préférence entre 0,5 et 1 ,5 fois la largeur du faisceau, de préférence comprise entre 20 et 80 microns, de préférence entre 30 et 50 microns.
De préférence, le faisceau incident passe au plus une fois sur une zone de la surface à traiter.
A l’étape b), la région superficielle du produit de base mise en fusion est refroidie rapidement pour se transformer en la couche de protection.
Avec un traitement au laser, une exposition à l’atmosphère ambiante suffit à obtenir une trempe adaptée pour obtenir une couche de protection.
Des moyens additionnels de refroidissement, par exemple pour souffler de l’air à température ambiante ou à une température inférieure, peuvent être également mis en oeuvre.
A l’étape c), on peut retraiter thermiquement la couche de protection, de préférence par chauffage,
de préférence sous air,
de préférence à une température supérieure à 1000°C, de préférence supérieure à 1 300°C, de préférence supérieure à 1 400°C, de préférence supérieure à 1 500°C, de préférence pendant une durée supérieure à 10 h, de préférence supérieure à 15 h, de préférence supérieure à 20 h,
la vitesse de montée en température étant de préférence supérieure à 5°C/h 10°C/h, et/ou de préférence inférieure à 80°C/h, de préférence inférieure à 50°C/h, de préférence inférieure à 30°C/h,
la vitesse de descente en température étant de préférence supérieure à 5°C/h 10°C/h, et/ou de préférence inférieure à 80°C/h, de préférence inférieure à 50°C/h, de préférence inférieure à 30°C/h. L’étape c) est de préférence réalisée sous air, avec une vitesse de montée en température de 10°C/h jusqu’à 1500°C, un palier à cette température pendant 24 heures, puis une redescente contrôlée à 50°C/h.
Le Zr02 de la phase amorphe peut ainsi recristalliser sous la forme cristallites de zircone comme le montrent les figures 8A et 8B. Ces cristallites présentent de préférence une surface moyenne inférieure à 5 pm2, à 3 pm2, à 2 pm2, voire inférieure à 1 pm2, et/ou supérieure 0,1 pm2, 0,2 pm2, ou 0,5 pm2.
Produit traité
Le produit résultant du procédé est appelé « produit traité ». Il est constitué d’un substrat et de la couche de protection, qui s’étend en surface du substrat.
Le substrat n’est pas sensiblement modifié par le procédé de fabrication de la couche de protection. Les caractéristiques relatives au produit de base sont donc applicables au substrat.
L’épaisseur moyenne de la couche de protection dépend de la nature du produit de base et des paramètres d’exposition au faisceau hautement énergétique, notamment de la puissance surfacique et de la vitesse relative de déplacement du faisceau par rapport au produit de base. L’épaisseur moyenne de la couche de protection est de préférence comprise entre 50 et 2000 pm, de préférence entre 100 et 1000 pm, de manière plus préférée entre 100 et 700 pm, voire entre 100 et 500 pm. Elle est de préférence supérieure à 200 pm.
La couche de protection présente une composition sensiblement similaire à celle du substrat, et donc du produit de base. Les caractéristiques relatives à la composition du produit de base sont donc applicables à la couche de protection. En particulier, la couche de protection comporte de préférence les éléments Zr, Al, Si et O. De préférence, la couche de protection présente cependant une teneur massique en éléments Na et/ou Si plus faible que celle du substrat. Ces éléments peuvent en effet se volatiliser pendant l’étape a).
En particulier, le rapport massique de la teneur en S1O2 dans la couche de protection sur la teneur en S1O2 dans le substrat est de préférence inférieur à 1 ,0, de préférence inférieur à 0,9, voire inférieur à 0,8, et/ou de préférence supérieur à 0, 1 , de préférence supérieur à 0,3, de préférence supérieur à 0,5.
La volatilisation des éléments Na et/ou Si lors de l’étape a) conduit à une augmentation relative des autres éléments. En particulier, le rapport massique de la teneur en Zr02 dans la couche de protection sur la teneur en Zr02 dans le substrat est de préférence supérieur à 1 ,0, de préférence supérieur à 1 ,1 , voire supérieur à 1 ,2, et/ou de préférence inférieur 2,0, de préférence inférieur à 1 ,8, de manière plus préférée inférieur à 1 ,6.
La couche de protection peut être totalement amorphe. Elle peut aussi présenter quelques cristallites de zircone dispersés dans une phase liante amorphe. Elle peut enfin être sensiblement constituée de cristallites de zircone, les cristallites de zircone étant quasiment jointifs jusqu’à former une phase sensiblement continue, en particulier lorsque le produit de base présente une composition chimique comprenant plus de 80%, voire plus de 90% de Zr02 en masse.
De préférence, la couche de protection est constituée, pour plus de 50%, plus de 70%, plus de 80%, voire plus de 90% en volume, d’une phase dense amorphe et/ou de cristallites de zircone.
Dans la couche de protection, les cristallites de zircone sont de préférence des monocristaux, c’est-à-dire des cristallites ayant la même structure qu’un monocristal de zircone.
De préférence, la surface moyenne des cristallites de zircone est supérieure à 0,2 pm2, voire supérieure à 0,5 pm2, et/ou de préférence inférieure à 5 pm2, de préférence inférieure à 3 pm2, de préférence inférieure à 2 pm2, de préférence inférieure à 1 ,0 pm2.
La couche de protection peut encore comporter des cristallites comportant AI2Ü3, voire du corindon.
De préférence, la couche de protection est constituée, pour plus de 50%, plus de 70%, plus de 80%, voire plus de 90%, voire sensiblement 100% en volume, d’une phase dense amorphe et/ou de cristallites de zircone et/ou de cristallites comportant AI2C>3.
De préférence, la couche de protection comporte, en pourcentage en volume, plus de 80%, plus de 90%, plus de 95%, voire sensiblement 100% de phase amorphe et de cristallites de zircone. Ce pourcentage peut être en particulier évalué par traitement d’images et observation au MEB EDX. La figure 1 montre, à la surface d’un substrat 8, la présence d’une couche de protection 10 comprenant de la zircone sous forme d’une phase amorphe AZS 12 et quelques germes de cristallites de zircone 14. Des cristallites de zircone 14 sont également visibles sur les figures 6 et 7.
La figure 2A illustre l’attaque superficielle du produit de base et la figure 2A montre en particulier la présence en surface des grains de Zr02 16 qui n’ont pas fondu.
Les figures 3 à 5 montrent des fissures. Elles sont dues au polissage lors de la préparation de la section polie.
Exemples
Les exemples suivants sont fournis à des fins illustratives et ne limitent pas l’invention.
Des produits de base sous la forme de blocs de base de dimensions 500 mm x 500 mm x 500 mm ont été fabriqués par un procédé de fusion de matières premières dans un four à arc, puis coulage en moule et solidification. Les blocs de base, secs et dépourvus de poussières, ont ensuite été soumis à un faisceau laser de machine de traitement CERLASE
- de type « Yb/C02 fibré monomode », sauf pour l’exemple comparatif 2, pour lequel un laser de type « YAG fibré Yb-YAG » a été utilisé,
- de longueur d’onde de 1064 nm,
- dont la puissance peut varier de 10 à 100 W et dont la distance focale était ajustée afin d’obtenir une couche de protection homogène.
Le traitement a été effectué sous air, à pression atmosphérique, la vectorisation étant de 40 pm, avec un seul passage. Le fonctionnement du laser était géré par une unité de contrôle directement reliée à la fibre laser. Les blocs obtenus ont ensuite été observés.
Le tableau 1 présente les différents paramètres d’exposition au laser, et les résultats de mesure et d’observation sur les blocs après exposition au rayonnement par le faisceau laser.
Observation des blocs
L’exemple n°1 selon l’invention montre la présence d’une couche de protection dense (figure 1 ).
L’analyse à la microsonde et au microscope électronique à balayage par diffraction aux électrons rétrodiffusés ou EBSD (« Electron BackScatter Diffraction ») de la couche de protection révèle l’absence de figures de Kikuchi, et donc la présence d’une phase amorphe AZS, quasiment pure AI2O3 - Zr02 - S1O2 (AI2O3 : 50-51 %, Zr02 : 39-41 %, S1O2 : 10-1 1 %, pourcentages en masse). La couche de protection présente donc une teneur en Zr02 plus élevée que le bloc de base (et donc que le substrat) et une teneur en S1O2 significativement plus faible.
On observe aussi la présence de quelques germes de zircone recristallisée sous forme de cristallites dont la surface est inférieure à 0,01 pm2.
Un bloc selon l’exemple 1 traité au laser est ensuite recuit sous air (étape c)) avec une montée en température à 10°C/h jusqu’à 1500°C, un palier à cette température pendant 24 h, puis une redescente en température contrôlée à 10°C/h. Il présente alors une couche de protection dense amorphe contenant des cristallites de zircone dont la surface moyenne est de 0, 68 pm2, comme le montrent les figures 8A à C.
L’exemple comparatif n°1 montre qu’un bloc de base de composition identique à l’exemple 1 selon l’invention, soumis à une irradiation selon des paramètres proches de ceux de US2007/0141348, ne présente pas une couche de protection homogène dense de zircone, même avec une faible vitesse de déplacement de laser et une puissance surfacique élevée.
L’exemple comparatif n°2 réalisé de façon à atteindre une énergie d’exposition de l’ordre de 5 J/mm3, similaire à celle décrite dans US2007/0141348, conduit à une fusion locale de la phase amorphe du bloc sans fusion des grains de Zr02 (voir la figure 2A et, vue avec un plus fort grossissement, la figure 2B). Cet exemple confirme l’impossibilité d’obtenir une couche de protection selon l’invention avec une telle énergie d’exposition sur un produit de base fondu.
Les exemples 2 à 4 montrent qu’il est aussi possible d’obtenir une couche de protection dense et parfaitement adhérente par irradiation laser de blocs présentant des teneurs en Zr02 très différentes, jusqu’à près de 95% en masse de ZG02. La composition de la couche de protection est proche de celle du substrat, avec cependant une teneur en Zr02 plus élevée et une teneur en silice plus faible que dans ledit substrat.
Tests
Les tests suivants d’exsudation et de corrosion ont été effectués.
Test n°1 de corrosion par des vapeurs de verre
Deux séries d’éprouvettes cylindriques de diamètre 60 mm et de hauteur 40 mm ont été prélevées dans un bloc de base, c'est-à-dire non traité au laser, de l’exemple 1. Une surface de base (discoïdale) de chaque éprouvette cylindrique de la première série a été exposée au rayonnement laser tel que défini précédemment. Les éprouvettes de la deuxième série (série témoin) n’ont pas été traitées, et ont été conservées à titre de témoin. Chacune des éprouvettes des deux séries a ensuite été soumise à un test de corrosion par du sulfate de soude. Plus précisément, chacune des éprouvettes a été scellée avec du ciment alumineux à un creuset platine de 50 mm de diamètre contenant environ 60 g de sulfate de soude, dans une position dans laquelle la surface de base traitée (pour les éprouvettes de la première série) ou non (pour les éprouvettes de la deuxième série) était au-dessus et en face du bain de sulfate de soude, de manière à obturer le creuset. Ces montages ont été placés dans un four à une température à 1500°C, pendant 100 h.
On a alors mesuré l’épaisseur moyenne de pénétration de la soude, par analyse à la microsonde électronique. Le tableau 1 fournit le pourcentage de réduction de la profondeur de pénétration d’une éprouvette de la première série traitée laser sur celle de l’éprouvette témoin selon le calcul suivant :
% réduction de pénétration à la vapeur de soude = 100 x (profondeur de pénétration 2eme série témoin - profondeur pénétration 1 ère série traitée laser) / (profondeur pénétration 2eme série témoin)
Test n°2 d’exsudation
Deux séries d’éprouvettes cylindriques de diamètre 24 mm et de hauteur 100 mm ont été prélevées dans un bloc de base, c'est-à-dire non traité au laser, de l’exemple 1.
La surface de base inférieure et partiellement la périphérie des éprouvettes de la première série ont été exposées à un rayonnement laser. Pour la périphérie, seuls les 2/3 de la hauteur de chaque éprouvette, en partant de sa base inférieure, ont été ainsi traités.
Les éprouvettes de la deuxième série (série témoin) n’ont pas été traitées, et ont été conservées à titre de témoin. Chacune des éprouvettes des deux séries a ensuite été placée dans un four, suspendue par une clavette au-dessus d’un creuset en platine pour recueillir l’exsudât.
Le traitement thermique a été réalisé dans le four, selon deux cycles successifs. Chaque cycle était composé d’une montée en température jusqu’à 1550°C, d’un maintien à cette température pendant 6 h sous air, puis d’un refroidissement jusqu’à température ambiante. On a alors calculé, pour chaque éprouvette, le pourcentage de volume exsudé par rapport au volume initial de l’éprouvette. Le tableau 1 fournit le pourcentage de réduction d’exsudat :
% réduction d’exsudat = 100 x (% vol. exsudé échantillon série témoin -% vol. exsudé échantillon première série) / (% vol. exsudé série témoin).
Test n°3 de corrosion par le verre en fusion
Deux séries d’éprouvettes cylindriques de diamètre 20 mm et de hauteur 100 mm ont été prélevées dans un bloc de base, c'est-à-dire non traité au laser, de l’exemple 4.
La surface de base inférieure et partiellement la périphérie des éprouvettes de la première série ont été exposées à un rayonnement laser. Pour la périphérie, seuls les 2/3 de la hauteur de chaque éprouvette, en partant de sa base inférieure, ont été ainsi traités.
Les éprouvettes de la deuxième série (série témoin) n’ont pas été traitées, et ont été conservées à titre de témoin. Chacune des éprouvettes des deux séries a ensuite été soumise à un test consistant à faire tourner les échantillons immergés dans un bain de verre sodocalcique porté à 1500°C. La vitesse de rotation autour de l'axe du porte- échantillon était de 6 tours par minute. Une telle vitesse permet de renouveler très fréquemment l'interface de corrosion et rend donc l'essai beaucoup plus sollicitant. Le test a duré 48 heures.
A la fin de cette période, pour chaque échantillon, on a évalué le volume restant de l'échantillon puis, par différence avec le volume initial de cet échantillon, le volume perdu pendant le test. Le pourcentage de volume perdu a ensuite été calculé en faisant le rapport du volume perdu au volume initial.
Le tableau 1 fournit le gain de résistance à la corrosion calculé comme suit : gain de résistance à la corrosion = 100 x (% volume perdu échantillon série témoin - % volume perdu échantillon première série) / (% volume perdu série témoin)
Ce pourcentage d’évolution mesure l’amélioration de la résistance à la corrosion d’une éprouvette traitée laser par rapport à une éprouvette non traitée laser.
*: exemple comparatif Tableau 1
Le tableau 1 montre une amélioration significative des blocs selon l’invention par rapport aux blocs comparatifs de même composition. L’essai de corrosion au contact du verre en fusion réalisé pour l’exemple n°4 montre qu’il est même possible d’augmenter la performance du bloc à très haute teneur en Zr02.
Comme cela apparaît clairement à présent, l’invention permet de protéger les produits réfractaires fondus comportant plus 10% de Zr02 en masse afin de leur conférer une meilleure résistance contre la corrosion par les vapeurs de verre en fusion, et une exsudation plus faible.
Bien entendu, l’invention n’est pas limitée aux modes de réalisation décrits en détail et représentés sur les figures, fournis à des fins illustratives.
De manière surprenante, les inventeurs ont également découvert que les étapes a) et b) permettent de boucher des cavités à la surface d’un produit de base, et notamment des fissures ou des cratères qui peuvent être des sites de corrosion préférentielle.
Dans un mode de réalisation, la surface à traiter ne s’étend pas continûment, c'est-à-dire sans être interrompue, au-delà d’une distance de 10 mm, 5 mm, ou 3 mm du bord de ladite cavité. Sur la figure 9A, la cavité a la forme d’une fissure 20.
La figure 9B représente trois surfaces à traiter discoïdales 22, qui s’étende le long de la fissure 20.
Dans un mode de réalisation, la cavité est sensiblement un centre de la surface à traiter. Dans un mode de réalisation,
- la longueur de la cavité est d’au moins 1 cm ou est supérieure à 10% de la longueur du bloc de base ; et/ou
- la profondeur de la cavité est de préférence inférieure à 1 cm ; et/ou
- la largeur de la cavité est supérieure à 100 pm et/ou inférieure à1000 pm, la longueur et la largeur d’une cavité étant celles de son ouverture sur la surface à traiter .
Comme le montrent les figures 9A et 9B, la cavité est bouchée avec un matériau identique à celui de la couche de protection. Ce matériau peut donc comporter une ou plusieurs des caractéristiques de cette couche de protection.
Avantageusement, le bouchage ne crée pas de défauts supplémentaires. L’invention permet donc la cicatrisation locale du produit de base.

Claims

REVENDICATIONS
1. Procédé de traitement d’un produit réfractaire fondu comportant plus 10% de Zr02 en masse, ou « produit de base », ledit procédé comportant les étapes suivantes :
a) chauffage d’au moins une partie de la surface dudit produit, ou « surface à traiter », de manière à faire fondre des cristaux de Zr02 dans une région superficielle s’étendant sur une profondeur inférieure à 2000 pm, ou « refusion » ; et
b) refroidissement de la région superficielle en fusion obtenue à l’étape précédente de manière à obtenir une couche de protection ;
c) optionnellement recristallisation, au moins partielle, de la zircone présente dans la phase amorphe de la couche de protection,
procédé dans lequel, à l’étape a), on irradie la surface à traiter au moyen d’un faisceau incident laser ou de rayonnement plasma, la puissance surfacique du faisceau incident étant supérieure à 5 000 W/mm2.
2. Procédé selon la revendication immédiatement précédente, dans lequel à l’étape a), on chauffe la surface à traiter à une température supérieure à 2500°C.
3. Procédé selon l’une quelconque des revendications précédentes, dans lequel, à l’étape a), on chauffe la surface à traiter pour faire fondre le produit de base sur une profondeur inférieure à 1000 pm.
4. Procédé selon l’une quelconque des revendications précédentes, dans lequel, à l’étape a), on chauffe la surface à traiter pour faire fondre le produit de base sur une profondeur supérieure à 50 pm.
5. Procédé selon l’une quelconque des revendications précédentes, dans lequel, à l’étape b), on refroidit la région en fusion en l’exposant à l’air libre.
6. Procédé selon l’une quelconque des revendications précédentes, dans lequel, à l’étape b), la vitesse de refroidissement de la région en fusion est supérieure à 100°C/seconde.
7. Procédé selon l’une quelconque des revendications précédentes, dans lequel, à l’étape a), on apporte à la surface à traiter une énergie d’exposition supérieure à 50 J/mm3, l’énergie d’exposition étant le rapport entre la puissance surfacique du faisceau incident et la vitesse de déplacement du faisceau incident sur la surface à traiter.
8. Procédé selon la revendication immédiatement précédente, dans lequel, à l’étape a), on apporte à la surface à traiter une énergie d’exposition supérieure à 100 J/mm3
9. Procédé selon l’une quelconque des revendications précédentes, dans lequel la surface à traiter représente plus de 10% de la surface du produit de base.
10. Procédé selon l’une quelconque des revendications précédentes, dans lequel le produit de base présente une composition
10% < Zr02 < 98% ; et/ou
0,5% < AI2O3 < 70% ; et/ou
1 ,5% < Si02 < 40%,
pourvu que 90% < ZrOå + AI2O3 + S1O2, de préférence 95% < ZrÜ2 + AI2O3 + S1O2.
1 1. Procédé selon l’une quelconque des revendications précédentes, dans lequel le produit de base comporte plus de 80 % en masse de ZrQ?.
12. Procédé selon l’une quelconque des revendications 1 à 11 , dans lequel le produit de base présente une composition telle que, pour un total de plus de 90%, en pourcentages massiques sur la base des oxydes :
- Zr02 : 26 à 45% ;
- AI2O3 : 40 à 60% ;
- Si02 : 5 à 35% ;
ou telle que
ZrÜ2 : 50 à moins de 80 % ;
- AI2O3 : 15 à 30% ;
- Si02 : 5 à 15% ;
ou telle que
- Zr02 : > 80% ;
- AI2O3 : > 5% ;
- Si02 : < 12% ;
ou telle que
- 10% < Zr02 £ 25% ;
- 50% < AI2O3 < 75% ; - 5% < Si02 <35%.
13. Utilisation d’un procédé de traitement selon l’invention pour boucher une cavité présente sur la surface à traiter, la surface à traiter ne s’étendant pas continûment au- delà d’une distance de 10 mm du bord de ladite cavité.
14. Produit réfractaire fondu protégé par une couche de protection, de préférence fabriquée suivant un procédé selon l’une quelconque des revendications 1 à 13, le produit comportant, sous la couche de protection, plus 10% de Zr02 en masse, la couche de protection :
- comportant plus 10% de Zr02 en masse ;
- présentant une épaisseur inférieure à 2 000 pm ; et
- comprenant, pour plus de 50% en volume, une phase amorphe et/ou des cristallites de zircone dont la surface moyenne est inférieure à 5 pm2.
15. Produit selon la revendication immédiatement précédente, dans lequel la surface moyenne des cristallites de zircone est inférieure à 2 pm2.
16. Produit selon l’une quelconque des deux revendications immédiatement précédentes, dans lequel la porosité de la couche de protection est inférieure à 5%, la porosité étant le pourcentage de la surface occupée par des pores dans un plan de coupe perpendiculaire à la surface à traiter.
EP19742399.9A 2018-08-01 2019-07-26 Couche de protection pour produit refractaire Pending EP3830057A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857216A FR3084666B1 (fr) 2018-08-01 2018-08-01 Couche de protection pour produit refractaire
PCT/EP2019/070241 WO2020025496A1 (fr) 2018-08-01 2019-07-26 Couche de protection pour produit refractaire

Publications (1)

Publication Number Publication Date
EP3830057A1 true EP3830057A1 (fr) 2021-06-09

Family

ID=65443913

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19742399.9A Pending EP3830057A1 (fr) 2018-08-01 2019-07-26 Couche de protection pour produit refractaire

Country Status (6)

Country Link
US (1) US11878933B2 (fr)
EP (1) EP3830057A1 (fr)
JP (1) JP7259007B2 (fr)
CN (1) CN112789258B (fr)
FR (1) FR3084666B1 (fr)
WO (1) WO2020025496A1 (fr)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2174384B (en) * 1985-05-04 1987-07-22 Stc Plc Tube furnace
FR2605310B1 (fr) * 1986-10-16 1992-04-30 Comp Generale Electricite Procede de renforcement de pieces ceramiques par traitement au laser
CH674813A5 (fr) * 1987-07-31 1990-07-31 Stopinc Ag
JP3518560B2 (ja) * 1994-08-10 2004-04-12 サンゴバン・ティーエム株式会社 高ジルコニア溶融耐火物
DE102004015357B4 (de) 2004-03-30 2011-08-18 Schott Ag, 55122 Verfahren zur Behandlung von Feuerfestmaterial und Verwendung sowie Verfahren zur Herstellung und/oder Verarbeitung von Glasschmelzen und Vorrichtung
FR2875497B1 (fr) * 2004-09-20 2006-12-08 Saint Gobain Ct Recherches Produits azs a exsudation reduite
CN101448758A (zh) * 2006-05-16 2009-06-03 维苏威克鲁斯布公司 耐火制品及其生产方法
CN101429671B (zh) * 2008-11-20 2011-08-03 中国科学院上海硅酸盐研究所 一种铝合金表面氧化锆涂层的制备方法
FR2969145B1 (fr) * 2010-12-16 2013-01-11 Saint Gobain Ct Recherches Produit refractaire a haute teneur en zircone.
CN104805345A (zh) * 2015-04-30 2015-07-29 苏州统明机械有限公司 一种镁合金表面处理方法
EP3336069A1 (fr) * 2015-08-10 2018-06-20 Hamamatsu Photonics K.K. Procédé de traitement d'oxyde de zirconium
US9708225B2 (en) * 2015-11-17 2017-07-18 King Fahd University Of Petroleum And Minerals Laser ablation method for treating a zirconia containing ceramic surface

Also Published As

Publication number Publication date
CN112789258B (zh) 2023-02-17
US20210292211A1 (en) 2021-09-23
JP7259007B2 (ja) 2023-04-17
US11878933B2 (en) 2024-01-23
CN112789258A (zh) 2021-05-11
JP2021532052A (ja) 2021-11-25
FR3084666A1 (fr) 2020-02-07
FR3084666B1 (fr) 2022-05-13
WO2020025496A1 (fr) 2020-02-06

Similar Documents

Publication Publication Date Title
EP2260012B1 (fr) Poudre de bsas
Zhang et al. Polishing of alumina ceramic to submicrometer surface roughness by picosecond laser
FR2966455A1 (fr) Procede pour revetir une piece d&#39;un revetement de protection contre l&#39;oxydation
FR2701022A1 (fr) Réfractaires coulés par fusion à forte teneur en zircone.
Gurauskis et al. Laser-assisted, crack-free surface melting of large eutectic ceramic bodies
Chi et al. Ultraviolet laser-induced damage of freestanding silica nanoparticle films
LU87384A1 (fr) Procede de preparation d&#39;une surface d&#39;une structure refractaire et composition de particules destinee a ce procede
EP0521138A1 (fr) Alliages d&#39;aluminium, les substrats revetus de ces alliages et leurs applications
Liu et al. Study on high-reflective coatings of different designs at 532 nm
Ullah et al. Influence of laser parameters and Ti content on the surface morphology of L-PBF fabricated Titania
EP3728142B1 (fr) Piece a nez
EP3830057A1 (fr) Couche de protection pour produit refractaire
EP2125660B1 (fr) Materiau ceramique refractaire a haute temperature de solidus, son procede de fabrication et piece de structure incorporant ledit materiau
Armbruster et al. The role of defects in pulsed laser matter interaction
FR3113851A1 (fr) Procede de fabrication d’une piece metallique par fusion selective en lit de poudre
EP3830058B1 (fr) Procede de marquage d&#39;une piece ceramique refractaire
WO2022234155A2 (fr) Procédé de découpe d&#39;un échantillon en alliage métallique amorphe
EP0271414A1 (fr) Moules de verrerie et leur utilisation
EP0077857B1 (fr) Emaillage d&#39;un substrat avec un verre fluoré
FR2729943A1 (fr) Refractaires coules en fusion a base de zircone et leur procede de fabrication
Garg et al. Laser induced damage studies in mercury cadmium telluride
Spann et al. Laser processing of ceramics
JP2010285651A (ja) 金属・セラミックス複合構造及びその製造方法
Dong et al. Femtosecond laser spiral scanning ablation of SiCf/SiC composites
Shukla et al. University of Chester, Chester, UK

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240305