EP3824353B1 - Oscillateur à pivot de flexion insensible à la gravité - Google Patents

Oscillateur à pivot de flexion insensible à la gravité Download PDF

Info

Publication number
EP3824353B1
EP3824353B1 EP19737760.9A EP19737760A EP3824353B1 EP 3824353 B1 EP3824353 B1 EP 3824353B1 EP 19737760 A EP19737760 A EP 19737760A EP 3824353 B1 EP3824353 B1 EP 3824353B1
Authority
EP
European Patent Office
Prior art keywords
elements
mechanical oscillator
pair
rigid intermediate
intermediate body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19737760.9A
Other languages
German (de)
English (en)
Other versions
EP3824353A1 (fr
Inventor
Mohammad Hussein Kahrobaiyan
Etienne THALMANN
Simon Henein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Publication of EP3824353A1 publication Critical patent/EP3824353A1/fr
Application granted granted Critical
Publication of EP3824353B1 publication Critical patent/EP3824353B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/26Compensation of mechanisms for stabilising frequency for the effect of variations of the impulses
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/28Compensation of mechanisms for stabilising frequency for the effect of imbalance of the weights, e.g. tourbillon

Definitions

  • the present invention relates to the field of flexure pivots. More particularly, it relates to flexure pivots which are insensitive to gravity, i.e. perform similarly independent of their orientation, and can have a linear restoring torque. Such flexure pivots are particularly suitable for use in mechanical oscillators in timepieces, however this is not the only use of such pivots.
  • the time base used in all mechanical watches is a harmonic oscillator consisting of a spiral spring attached to a balance wheel having a rigid pivot rotating on jeweled bearings, see Figure 1(a) .
  • the pivoting motion on bearings causes significant friction and decreases watch autonomy as well as oscillator quality factor. Note that quality factor is believed to be the most significant indicator of chronometric performance [3].
  • Chronometric performance of portable timekeepers such as watches must have oscillators whose spring stiffness is insensitive to outside influences such as temperature and the orientation of the force of gravity. Since mechanical watch precision is of the order of seconds per day, we consider an effect to be negligible if it is of the order of 10 ppm (parts per million), in watchmaking terms, about a 1 s/d error.
  • flexure pivots provide an elastic restoring force so can be harmonic oscillators.
  • their role as time bases is limited by the following factors:
  • Non-linearity of beam stiffness under bending has been studied extensively [1], including flexure pivots [6], and this is also the case for parasitic shift [7].
  • stroke is the pivot rotation angle having a maximum beam stress equal to their admissible value.
  • the value of the admissible stress is taken to be the same for all pivots considered here.
  • Stroke is essentially the maximum amplitude of the oscillator.
  • Goal 1 Gravity insensitivity.
  • Goal 2 Maximum angular stroke for a given beam aspect ratio as well as admissible stress and Young's modulus (both material properties).
  • Goal 3 2D or 2.5D design.
  • Goal 4 Linear restoring torque.
  • the aim of the invention is to at least partially attain at least one of the above-mentioned goals.
  • the present invention provides a mechanical oscillator and a timepiece incorporating such a mechanical oscillator as defined in the appended claims, the independent claims being numbered 1, 3, and 4.
  • the invention provides a mechanical oscillator comprising an oscillating body, a first rigid intermediate body and a support, the first rigid intermediate body being connected to the support by a first pair of elements providing rotational guidance, the elements of said first pair being elastically substantially identical to each other and extending along respective axes which, in orthogonal projection onto a plane parallel to the oscillation plane of the oscillating body, cross at a point and are symmetric to each other with respect to a first line passing between the points of junction of said first pair of elements to the first rigid intermediate body (and between the points of junction of said first pair of elements to the support), the first intermediate body being connected to the oscillating body by at least one first further element providing relative guided mobility between the oscillating body and the first rigid intermediate body in a direction substantially parallel to said first line during regular functioning of the mechanical oscillator.
  • the present invention provides a mechanical oscillator comprising an oscillating body, a first rigid intermediate body and a support, the first rigid intermediate body being connected to the oscillating body by a first pair of elements providing rotational guidance, the elements of said first pair being elastically substantially identical to each other and extending along respective axes which, in orthogonal projection onto a plane parallel to the oscillation plane of the oscillating body, cross at a point and are symmetric to each other with respect to a first line passing between the points of junction of said first pair of elements to the oscillating body (and between the points of junction of said first pair of elements to the first rigid intermediate body), the first rigid intermediate body being connected to the support by at least one first further element providing relative guided mobility between the first rigid intermediate body and the support in a direction substantially parallel to said first line during regular functioning of the mechanical oscillator.
  • the rotational motion of the oscillating body relative to the support is the main motion (first-order motion) and the motion along the first line (not necessarily a pure translation) is a second-order motion.
  • first-order motion the motion along the first line
  • second-order motion the motion along the first line occurs during regular functioning of the oscillator and thus occurs even in the absence of any shock disrupting the functioning of the oscillator.
  • the at least one first further element is indeed not pre-stressed.
  • the oscillator according to the invention is a micromechanical oscillator.
  • the timepiece incorporating the oscillator according to the invention may be a wristwatch or pocket watch for example.
  • Figures 2-12 , 14-22 illustrate a two-degree-of-freedom oscillator that we have named a "co-strut”, which is used in our designs, as indicated below.
  • the co-strut comprises a first body or "oscillating body" (1701; 1801; 1901; 2401; 2501; 2601; 2701; 2801; 2901; 3001; 3101; 1101; 1201; 1301; 41; 51; 61; 71; 81; 91) with center of gravity G directly or indirectly attached to a support (1700; 1800; 1900; 2400; 2500; 2600; 2700; 2800; 2900; 3000; 3100;1100; 1200; 1300; 40; 50; 60; 70; 80; 90) by a pair of elements (1798, 1799; 1898, 1899; 1998, 1999; 2498, 2499; 2598, 2599; 2698, 2699; 2798, 2799; 2898, 2899; 2998, 2999; 3098, 3099; 3198, 3199; 1198, 1199; 1298, 1299; 1398, 1399; 43, 44; 53, 54; 63, 64; 73, 74; 83, 84;
  • the rotational motion is the main motion (first-order motion).
  • the motion along line ( ⁇ ) (not necessarily a pure translation) is a second-order motion which, like the rotational motion, occurs during regular functioning of the oscillator.
  • the motion along line ( ⁇ ) is provided by at least one further element (1705; 1805; 1905; 2410, 2411; 2510, 2511; 2610, 2611; 2710, 2711; 2810, 2811; 2910; 3010; 3110, 3111; 1105; 1205; 1305; 45; 55; 65; 75; 85; 95) connected in series with the said pair of elements through a rigid intermediate body (1702; 1802; 1902; 2402; 2502; 2602; 2702; 2802; 2902; 3002; 3102; 1102; 1202; 1302; 42; 52; 62; 72; 82; 92) of negligible mass.
  • Figures 5 and 9 illustrate co-struts where the said mobility of the said first body (2401; 2601) along line ( ⁇ ) is provided by a parallelogram linkage (2410, 2411; 2610, 2611).
  • the links of the said parallelogram (2410, 2411; 2610, 2611) have preferably mirror symmetry with respect to line ⁇ perpendicular to line ( ⁇ ) and passing through (G).
  • Figures 6 and 10 illustrate co-struts where the said mobility of the said first body (2501; 2701) along line ( ⁇ ) is provided by a Watt 4-bar linkage (2510, 2511; 2710, 2711) to make the isochronism insensitive to direction of gravity and increase the resistance of the oscillator against buckling.
  • the links of the said Watt 4-bar linkage (2510, 2511; 2710, 2711) have preferably the same distance from line ( ⁇ ) perpendicular to line ( ⁇ ) and passing through (G).
  • Figures 4 , 8 , 12 illustrate co-struts where the said mobility of the said first body (1901; 2801; 3101) along line ( ⁇ ) is provided by a pivot (O; 2810, 2811; 3110, 3111).
  • the links (2810,2811) have preferably mirror symmetry with respect to line ⁇ passing through pivot point (O) and perpendicular to the line passing through (2806), (2808), (O) to make isochronism insensitive to direction of gravity.
  • Figures 7 and 11 illustrate co-struts where the said mobility of the said first body (2901; 3001) along line ( ⁇ ) is provided by a double parallelogram linkage (2910; 3010) to make the isochronism insensitive to direction of gravity and increase the resistance of the oscillator against buckling.
  • the links of the double parallelograms have preferably mirror symmetry with respect to line ( ⁇ ) perpendicular to line ( ⁇ ) and passing through (G).
  • Any external load, e.g. the force of gravity, applied to the co-strut while the co-strut oscillation plane is oriented vertically has a first component parallel to line ( ⁇ ) and a second component perpendicular to line ( ⁇ ).
  • the first component of the external load is not transmitted to the pair of elements (1798, 1799; 1898, 1899; 1998, 1999; 2498, 2499; 2598, 2599; 2698, 2699; 2798, 2799; 2898, 2899; 2998, 2999; 3098, 3099; 3198, 3199; 1198, 1199; 1298, 1299; 1398, 1399; 43, 44; 53, 54; 63, 64; 73, 74; 83, 84; 93, 94).
  • the second component of the external load it has opposite effects on the elements of the said pair, i.e. one of the elements is loaded in compression while the other is
  • the oscillator comprises eleven rigid bodies: a main rigid body (2001), two intermediate rigid bodies (2002) and (2003), two rigid links (2004) and (2005) providing rotation for intermediate body (2002) around the gravity center (G), two rigid links (2006) and (2007) providing rotation for intermediate body (2003) around the gravity center (G), two rigid links (2016) and (2017) forming a parallelogram providing mobility of intermediate body (2002) with respect to main body (2001) along the x-axis, two rigid links (2022) and (2023) forming a parallelogram providing mobility of intermediate body (2003) with respect to main body (2001) along the y-axis.
  • the main rigid body (2001) is an oscillating body.
  • intermediate rigid bodies (2002) and (2003) and rigid links (2004), (2005), (2006), (2007), (2016), (2017), (2022) and (2023) is negligible compared to the mass of the main rigid body (2001).
  • Intermediate rigid body (2002) is connected to the main rigid body (2001) by a parallelogram consisting of two links parallel to the y-axis (links (2016) and (2017)), each link has two pivots at its extremities (pivots (2016), (2019), (2020), (2021)).
  • Each of said pivots has the possibility of having elasticity providing restoring torque.
  • the links are preferably at the same distance from the y-axis.
  • Rigid body (2002) is connected to the ground or to a frame (or other support) (2000) by two links (2004) and (2005) remotely crossing at point G which is the pivot center of gravity.
  • Each link has two pivots at its extremities (pivots (2008), (2009), (2010), (2011)) and each of said pivots has the possibility of having elasticity providing restoring torque.
  • Intermediate rigid body (2003) is connected to the main rigid body (2001) by a parallelogram consisting of two links parallel to the x-axis (links (2022) and (2023)), each link has two pivots at its extremities (pivots (2024), (2025), (2026), (2027)).
  • Each of said pivots has the possibility of having elasticity providing restoring torque.
  • the links are preferably at the same distance from the x-axis.
  • Rigid body (2003) is connected to the ground or to a frame (or other support) (2000) by two links (2006) and (2007) remotely crossing at point G which is the pivot center of gravity.
  • Each link has two pivots at its extremities (pivots (2012), (2013), (2014), (2015)) and each of said pivots has the possibility of having elasticity providing restoring torque.
  • the pivot rotation axis is perpendicular to the x-y plane and passes through G.
  • This oscillator is a 2D isostatic (statically determinate) pivot. Stiffness is insensitive or little sensitive to gravity.
  • the oscillator comprises eleven rigid bodies: a main rigid body (2101), two intermediate rigid bodies (2102) and (2103), two rigid links (2104) and (2105) providing rotation for main body (2101) around the gravity center (G) with respect to intermediate rigid body (2102), two rigid links (2106) and (2107) providing rotation for main body (2101) around the gravity center (G) with respect to intermediate rigid body (2103), two rigid links (2117) and (2118) forming a parallelogram providing mobility of intermediate body (2102) with respect to fixed frame (support) (2100) along the x-axis, two rigid links (2123) and (2124) forming a parallelogram providing mobility of intermediate body (2103) with respect to fixed frame (support) (2100) along the y-axis.
  • the main rigid body (2101) is an oscillating body.
  • the mass of intermediate rigid bodies (2102) and (2103) and rigid links (2104), (2105), (2106), (2107), (2117), (2118), (2123) and (2124) is negligible compared to the mass of the main rigid body (2101).
  • Intermediate rigid body (2102) is connected to the main rigid body (2101) by two links symmetric with respect to the x-axis (links (2104) and (2105)), each link has two pivots at its extremities (pivots (2108), (2109), (2110), (2111)).
  • Each of said pivots has the possibility of having elasticity providing restoring torque.
  • Rigid body (2102) is connected to the ground or to a frame (or other support) (2100) by a parallelogram consisting of two links (2117) and (2118) parallel to the y-axis, preferably having the same distance from the y-axis.
  • Each link has two pivots at its extremities (pivots (2119), (2120), (2121), (2122)) and each of said pivots has the possibility of having elasticity providing restoring torque.
  • Intermediate rigid body (2103) is connected to the main rigid body (2101) by two links symmetric with respect to the y-axis (links (2106) and (2107)), each link has two pivots at its extremities (pivots (2112), (2113), (2114), (2115)).
  • Each of said pivots has the possibility of having elasticity providing restoring torque.
  • Rigid body (2103) is connected to the ground or to a frame (or other support) (2100) by a parallelogram consisting of two links (2123) and (2124) parallel to the x-axis, preferably having the same distance from the x-axis.
  • Each link has two pivots at its extremities (pivots (2125), (2126), (2127), (2128)) and each of said pivots has the possibility of having elasticity providing restoring torque.
  • the pivot rotation axis is perpendicular to the x-y plane and passes through G.
  • This oscillator is a 2D isostatic (statically determinate) pivot. Stiffness is insensitive or little sensitive to gravity.
  • the oscillator comprises seven rigid bodies: a main rigid body (2201), two intermediate rigid bodies (2202) and (2203), two rigid links (2204) and (2205) providing rotation for main body (2201) around the gravity center (G) with respect to intermediate rigid body (2202), two rigid links (2206) and (2207) providing rotation for main body (2201) around the gravity center (G) with respect to intermediate rigid body (2203).
  • the main rigid body (2201) is an oscillating body.
  • the mass of intermediate rigid bodies (2202) and (2203) and rigid links (2204), (2205), (2206), (2207) is negligible compared to the mass of the main rigid body (2201).
  • Intermediate rigid body (2202) is connected to the main rigid body (2201) by two links symmetric with respect to the x-axis (links (2204) and (2205)), each link has two pivots at its extremities (pivots (2210), (2211), (2212), (2213)). Each of said pivots has the possibility of having elasticity providing restoring torque.
  • Rigid body (2202) is connected to the ground or to a frame (or other support) (2200) by pivot (2208) where the said pivot has the possibility of having elasticity providing restoring torque.
  • Pivots (2208), (2211) and (2213) are preferably on a straight line which is preferably parallel to the y-axis.
  • Intermediate rigid body (2203) is connected to the main rigid body (2201) by two links symmetric with respect to the y-axis (links (2206) and (2207)), each link has two pivots at its extremities (pivots (2214), (2215), (2216), (2217)). Each of said pivots has the possibility of having elasticity providing restoring torque.
  • Rigid body (2203) is connected to the ground or to a frame (or other support) (2200) by pivot (2209) where the said pivot has the possibility of having elasticity providing restoring torque.
  • Pivots (2209), (2215) and (2217) are preferably on a straight line which is preferably parallel to the x-axis.
  • the pivot rotation axis is perpendicular to the x-y plane and passes through G.
  • This oscillator is a 2D isostatic (statically determinate) pivot. Stiffness is insensitive or little sensitive to gravity.
  • the oscillator is a flexure (compliant mechanism) realization of the oscillator of Figure 23 .
  • the oscillator comprises three rigid bodies: a main rigid body (601) and two intermediate rigid bodies (602) and (603).
  • the main rigid body (601) is an oscillating body.
  • the mass of intermediate rigid bodies (602) and (603) is negligible compared to the mass of the main rigid body (601).
  • Intermediate rigid body (602) is connected to the main rigid body (601) by two blades parallel to the y-axis (blades (604) and (605)) where the blades preferably are at the same distance from the y-axis.
  • Rigid body (602) is connected to the ground or to a frame (or other support) (600) by two blades (610) and (611) remotely crossing at point G which is the pivot center of gravity. Blades (610) and (611) constitute an RCC pivot. Intermediate rigid body (603) is connected to the main rigid body (601) by two blades parallel to the x-axis (blades (606) and (607)) where the blades preferably are at the same distance from the x-axis. Rigid body (603) is connected to the ground or to a frame (or other support) (600) by two blades (608) and (609) remotely crossing at point G and constituting a further RCC pivot. The pivot rotation axis is perpendicular to the x-y plane and passes through G.
  • This oscillator is a 2D isostatic (statically determinate) flexure pivot.
  • Gravity produces axial (tensile or compressive) load and bending moment in the flexure blades. Stiffness is insensitive or little sensitive to gravity.
  • the oscillator is a flexure (compliant mechanism) realization of the oscillator of Figure 24 .
  • the oscillator comprises three rigid bodies: a main rigid body (701) and two intermediate rigid bodies (702) and (703).
  • the main rigid body (701) is an oscillating body.
  • the mass of intermediate rigid bodies (702) and (703) is negligible compared to the mass of the main rigid body (701).
  • Intermediate rigid body (702) is connected to the ground or to a frame (or other support) (700) by two blades parallel to the y-axis (blades (710) and (711)).
  • Rigid body (702) is connected to the main rigid body (701) by two blades (704) and (705) remotely crossing at point G which is the center of gravity of the pivot.
  • Blades (704) and (705) constitute an RCC pivot.
  • Intermediate rigid body (703) is connected to the ground or to a frame (or other support) (700) by two blades parallel to the x-axis (blades (708) and (709)).
  • Rigid body (703) is connected to the main rigid body (701) by two blades (706) and (707) remotely crossing at point G and constituting a further RCC pivot.
  • the pivot rotation axis is perpendicular to the x-y plane and passes through G.
  • This oscillator is a 2D isostatic (statically determinate) flexure pivot.
  • Gravity produces axial (tensile or compressive) load and bending moment in the flexure blades.
  • the out-of-plane stiffness of the pivot is provided by the width of the blades. Stiffness is insensitive or little sensitive to gravity.
  • the oscillator is a flexure (compliant mechanism) realization of the oscillator of Figure 25 .
  • the oscillator comprises three rigid bodies: a main rigid body (1001) and two intermediate rigid bodies (1002) and (1003).
  • the main rigid body (1001) is an oscillating body.
  • the mass of intermediate rigid bodies (1002) and (1003) is negligible compared to the mass of the main rigid body (1001).
  • Intermediate rigid body (1002) is connected to the ground or to a frame (or other support) (1000) by two blades crossing at point O 1 (blades (1004) and (1005)).
  • Rigid body (1002) is connected to the main rigid body (1001) by two blades (1008) and (1009) remotely crossing at point G which is the center of gravity of the pivot.
  • Blades (1008) and (1009) constitute an RCC pivot.
  • Intermediate rigid body (1003) is connected to the ground or to a frame (or other support) (1000) by two blades crossing at point O 2 (blades (1006) and (1007)).
  • Rigid body (1003) is connected to the main rigid body (1001) by two blades (1010) and (1011) remotely crossing at point G and constituting a further RCC pivot.
  • the pivot rotation axis is perpendicular to the x-y plane and passes through G.
  • This oscillator is a 2D isostatic (statically determinate) flexure pivot.
  • Gravity produces axial (tensile or compressive) load and bending moment in the flexure blades.
  • the out-of-plane stiffness of the pivot is provided by the width of the blades. Stiffness is insensitive or little sensitive to gravity.
  • the design of the oscillator can be modified to produce a nonlinearity with the same magnitude as the said nonlinearity but opposite sign in order to reach isochronism.
  • Figures 30 to 35 illustrate, based on an exemplary oscillator having one or more RCCs, how the nonlinearity may be cancelled.
  • Figure 33 represents the relative stiffness nonlinearity ⁇ versus the blade length ratio ⁇ for the oscillator shown in Figure 32 .
  • FEM finite element method
  • Changing the blade length ratio ⁇ enables to set the sign and magnitude of the restoring torque nonlinearity in order to compensate for an external isochronism defect.
  • the angle between the RCC blades is another parameter whose value may be selected to compensate for the RCC nonlinearity or to set the sign and magnitude of the restoring torque nonlinearity in order to compensate for an external isochronism defect.
  • the ratio R k p , 0 L R 2 k R , 0 is smaller than 50 and still preferably smaller than 20, where k p,0 (expressed in N/m) is the nominal stiffness of the parallel blades or other spring means, k R,0 (expressed in N.m/rad) is the nominal stiffness of the RCC pivot or other flexure pivot and L R is the length of the blades of the RCC pivot or other flexure pivot.
  • the said ratio R is also preferably greater than 0.02 and still preferably greater than 0.2.
  • the same ratio R may be used, with the same values, by replacing k p,0 with k R 2,0 L R 2 1 + ⁇ 2 2 where k R2,0 is the nominal stiffness of these flexure pivots, L R2 is the blade length of these flexure pivots and ⁇ 2 is their crossing ratio.
  • the rigid intermediate bodies have a non-negligible mass and an unbalance is provided on the oscillating body to compensate for the effect of this non-negligible mass on the sensitivity of the stiffness and frequency to gravity.
  • Figure 36 shows the rate in seconds/day of an oscillator according to the invention as a function of its angular position relative to gravity in the oscillation plane oriented vertically, with the rigid intermediate bodies having a negligible mass (considered to be zero).
  • Figure 37 shows the rate in seconds/day of an oscillator according to the invention as a function of its angular position relative to gravity in the oscillation plane oriented vertically, with the rigid intermediate bodies having a non-negligible mass.
  • the mass of the rigid intermediate bodies increases the rate variation. This defect may be compensated by moving the center of mass of the oscillating body by a distance ⁇ COM from the center of rotation along an axis of symmetry of the oscillator in its oscillation plane, as shown in Figure 40 .
  • Figure 38 illustrates the rate in seconds/day of an oscillator according to the invention as a function of its angular position relative to gravity in the oscillation plane oriented vertically, with the rigid intermediate bodies having a negligible mass (considered to be zero) and with the offset ⁇ COM being equal to zero (curve with the square dots), to 11 ⁇ m (curve with the triangle-shaped dots) and to 22 ⁇ m (curve with the cross-shaped dots).
  • the offset ⁇ COM in the present invention is typically of at least 3 ⁇ m, preferably of at least 5 ⁇ m, still preferably of at least 7 ⁇ m.
  • weights may be fastened on the oscillating body.
  • material may be removed from the oscillating body, e.g. by means of a laser.
  • material may be added on one side and removed on the other side so that the mass of the oscillating body remains constant.
  • the present invention also makes it possible to equalize the rates of the oscillator in the vertical and horizontal orientations.
  • ⁇ COM and ⁇ are the half angle between the RCC blades (see Figure 32 ) or more generally between the elements of the/each pair of elements guiding the rotational motion of the oscillating body, may be selected to both minimize the rate variation of the oscillator in dependence upon its angular position relative to gravity in its oscillation plane oriented vertically and substantially equalize the rates of the oscillator in the vertical and horizontal orientations.
  • Figure 42 in which the rates in the vertical and horizontal orientations are represented for an oscillator having an offset ⁇ COM of 9 ⁇ m and a half angle ⁇ of 19.8°.
  • the half angle ⁇ between the RCC blades or more generally between the elements of the/each pair of elements guiding the rotational motion of the oscillating body is preferably of at most 21.5°, still preferably of at most 21°.
  • any element of the oscillator which is similar to Figure 13(a) can be replaced by an element which is depicted in Figure 13(b)-(g) for compliant-mechanism realization.
  • Figure 43 shows an example of a 3D oscillator according to the invention having two co-struts in two parallel planes, the co-struts respectively having two RCC pivots.
  • the oscillator of Figure 43 may be used when a half angle ⁇ between the blades of each RCC greater than 45° is desired or when more compactness in the oscillation plane is desired, for example.
  • the oscillator may have a 2D structure, i.e. when all elements for guidance in rotation and guidance along axes ⁇ , x and y are coplanar, many different designs may be considered.
  • the oscillator may have the design shown in Figure 44 , in particular if a half angle ⁇ between the blades of each RCC greater than 45° is desired.
  • each blade or at least one of the blades may have a cross-section that varies along its length for e.g. a better distribution of the stresses in the blade and a longer angular stroke of the oscillator.
  • the oscillator is made of silicon by an etching process such as the Deep Reactive Ion Etching, the etching defects will change the stiffness of all blades in the same manner if the blades have the same cross-section.
  • any silicon dioxide layer provided on the silicon oscillator will change the stiffness of all blades in the same manner if the blades have the same cross-section.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Micromachines (AREA)

Claims (20)

  1. Oscillateur mécanique comprenant un corps oscillant (2301 ; 2401 ; 2501 ; 2801 ; 2901 ; 3101 ; 1701 ; 1101 ; 41 ; 71 ; 2001 ; 601), un premier corps intermédiaire rigide (2302 ; 2402 ; 2502 ; 2802 ; 2902 ; 3102 ; 1702 ; 1102 ; 42 ; 72 ; 2002 ; 602) et un support (2300 ; 2400 ; 2500 ; 2800 ; 2900 ; 3100 ; 1700 ; 1100 ; 40 ; 70 ; 2000 ; 600), le premier corps intermédiaire rigide étant relié au support par une première paire d'éléments (2304, 2305 ; 2498, 2499 ; 2598, 2599 ; 2898, 2899 ; 2998, 2999 ; 3198, 3199 ; 1798, 1799 ; 1198, 1199 ; 43, 44 ; 73, 74 ; 2004, 2005 ; 610, 611) assurant un guidage en rotation, les éléments de ladite première paire étant élastiquement sensiblement identiques entre eux et s'étendant selon des axes respectifs qui, en projection orthogonale sur un plan parallèle au plan d'oscillation du corps oscillant, se croisent en un point (G) et sont symétriques entre eux par rapport à une première ligne (λ ; x) passant entre les points (1707, 1709) de jonction de ladite première paire d'éléments au premier corps intermédiaire rigide, le premier corps intermédiaire rigide étant relié au corps oscillant par au moins un premier élément supplémentaire (2316, 2317 ; 2410, 2411 ; 2510, 2511 ; 2810, 2811 ; 2910 ; 3110, 3111 ; 1705 ; 1105 ; 45 ; 75 ; 2016, 2017 ; 604, 605) assurant une mobilité guidée relative entre le corps oscillant et le premier corps intermédiaire rigide dans une direction sensiblement parallèle à ladite première ligne (λ ; x) pendant le fonctionnement régulier de l'oscillateur mécanique.
  2. Oscillateur mécanique selon la revendication 1, comprenant en outre un deuxième corps intermédiaire rigide (2003 ; 603) relié au support (2002 ; 600) par une deuxième paire d'éléments (2006, 2007 ; 608, 609) assurant un guidage en rotation, les éléments de cette deuxième paire étant élastiquement sensiblement identiques entre eux et s'étendant selon des axes respectifs qui, en projection orthogonale sur ledit plan parallèle au plan d'oscillation du corps oscillant (2001 ; 601), se croisent audit point (G) et sont symétriques entre eux par rapport à une deuxième ligne (y) coupant ladite première ligne (x) et passant entre les points (2013, 2015) de jonction de ladite deuxième paire d'éléments (2006, 2007 ; 608, 609) au deuxième corps intermédiaire rigide (2003 ; 603), le deuxième corps intermédiaire rigide (2003 ; 603) étant relié au corps oscillant (2001 ; 601) par au moins un deuxième élément supplémentaire (2022, 2023 ; 610, 611) assurant une mobilité guidée relative entre le corps oscillant (2001 ; 601) et le deuxième corps intermédiaire rigide (2003 ; 603) dans une direction sensiblement parallèle à ladite deuxième ligne (y) pendant le fonctionnement régulier de l'oscillateur mécanique.
  3. Oscillateur mécanique comprenant un corps oscillant (2101 ; 2201 ; 701 ; 1001), un premier corps intermédiaire rigide (2102 ; 2202 ; 702 ; 1002) et un support (2100 ; 2200 ; 700 ; 1000), le premier corps intermédiaire rigide étant relié au corps oscillant par une première paire d'éléments (2104, 2105 ; 2204, 2205 ; 704, 705 ; 1008, 1009) assurant un guidage en rotation, les éléments de ladite première paire étant élastiquement sensiblement identiques entre eux et s'étendant selon des axes respectifs qui, en projection orthogonale sur un plan parallèle au plan d'oscillation du corps oscillant, se croisent en un point (G) et sont symétriques entre eux par rapport à une première ligne (λ ; x) passant entre les points (1807, 1809) de jonction de ladite première paire d'éléments au corps oscillant, le premier corps intermédiaire rigide étant relié au support par au moins un premier élément supplémentaire (2117, 2118 ; 2208 ; 710, 711 ; 1004, 1005) assurant une mobilité guidée relative entre le premier corps intermédiaire rigide et le support dans une direction sensiblement parallèle à ladite première ligne (λ ; x) pendant le fonctionnement régulier de l'oscillateur mécanique, l'oscillateur mécanique comprenant en outre un deuxième corps intermédiaire rigide (2103 ; 703 ; 2203 ; 1003) relié au corps oscillant (2101 ; 701 ; 2201 ; 1001) par une deuxième paire d'éléments (2106, 2107 ; 706, 707 ; 2206, 2207 ; 1010, 1011) assurant un guidage en rotation, les éléments de ladite deuxième paire étant élastiquement sensiblement identiques entre eux et s'étendant selon des axes respectifs qui, en projection orthogonale sur ledit plan parallèle au plan d'oscillation du corps oscillant (2101 ; 701 ; 2201 ; 1001), se croisent audit point (G) et sont symétriques entre eux par rapport à une deuxième ligne (y) coupant ladite première ligne (x) et passant entre les points (2112, 2114) de jonction de ladite deuxième paire d'éléments (2106, 2107 ; 706, 707 ; 2206, 2207 ; 1010, 1011) au corps oscillant (2101 ; 701 ; 2201 ; 1001), le deuxième corps intermédiaire rigide (2103 ; 703 ; 2203 ; 1003) étant relié au support (2100 ; 700 ; 2200 ; 1000) par au moins un deuxième élément supplémentaire (2123, 2124 ; 708, 709 ; 2209 ; 1006, 1007) assurant une mobilité guidée relative entre le deuxième corps intermédiaire rigide (2103 ; 703 ; 2203 ; 1003) et le support (2100 ; 700 ; 2200 ; 1000) dans une direction sensiblement parallèle à ladite deuxième ligne (y) pendant le fonctionnement régulier de l'oscillateur mécanique.
  4. Oscillateur mécanique comprenant un corps oscillant (2601 ; 2701 ; 3001 ; 1801 ; 1901 ; 1201 ; 1301 ; 51 ; 61 ; 81 ; 91 ; 2101 ; 2201 ; 701 ; 1001), un premier corps intermédiaire rigide (2602 ; 2702 ; 3002 ; 1802 ; 1902 ; 1202 ; 1302 ; 52 ; 62 ; 82 ; 92 ; 2102 ; 2202 ; 702 ; 1002) et un support (2600 ; 2700 ; 3000 ; 1800 ; 1900 ; 1200 ; 1300 ; 50 ; 60 ; 80 ; 90 ; 2100 ; 2200 ; 700 ; 1000), le premier corps intermédiaire rigide étant relié au corps oscillant par une première paire d'éléments (2698, 2699 ; 2798, 2799 ; 3098, 3099 ; 1898, 1899 ; 1998, 1999 ; 1298, 1299 ; 1398, 1399 ; 53, 54 ; 63, 64 ; 83, 84 ; 93, 94 ; 2104, 2105 ; 2204, 2205 ; 704, 705 ; 1008, 1009) assurant un guidage en rotation, les éléments de ladite première paire étant élastiquement sensiblement identiques entre eux et s'étendant selon des axes respectifs qui, en projection orthogonale sur un plan parallèle au plan d'oscillation du corps oscillant, se croisent en un point (G) et sont symétriques entre eux par rapport à une première ligne (λ ; x) passant entre les points (1807, 1809) de jonction de ladite première paire d'éléments au corps oscillant, le premier corps intermédiaire rigide étant relié au support par au moins un premier élément supplémentaire (2610, 2611 ; 2710, 2711 ; 3010 ; 1805 ; 1905 ; 1205 ; 1305 ; 55 ; 65 ; 85 ; 95 ; 2117, 2118 ; 2208710, 711 ; 1004, 1005) assurant une mobilité guidée relative entre le premier corps intermédiaire rigide et le support dans une direction sensiblement parallèle à ladite première ligne (λ ; x) pendant le fonctionnement régulier de l'oscillateur mécanique, les axes respectifs des éléments de ladite première paire d'éléments étant coplanaires.
  5. Oscillateur mécanique selon la revendication 2 ou 3, dans lequel la première et la deuxième ligne (x, y) sont perpendiculaires.
  6. Oscillateur mécanique selon l'une des revendications 1 à 3 et 5, dans lequel les axes respectifs des éléments de la/chaque dite paire d'éléments sont coplanaires.
  7. Oscillateur mécanique selon l'une des revendications 1 à 6, dans lequel la/chaque dite paire d'éléments forme un pivot RCC.
  8. Oscillateur mécanique selon l'une des revendications 1 à 7, dans lequel l'au moins un premier élément supplémentaire, respectivement l'au moins un deuxième élément supplémentaire, comprend une paire d'éléments mutuellement parallèles (2316, 2317 ; 2410, 2411 ; 2510, 2511 ; 2910 ; 2016, 2017 ; 604, 605 ; 2022, 2023 ; 2610, 2611 ; 2710, 2711 ; 3010 ; 2117, 2118 ; 710, 711 ; 2123, 2124 ; 708, 709) qui s'étendent perpendiculairement à la première ligne (λ ; x), respectivement à la deuxième ligne (y).
  9. Oscillateur mécanique selon l'une des revendications 1 à 8, dans lequel l'au moins un premier élément supplémentaire, respectivement l'au moins un deuxième élément supplémentaire, forme une liaison à double parallélogramme (2910 ; 3010) ou une liaison à 4 barres de Watt (2510, 2511 ; 2710, 2711).
  10. Oscillateur mécanique selon l'une des revendications 1 à 7, dans lequel l'au moins un premier élément supplémentaire, respectivement l'au moins un deuxième élément supplémentaire, forme un pivot, tel qu'un pivot idéal (2208, 2209) ou un pivot flexible comprenant au moins un élément flexible (1004, 1005 ; 1006, 1007).
  11. Oscillateur mécanique selon l'une des revendications 1 à 10, dans lequel le corps oscillant est une partie extérieure de l'oscillateur mécanique.
  12. Oscillateur mécanique selon l'une des revendications 1 à 11, dans lequel le corps oscillant entoure le/chaque corps intermédiaire rigide.
  13. Oscillateur mécanique selon l'une des revendications 1 à 12, dans lequel au moins certains, de préférence tous, desdits éléments (43, 44 ; 53, 54 ; 63, 64 ; 73, 74 ; 83, 84 ; 93, 94 ; 604, 605, 606, 607, 608, 609, 610, 611 ; 704, 705, 706, 707, 708, 709, 710, 711 ; 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011) sont des lames.
  14. Oscillateur mécanique selon l'une des revendications 1 à 13, dans lequel l'effet d'adoucissement de la raideur, c'est-à-dire la non-linéarité négative, de certains desdits éléments (1798, 1799 ; 1898, 1899 ; 1998, 1999 ; 1198, 1199 ; 1298, 1299 ; 1398, 1399 ; 43, 44 ; 53, 54 ; 63, 64, 73, 74 ; 83, 84 ; 93, 94) est annulé par le durcissement de la raideur, c'est-à-dire la non-linéarité positive, d'autres desdits éléments (1705 ; 1805 ; 1905 ; 1105 ; 1205 ; 1305 ; 45 ; 55 ; 65 ; 75 ; 85 ; 95).
  15. Oscillateur mécanique selon l'une des revendications 1 à 14, dans lequel ledit point (G) coïncide avec le centre de masse du corps oscillant en projection orthogonale sur ledit plan parallèle au plan d'oscillation.
  16. Oscillateur mécanique selon l'une des revendications 1 à 14, dans lequel, en projection orthogonale sur ledit plan parallèle au plan d'oscillation, le centre de masse du corps oscillant est décalé par rapport audit point afin de compenser l'effet de la masse du ou des corps intermédiaires rigides sur la sensibilité de la fréquence de l'oscillateur à la gravité.
  17. Oscillateur mécanique selon l'une des revendications 1 à 16, dans lequel le demi-angle (α) entre les éléments de la/chaque dite paire d'éléments est inférieur à 22,5°.
  18. Oscillateur mécanique selon l'une des revendications 1 à 17, ledit oscillateur mécanique étant monolithique.
  19. Pièce d'horlogerie comprenant un oscillateur mécanique selon l'une des revendications précédentes.
  20. Pièce d'horlogerie selon la revendication 19, dans laquelle la combinaison de l'effet d'adoucissement de la raideur, c'est-à-dire de la non-linéarité négative, de certains desdits éléments (1798, 1799 ; 1898, 1899 ; 1998, 1999 ; 1198, 1199 ; 1298, 1299 ; 1398, 1399 ; 43, 44 ; 53, 54 ; 63, 64, 73, 74 ; 83, 84 ; 93, 94) et de l'effet de durcissement de la raideur, c'est-à-dire de la non-linéarité positive, d'autres desdits éléments (1705 ; 1805 ; 1905 ; 1105 ; 1205 ; 1305 ; 45 ; 55 ; 65 ; 75 ; 85 ; 95) est opposée à l'effet non linéaire de tous les mécanismes interagissant avec l'oscillateur, en particulier l'échappement.
EP19737760.9A 2018-07-16 2019-07-12 Oscillateur à pivot de flexion insensible à la gravité Active EP3824353B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18183606 2018-07-16
PCT/EP2019/068840 WO2020016131A1 (fr) 2018-07-16 2019-07-12 Oscillateur à pivot flexible insensible à la gravité

Publications (2)

Publication Number Publication Date
EP3824353A1 EP3824353A1 (fr) 2021-05-26
EP3824353B1 true EP3824353B1 (fr) 2023-11-29

Family

ID=62975894

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19737760.9A Active EP3824353B1 (fr) 2018-07-16 2019-07-12 Oscillateur à pivot de flexion insensible à la gravité

Country Status (2)

Country Link
EP (1) EP3824353B1 (fr)
WO (1) WO2020016131A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3982204A1 (fr) * 2020-10-08 2022-04-13 The Swatch Group Research and Development Ltd Resonateur d'horlogerie comportant au moins un guidage flexible
EP3992729A1 (fr) * 2020-10-29 2022-05-04 The Swatch Group Research and Development Ltd Guidage flexible avec table de translation pour mécanisme résonateur rotatif, notamment d'un mouvement d'horlogerie
EP3992728A1 (fr) * 2020-10-29 2022-05-04 The Swatch Group Research and Development Ltd Guidage flexible avec table de translation pour mecanisme resonateur rotatif, notamment d'un mouvement d'horlogerie
EP4163735A1 (fr) 2021-10-05 2023-04-12 Patek Philippe SA Genève Procédés de réalisation et de réglage d'un oscillateur a guidage flexible et mouvement horloger comprenant un tel oscillateur
EP4202567A1 (fr) 2021-12-22 2023-06-28 Montres Breguet S.A. Ensemble de guidages flexibles tête-bêche pour mouvement d'horlogerie, notamment pour un dispositif d'affichage
WO2024100597A1 (fr) 2022-11-09 2024-05-16 Ecole Polytechnique Federale De Lausanne (Epfl) Pivot, processus de fabrication d'un tel pivot, oscillateur comprenant un tel pivot, mouvement de montre et montre comprenant un tel oscillateur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH701421B1 (fr) * 2009-07-10 2014-11-28 Manuf Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle Sa Oscillateur mécanique.
EP3206089B1 (fr) * 2016-02-10 2018-12-19 The Swatch Group Research and Development Ltd. Mécanisme résonateur d'horlogerie
CH713056A2 (fr) * 2016-10-18 2018-04-30 Eta Sa Mft Horlogere Suisse Mouvement mécanique d'horlogerie avec résonateur à deux degrés de liberté avec mécanisme d'entretien par galet roulant sur une piste.
CH713166B1 (fr) * 2016-11-16 2021-10-29 Swatch Group Res & Dev Ltd Protection des lames d'un résonateur de montre mécanique en cas de choc.
CH714922A2 (fr) * 2018-04-23 2019-10-31 Eta Sa Mft Horlogere Suisse Protection antichoc d'un mécanisme résonateur d'horlogerie à guidage flexible rotatif.

Also Published As

Publication number Publication date
EP3824353A1 (fr) 2021-05-26
WO2020016131A1 (fr) 2020-01-23

Similar Documents

Publication Publication Date Title
EP3824353B1 (fr) Oscillateur à pivot de flexion insensible à la gravité
US9201398B2 (en) Oscillating mechanism with an elastic pivot and mobile element for transmitting energy
CN105980938B (zh) 具有交叉条带的钟表谐振器
US9983549B2 (en) Isochronous timepiece resonator
US10365609B2 (en) Isotropic harmonic oscillator and associated time base without escapement or with simplified escapement
US20170227930A1 (en) Timepiece resonator mechanism
CN110389519B (zh) 钟表谐振器机构、钟表振荡器机构、钟表机芯和手表
CN110780572B (zh) 机械钟表振荡器以及包括其的钟表机芯和手表
EP3299905B1 (fr) Oscillateur mécanique pour un mouvement d'horloge
US20120008467A1 (en) Balance spring with fixed centre of mass
KR20170124525A (ko) 일체형 시계 조절기, 시계 무브먼트 및 상기 시계 조절기를 구비한 시계
CN110780576B (zh) 制造用于机械钟表振荡器的柔性轴承机构的方法
US20200150595A1 (en) Anti shock protection for a resonator mechanism with a rotary flexure bearing
CN111158230B (zh) 用于具有旋转柔性轴承的谐振器机构的抗震保护
US11520291B2 (en) Timepiece resonator comprising at least one flexure bearing
Thalmann et al. Flexure pivot oscillator with intrinsically tuned isochronism
US20190049900A1 (en) Balance-hairspring oscillator for a timepiece
EP3740820B1 (fr) Oscillateur d'horlogerie
CN110632838B (zh) 包括具有长角向行程的柔性轴承的钟表振荡器
Kahrobaiyan et al. Flexure Pivot Oscillator Insensitive to Gravity
Thalmann et al. Flexure-Pivot Oscillator Restoring Torque Nonlinearity and Isochronism Defect
US20180231937A1 (en) Two degree of freedom mechanical oscillator
Kahrobaiyan et al. Gravity insensitive flexure pivots for watch oscillators
US10838364B2 (en) Mechanical timepiece oscillator which is isochronous in all positions
Thalmann et al. ASME Accepted Manuscript Repository

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230630

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019042367

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1636762

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129