EP3814296A1 - Ntc compound, thermistor and method for producing the thermistor - Google Patents

Ntc compound, thermistor and method for producing the thermistor

Info

Publication number
EP3814296A1
EP3814296A1 EP19735512.6A EP19735512A EP3814296A1 EP 3814296 A1 EP3814296 A1 EP 3814296A1 EP 19735512 A EP19735512 A EP 19735512A EP 3814296 A1 EP3814296 A1 EP 3814296A1
Authority
EP
European Patent Office
Prior art keywords
thermistor
ceramic
ntc
base body
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19735512.6A
Other languages
German (de)
French (fr)
Inventor
Michael NADERER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
TDK Electronics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Electronics AG filed Critical TDK Electronics AG
Publication of EP3814296A1 publication Critical patent/EP3814296A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/281Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3268Manganates, manganites, rhenates or rhenites, e.g. lithium manganite, barium manganate, rhenium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06553Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of a combination of metals and oxides

Definitions

  • the invention relates to an NTC mass and a thermistor which comprises a ceramic base body which contains the NTC mass. It also relates to a method for producing the thermistor.
  • KTY Silicon temperature sensors
  • PRTD platinum temperature sensors
  • TC thermocouples
  • Thermistors contained NTC ground, which is the
  • Typical materials for NTC masses are based on
  • Ceramic materials from the Ni-Mn-0 system with spinel structure which have a molar proportion of Ni in the total metal content due to the requirements placed on the components, which prevents the formation of secondary phases during the
  • NTC materials have a Ni content in the total metal content, which is defined as c (Ni) :( c (Ni) + c (Mn)), of> 0.240. Because with this Ni content both
  • Ceramic materials with the desired spinel structure as well as secondary phases, such as NiO, are present side by side in a stable manner, these NTC materials tend to form NiO as an undesirable secondary phase, which has a negative effect on the aging stability of the thermistor.
  • an object of the present invention to provide an NTC composition which comprises a ceramic material from the Ni-Mn-0 system as the main constituent and not to form undesired ones
  • thermistor which comprises a corresponding ceramic base body, and a thermistor
  • Embodiments of the NTC ground, a thermistor which contains the NTC ground according to the invention and a method for Manufacture of the thermistor can be found in further claims.
  • NTC mass is to be understood here and below as a ceramic mass that has a negative temperature
  • NTC coefficients
  • an NTC composition which contains a ceramic material from the Mn-Ni-0 system as the main component and has a general composition Nz c Mh2q4- d ,
  • x corresponds to the proportion of nickel in the ceramic material from the Mn-Ni-0 system and y corresponds to the molar proportion of Ni in the total metal content of the ceramic material from the Mn-Ni-0
  • NTC mass according to the invention as a main component
  • This Ni content lies in the optimal stability range of the ceramic material, which is the main component of the
  • NTC mass represents NTC mass according to the invention, whereby there is hardly any formation of undesirable secondary phases, even at high sintering temperatures during the manufacturing process of a ceramic base body for a thermistor.
  • the ceramic material which is the main constituent of the NTC composition according to the invention, can have a spinel structure of the general formula AB2O4, where the A positions can be occupied by at least Ni and the B positions can be occupied by at least Mn.
  • the main component of the NTC mass is one
  • the NTC mass according to the invention can have an oxygen content of less than four moles per mole of the NTC mass according to the invention, which is illustrated by the expression 4-d in the general empirical formula Ni x Mn2 ⁇ D4-5 should.
  • the NTC composition according to the invention can additionally contain at least Zr0 2 as dopant, where a corresponds to the content of Z r ⁇ 2 and is based on 100 wt% Ni x Mn2 ⁇ D4-5, where:
  • a further stabilization of the NTC mass can be achieved by adding Z r ⁇ 2 .
  • the aging stability of a thermistor which comprises a ceramic base body which contains the NTC composition according to the invention can be further improved in this way.
  • the NTC composition according to the invention can contain at least one B value modifier which is selected from a group of compounds comprising Al2O3 and CuO. B corresponds to the content of Al2O3 and c to the content of CuO and the following applies based on 100 wt% Nz c Mh2q4- d :
  • the B value is a constant of a thermistor, which results from the NTC mass used and which shows the slope of a resistance-temperature curve of a thermistor in one
  • Resistance-temperature diagram indicates that the slope increases with increasing B value. The steeper the resistance-temperature curve, the more it changes
  • the B value can be set by B value modifiers, which are present, for example, as metal oxides. Conventionally, the B-value modifier is added in excess and the amount of the B-value modifier added can be up to 20% by weight based on 100% by weight
  • the B value of a thermistor which comprises a ceramic base body which contains the NTC composition according to the invention can be set within a wide range and comprises B values from 3136 K to 4528 K inclusive. As a result, the resistance-temperature behavior of a thermistor can be adapted to the desired requirements.
  • the inventive NTC mass contains can be set in a range comprising 48 Qcm to 51540 Qcm. It must be mentioned that the B value and the specific resistance cannot be set independently of one another. High B values are associated with high specific resistances and low B values with low specific resistances.
  • the NTC composition according to the invention can be produced by conventional methods. Such a method can include, for example, the substeps:
  • Thermistor This is a ceramic base
  • the ceramic base body is shaped and sintered at up to 1340 ° C. On the sintered ceramic
  • Base bodies are applied to contact electrodes.
  • a method for producing a monolithic thermistor is also provided.
  • Thermistor comprises a ceramic base body, which contains the NTC mass according to the invention.
  • the NTC composition according to the invention is used to form the ceramic base body processed into granules and then into the
  • the ceramic base body In a next step, the ceramic
  • Electrodes applied to the outside of the ceramic base body to contact it.
  • a method for producing a thermistor in a multilayer construction which comprises a ceramic base body which comprises the
  • NTC composition according to the invention in a first step to form a green sheet, hereinafter referred to as ceramic sheet,
  • NTC composition according to the invention is suspended in a solvent and with the aid of
  • the ceramic film is then drawn using a suitable method and then printed with metallic internal electrodes. A desired number of such printed ceramic foils is then stacked and pressed in the stack. From the pressed
  • Film stacks are punched out of the desired base area or number, then debindered and sintered at a maximum of 1340 ° C. Then contacts are applied to the outside of the ceramic base body.
  • the base body can be galvanically reinforced for further stabilization.
  • the thermistor manufactured according to one of the preceding statements can be coated with a protective layer which contains glass or a polymer.
  • the protective layer protects the Thermistor, especially the ceramic body of the thermistor against corrosion, especially in aggressive
  • Thermistor is further improved.
  • Figure 1 shows a schematic cross section of a
  • Embodiment of a themistor in multi-layer construction Embodiment of a themistor in multi-layer construction.
  • FIG. 2 shows an image of a cut of the one in FIG. 1
  • FIG. 3 shows an enlargement of the cut shown in FIG. 2.
  • Figure 1 shows a schematic cross section of a
  • Embodiment of a thermistor in multilayer construction which comprises a ceramic base body 10, which contains an NTC composition according to the invention.
  • the ceramic base body 10 of the ceramic base body 10 contains 0.600% wt Zr0 2 as a dopant and 13.14% wt AI2O3 as a B value modifier.
  • the thermistor was processed into a ceramic film.
  • the ceramic film was then printed with an inner electrode metallization made of an AgPd alloy, in order to obtain the first and second
  • a plurality of the ceramic foils were stacked on top of one another such that an alternating sequence of ceramic foils with first inner electrodes 20 and those with second inner electrodes 30 was obtained.
  • the generated film stack was pressed and from the
  • first and second internal electrodes 20 and 30 In order to connect the first and second internal electrodes 20 and 30 to external contacts 20 "and 30", a metallization made of an AgPd alloy was applied and baked on the end faces, which was galvanically reinforced for further stabilization, as a result of which the component can be contacted.
  • the first internal electrodes 20 are now connected to the external contacts 20 'and the second internal electrodes 30 are connected to the external contacts 30'.
  • the thermistor produced was covered with a protective layer 40 made of glass. After storage for 2000 h at 150 ° C in air without electrical load, the thermistor thus obtained shows a deviation in its resistance position at 25 ° C of only 0.59 ⁇ 0.093%. Based on these
  • FIG. 2 shows a section of the thermistor described in Figure 1 in multi-layer construction. The single ones
  • FIG. 3 shows an enlarged section of the section from FIG. 2.
  • the section shows internal electrodes (gray lines) with the sintered NTC material in between.
  • the structure of the sintered NTC mass has no secondary phases, which significantly improves the aging stability of the thermistor. Furthermore, the sintered NTC mass has a high sintering density and an excellent connection to the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

The invention relates to an NTC compound for producing a thermistor, containing as the main component a ceramic material of the Mn-Ni-O system, and said ceramic material having a general composition of ΝixΜn2O4-δ, wherein y equals the molar Ni portion in the total metal content of the ceramic material of the Mn-Ni-O system, defined as c(Ni): (c(Ni) + c(Mn), with 0.500 < x < 0.610; 0.197 < y < 0.240.

Description

Beschreibung description
NTC-Masse, Thermistor und Verfahren zur Herstellung des Thermistors NTC ground, thermistor and method for manufacturing the thermistor
Die Erfindung betrifft eine NTC-Masse und einen Thermistor, der einen keramischen Grundkörper umfasst, der die NTC-Masse enthält. Ferner betrifft sie ein Verfahren zur Herstellung des Thermistors. The invention relates to an NTC mass and a thermistor which comprises a ceramic base body which contains the NTC mass. It also relates to a method for producing the thermistor.
Für die Messung von Temperaturen zur Überwachung und Regelung in unterschiedlichsten Anwendungen werden überwiegend For the measurement of temperatures for monitoring and control in a wide variety of applications are predominantly
Thermistoren basierend auf gesinterten NTC-Massen, Thermistors based on sintered NTC masses,
Siliziumtemperatursensoren (KTY) , Platin-Temperatursensoren (PRTD) oder Thermoelemente (TC) verwendet. Aufgrund ihrer kostengünstigen Fertigung und ihrer ausgeprägten negativen Widerstands-Temperatur-Charakteristik sind Thermistoren, deren NTC-Massen auf Keramikmaterialien basieren, die Silicon temperature sensors (KTY), platinum temperature sensors (PRTD) or thermocouples (TC) are used. Due to their cost-effective production and their pronounced negative resistance-temperature characteristics, thermistors whose NTC masses are based on ceramic materials are the
beispielsweise eine Spinell-Struktur aufweisen, am weitesten verbreitet. Neben den ständig steigenden Anforderungen bezüglich der Leistungsfähigkeit und Miniaturisierung von Thermistoren, haben sich auch die Anforderungen an die for example, have a spinel structure, the most common. In addition to the constantly increasing requirements regarding the performance and miniaturization of thermistors, the requirements for the
Alterungsstabilität solcher Bauteile erhöht. Ein Faktor, der die Alterungsstabilität eines Thermistors negativ Aging stability of such components increases. A factor that negatively affects the aging stability of a thermistor
beeinflussen kann, ist die Bildung von unerwünschten can affect is the formation of unwanted
Nebenphasen während der Herstellung eines keramischen Secondary phases during the manufacture of a ceramic
Grundkörpers für den Thermistor. Solche Nebenphasen können zu mechanischen Problemen, insbesondere zur Rissbildung im keramischen Grundkörper des Thermistors führen. Des Weiteren ändert sich durch die Bildung der Nebenphasen die Base body for the thermistor. Such secondary phases can lead to mechanical problems, in particular to the formation of cracks in the ceramic base body of the thermistor. Furthermore, the formation of the secondary phases changes the
Zusammensetzung der im keramischen Grundkörper des Composition of the ceramic body of the
Thermistors enthaltenen NTC-Masse, wodurch sich die Thermistors contained NTC ground, which is the
Leitfähigkeit und das Temperaturverhalten des keramischen Grundkörpers verändern. Ferner verschlechtern sich dabei auch die Alterungseigenschaften, weil sich mit der Zeit die Conductivity and the temperature behavior of the ceramic Change base body. Furthermore, the aging properties also deteriorate because over time
Widerstandslage bei 25 °C des Thermistors verändert. Dadurch kommt es zu einer Verfälschung der gemessenen Temperatur. Resistance at 25 ° C of the thermistor changed. This leads to a falsification of the measured temperature.
Typische Materialien für NTC-Massen basieren auf Typical materials for NTC masses are based on
Keramikmaterialien aus dem Ni-Mn-0 System mit Spinell- Struktur, die aufgrund der geforderten Anforderungen an die Bauteile einen molaren Ni-Anteil am Gesamtmetallgehalt aufweisen, der die Bildung von Nebenphasen während der Ceramic materials from the Ni-Mn-0 system with spinel structure, which have a molar proportion of Ni in the total metal content due to the requirements placed on the components, which prevents the formation of secondary phases during the
Herstellung des keramischen Grundkörpers für den Thermistor begünstigt. So weisen übliche NTC-Massen einen Ni-Anteil am Gesamtmetallgehalt, der als c(Ni):(c(Ni) + c (Mn) ) definiert ist, von > 0,240 auf. Da bei diesem Ni-Anteil sowohl Production of the ceramic base body favored for the thermistor. For example, conventional NTC materials have a Ni content in the total metal content, which is defined as c (Ni) :( c (Ni) + c (Mn)), of> 0.240. Because with this Ni content both
Keramikmaterialien mit der gewünschten Spinell-Struktur als auch Nebenphasen, wie NiO stabil nebeneinander vorliegen, neigen diese NTC-Massen zur Bildung von NiO als unerwünschte Nebenphase, was sich negativ auf die Alterungsstabilität des Thermistors auswirkt. Ceramic materials with the desired spinel structure as well as secondary phases, such as NiO, are present side by side in a stable manner, these NTC materials tend to form NiO as an undesirable secondary phase, which has a negative effect on the aging stability of the thermistor.
Aufgrund der vorstehenden Ausführungen ist eine Aufgabe der vorliegenden Erfindung das Bereitstellen einer NTC-Masse, die als Hauptbestandteil ein Keramikmaterial aus dem Ni-Mn-0 System umfasst und nicht zur Bildung von unerwünschten Based on the above, it is an object of the present invention to provide an NTC composition which comprises a ceramic material from the Ni-Mn-0 system as the main constituent and not to form undesired ones
Nebenphasen neigt. Ferner soll ein Thermistor, der einen entprechenden keramischen Grundkörper umfasst, und ein Side phases tend. Furthermore, a thermistor, which comprises a corresponding ceramic base body, and a
Verfahren zur Herstellung des Thermistors bereitgestellt werden . Methods of manufacturing the thermistor are provided.
Diese Aufgabe wird erfindungsgemäß durch die in Anspruch 1 beschriebene NTC-Masse gelöst. Weitere vorteilhafte This object is achieved by the NTC mass described in claim 1. More beneficial
Ausführungsformen der NTC-Masse, ein Thermistor der die erfindungsgemäße NTC-Masse enthält und ein Verfahren zur Herstellung des Thermistors sind weiteren Ansprüchen zu entnehmen . Embodiments of the NTC ground, a thermistor which contains the NTC ground according to the invention and a method for Manufacture of the thermistor can be found in further claims.
Unter NTC-Masse soll hier und im Folgenden eine Keramikmasse verstanden werden, die einen negativen Temperatur NTC mass is to be understood here and below as a ceramic mass that has a negative temperature
koeffizienten (NTC) aufweist und deren elektrische has coefficients (NTC) and their electrical
Leitfähigkeit sich mit steigender Temperatur verbessert. Conductivity improves with increasing temperature.
Erfindungsgemäß wird eine NTC-Masse bereitgestellt, die als Hauptbestandteil ein Keramikmaterial aus dem Mn-Ni-0 System enthält, und eine allgemeine Zusammensetzung NzcMh2q4-d aufweist, According to the invention, an NTC composition is provided which contains a ceramic material from the Mn-Ni-0 system as the main component and has a general composition Nz c Mh2q4- d ,
wobei x dem Mengenanteil an Nickel in dem Keramikmaterial aus dem Mn-Ni-0 System entspricht und y dem molaren Ni-Anteil am Gesamtmetallgehalt des Keramikmaterials aus dem Mn-Ni-0 where x corresponds to the proportion of nickel in the ceramic material from the Mn-Ni-0 system and y corresponds to the molar proportion of Ni in the total metal content of the ceramic material from the Mn-Ni-0
System, definiert als c(Ni):(c(Ni) + c (Mn) , entspricht und es gilt : System defined as c (Ni) :( c (Ni) + c (Mn), corresponds and the following applies:
0,500 < x < 0,610  0.500 <x <0.610
0,197 < y < 0, 240. 0.197 <y <0.240.
In einer vorteilhafteren Ausführungsform kann die In a more advantageous embodiment, the
erfindungsgemäße NTC-Masse als Hauptbestandteil ein NTC mass according to the invention as a main component
Keramikmaterial aus dem Mn-Ni-0 System enthalten, das die allgemeine Zusammensetzung NzcMh2q4-d aufweist und für x und y gilt : Contain ceramic material from the Mn-Ni-0 system, which has the general composition Nz c Mh2q4- d and applies to x and y:
0,520 < x < 0,544  0.520 <x <0.544
0,206 < y < 0,214. 0.206 <y <0.214.
Dieser Ni-Anteil liegt im optimalen Stabilitätsbereich des Keramikmaterials, das den Hauptbestandteil der This Ni content lies in the optimal stability range of the ceramic material, which is the main component of the
erfindungsgemäßen NTC-Masse darstellt, wodurch es kaum zur Bildung von unerwünschten Nebenphasen kommt, auch nicht bei hohen Sintertemperaturen während des Herstellungsprozesses eines keramischen Grundkörpers für einen Thermistor. Außerdem kann die NTC-Masse nach dem Sintern bei Temperaturen von bis zu 1340 °C ohne nennenswerte Bildung von Nebenphasen represents NTC mass according to the invention, whereby there is hardly any formation of undesirable secondary phases, even at high sintering temperatures during the manufacturing process of a ceramic base body for a thermistor. In addition, the NTC mass after sintering at temperatures of up to 1340 ° C without significant formation of secondary phases
abgekühlt werden. be cooled.
Ferner kann das Keramikmaterial, das Hauptbestandteil der erfindungsgemäßen NTC-Masse ist, eine Spinell-Strukutur der allgemeinen Formel AB2O4 aufweisen, wobei die A-Positionen mindestens durch Ni und die B-Positionen mindestens durch Mn besetzt werden können. Furthermore, the ceramic material, which is the main constituent of the NTC composition according to the invention, can have a spinel structure of the general formula AB2O4, where the A positions can be occupied by at least Ni and the B positions can be occupied by at least Mn.
Es wird angemerkt, dass das Keramikmaterial, das It is noted that the ceramic material that
Hauptbestandteil der NTC-Masse ist, eine The main component of the NTC mass is one
nichtstöchiometrische Zusammensetzung aufweisen kann. can have non-stoichiometric composition.
Es wird weiterhin angemerkt, dass die erfindungsgemäße NTC- Masse einen Sauerstoff-Anteil von weniger als vier Mol pro Mol der erfindungsgemäßen NTC-Masse aufweisen kann, was durch den Ausdruck 4-d in der allgemeinen Summenformel NixMn2<D4-5 verdeutlicht werden soll. It is furthermore noted that the NTC mass according to the invention can have an oxygen content of less than four moles per mole of the NTC mass according to the invention, which is illustrated by the expression 4-d in the general empirical formula Ni x Mn2 <D4-5 should.
Des Weiteren kann die erfindungsgemäße NTC-Masse additiv mindestens Zr02 als Dotierstoff enthalten, wobei a dem Gehalt an Z rÖ2 entspricht und auf 100 wt% NixMn2<D4-5 bezogen ist, wobei gilt: Furthermore, the NTC composition according to the invention can additionally contain at least Zr0 2 as dopant, where a corresponds to the content of Z rÖ2 and is based on 100 wt% Ni x Mn2 <D4-5, where:
0,58 wt% < a d 0,72 wt%.  0.58 wt% <a d 0.72 wt%.
Durch die Zugabe von Z rÖ2 kann eine weitere Stabilisierung der NTC-Masse erreicht werden. Die Alterungsstabilität eines Thermistors, der einen keramischen Grundkörper umfasst, der die erfindungsgemäße NTC-Masse enthält, kann so weiter verbessert werden. Zusätzlich kann die erfindungsgemäße NTC-Masse mindestens einen B-Wertmodifikator enhalten, der ausgewählt ist aus einer Gruppe von Verbindungen, umfassend AI2O3 und CuO. Dabei entspricht b dem Gehalt an AI2O3 und c dem Gehalt an CuO und es gilt bezogen auf 100 wt% NzcMh2q4-d: A further stabilization of the NTC mass can be achieved by adding Z rÖ 2 . The aging stability of a thermistor which comprises a ceramic base body which contains the NTC composition according to the invention can be further improved in this way. In addition, the NTC composition according to the invention can contain at least one B value modifier which is selected from a group of compounds comprising Al2O3 and CuO. B corresponds to the content of Al2O3 and c to the content of CuO and the following applies based on 100 wt% Nz c Mh2q4- d :
0 wt% < b d 13, 9 wt%  0 wt% <b d 13, 9 wt%
0 wt% d c d 8,6 wt%  0 wt% d c d 8.6 wt%
Der B-Wert ist eine Konstante eines Thermistors, die sich aus der eingesetzten NTC-Masse ergibt und die die Steilheit einer Widerstands-Temperatur-Kurve eines Thermistors in einem The B value is a constant of a thermistor, which results from the NTC mass used and which shows the slope of a resistance-temperature curve of a thermistor in one
Widerstands-Temperatur-Diagramm angibt, wobei die Steilheit mit steigendem B-Wert zunimmt. Je steiler die Widerstands- Temperatur-Kurve ist, desto stärker ändert sich der Resistance-temperature diagram indicates that the slope increases with increasing B value. The steeper the resistance-temperature curve, the more it changes
Widerstand eines Thermistors in einem bestimmten Temperatur bereich. Der B-Wert kann durch B-Wert-Modifikatoren, welche beispielweise als Metalloxide vorliegen, eingestellt werden. Herkömmlicherweise wird der B-Wertmodifikator im Überschuss zugegeben und die zugegebene Menge des B-Wert-Modifikators kann bis zu 20 wt% bezogen auf 100 wt% eines Resistance of a thermistor in a certain temperature range. The B value can be set by B value modifiers, which are present, for example, as metal oxides. Conventionally, the B-value modifier is added in excess and the amount of the B-value modifier added can be up to 20% by weight based on 100% by weight
Basiskeramikmaterials betragen. Base ceramic material amount.
Durch die Zugabe des B-Wert-Modifikators kann der B-Wert eines Thermistors, der einen keramischen Grundkörper umfasst, der die erfindungsgemäße NTC-Masse enthält in einem weiten Bereich eingestellt werden, der B-Werte von einschließlich 3136 K bis 4528 K umfasst. Dadurch kann das Widerstands- Temperatur-Verhalten eines Thermistors an die gewünschten Anforderungen angepasst werden. By adding the B value modifier, the B value of a thermistor which comprises a ceramic base body which contains the NTC composition according to the invention can be set within a wide range and comprises B values from 3136 K to 4528 K inclusive. As a result, the resistance-temperature behavior of a thermistor can be adapted to the desired requirements.
Des Weiteren kann durch die Zugabe des B-Wert-Modifaktors der spezifische Widerstand eines Thermistors, der einen Furthermore, by adding the B-value modifier, the specific resistance of a thermistor, the one
keramischen Grundkörper umfasst, der die erfindungsgemäße NTC-Masse enthält, in einem Bereich umfassend 48 Qcm bis 51540 Qcm eingestellt werden. Es muss erwähnt werden, dass der B-Wert und der spezifische Widerstand nicht unabhängig voneinander einstellbar sind. So gehen hohe B-Werte mit hohen spezifischen Widerständen und niedrige B-Werte mit niedrigen spezifischen Widerständen einher. includes ceramic base body, the inventive NTC mass contains, can be set in a range comprising 48 Qcm to 51540 Qcm. It must be mentioned that the B value and the specific resistance cannot be set independently of one another. High B values are associated with high specific resistances and low B values with low specific resistances.
Die Herstellung der erfindungsgemäßen NTC-Masse kann durch herkömmliche Verfahrern erfolgen. Ein solches Verfahren kann beispielsweise die Teilschritte umfassen: The NTC composition according to the invention can be produced by conventional methods. Such a method can include, for example, the substeps:
- Einwaage von Ausgangsmaterialien  - Weighing of raw materials
- erste Nassmahlung  - first wet grinding
- erste Trocknung  - first drying
- erste Siebung  - first screening
- Kalzination  - calcination
- zweite Nassmahlung  - second wet grinding
- zweite Trocknung  - second drying
- zweite Siebung  - second screening
Ferner ist Aufgabe der vorliegenden Erfindung das It is also an object of the present invention
Bereitstellen eines Verfahrens zur Herstellung eines Providing a method for manufacturing a
Thermistors. Dazu wird ein keramischer Grundkörper Thermistor. This is a ceramic base
hergestellt, der die erfindungsgemäße NTC-Masse enthält. prepared which contains the NTC composition according to the invention.
Dabei wird der keramische Grundkörper geformt und bei bis zu 1340 °C gesintert. Auf dem gesinterten keramischen  The ceramic base body is shaped and sintered at up to 1340 ° C. On the sintered ceramic
Grundkörper werden Elektrodenschichten aufgebracht, um diesen zu kontaktieren. Base bodies are applied to contact electrodes.
Erfindungsgemäß wird weiterhin ein Verfahren zur Herstellung eines monolithischen Thermistors bereitgestellt. Der According to the invention, a method for producing a monolithic thermistor is also provided. The
Thermistor umfasst einen keramischen Grundkörper, der die erfindungsgemäße NTC-Masse enthält. Für die Bildung des keramischen Grundkörpers wird die erfindungsgemäße NTC-Masse zu einem Granulat verarbeitet und anschließend in die Thermistor comprises a ceramic base body, which contains the NTC mass according to the invention. The NTC composition according to the invention is used to form the ceramic base body processed into granules and then into the
gewünschte Form gepresst um den keramischen Grundkörper zu formen. In einem nächsten Schritt wird der keramische desired shape pressed to form the ceramic base body. In a next step, the ceramic
Grundkörper bei bis zu 1340 °C gesintert. Danach werden Base body sintered at up to 1340 ° C. After that
Elektroden auf die Außenseiten des keramischen Grundkörpers aufgebracht um diesen zu kontaktieren. Electrodes applied to the outside of the ceramic base body to contact it.
Erfindungsgemäß wird weiterhin ein Verfahren zur Herstellung eines Thermistors in Vielschicht-Bauweise bereitgestellt, der einen keramischen Grundkörper umfasst, der die According to the invention, a method for producing a thermistor in a multilayer construction is furthermore provided, which comprises a ceramic base body which comprises the
erfindungsgemäße NTC-Masse enthält. Dazu wird die contains NTC mass according to the invention. For this, the
erfindungsgemäße NTC-Masse in einem ersten Schritt zu einer Grünfolie, im Folgenden keramische Folie genannt, NTC composition according to the invention in a first step to form a green sheet, hereinafter referred to as ceramic sheet,
verarbeitet. Dabei wird die erfindungsgemäße NTC-Masse in einem Solvent suspendiert und mit Hilfsmitteln zum processed. The NTC composition according to the invention is suspended in a solvent and with the aid of
Folienziehen versehen. Anschließend wird die keramische Folie mit einem geeignetem Verfahren gezogen und anschließend mit metallischen Innenelektroden bedruckt. Danach wird eine gewünschte Anzahl solcher bedruckter keramischer Folien gestapelt und im Stapel verpresst. Aus den gepressten Provide foil pulling. The ceramic film is then drawn using a suitable method and then printed with metallic internal electrodes. A desired number of such printed ceramic foils is then stacked and pressed in the stack. From the pressed
Folienstapeln werden Bauteile der gewünschten Grundfläche bzw. Anzahl ausgestanzt, anschließend entbindert und bei maximal 1340°C gesintert. Anschließend werden Kontakte auf die Außenseiten des keramischen Grundkörpers aufgebracht. Film stacks are punched out of the desired base area or number, then debindered and sintered at a maximum of 1340 ° C. Then contacts are applied to the outside of the ceramic base body.
Die Kontakte auf den Außenseiten des nach einem der The contacts on the outside of one of the
vorhergehenden Ausführungen hergestellten keramischen previous versions manufactured ceramic
Grundkörpers können zur weiteren Stabilisierung galvanisch verstärkt werden. The base body can be galvanically reinforced for further stabilization.
Der nach einem der vorhergehenden Ausführungen hergestellte Thermistor kann mit einer Schutzschicht, die Glas oder ein Polymer enthält überzogen sein. Die Schutzschicht schützt den Thermistor, insbesondere den keramischen Grundkörper des Thermistors vor Korrosion, insbesondere in aggressiven The thermistor manufactured according to one of the preceding statements can be coated with a protective layer which contains glass or a polymer. The protective layer protects the Thermistor, especially the ceramic body of the thermistor against corrosion, especially in aggressive
Medien, wie Säuren, wodurch die Altersstabilität des Media, such as acids, which causes the aging stability of the
Thermistors weiter verbessert wird. Thermistor is further improved.
Im Folgenden wird die Erfindung anhand von Ausführungs beispielen und dazugehörigen Figuren näher beschrieben. The invention is described in more detail below with reference to exemplary embodiments and associated figures.
Figur 1 zeigt einen schematischen Querschnitt eines Figure 1 shows a schematic cross section of a
Ausführungsbeispiels eines Themistors in Vielschicht- Bauweise . Embodiment of a themistor in multi-layer construction.
Figur 2 zeigt ein Bild eines Schliffs des in Figur 1 FIG. 2 shows an image of a cut of the one in FIG. 1
beschriebenen Thermistors. described thermistor.
Figur 3 zeigt eine Vergößerung des in Figur 2 gezeigten Schliffs . FIG. 3 shows an enlargement of the cut shown in FIG. 2.
Gleiche Elemente, ähnliche oder augenscheinlich gleiche Elemente sind in den Figuren mit den gleichen Bezugszeichen versehen. Die Figuren und die Größenverhältnisse in den Figuren sind nicht maßstabsgetreu. Identical elements, similar or apparently identical elements are provided with the same reference symbols in the figures. The figures and the proportions in the figures are not to scale.
Figur 1 zeigt einen schematischen Querschnitt eines Figure 1 shows a schematic cross section of a
Ausführungsbeispiels eines Thermistors in Vielschicht- Bauweise, der einen keramischen Grundkörper 10 umfasst, der eine erfindungsgemäße NTC-Masse enhält. Embodiment of a thermistor in multilayer construction, which comprises a ceramic base body 10, which contains an NTC composition according to the invention.
Für die Herstellung des keramischen Grundkörpers 10 wurde eine NTC-Masse gewählt, die als Hauptbestandteil ein For the production of the ceramic base body 10, an NTC mass was chosen, which is the main component
Keramikmaterial mit der Zusammensetzung Nzo, 529Mh2q4-d enthält. Additiv enthält die NTC-Masse 0,600 %wt Zr02 als Dotierstoff und 13,14 %wt AI2O3 als B-Wert-Modifikator . Für die Herstellung des keramischen Grundkörpers 10 des Contains ceramic material with the composition Nzo, 529Mh2q4- d . In addition, the NTC mass contains 0.600% wt Zr0 2 as a dopant and 13.14% wt AI2O3 as a B value modifier. For the manufacture of the ceramic base body 10 of the
Thermistors wurde die NTC-Masse in einem ersten Schritt zu einer keramischen Folie verarbeitet. Anschließend wurde die keramische Folie mit einer Innenelektroden-Metallisierung aus einer AgPd-Legierung bedruckt, um erste und zweite In a first step the thermistor was processed into a ceramic film. The ceramic film was then printed with an inner electrode metallization made of an AgPd alloy, in order to obtain the first and second
Innenelektroden 20 und 30 des Thermistors herzustellen. To produce internal electrodes 20 and 30 of the thermistor.
In einem weiteren Schritt wurde eine Mehrzahl der keramischen Folien aufeinander gestapelt so, dass eine alternierende Abfolge von keramischen Folien mit ersten Innenelektroden 20 und solchen mit zweiten Innenelektroden 30 erhalten wurde.In a further step, a plurality of the ceramic foils were stacked on top of one another such that an alternating sequence of ceramic foils with first inner electrodes 20 and those with second inner electrodes 30 was obtained.
Der erzeugte Folienstapel wurde verpresst und aus dem The generated film stack was pressed and from the
verpressten Folienstapel wurde ein Bauteil ausgestanzt, das bei bis zu 1340 °C gesintert wurde. a stack of pressed components was punched out, which was sintered at up to 1340 ° C.
Zur Anbindung der ersten und zweiten Innenelektroden 20 und 30 an Außenkontakte 20" und 30" wurde an den Stirnseiten eine Metallisierung aus einer AgPd-Legierung aufgebracht und eingebrannt, die zur weiteren Stabilisierung galvanisch verstärkt wurde, wodurch das Bauteil kontaktiert werden kann. Nun sind die ersten Innenelektroden 20 mit den Außenkontakten 20' und die zweiten Innenelekroden 30 mit den Außenkontakten 30' verbunden. In order to connect the first and second internal electrodes 20 and 30 to external contacts 20 "and 30", a metallization made of an AgPd alloy was applied and baked on the end faces, which was galvanically reinforced for further stabilization, as a result of which the component can be contacted. The first internal electrodes 20 are now connected to the external contacts 20 'and the second internal electrodes 30 are connected to the external contacts 30'.
Zum weiteren Schutz wurde der hergestellte Thermistor mit einer Schutzsschicht 40 aus Glas überzogen. Nach Lagerung für 2000 h bei 150 °C an Luft ohne elektrische Last, weist der so erhaltene Thermistor eine Abweichung seiner Widerstandslage bei 25 °C von nur 0,59 ± 0,093 % auf. Aufgrund dieser For further protection, the thermistor produced was covered with a protective layer 40 made of glass. After storage for 2000 h at 150 ° C in air without electrical load, the thermistor thus obtained shows a deviation in its resistance position at 25 ° C of only 0.59 ± 0.093%. Based on these
geringen Abweichung genügt der so hergestellte Thermistor den Anforderungen an eine Verbesserung der Alterungsstabilität von Thermistoren. Figur 2 zeigt einen Schliff des in Figur 1 beschriebenen Thermistors in Vielschicht-Bauweise. Die einzelnen The thermistor manufactured in this way meets the requirements for improving the aging stability of thermistors. Figure 2 shows a section of the thermistor described in Figure 1 in multi-layer construction. The single ones
Bestandteile des Thermistors, wie die NTC-Masse die nach den Ausführungen zu Figur 1 hergestellt wurde, die Components of the thermistor, such as the NTC mass which was produced according to the explanations for FIG
Innenelektroden und die galvanisch verstärkten Außenkontakte, sind eindeutig zu erkennen.  Internal electrodes and the galvanically reinforced external contacts are clearly recognizable.
Figur 3 zeigt einen vergrößerten Ausschnitt des Schliffs aus Figur 2. Der Ausschnitt zeigt Innenelektroden (graue Linien) mit der gesinterten NTC-Masse dazwischen. Das Gefüge der gesinterten NTC-Masse weist keine Nebenphasen auf, wodurch die Alterungsstabilität des Thermistors deutlich verbessert wird. Des Weiteren weist die gesinterte NTC-Masse eine hohe Sinterdichte und eine hervorragende Anbindung an die FIG. 3 shows an enlarged section of the section from FIG. 2. The section shows internal electrodes (gray lines) with the sintered NTC material in between. The structure of the sintered NTC mass has no secondary phases, which significantly improves the aging stability of the thermistor. Furthermore, the sintered NTC mass has a high sintering density and an excellent connection to the
Innenelektroden auf. Dies zeigt die hohe Fertigungstauglich- keit der NTC-Masse, wodurch sich leistungstarke und  Internal electrodes. This shows the high manufacturing suitability of the NTC mass, which makes it powerful and
alterungsstabile Thermistoren realisieren lassen. have aging-stable thermistors implemented.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
10 keramischer Grundkörper 10 ceramic base body
20 erste Innenelektrode, 20 first inner electrode,
30 zweite Innenelektrode,  30 second inner electrode,
20" Außenkontakt, verbunden mit den ersten Innenelektroden 30" Außenkontakt, verbunden mit den zweiten Innenelektroden 40 Schutzschicht  20 "external contact, connected to the first internal electrodes 30" external contact, connected to the second internal electrodes 40 protective layer

Claims

Patentansprüche claims
1. NTC-Masse für die Herstellung eines Thermistors, die als Hauptbestanteil ein Keramikmaterial aus dem Mn-Ni-0 System enthält, das eine allgemeine Zusammensetzung von NixNkpCy-ö aufweist, 1. NTC mass for the production of a thermistor, which contains as its main component a ceramic material from the Mn-Ni-0 system which has a general composition of Ni x NkpCy- ö ,
wobei y dem molaren Ni-Anteil am Gesamtmetallgehalt des Keramikmaterials aus dem Mn-Ni-0 System, definiert als c(Ni):(c(Ni) + c (Mn) , entspricht und es gilt: where y corresponds to the molar proportion of Ni in the total metal content of the ceramic material from the Mn-Ni-0 system, defined as c (Ni) :( c (Ni) + c (Mn), and the following applies:
0,500 < x < 0,610  0.500 <x <0.610
0,197 < y < 0.240. 0.197 <y <0.240.
2. NTC-Masse nach Anspruch 1, wobei für x und y gilt: 2. NTC mass according to claim 1, where the following applies to x and y:
0.520 < x < 0.544  0.520 <x <0.544
0.206 < y < 0.214.  0.206 <y <0.214.
3. NTC-Masse nach einem der Ansprüche 1 oder 2, die additiv mindestens ZrÖ2 als Dotierstoff enthält, wobei a dem Gehalt an ZrÖ2 entspricht und auf 100 %wt NzcMh2q4-d bezogen ist, wobei gilt: 3. NTC composition according to one of claims 1 or 2, which contains additively at least ZrÖ2 as a dopant, where a corresponds to the ZrÖ2 content and is based on 100% wt Nz c Mh2q4- d , where:
0,58 wt% < a d 0,72 wt%.  0.58 wt% <a d 0.72 wt%.
4. NTC-Masse nach einem der Ansprüche 1 bis 3, wobei das Keramikmaterial eine Spinell-Struktur mit der allgemeinen Formel AB2O4 aufweist, wobei die A-Positionen mindestens von Ni und die B-Positionen mindestens von Mn besetzt sind. 4. NTC composition according to one of claims 1 to 3, wherein the ceramic material has a spinel structure with the general formula AB2O4, wherein the A positions are occupied by at least Ni and the B positions at least by Mn.
5. NTC-Masse nach einem der Ansprüche 1 bis 4, die additiv mindestens einen B-Wert-Modifikator enthält, der ausgewählt ist aus einer Gruppe, umfassend CuO und AI2O3. 5. NTC composition according to one of claims 1 to 4, which additionally contains at least one B value modifier which is selected from a group comprising CuO and Al2O3.
6. NTC-Masse nach einem der Ansprüche 1 bis 5, die entweder nur CuO oder nur AI2O3 als B-Wertmodifikator enthält, wobei b dem Gehalt an AI2O3 und c dem Gehalt an CuO entspricht und es auf 100 %wt NίcMh2q4-d bezogen gilt: 6. NTC composition according to one of claims 1 to 5, which contains either only CuO or only AI2O3 as a B value modifier, wherein b corresponds to the content of AI2O3 and c to the content of CuO and applies to 100% wt Nί c Mh2q4- d :
0 wt% < b d 13, 9 wt%  0 wt% <b d 13, 9 wt%
0 wt% d c d 8,6 wt% .  0 wt% d c d 8.6 wt%.
7. Thermistor, aufweisend einen keramischen Grundkörper, wobei der keramische Grundkörper eine NTC-Masse nach einem der Ansprüche 1 bis 6 enthält. 7. thermistor, comprising a ceramic base body, the ceramic base body containing an NTC composition according to one of claims 1 to 6.
8. Thermistor nach Anspruch 7, bei dem die Zusammensetzung so gewählt ist, dass der Thermistor bei der Lagerung an Luft bei 150 °C ohne elektrische Last nach 2000 h maximal eine 8. Thermistor according to claim 7, wherein the composition is selected so that the thermistor when stored in air at 150 ° C without an electrical load after a maximum of 2000 h
Alterung von 0,59 ± 0,093 % bezogen auf die Widerstandslage bei 25 °C aufweist. Has aging of 0.59 ± 0.093% based on the resistance at 25 ° C.
9. Thermistor nach einem der Ansprüche 7 oder 8, wobei der Thermistors einen B-Wert aufweist, der ausgewählt ist aus einem Bereich, umfassend 3136 K bis 4528 K. 9. Thermistor according to one of claims 7 or 8, wherein the thermistor has a B value which is selected from a range comprising 3136 K to 4528 K.
10. Thermistor nach einem der Ansprüche 7 bis 9, wobei der keramische Grundkörper des Thermistors einen spezifischen Widerstand P25 °c aufweist, der ausgewählt ist aus einem 10. Thermistor according to one of claims 7 to 9, wherein the ceramic base body of the thermistor has a specific resistance P 25 ° c, which is selected from one
Bereich, umfassend 48 Qcm bis 51540 Qcm. Area covering 48 sq. Cm to 51540 sq. Cm.
11. Thermistor nach einem der Ansprüche 7 bis 10, wobei der Thermistor eine Schutzschicht aufweist, die Glas oder ein Polymer enthält. 11. Thermistor according to one of claims 7 to 10, wherein the thermistor has a protective layer containing glass or a polymer.
12. Verfahren zur Herstellung eines Thermistors nach einem der Ansprüche 7 bis 11, umfassend die Herstellungschritte: a) Bilden eines keramischen Grundkörpers aus einer NTC-Masse nach einem der Ansprüche 1 bis 6 durch Herstellen eines 12. A method for producing a thermistor according to one of claims 7 to 11, comprising the production steps: a) forming a ceramic base body from an NTC composition according to one of claims 1 to 6 by producing one
Granulats aus der NTC-Masse, Pressen des Granulats und anschließendem Sintern des gepressten Granulats bei maximal 1340 °C, Granules from the NTC mass, pressing the granules and subsequent sintering of the pressed granules at a maximum of 1340 ° C,
b) Aufbringen von Elektrodenschichten auf den gesinterten keramischen Grundkörper, b) application of electrode layers to the sintered ceramic base body,
c) Einbrennen der Elektrodenschichten in den keramischen Grundkörper . c) baking the electrode layers in the ceramic base body.
13. Verfahren zur Herstellung eines Thermistors nach einem der Ansprüche 7 bis 11, 13. A method for producing a thermistor according to one of claims 7 to 11,
umfassend die Herstellungschritte: comprehensive the manufacturing steps:
a) Verarbeiten einer NTC-Masse nach einem der Ansprüche 1 bis 6, zu einer keramischen Folie, a) processing an NTC composition according to one of claims 1 to 6 to a ceramic film,
b) Bedrucken der keramischen Folie mit Innenelektroden (10, 20) , b) printing the ceramic film with internal electrodes (10, 20),
c) Übereinanderstapeln einer Vielzahl keramischer Folien, d) Verpressen der gestapelten keramischen Folien, c) stacking a large number of ceramic foils, d) pressing the stacked ceramic foils,
e) Ausstanzen eines keramischen Bauteils aus den verpressten, gestapelten keramischen Folien, e) punching out a ceramic component from the pressed, stacked ceramic foils,
f) Entbindern des keramischen Bauteils, f) debinding of the ceramic component,
g) Sintern des keramischen Bauteils, um den keraischen g) sintering the ceramic component to the ceramic
Grundkörper zu erhalten Main body
h) Aufbringen von Außenkontakten (20", 30") auf den h) Application of external contacts (20 ", 30") on the
keramischen Grundkörper. ceramic body.
14. Verfahren zur Herstellung eines Thermistors nach Anspruch 13, wobei für die ersten und zweiten Innenelektroden (20, 30) ein Metall verwendet wird, das ausgewählt ist aus einer 14. A method for producing a thermistor according to claim 13, wherein a metal selected from one is used for the first and second inner electrodes (20, 30)
Gruppe, umfassend Ag, Pd und eine Legierung beider Elemente. Group comprising Ag, Pd and an alloy of both elements.
EP19735512.6A 2018-06-27 2019-06-25 Ntc compound, thermistor and method for producing the thermistor Pending EP3814296A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018115513.1A DE102018115513A1 (en) 2018-06-27 2018-06-27 NTC ground, thermistor and method for manufacturing the thermistor
PCT/EP2019/066847 WO2020002336A1 (en) 2018-06-27 2019-06-25 Ntc compound, thermistor and method for producing the thermistor

Publications (1)

Publication Number Publication Date
EP3814296A1 true EP3814296A1 (en) 2021-05-05

Family

ID=67145774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19735512.6A Pending EP3814296A1 (en) 2018-06-27 2019-06-25 Ntc compound, thermistor and method for producing the thermistor

Country Status (6)

Country Link
US (1) US11929193B2 (en)
EP (1) EP3814296A1 (en)
JP (1) JP7114739B2 (en)
CN (1) CN112334430A (en)
DE (1) DE102018115513A1 (en)
WO (1) WO2020002336A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019106900A1 (en) * 2019-03-19 2020-09-24 Seg Automotive Germany Gmbh NTC component and starting device
CN114315339B (en) * 2022-03-14 2022-06-14 广东新成科技实业有限公司 High-temperature composite NTC resistance material based on metal oxide and preparation method and application thereof
CN114751724B (en) * 2022-05-31 2023-04-14 汕头市瑞升电子有限公司 NTC thermosensitive resistor medium material and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126204A (en) 1986-11-14 1988-05-30 株式会社村田製作所 Thermistor compound
JP2833242B2 (en) * 1991-03-12 1998-12-09 株式会社村田製作所 NTC thermistor element
JPH0869902A (en) 1994-08-29 1996-03-12 Matsushita Electric Ind Co Ltd Manufacture of thermistor ceramic
DE10159451A1 (en) 2001-12-04 2003-06-26 Epcos Ag Electrical component with a negative temperature coefficient
JP4029170B2 (en) * 2002-07-16 2008-01-09 株式会社村田製作所 Manufacturing method of negative characteristic thermistor
JP4292057B2 (en) 2003-11-13 2009-07-08 Tdk株式会社 Thermistor composition and thermistor element
CN102290174A (en) 2005-02-08 2011-12-21 株式会社村田制作所 Surface mounting-type negative characteristic thermistor
CN1975940A (en) 2006-12-22 2007-06-06 上海维安热电材料股份有限公司 NTC thermosensitive resistor and producing method thereof
JP2011171596A (en) 2010-02-19 2011-09-01 Mitsubishi Materials Corp Thin-film thermistor element
WO2017022373A1 (en) * 2015-07-31 2017-02-09 株式会社村田製作所 Temperature sensor
DE102016115642A1 (en) * 2016-08-23 2018-03-01 Epcos Ag Ceramic material, component and method for producing the component

Also Published As

Publication number Publication date
JP2021520073A (en) 2021-08-12
JP7114739B2 (en) 2022-08-08
US11929193B2 (en) 2024-03-12
DE102018115513A1 (en) 2020-01-02
US20210257135A1 (en) 2021-08-19
CN112334430A (en) 2021-02-05
WO2020002336A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
DE2701411C3 (en) Dielectric ceramic compound
DE3150558C2 (en)
WO2020002336A1 (en) Ntc compound, thermistor and method for producing the thermistor
EP3108482B1 (en) Ntc component and method for the production thereof
DE2643131A1 (en) ELECTRICALLY CONDUCTIVE COMPOSITE CERAMICS AND PROCESS FOR THEIR PRODUCTION
DE2641577C3 (en) Moisture-dependent ceramic resistance element based on metal oxide
DE10150248A1 (en) Semiconductor ceramic with a negative temperature coefficient of resistance and thermistor with a negative temperature coefficient
DE102008033664A1 (en) varistor
DE112016002136B4 (en) gas sensor
EP3504169B1 (en) Ceramic material, component, and method for producing the component
DE102020107286A1 (en) Multi-layer ceramic capacitor and method for its manufacture
EP1277215B1 (en) Electric component, method for the production thereof and use of the same
DE112015005617B4 (en) Electrically conductive oxide sintered body, electrical conductor element, gas sensor, piezoelectric element and method of manufacturing the piezoelectric element
WO2002089160A2 (en) Electrical multilayer component and method for the production thereof
DE102008042965A1 (en) Piezoceramic multilayer element
DE102008046858A1 (en) Ceramic material, method for producing a ceramic material, electroceramic component comprising the ceramic material
EP1497838B1 (en) Method for the production of a ptc component
CH647090A5 (en) CORE SHEET FOR SHELL CORES, ESPECIALLY FOR TRANSFORMERS.
DE10008929B4 (en) Semiconductor ceramic monolithic electronic element
DE102009023846B4 (en) Varistor ceramic, multilayer component comprising the varistor ceramic, manufacturing process for the varistor ceramic
DE3206502C2 (en)
DE112010000971B4 (en) Dielectric ceramic composition, dielectric body, ceramic substrate, electronic component and method of manufacturing a dielectric body
DE69725260T2 (en) Dielectric ceramic composition
EP2394276B1 (en) Varistor ceramic, multilayer component comprising the varistor ceramic, production method for the varistor ceramic
DE112016000618T5 (en) Semiconductor element and method of manufacturing the same

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)