EP3810419A1 - Verfahren zur herstellung einer verbundscheibe mit polarisationsselektiver beschichtung - Google Patents

Verfahren zur herstellung einer verbundscheibe mit polarisationsselektiver beschichtung

Info

Publication number
EP3810419A1
EP3810419A1 EP19719527.4A EP19719527A EP3810419A1 EP 3810419 A1 EP3810419 A1 EP 3810419A1 EP 19719527 A EP19719527 A EP 19719527A EP 3810419 A1 EP3810419 A1 EP 3810419A1
Authority
EP
European Patent Office
Prior art keywords
film
polarization
pane
coating
selective coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19719527.4A
Other languages
English (en)
French (fr)
Inventor
Martin Arndt
Michele CAPPUCCILLI
Ali-Osman KIZMAZ
Harald STOFFEL
Uwe Van Der Meulen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP3810419A1 publication Critical patent/EP3810419A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10339Specific parts of the laminated safety glass or glazing being colored or tinted
    • B32B17/10348Specific parts of the laminated safety glass or glazing being colored or tinted comprising an obscuration band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/1044Invariable transmission
    • B32B17/10458Polarization selective transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10293Edge features, e.g. inserts or holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10504Liquid crystal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2329/00Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
    • B32B2329/06PVB, i.e. polyinylbutyral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B2027/0192Supplementary details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B2027/0192Supplementary details
    • G02B2027/0194Supplementary details with combiner of laminated type, for optical or mechanical aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Definitions

  • the invention relates to a method for producing a composite pane, which is suitable as a projection surface of a projection arrangement, and a method for producing such a projection arrangement.
  • HUDs head-up displays
  • a projector for example in the area of the dashboard or in the roof area
  • images are projected onto the windshield, reflected there and perceived by the driver as a virtual image (seen from him) behind the windshield.
  • This allows important information to be projected into the driver's field of vision, for example the current driving speed, navigation or warning notices that the driver can perceive without having to take his eyes off the road.
  • Head-up displays can thus contribute significantly to increasing traffic safety.
  • the windshield is irradiated with s-polarized radiation, which is highly reflected by the glass surfaces.
  • the latter is commonly referred to as a ghost.
  • This problem is usually solved by arranging the reflecting surfaces at a deliberately chosen angle to one another so that the main image and the ghost image are superimposed, so that the ghost image is no longer noticeable.
  • Windshields are designed as composite panes, and the angle is most easily introduced by using a wedge-shaped thermoplastic intermediate layer between the two glass panes.
  • Laminated glasses for head-up displays with wedge foils are known for example from EP1800855B1 or EP1880243A2.
  • HUDs are also known in which the windshield is irradiated with p-polarized radiation. Since the typical angle of incidence is close to the Brewster angle for an air-glass transition, p-polarized radiation is not significantly reflected by the glass surfaces and the problem of ghosting is avoided. Instead, a reflecting film is provided as the necessary reflection surface for the radiation, which is laminated, for example, into the intermediate layer of the composite pane.
  • a HUD is known for example from US2004135742A1.
  • the reflective film should reflect p-polarized radiation in particular efficiently, and to improve the optical quality s-polarized radiation only to a small extent, so that polarization-selective coatings are particularly suitable for the reflective films.
  • a polarization-selective coating is known from US2010157426A1 and a method of how this coating can be introduced into a composite pane.
  • the coating is provided on a carrier film and then transferred to a connecting film which is laminated between two glass panes.
  • the carrier film with the coated side is pressed with the interposition of an adhesive layer, the film stack being loaded with 0.5 kg at a temperature of 50 ° for 2 hours.
  • this method only leads to a relatively weak bond between the polarization-selective coating and the connecting film. This can lead to problems if the windshield is to be provided with the coating over a large area.
  • the process is not robust enough to be able to be used on connecting foils of different types and different thicknesses without major adjustment of the parameters.
  • the polarization-selective coating of US2010157426A1 contains rod-shaped nanoparticles (so-called nanorods or nanorods), the polarization-selective reflection behavior being achieved by aligning the rods.
  • An alternative implementation of polarization-selective coatings is based on cholesteric liquid crystals, as described, for example, in JP4208990B2.
  • the object of the invention is to provide such an improved method.
  • the polarization-selective coating should be transferred reliably and stably from a carrier film to a connecting film and the resulting composite pane should have a high optical quality.
  • the method according to the invention is used to produce a composite pane which is suitable and provided as a projection surface for a projection arrangement.
  • a polarization-selective coating is provided on a carrier film.
  • the Polarization-selective coating is then transferred from the carrier film to a connecting film.
  • the connecting film with the polarization-selective coating is then arranged flat between a first pane and a second pane.
  • the first pane is then laminated with the second pane over the connecting film to the composite pane.
  • Polarization-selective coatings are typically provided on carrier films which have no hot-melt adhesive properties and therefore cannot be used to laminate two glass sheets to form a composite sheet.
  • Polarization-selective coatings are also commercially available on such carrier films, in particular films made of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the advantages of the invention lie in particular in the transfer of the polarization-selective coating from the carrier film to the connecting film.
  • the method according to the invention leads to a strong bond between the coating and the connecting film, which in particular also makes it possible to coat large areas of the connecting film.
  • connecting films of different types and thicknesses are compatible with the process.
  • the connecting film with the coating has a high optical quality, and the coated connecting films are suitable for use as thermoplastic intermediate films for composite panes of high optical quality.
  • the composite panes produced according to the invention meet the high requirements placed on windshields in the vehicle sector, so that they can be used as such.
  • the carrier film and the connecting film with the coating in between are arranged flat on top of one another to form a stack of films
  • the stack of films is then treated in an autoclave for at least 2 hours at a pressure of at least 8 bar and a temperature of 80 ° C to 120 ° C, and - The carrier film is then removed from the connecting film, the coating remaining on the connecting film.
  • Backing films with polarization-selective coatings are commercially available, for example on rolls or as film sheets.
  • the step of providing the polarization-selective coating on the carrier film preferably starts from such a purchased roll or sheet and comprises cutting a section of film into the desired size and shape.
  • the desired size and shape ideally corresponds to the size and shape of the area of the connecting film which is later to be provided with the polarization-selective coating.
  • the polarization-selective coating can also be applied to the cut carrier film, for example by brushing and drying a solution of the anisotropic units and, if appropriate, subsequent stretching.
  • the polarization-selective coating is brought into contact with the connecting film.
  • the connecting film is preferably cut beforehand to the desired size and shape, which essentially corresponds to the size and shape of the glass panes to be connected. In principle, however, it is also possible to transfer the coating to a larger section of the connecting film and then cut the desired size and shape therefrom.
  • the connecting film and the carrier film are preferably congruent and are arranged so as to overlap one another so that the entire surface of the connecting film is brought into contact with the coating.
  • the carrier film can also have a larger area than the connecting film, where it protrudes partially or all around the edges of the connecting film. It is also achieved in this way that the entire surface of the connecting film is brought into contact with the coating, and a better quality of the coating edges on the connecting film can possibly be achieved, but this procedure is associated with material waste.
  • the cut carrier film has a smaller area than the cut connecting film and is placed on the connecting film in such a way that said area is brought fully into contact with the coating.
  • the handling of the foils that is to say the arrangement of the carrier foil and the connecting foil to form the foil stack and preferably also the cutting of the foils, is preferably carried out under clean room conditions, thereby reducing the risk of contamination, which in particular could impair the optical quality.
  • Clean room conditions in the sense of the invention are understood to mean conditions in which the ambient air contains a maximum of 352,000 particles with a size from 0.5 pm per cubic meter.
  • the temperature in the clean room is preferably 15 ° C to 25 ° C and the relative humidity is preferably less than 30%.
  • the carrier film is typically made from or based on a thermoplastic material which has no hot melt adhesive properties. This means in particular hot melt adhesive properties compared to glass surfaces at typical laminating temperatures of around 130 ° C.
  • the carrier film preferably contains or essentially consists of polyethylene terephthalate (PET), as is also customary for commercially available carrier films.
  • PET polyethylene terephthalate
  • the carrier film preferably has a thickness of 30 pm to 500 pm, particularly preferably from 50 pm to 200 pm, for example approximately 100 pm.
  • the connecting film is typically made of or based on a thermoplastic material with hot melt adhesive properties (under the conditions mentioned above).
  • the connecting film preferably contains or essentially consists of polyvinyl butyral (PVB), ethylene vinyl acetate (EVA), polyurethane (PU) or mixtures or copolymers or derivatives thereof, preferably PVB. These materials are common for laminating laminated glasses.
  • the connecting film can also contain plasticizers, stabilizers, colorants or other additives.
  • the connecting film preferably has a thickness of 0.1 mm to 2 mm, particularly preferably 0.3 mm to 1 mm, for example the standard thicknesses of approximately 0.38 mm or 0.76 mm.
  • the two surfaces of commercially available connecting films typically have a different roughness due to production.
  • the connecting film thus has a surface of lower roughness and an opposite surface of higher roughness.
  • the coating is brought into contact with the surface of less roughness. Therefore, when arranging the carrier film and connecting film to form the layer stack, the surface with less roughness is preferably turned towards the carrier film (and the coating).
  • the surface with lower roughness preferably has an average roughness depth Rz of less than 25 pm and the surface with higher roughness has an average roughness depth Rz of greater than 25 pm.
  • the surface with lower roughness particularly preferably has an average roughness depth Rz of 5 pm to 20 pm and the surface with higher roughness has an average roughness depth Rz of 30 pm to 50 pm.
  • the stack of films is treated in an autoclave, whereby the polarization-selective coating is bonded to the connecting film.
  • the process parameters are essential to ensure a stable bond without optical distortions.
  • the temperature must not be chosen too high, because otherwise cracks can occur in the coating.
  • the temperature is from 80 ° C. to 120 ° C., preferably from 85 ° C. to 115 ° C., particularly preferably from 90 ° C. to 110 ° C., for example approximately 100 ° C.
  • the duration of the autoclave treatment is at least 2 hours, preferably from 2 hours to 4 hours, for example about 2.5 hours.
  • the stack of films is pressurized to at least 8 bar, preferably from 8 bar to 15 bar, for example about 12 bar.
  • the film stack is preferably arranged between two plates (press plates), which press the connecting film and the carrier film together.
  • the two plates can be connected to one another by means of screws, by means of which their mutual distance and thus the pressure on the film stack can be regulated.
  • the plate can for example be made of a metal or a plastic (such as polycarbonate or PMMA) and have a thickness of 1 cm to 4 cm. The plates ensure that the pressure in the autoclave is evenly distributed over the film stack.
  • the stack Before the autoclave treatment, the stack is preferably subjected to a vacuum in order to remove air from the space between the connecting film and the panes. This takes place, for example, by means of the vacuum bag or vacuum ring methods known per se.
  • the carrier film After the connection in the autoclave, the carrier film is pulled off the connecting film, the coating remaining on the connecting film. It is advisable to start from a corner of the carrier film and then pull the carrier film off at a uniform speed in order to ensure the highest possible optical quality of the coating on the connecting film. All in all, the stripping should be done slowly enough and carefully so that no marks are left on the coating. Immediately after removal from the autoclave, the film stack may still be too hot to remove the carrier film without damaging or impairing the optical quality. It is therefore advisable to let the film stack cool down first or to actively cool it. Excessive cooling to room temperature is also detrimental to the detachment of the carrier film. When removing the carrier film, the film stack should ideally have a temperature of 30 ° C to 65 ° C.
  • the connecting film can be used to connect the first and the second pane to one another to form the composite pane.
  • the first pane, the connecting film and the second pane are arranged flat and essentially congruently one above the other and then connected to one another under the action of temperature, pressure or vacuum and thus laminated to form the composite pane.
  • the connecting film and thus the polarization-selective coating is arranged between the panes and thus in the later composite pane in such a way that it reflects radiation striking the composite pane in a p-polarized manner. This essentially maximizes the reflectance of the coating with respect to p-polarized radiation. Since the connecting film must be arranged congruently with the panes and therefore there are no degrees of freedom with regard to their alignment (at least if the connecting film has already been cut), the alignment of the coating must already be taken into account when it is transferred from the carrier film to the connecting film.
  • the lamination is again preferably carried out in an autoclave.
  • the temperature should not be too high here either: at otherwise usual lamination temperatures of around 130 ° C, cracks can appear in the polarization-selective coating.
  • the temperature is preferably less than 130 ° C, particularly preferably at most 100 ° C.
  • the duration of the autoclave treatment is preferably from 2 hours to 4 hours, for example about 3 hours.
  • other methods known per se such as vacuum bag processes, vacuum ring processes, calender processes or vacuum laminators, can in principle also be used.
  • a further connecting film can be placed on the polarization-selective coating, so that the coating is arranged in the composite pane between two layers of thermoplastic material and, as it were, encapsulated.
  • the polarization-selective coating can be brought into direct contact with the first or second disk. This is also preferred, since it has been shown that this can reduce the ripple of the coating (a so-called orange peel effect).
  • the intermediate coating does not significantly affect the adhesion of the pane in question to the connecting film.
  • the connecting film according to the invention with the polarization-selective coating is preferably the only film which is arranged between the panes for lamination, so that the intermediate layer of the finished composite pane is formed solely by this connecting film.
  • the first pane and the second pane are preferably made of glass, in particular soda-lime glass.
  • the panes can also be formed from other types of glass, such as quartz glass or borosilicate glass, or also from rigid, clear plastics, in particular polycarbonate (PC) or polymethyl methacrylate (PMMA).
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • the materials for the first and the second disc can be selected independently of one another. For example, it is conceivable to laminate a lime-soda glass pane with a PC pane to form the composite pane.
  • the first and the second pane can also be referred to as the outer pane and the inner pane.
  • the inner pane is the pane of the composite pane facing the interior (vehicle interior).
  • the outer pane is the pane facing the external environment.
  • the polarization-selective coating is preferably turned towards the inner pane.
  • the composite pane is typically bent along one or more spatial directions, as is common in the vehicle sector.
  • the first and the second pane are subjected to a bending process before the lamination, for example by means of gravity bending, press bending and / or suction bending.
  • Typical temperatures for glass bending processes are, for example, 500 ° C to 700 ° C.
  • the panes and the connecting film can be clear and colorless, but also tinted or colored, independently of one another.
  • the total transmission through the composite pane is greater than 70%.
  • the term overall transmission refers to the procedure for testing the light transmission of motor vehicle windows as defined by ECE-R 43, Appendix 3, ⁇ 9.1.
  • the polarization-selective coating according to the invention can be designed in various ways.
  • the polarization-selective coating typically contains anisotropic particles or units.
  • the polarization-selective effect is achieved by the orientation order of the anisotropic units, which can be adjusted, for example, by stretching the carrier film.
  • the anisotropic particles or units can be, for example, metallic nanorods (nanorods), as disclosed by way of example in US2010157426A1.
  • the polarization-selective coating contains liquid crystals, in particular liquid crystals in a nematic phase, the molecules having an orientation order with respect to a so-called director, the unit vector of the direction.
  • the polarization-selective coating particularly preferably contains liquid crystals in a cholesteric phase.
  • the cholesteric phase is a special case of the nematic phase, which has a nematic order with a continuously rotating preferred orientation. This results in a long-range helical superstructure.
  • the cholesteric phase makes it possible, in particular, to adjust and optimize the reflective properties of the coating depending on the wavelength. In this way, a reflection spectrum of the coating can be generated, with certain wavelengths or certain relatively narrow wavelength ranges being selectively reflected, while the other wavelength ranges are only reflected to a very small extent.
  • the coating can thus be optimized to the wavelengths with which it is irradiated to produce the projection, avoiding disruptive reflections that would go back to other wavelengths.
  • the coating is set such that the reflection bands cover the wavelengths 473 nm, 550 nm and 630 nm.
  • the local reflection maxima are particularly preferably located at or near these wavelengths, while there are between the said reflection minima or plateaus with a lower reflection.
  • the specified wavelengths correspond to the colors red, green and blue (RGB) of typical projectors for generating display images on composite panes, as are particularly common for HUDs.
  • the connecting film can be provided with the polarization-selective coating over the entire surface. Alternatively, only a region of the connecting film can be provided with the coating.
  • the first disk and / or the second disk have one Masking pressure, which after lamination hides the side edges of the polarization-selective coating by looking through the composite pane. This is particularly advantageous if only one area of the connecting film is provided with the coating, because the side edge of the coating would then be disruptive when viewed through the composite pane.
  • the cover pressure is preferably provided, so that the side edge cannot be seen from the outside or from the inside.
  • Masking prints are used for vehicle windows and are typically formed by an essentially opaque enamel, which is printed and burned onto the windows before lamination, in particular using the screen printing process.
  • the polarization-selective coating is arranged at least in an irradiation area of the composite pane, which is intended to be irradiated by a projector in order to generate a display image.
  • the composite pane produced according to the invention is preferably provided as a vehicle pane, in particular as a windshield.
  • Windshields have a central field of vision, the optical quality of which places high demands.
  • the central field of vision must have high light transmission (typically greater than 70%).
  • Said central field of view is, in particular, that field of vision that is known by the person skilled in the art as field of vision B, field of view B or zone B.
  • Field of vision B and its technical requirements are defined in Regulation No. 43 of the United Nations Economic Commission for Europe (UN / ECE) (ECE-R43, "Uniform conditions for the approval of safety glazing materials and their installation in vehicles").
  • Field of view B is defined there in Appendix 18.
  • the polarization-selective coating essentially covers the central field of view B of the windshield.
  • the composite pane can, for example, be provided with the coating over the entire surface or over the entire surface minus a peripheral peripheral area of up to 10 cm in width in order to protect the coating from contact with the surrounding atmosphere.
  • the side edges of the coating are then covered by the circumferential peripheral masking pressure, which is common for windshields.
  • a contact-analog HUD or Augmented Reality HUD (AR-HUD) can thus advantageously be implemented.
  • information is not only projected onto a limited area of the windshield, but elements of the external environment are included in the display.
  • Examples of this are the marking of a pedestrian, the display of the Distance to a vehicle in front or the projection of navigation information directly onto the road, for example to mark the lane to be selected.
  • the contact-analog HUD is distinguished from a classic, static HUD in that the projection distance is at least 5 m. With a static HUD, the projection distance is significantly shorter, typically around 2 m. In the sense of the invention, projection distance is the distance between the virtual image and the viewer, that is to say usually the driver's head. The projection distance is preferably at least 7 m. The projection distance is preferably at most 15 m.
  • the polarization-selective coating is arranged outside a central field of view B of the windshield.
  • a projection area in the edge region of the windshield can be realized in which any information can be displayed to the viewer.
  • Such a projection surface can be used, for example, for entertainment or infotainment, for example for watching films, navigation information or for marking or commenting on objects in the area.
  • Outside the field of view B there are fewer requirements for the view through the pane, so that a cover print can be arranged here in order to hide the side edges of the coating.
  • the composite pane produced according to the invention is preferably used as a window pane of a vehicle, particularly preferably as a windshield.
  • the composite pane is part of a projection arrangement and serves as a projection surface.
  • the projection arrangement comprises the composite pane and a projector which is directed onto an area (projection area) of the composite pane.
  • the projection arrangement can be provided for a HUD, in particular an AR-HUD, or also for displaying any other information.
  • the invention also includes the production of a projection arrangement comprising the production of a composite pane by the method according to the invention and the subsequent arrangement of a projector relative to the composite pane, so that the polarization-selective coating can be irradiated.
  • the relative arrangement of the composite pane and the projector takes place in particular when the elements are installed in a vehicle.
  • the projector preferably emits p-polarized radiation and thus irradiates the polarization-selective coating.
  • the projector irradiates the composite pane preferably with an angle of incidence (angle to the surface normal) of 60 ° to 70 °, in particular about 65 °, as is also common for common HUDs.
  • This angle of incidence comes relatively close to the Brewster angle for an air-glass transition (57.2 °, soda-lime glass), so that the p-polarized radiation hardly reflects from the pane surfaces. The occurrence of ghost images can thus be minimized or avoided entirely.
  • the invention is explained in more detail below with reference to a drawing and exemplary embodiments.
  • the drawing is a schematic representation and not to scale. The drawing in no way limits the invention.
  • Fig. 1 shows a cross section through the carrier film and the connecting film during the
  • Fig. 5 is a plan view of a further embodiment of the composite disc manufactured according to the invention.
  • FIG. 6 shows a flow diagram of an embodiment of the method according to the invention for producing a composite pane.
  • the polarization-selective coating 5 contains, for example, liquid crystals in a cholesteric phase and was applied commercially to a carrier film 4 made of PET (thickness 100 ⁇ m) acquired. Since the PET film is very stiff and has no hot melt adhesive properties compared to gypsum surfaces at typical laminating temperatures, it cannot be used as an intermediate layer of a composite pane. To produce a composite pane of high optical quality, it is therefore necessary to transfer the coating 5 to a connecting film 3, for example a PVB film with a thickness of 0.76 mm.
  • the carrier film 4 provided with the coating 5 and the uncoated connecting film 3 are present (part a).
  • the carrier film 4 and the connecting film 3 are arranged on top of one another with a coating 5 lying therebetween to form a stack of films, pressed together by means of a first press plate 21 and a second press plate 22 and treated in an autoclave 20 (part b).
  • the films 4, 3 which have already been cut into their final shape have dimensions of approximately 1.1 m ⁇ 1.7 m, for example.
  • Suitable process parameters in the autoclave are a pressure of 12 bar, a temperature of 100 ° C and a treatment time of 2.5 hours.
  • the film stack will then removed from the autoclave and allowed to cool to a temperature of, for example, 40 ° C.
  • the connecting film 3 has a surface II of higher roughness and a surface I of lower roughness.
  • the coating 5 is applied to the surface I, whereby better adhesion is achieved.
  • FIG. 2 shows a cross section of a composite pane 10 produced according to the invention. It comprises a first pane 1 made of soda-lime glass with a thickness of 2.1 mm, for example, and a second pane 2 made of soda-lime glass with a thickness of 1 for example , 6 mm, which are connected to one another via the connection film 3 provided with the polarization-selective coating 5.
  • the coating 5 is directed onto the second disc 2.
  • the surface of the first pane 1 facing the connecting film 3 and the surface of the second pane 2 facing away from the connecting film 3 are provided with a circumferential, peripheral covering pressure 6, as is customary for window panes for vehicles.
  • the masking print 6 hides the side edges of the coating 5.
  • FIG. 3 shows a cross section of the composite pane 10 from FIG. 2 as the projection surface of a projection arrangement.
  • the composite window 10 is the windshield of a motor vehicle.
  • the first pane 1 is the outer pane, the second pane 2 the inner pane. It is irradiated by a projector P with p-polarized radiation at an angle of approximately 65 °.
  • the p-polarized radiation is hardly reflected by the surfaces of the panes 1, 2, but very efficiently by the polarization-selective coating 5. This produces a projection that an observer O, for example the driver of the vehicle, can perceive.
  • the composite pane 10 is the windshield of a motor vehicle and has a viewing area B according to ECE-R43. It is provided over the entire area with the polarization-selective coating 5, minus a peripheral edge area with a width of a few centimeters. The coating 5 therefore completely covers the viewing area B. The side edges of the coating 5 are hidden by the cover print 6.
  • This embodiment is particularly suitable as a projection surface for a contact-analog augmented reality HUD. Projections can be generated on the entire pane and the environment can be included in the display. For example, it is possible to project an arrow so that it appears to be in a lane and mark it for the driver.
  • FIG. 5 shows a plan view of a further embodiment of the composite pane 10 produced according to the invention.
  • the composite pane 10 is also the windshield of a motor vehicle and has a viewing area B according to ECE-R43. Only a relatively small area of the composite pane 10 is provided with the polarization-selective coating 5, which is completely outside the viewing area B. Any information can be shown to the viewer there.
  • An additional masking print 6 can be arranged outside the viewing area B in order to hide the side edges of the coating B.
  • FIG. 6 shows a flow diagram of an exemplary embodiment of the method according to the invention for producing a composite pane.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Verbundscheibe (10), die als Projektionsfläche einer Projektionsanordnung geeignet ist, wobei: (a) eine polarisationsselektive Beschichtung (5) auf einer Trägerfolie (4) bereitgestellt wird; (b) die polarisationsselektive Beschichtung (5) von der Trägerfolie (4) auf eine Verbindefolie (3) übertragen wird, indem (i) die Trägerfolie (4) und die Verbindefolie (3) mit dazwischenliegender Beschichtung (5) flächig zu einem Folienstapel aufeinander angeordnet werden, (ii) der Folienstapel für mindestens 2 Stunden bei einem Druck von mindestens 8 bar und einer Temperatur von 80°C bis 120°C in einem Autoklav (20) behandelt wird, und (iii) die Trägerfolie (4) von der Verbindefolie (3) abgezogen wird, wobei die Beschichtung (5) auf der Verbindefolie (3) verbleibt; (c) die Verbindefolie (3) flächig zwischen einer ersten Scheibe (1 ) und einer zweiten Scheibe (2) angeordnet wird; und (d) die erste Scheibe (1) mit der zweiten Scheibe (2) über die Verbindefolie (3) zur Verbundscheibe (10) laminiert wird.

Description

Verfahren zur Herstellung einer Verbundscheibe mit polarisationsselektiver
Beschichtung
Die Erfindung betrifft ein Verfahren zur Herstellung einer Verbundscheibe, die als Projektionsfläche einer Projektionsanordnung geeignet ist, sowie ein Verfahren zur Herstellung einer solchen Projektionsanordnung.
Moderne Automobile werden in zunehmendem Maße mit sogenannten Head-Up-Displays (HUDs) ausgestattet. Mit einem Projektor, beispielsweise im Bereich des Armaturenbretts oder im Dachbereich, werden Bilder auf die Windschutzscheibe projiziert, dort reflektiert und vom Fahrer als virtuelles Bild (von ihm aus gesehen) hinter der Windschutzscheibe wahrgenommen. So können wichtige Informationen in das Blickfeld des Fahrers projiziert werden, beispielsweise die aktuelle Fahrtgeschwindigkeit, Navigations- oder Warnhinweise, die der Fahrer wahrnehmen kann, ohne seinen Blick von der Fahrbahn wenden zu müssen. Head-Up-Displays können so wesentlich zur Steigerung der Verkehrssicherheit beitragen.
Bei den gebräuchlichsten HUDs wird die Windschutzscheibe mit s-polarisierter Strahlung bestrahlt, welche von den Glasoberflächen in hohem Maße reflektiert wird. Dabei tritt das Problem auf, dass das Projektorbild an beiden Oberflächen der Windschutzscheibe reflektiert wird. Dadurch nimmt der Fahrer nicht nur das gewünschte Hauptbild wahr, sondern auch ein leicht versetztes Nebenbild. Letzteres wird gemeinhin auch als Geisterbild bezeichnet. Dieses Problem wird üblicherweise dadurch gelöst, dass die reflektierenden Oberflächen mit einem bewusst gewählten Winkel zueinander angeordnet werden, so dass Hauptbild und Geisterbild überlagert werden, wodurch das Geisterbild nicht mehr störend auffällt. Windschutzscheiben sind als Verbundscheiben ausgebildet, und der Winkel wird am einfachsten durch Verwendung einer keilförmigen thermoplastischen Zwischenschicht zwischen den beiden Glasscheiben eingebracht. Verbundgläser für Head-Up-Displays mit Keilfolien sind beispielsweise aus EP1800855B1 oder EP1880243A2 bekannt.
Es sind alternativ auch HUDs bekannt, bei denen die Windschutzscheibe mit p-polarisierter Strahlung bestrahlt wird. Da der typische Einfallswinkel nahe dem Brewster-Winkel für einen Luft-Glas-Übergang liegt, wird p-polarisierte Strahlung von den Glasoberflächen nicht signifikant reflektiert und die Problematik der Geisterbilder dadurch vermieden. Als notwendige Reflexionsfläche für die Strahlung ist stattdessen ein reflektierender Film vorgesehen, die beispielsweise in die Zwischenschicht der Verbundscheibe einlaminiert ist. Ein solches HUD ist beispielsweise aus US2004135742A1 bekannt. Der reflektierende Film sollte insbesondere p-polarisierte Strahlung effizient reflektieren, und zur Verbesserung der optischen Qualität s-polarisierte Strahlung nur in geringem Maße, so dass sich für die reflektierenden Filme insbesondere polarisationsselektive Beschichtungen eignen.
Aus US2010157426A1 ist eine polarisationsselektive Beschichtung bekannt sowie ein Verfahren, wie diese Beschichtung in eine Verbundscheibe eingebracht werden kann. Die Beschichtung wird auf einer Trägerfolie bereitgestellt und dann auf eine Verbindefolie übertragen, welche zwischen zwei Glasscheiben einlaminiert wird. Bei der Übertragung der Beschichtung wird die Trägerfolie mit der beschichteten Seite unter Zwischenlage einer Haftschicht angepresst, wobei der Folienstapel über 2 Stunden bei einer Temperatur von 50° mit 0,5 kg belastet wird. Es hat sich jedoch gezeigt, dass dieses Verfahren nur zu einer relativ schwachen Bindung zwischen polarisationselektiver Beschichtung und Verbindefolie führt. Das kann zu Problemen führen, wenn die Windschutzscheibe großflächig mit der Beschichtung versehen werden soll. Zudem hat sich gezeigt, dass der Prozess nicht robust genug ist, um ohne größere Anpassung der Parameter auf Verbindefolien verschiedenen Typs und verschiedener Dicke angewendet werden zu können.
Die polarisationsselektive Beschichtung der US2010157426A1 enthält stabförmige Nanoteilchen (sogenannte Nanostäbchen oder nanorods), wobei das polarisationsselektive Reflexionsverhalten durch die Ausrichtung der Stäbchen erreicht wird. Eine alternative Realisierung polarisationsselektiver Beschichtungen basiert auf cholesterischen Flüssigkristallen, wie sie beispielsweise in JP4208990B2 beschrieben sind.
Es besteht daher Bedarf an verbesserten Verfahren zu Herstellung von Verbundscheiben mit polarisationsselektiven Beschichtungen. Der Erfindung liegt die Aufgabe zugrunde, ein solches verbessertes Verfahren bereitzustellen. Insbesondere soll dabei die polarisationsselektive Beschichtung zuverlässig und stabil von einer Trägerfolie auf eine Verbindefolie übertragen werden und die resultierende Verbundscheibe soll eine hohe optische Qualität aufweisen.
Die Aufgabe der vorliegenden Erfindung wird erfindungsgemäß durch ein Verfahren gemäß Anspruch 1 gelöst. Bevorzugte Ausführungen gehen aus den Unteransprüchen hervor.
Das erfindungsgemäße Verfahren dient zur Herstellung einer Verbundscheibe, die als Projektionsfläche einer Projektionsanordnung geeignet und vorgesehen ist. Zunächst wird eine polarisationsselektive Beschichtung auf einer Trägerfolie bereitgestellt. Die polarisationsselektive Beschichtung wird anschließend von der Trägerfolie auf eine Verbindefolie übertragen. Die Verbindefolie mit der polarisationsselektiven Beschichtung wird dann flächig zwischen einer ersten Scheibe und einer zweiten Scheibe angeordnet. Anschließend wird die erste Scheibe mit der zweiten Scheibe über die Verbindefolie zur Verbundscheibe laminiert.
Polarisationsselektive Beschichtungen werden typischerweise auf Trägerfolien bereitgestellt, die keine Schmelzklebeeigenschaften aufweisen und daher nicht dazu verwendet werden können, zwei Glasscheiben zu einer Verbundscheibe zu laminieren. Auf solchen Trägerfolien, insbesondere Folien aus Polyethylenterephthalat (PET), sind polarisationsselektive Beschichtungen auch kommerziell erhältlich. Prinzipiell ist es zwar denkbar, die Trägerfolie in der Zwischenschicht der Verbundscheibe zwischen zwei Schmelzklebefolien zu laminieren, jedoch hat sich herausgestellt, dass dies nicht zu zufriedenstellenden Ergebnissen führt: die hohe Steifheit typischer Trägerfolien führt zu einem Faltenwurf in der für Fahrzeuganwendungen üblicherweise gebogenen Verbundscheibe, so dass diese nicht die optischen Anforderungen erfüllt. Daher ist es notwendig, die Beschichtung von der T rägerfolie auf eine Verbindefolie zu übertragen, die biegbar ist und als Schmelzklebefolie zur Verbindung der Glasscheiben verwendet werden kann.
Die Vorteile der Erfindung liegen insbesondere in der Übertragung der polarisationselektiven Beschichtung von der Trägerfolie auf die Verbindefolie. Das erfindungsgemäße Verfahren führt zu einer starken Bindung zwischen Beschichtung und Verbindefolie, wodurch insbesondere auch das Beschichten großflächiger Bereiche der Verbindefolie möglich ist. Zudem sind Verbindefolien unterschiedlichen Typs und unterschiedlicher Dicke mit dem Verfahren kompatibel. Die Verbindefolie mit der Beschichtung weisen eine hohe optische Qualität auf, und die beschichteten Verbindefolien eignen sich dazu, als thermoplastische Zwischenfolien für Verbundscheiben hoher optischer Qualität eingesetzt zu werden. Die erfindungsgemäß hergestellten Verbundscheiben erfüllen die hohen Anforderungen, die Windschutzscheiben im Fahrzeugbereich gestellt werden, so dass sie als solche eingesetzt werden können.
Die erfindungsgemäße Übertragung der polarisationselektiven Beschichtung erfolgt indem
- die T rägerfolie und die Verbindefolie mit dazwischenliegender Beschichtung flächig zu einem Folienstapel aufeinander angeordnet werden,
- der Folienstapel anschließend für mindestens 2 Stunden bei einem Druck von mindestens 8 bar und einer Temperatur von 80°C bis 120°C in einem Autoklav behandelt wird, und - die Trägerfolie danach von der Verbindefolie abgezogen wird, wobei die Beschichtung auf der Verbindefolie verbleibt.
Trägerfolien mit polarisationsselektiven Beschichtungen sind kommerziell erhältlich, beispielsweise auf Rollen oder als Folienblätter. Der Schritt des Bereitstellens der polarisationsselektiven Beschichtung auf der Trägerfolie geht bevorzugt von einer solchen zugekauften Rolle oder Blatt aus und umfasst das Zurechtschneiden eines Folienabschnitts in der gewünschten Größe und Form. Die gewünschte Größe und Form entspricht dabei idealerweise der Größe und Form des Bereichs der Verbindefolie, welche später mit der polarisationsselektiven Beschichtung versehen werden soll. Grundsätzlich kann die polarisationsselektive Beschichtung jedoch auch auf der zugeschnittenen Trägerfolie aufgebracht werden, beispielsweise durch Aufpinseln und Trocknen einer Lösung der anisotropen Einheiten und gegebenenfalls anschließendes Recken.
Beim Anordnen der Trägerfolie und der Verbindefolie zum Folienstapel wird die polarisationsselektive Beschichtung mit der Verbindefolie in Kontakt gebracht. Die Verbindefolie wird bevorzugt vorher in der gewünschten Größe und Form zurechtgeschnitten, welche im Wesentlichen der Größe und Form der zu verbindenden Glasscheiben entspricht. Grundsätzlich ist es jedoch auch möglich, die Übertragung der Beschichtung auf einen größeren Abschnitt der Verbindefolie durchzuführen und davon im Anschluss die gewünschte Größe und Form zurechtzuschneiden.
Soll die gesamte (zurechtgeschnittene) Verbindefolie mit der polarisationsselektiven Beschichtung versehen werden, so sind die Verbindefolie und die Trägerfolie bevorzugt kongruent und werden vollständig überlappend aufeinander angeordnet, so dass die gesamte Oberfläche der Verbindefolie mit der Beschichtung in Kontakt gebracht wird. Alternativ kann die Trägerfolie auch eine größere Fläche als die Verbindefolie aufweisen, wo dass sie teilweise oder umlaufend über die Kanten der Verbindefolie übersteht. Auch so wird erreicht, dass die gesamte Oberfläche der Verbindefolie mit der Beschichtung in Kontakt gebracht wird, und es kann eventuell eine bessere Qualität der Beschichtungskanten auf der Verbindefolie erreicht werden, allerdings ist dieses Vorgehen mit Materialausschuss verbunden. Solldagegen nur ein Bereich der Verbindefolie mit der polarisationsselektiven Beschichtung versehen werden, so weist die zurechtgeschnittene Trägerfolie eine kleinere Fläche als die zurechtgeschnittene Verbindefolie auf und wird derart auf die Verbindefolie aufgelegt, dass der besagte Bereich vollständig mit der Beschichtung in Kontakt gebracht wird. Die Handhabung der Folien, also das Anordnen von Trägerfolie und Verbindefolie zum Folienstapel und bevorzugt auch das Zuschneiden der Folien erfolgt bevorzugt unter Reinraumbedingungen, wodurch die Gefahr von Verunreinigungen reduziert wird, welche insbesondere die optische Qualität beeinträchtigen könnten. Unter Reinraumbedingungen im Sinne der Erfindung werden Bedingungen verstanden, bei denen die Umgebungsluft höchstens 352000 Partikel mit einer Größe ab 0,5 pm pro Kubikmeter enthält. Die Temperatur im Reinraum beträgt bevorzugt 15°C bis 25°C und die relative Luftfeuchte bevorzugt kleiner als 30%.
Die Trägerfolie ist typischerweise aus oder auf Basis eines thermoplastischen Materials gefertigt, welches keine Schmelzklebeeigenschaften aufweist. Damit sind insbesondere Schmelzklebeeigenschaften gegenüber Glasoberflächen bei typischen Laminiertemperaturen von etwa 130°C gemeint. Bevorzugt enthält die Trägerfolie oder besteht im Wesentlichen aus Polyethylenterephthalat (PET), wie es für auch für kommerziell erhältliche Trägerfolien üblich ist. Die T rägerfolie weist bevorzugt eine Dicke von 30 pm bis 500 pm auf, besonders bevorzugt von 50 pm bis 200 pm, beispielsweise etwa 100 pm.
Die Verbindefolie ist typischerweise aus oder auf Basis eines thermoplastischen Materials mit Schmelzklebeeigenschaften (unter den oben genannten Bedingungen) gefertigt. Bevorzugt enthält die Verbindefolie oder besteht im Wesentlichen aus Polyvinylbutyral (PVB), Ethylenvinylacetat (EVA), Polyurethan (PU) oder Gemische oder Copolymere oder Derivate davon enthält, bevorzugt PVB. Diese Materialien sind zum Laminieren von Verbundgläsern üblich. Die Verbindefolie kann außerdem Weichmacher, Stabilisatoren, Farbmittel oder sonstige Zusätze enthalten. Die Verbindefolie weist bevorzugt eine Dicke von 0,1 mm bis 2 mm auf, besonders bevorzugt von 0,3 mm bis 1 mm, beispielsweise die Standarddicken von etwa 0,38 mm oder 0,76 mm.
Die beiden Oberflächen kommerziell erhältlicher Verbindefolien weisen typischerweise produktionsbedingt eine unterschiedliche Rauigkeit auf. Die Verbindefolie weist also eine Oberfläche geringerer Rauigkeit und eine gegenüberliegende Oberfläche höherer Rauigkeit auf. Für die Haftung der Beschichtung an der Verbindefolie ist es vorteilhaft, wenn die Beschichtung mit der Oberfläche geringerer Rauigkeit in Kontakt gebracht wird. Daher wird beim Anordnen von Trägerfolie und Verbindefolie zum Schichtstapel bevorzugt die Oberfläche geringerer Rauigkeit der Trägerfolie (und der Beschichtung) zugewandt. Die Oberfläche mit geringerer Rauigkeit weist bevorzugt eine gemittelte Rautiefe Rz von kleiner als 25 pm auf und die Oberfläche mit höherer Rauigkeit eine gemittelte Rautiefe Rz von größer als 25 pm. Die Oberfläche mit geringerer Rauigkeit weist besonders bevorzugt eine gemittelte Rautiefe Rz von 5 pm bis 20 pm auf und die Oberfläche mit höherer Rauigkeit eine gemittelte Rautiefe Rz von 30 pm bis 50 pm.
Der Folienstapel wird in einem Autoklav behandelt, wobei die Bindung der polarisationsselektiven Beschichtung an die Verbindefolie erzeugt wird. Um eine stabile Bindung ohne optische Verwerfungen zu gewährleisten, sind die Verfahrensparameter wesentlich. Insbesondere darf die Temperatur nicht zu hoch gewählt werden, weil ansonsten Risse in der Beschichtung entstehen können. Die Temperatur beträgt erfindungsgemäß von 80°C bis 120°C, bevorzugt von 85°C bis 1 15°C, besonders bevorzugt von 90 °C bis 1 10 °C, beispielsweise etwa 100°C. Die Dauer der Autoklavbehandlung beträgt erfindungsgemäß mindestens 2 Stunden, bevorzugt von 2 Stunden bis 4 Stunden, beispielsweise etwa 2,5 Stunden. Im Autoklaven wird der Folienstapel erfindungsgemäß mit einem Druck von mindestens 8 bar beaufschlagt, bevorzugt von 8 bar bis 15 bar, beispielsweise etwa 12 bar.
Während der Autoklavbehandlung sind ist der Folienstapel bevorzugt zwischen zwei Platten (Pressplatten) angeordnet, welche die Verbindefolie und die Trägerfolie aneinanderpressen. Beispielsweise können die beiden Platten über Schrauben miteinander verbunden sein, mittels derer ihr gegenseitiger Abstand und damit der Druck auf den Folienstapel reguliert werden kann. Die Platte können beispielsweise aus einem Metall oder einem Kunststoff (wie Polycarbonat oder PMMA) gefertigt sein und eine Dicke von 1 cm bis 4 cm aufweisen. Durch die Platten wird sichergestellt, dass der Druck im Autoklaven gleichmäßig über den Folienstapel verteilt wird.
Vor der Behandlung im Autoklaven wird der Stapel bevorzugt einem Unterdrück ausgesetzt, um Luft aus dem Zwischenraum zwischen der Verbindefolie und den Scheiben abzuführen. Dies erfolgt beispielsweise mittels der an sich bekannten Vakuumsack- oder Vakuumringverfahren.
Nach der Verbindung im Autoklaven wird die Trägerfolie von der Verbindefolie abgezogen, wobei die Beschichtung auf der Verbindefolie verbleibt. Es empfiehlt sich, von einer Ecke der Trägerfolie auszugehen und die Trägerfolie dann mit gleichmäßiger Geschwindigkeit abzuziehen, um eine möglichst hohe optische Qualität der Beschichtung auf der Verbindefolie zu gewährleisten. Das Abziehen sollte insgesamt ausreichend langsam und vorsichtig erfolgen, um keine Spuren auf der Beschichtung zu erzeugen. Direkt nach der Entnahme aus dem Autoklaven ist der Folienstapel eventuell noch zu heiß, um die Trägerfolie ohne Beschädigungen oder Beeinträchtigungen der optischen Qualität abzuziehen. Es empfiehlt sich daher, den Folienstapel zunächst abkühlen zu lassen oder aktiv zu kühlen. Ein allzu starkes Abkühlen bis auf Raumtemperatur ist der Ablösung der Trägerfolie aber auch wiederum abträglich. Beim Abziehen der Trägerfolie sollte der Folienstapel idealerweise eine Temperatur von 30 °C bis 65°C aufweisen.
Ist die polarisationselektive Beschichtung auf die Verbindefolie übertragen, so kann diese verwendet werden, um die erste und die zweite Scheibe miteinander zur Verbundscheibe zu verbinden. Die erste Scheibe, die Verbindefolie und die zweite Scheibe werden flächig und im Wesentlichen kongruent übereinander angeordnet und anschließend unter Einwirkung von Temperatur, Druck oder Vakuum miteinander verbunden und damit zur Verbundscheibe laminiert.
Die Verbindefolie und damit die polarisationsselektive Beschichtung wird dabei derart zwischen den Scheiben und damit in der späteren Verbundscheibe angeordnet, dass sie p- polarisiert auf die Verbundscheibe treffende Strahlung signifikant reflektiert. Der Reflexionsgrad der Beschichtung gegenüber p-polarisierter Strahlung wird dadurch im Wesentlichen maximiert. Da die Verbindefolie kongruent mit den Scheiben angeordnet werden muss und daher keine Freiheitsgrade hinsichtlich ihrer Ausrichtung bestehen (zumindest, wenn die Verbindefolie bereits zugeschnitten ist), muss die Ausrichtung der Beschichtung bereits bei ihrer Übertragung von der Trägerfolie auf die Verbindefolie berücksichtigt werden.
Die Lamination erfolgt wiederum bevorzugt in einem Autoklav. Auch hier sollte die Temperatur nicht zu hoch sein: bei sonst üblichen Laminationstemperaturen von etwa 130°C können Risse in der polarisationsselektiven Beschichtung auftreten. Die Temperatur beträgt bevorzugt weniger als 130°C, besonders bevorzugt höchstens 100°C. Die Dauer der Autoklavbehandlung beträgt bevorzugt von 2 Stunden bis 4 Stunden, beispielsweise etwa 3 Stunden. Alternativ können prinzipiell aber auch andere an sich bekannte Verfahren, wie Vakuumsackverfahren, Vakuumringverfahren, Kalanderverfahren oder Vakuumlaminatoren zum Einsatz kommen.
In einer Ausführung kann auf die polarisationsselektive Beschichtung eine weitere Verbindefolie aufgelegt werden, so dass die Beschichtung in der Verbundscheibe zwischen zwei Schichten thermoplastischen Materials angeordnet und gleichsam eingekapselt ist. Alternativ kann die polarisationsselektive Beschichtung in direkten Kontakt zur ersten oder zweiten Scheibe gebracht werden. Dies ist auch bevorzugt, denn es hat sich gezeigt, dass dadurch eine Welligkeit der Beschichtung (ein sogenannter Orangenhaut-Effekt) reduziert werden kann. Die zwischenliegende Beschichtung beeinträchtigt die Haftung der betreffenden Scheibe an der Verbindefolie nicht wesentlich. Bevorzugt ist die erfindungsgemäße Verbindefolie mit der polarisationsselektiven Beschichtung die einzige Folie, die zur Lamination zwischen den Scheiben angeordnet wird, so dass die Zwischenschicht der fertigen Verbundscheibe alleine durch diese Verbindefolie ausgebildet wird.
Die erste Scheibe und die zweite Scheibe sind bevorzugt aus Glas ausgebildet, insbesondere Kalk-Natron-Glas. Die Scheiben können aber grundsätzlich auch aus anderen Glassorten ausgebildet sein, wie Quarzglas oder Borosilikatglas, oder auch aus starren klaren Kunststoffe, insbesondere Polycarbonat (PC) oder Polymethylmethacrylat (PMMA). Die Materialien für die erste und die zweite Scheibe können unabhängig voneinander gewählt werden. So ist es beispielsweise denkbar, eine Scheibe aus Kalk-Natron-Glas mit einer PC- Scheibe zur Verbundscheibe zu laminieren.
Da die Verbundscheibe insbesondere als Fensterscheibe vorgesehen ist und also solche in einer Fensteröffnung einen Innenraum, insbesondere den Innenraum eines Fahrzeugs, gegenüber der äußeren Umgebung abtrennt, können die erste und die zweite Scheibe auch als Außenscheibe und Innenscheibe bezeichnet werden. Mit Innenscheibe wird dabei die dem Innenraum (Fahrzeuginnenraum) zugewandte Scheibe der Verbundscheibe bezeichnet. Mit Außenscheibe wird die der äußeren Umgebung zugewandte Scheibe bezeichnet. Die polarisationsselektive Beschichtung wird bevorzugt der Innenscheibe zugewandt.
Die Verbundscheibe ist typischerweise entlang einer oder mehrerer Raumrichtungen gebogen, wie es im Fahrzeugbereich üblich ist. Dazu werden die erste und die zweite Scheibe vor der Lamination einem Biegeprozess unterzogen, beispielsweise mittels Schwerkraftbiegen, Pressbiegen und/oder Saugbiegen. Typische Temperaturen für Glasbiegeprozesse betragen beispielsweise 500°C bis 700°C.
Die Scheiben und die Verbindefolie können unabhängig voneinander klar und farblos, aber auch getönt oder gefärbt sein. Die Gesamttransmission durch die Verbundscheibe beträgt in einer bevorzugten Ausgestaltung größer 70%. Der Begriff Gesamttransmission bezieht sich auf das durch ECE-R 43, Anhang 3, § 9.1 festgelegte Verfahren zur Prüfung der Lichtdurchlässigkeit von Kraftfahrzeugscheiben.
Die erfindungsgemäße polarisationsselektive Beschichtung kann auf verschiedene Weise ausgestaltet sein. Die polarisationsselektive Beschichtung enthält typischerweise anisotrope Teilchen oder Einheiten. Die polarisationsselektive Wirkung wird dabei durch die Orientierungsordnung der anisotropen Einheiten erreicht, welche beispielsweise durch Recken der Trägerfolie eingestellt werden kann. Bei den anisotropen Teilchen oder Einheiten kann es sich beispielsweise um metallische Nanostäbchen ( Nanorods ) handeln, wie beispielhaft in US2010157426A1 offenbart. In einer bevorzugten Ausgestaltung enthält die polarisationsselektive Beschichtung Flüssigkristalle, insbesondere Flüssigkristalle in einer nematischen Phase, wobei die Moleküle eine Orientierungsordnung bezüglich eines so genannten Direktors, des Einheitsvektors der Richtung, aufweisen. Besonders bevorzugt enthält die polarisationsselektive Beschichtung Flüssigkristalle in einer cholesterischen Phase. Die cholesterische Phase ist ein Spezialfall der nematischen Phase, welche eine nematische Ordnung mit sich kontinuierlich drehender Vorzugsorientierung aufweist. Dabei ergibt eine langreichweitige helikale Überstruktur. Die cholesterische Phase ermöglicht es insbesondere, die Reflexionseigenschaften der Beschichtung wellenlängenabhängig einzustellen und zu optimieren. So kann ein Reflexionsspektrum der Beschichtung erzeugt werden, wobei bestimmte Wellenlängen beziehungsweise bestimmte relativ schmale Wellenlängenbereiche selektiv reflektiert werden, während die übrigen Wellenlängenbereiche nur in sehr geringem Maße reflektiert werden. Die Beschichtung kann so auf die Wellenlängen optimiert werden, mit denen sie zur Erzeugung der Projektion bestrahlt werden, wobei störende Reflexionen, die auf andere Wellenlängen zurückgehen würden, vermieden werden.
Die Beschichtung ist in einer vorteilhaften Ausgestaltung derart eingestellt, dass die Reflexionsbanden die Wellenlängen 473 nm, 550 nm und 630 nm abdecken. Besonders bevorzugt sind die lokalen Reflexionsmaxima bei oder nahe diesen Wellenlängen befindlich, während zwischen den besagten Reflexionsminima oder Plateaus mit niedrigerer Reflexion befindlich sind. Die angegebenen Wellenlängen entsprechen den Farben Rot, Grün und Blau (RGB) typischer Projektoren zur Erzeugung von Anzeigebildern auf Verbundscheiben, wie sie insbesondere für HUDs gebräuchlich sind.
Die Verbindefolie kann vollflächig mit der polarisationsselektiven Beschichtung versehen sein. Alternativ kann nur ein Bereich der Verbindefolie mit der Beschichtung versehen sein. In einer vorteilhaften Ausgestaltung weisen die erste Scheibe und/oder die zweite Scheibe einen Abdeckdruck auf, welcher nach der Lamination die Seitenkanten der polarisationsselektiven Beschichtung in Durchsicht durch die Verbundscheibe verdeckt. Dies ist insbesondere dann vorteilhaft, wenn nur ein Bereich der Verbindefolie mit der Beschichtung versehen ist, weil die Seitenkante der Beschichtung in Durchsicht durch die Verbundscheibe dann störend auffallen würde. Bevorzugt sind bei Scheiben mit dem Abdeckdruck versehen, so dass die Seitenkante weder von außen noch von innen zu erkennen ist. Abdeckdrucke sind für Fahrzeugscheiben gebräuchlich und sind typischerweise durch ein im Wesentlichen opakes Emaille ausgebildet, welches vor der Lamination auf die Scheiben aufgedruckt und eingebrannt wird, insbesondere im Siebdruckverfahren.
Die polarisationsselektive Beschichtung wird zumindest in einem Bestrahlungsbereich der Verbundscheibe angeordnet, welcher dafür vorgesehen ist, von einem Projektor bestrahlt zu werden, um ein Anzeigebild zu erzeugen.
Die erfindungsgemäß hergestellte Verbundscheibe ist bevorzugt als Fahrzeugscheibe vorgesehen, insbesondere als Windschutzscheibe. Windschutzscheiben weisen ein zentrales Sichtfeld auf, an dessen optische Qualität hohe Anforderungen gestellt werden. Das zentrale Sichtfeld muss eine hohe Lichttransmission aufweisen (typischerweise größer als 70%). Das besagte zentrale Sichtfeld ist insbesondere dasjenige Sichtfeld, das vom Fachmann als Sichtfeld B, Sichtbereich B oder Zone B bezeichnet wird. Das Sichtfeld B und seine technischen Anforderungen sind in der Regelung Nr. 43 der Wirtschaftskommission der Vereinten Nationen für Europa (UN/ECE) (ECE-R43, „Einheitliche Bedingungen für die Genehmigung der Sicherheitsverglasungswerkstoffe und ihres Einbaus in Fahrzeuge“) festgelegt. Dort ist das Sichtfeld B in Anhang 18 definiert.
In einer Ausgestaltung der Erfindung deckt die polarisationsselektive Beschichtung das zentrale Sichtfeld B der Windschutzscheibe im Wesentlichen ab. Die Verbundscheibe kann beispielsweise vollflächig mit der Beschichtung versehen sein oder vollflächig abzüglich eines umlaufenden, peripheren Randbereichs von bis zu 10 cm Breite, um die Beschichtung vor Kontakt mit der umgebenden Atmosphäre zu schützen. Die Seitenkanten der Beschichtung werden dann durch den umlaufenden peripheren Abdeckdruck abgedeckt, der für Windschutzscheiben gebräuchlich ist. Damit kann vorteilhaft ein sogenanntes kontaktanaloges HUD oder Augmented Reality HUD (AR-HUD) realisiert werden. Bei einem kontaktanalogen HUD wird nicht lediglich eine Information auf einen begrenzten Bereich der Windschutzscheibe projiziert, sondern Elemente der äußeren Umgebung in die Darstellung einbezogen. Beispiele hierfür sind die Markierung eines Fußgängers, die Anzeige des Abstands zu einem vorausfahrenden Fahrzeug oder die Projektion einer Navigationsangabe direkt auf die Fahrbahn, beispielsweise zur Markierung der zu wählenden Fahrspur. Das kontaktanaloge HUD wird dadurch von einem klassischen, statischen HUD unterschieden, dass die Projektionsdistanz mindestens 5 m beträgt. Bei einem statischen HUD ist die Projektionsdistanz deutlich geringer, typischerweise etwa 2 m. Mit Projektionsdistanz wird im Sinne der Erfindung der Abstand zwischen dem virtuellen Bild und dem Betrachter, also in der Regel der Kopf des Fahrers, bezeichnet. Die Projektionsdistanz beträgt bevorzugt mindestens 7 m. Die Projektionsdistanz beträgt bevorzugt höchstens 15 m.
In einer weiteren Ausgestaltung der Erfindung wird die polarisationsselektive Beschichtung außerhalb eines zentralen Sichtfelds B der Windschutzscheibe angeordnet. Damit kann eine Projektionsfläche im Randbereich der Windschutzscheibe realisiert werden, in der dem Betrachter beliebige Informationen eingeblendet werden können. Eine solche Projektionsfläche kann beispielsweise für Entertainment oder Infotainment verwendet werden, etwa zum Ansehen von Filme, Navigationsinformationen oder die Markierung oder Kommentierung von Objekten in der Umgebung. Außerhalb des Sichtfeldes B bestehen geringere Anforderungen an die Durchsicht durch die Scheibe, so dass hier ein Abdeckdruck angeordnet werden kann, um die Seitenkanten der Beschichtung zu verdecken.
Die erfindungsgemäß hergestellte Verbundscheibe wird bevorzugt als Fensterscheibe eines Fahrzeugs verwendet, besonders bevorzugt als Windschutzscheibe. Die Verbundscheibe ist dabei Teil einer Projektionsanordnung und dient als Projektionsfläche. Die Projektionsanordnung umfasst die Verbundscheibe und einen Projektor, welcher auf einen Bereich (Projektionsbereich) der Verbundscheibe gerichtet ist. Die Projektionsanordnung kann für ein HUD, insbesondere ein AR-HUD, vorgesehen sein oder auch zur Darstellung beliebiger sonstiger Informationen.
Die Erfindung umfasst, ausgehend von der erfindungsgemäßen Herstellung der Verbundscheibe, auch die Herstellung einer Projektionsanordnung, umfassend die Herstellung einer Verbundscheibe nach dem erfindungsgemäßen Verfahren und das anschließende Anordnen eines Projektors relativ zur Verbundscheibe, so dass die polarisationsselektive Beschichtung bestrahlt werden kann. Das relative Anordnen von Verbundscheibe und Projektor erfolgt insbesondere beim Einbau der Elemente in ein Fahrzeug. Der Projektor sendet bevorzugt p-polarisierte Strahlung aus und bestrahlt die polarisationsselektive Beschichtung damit. Der Projektor bestrahlt die Verbundscheibe bevorzugt mit einem Einfallswinkel (Winkel zur Flächennormalen) von 60° bis 70°, insbesondere etwa 65°, wie es auch für gängige HUDs üblich ist. Dieser Einfallswinkel kommt dem Brewsterwinkel für einen Luft-Glas-Übergang (57,2°, Kalk-Natron-Glas) relativ nahe, so dass die p-polarisierte Strahlung von den Scheibenoberflächen kaum reflektiert. Das Auftreten von Geisterbildern kann damit minimiert oder ganz vermieden werden.
Im Folgenden wird die Erfindung anhand einer Zeichnung und Ausführungsbeispielen näher erläutert. Die Zeichnung ist eine schematische Darstellung und nicht maßstabsgetreu. Die Zeichnung schränkt die Erfindung in keiner Weise ein.
Es zeigen:
Fig. 1 einen Querschnitt durch die Trägerfolie und die Verbindefolie während der
Übertragung der polarisationsselektiven Beschichtung von Trägerfolie auf
Verbindefolie,
Fig. 2 einen Querschnitt durch eine erfindungsgemäß hergestellte Verbundscheibe,
Fig. 3 einen Querschnitt durch eine erfindungsgemäß hergestellte Projektionsanordnung,
Fig. 4 eine Draufsicht auf eine Ausgestaltung der erfindungsgemäß hergestellten Verbundscheibe,
Fig. 5 eine Draufsicht auf eine weitere Ausgestaltung der erfindungsgemäß hergestellten Verbundscheibe und
Fig. 6 ein Flussdiagramm einer Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung einer Verbundscheibe.
Fig. 1 zeigt Querschnitte zu drei Zeitpunkten bei der Übertragung einer polarisationsselektiven Beschichtung 5 von einer Trägerfolie 4 auf eine Verbindefolie 3. Die polarisationsselektive Beschichtung 5 enthält beispielsweise Flüssigkristalle in einer cholesterischen Phase und wurde aufgebracht auf einer Trägerfolie 4 aus PET (Dicke 100 pm) kommerziell erworben. Da die PET-Folie sehr steif ist und keine Schmelzklebeeigenschaften gegenüber Gisoberflächen bei typischen Laminiertemperaturen aufweist, kann sie nicht als Zwischenschicht einer Verbundscheibe verwendet werden. Zur Herstellung einer Verbundscheibe hoher optischer Qualität ist es daher erforderlich, die Beschichtung 5 auf einer Verbindefolie 3 zu übertragen, beispielsweise eine PVB-Folie mit einer Dicke von 0,76 mm.
Im Ausgangszustand liegen die mit der Beschichtung 5 versehene Trägerfolie 4 und die unbeschichtete Verbindefolie 3 vor (Teil a). Die Trägerfolie 4 und die Verbindefolie 3 werden mit dazwischenliegender Beschichtung 5 flächig zu einem Folienstapel aufeinander angeordnet, mittels einer ersten Pressplatte 21 und einer zweiten Pressplatte 22 aneinandergepresst und in einem Autoklav 20 behandelt (Teil b). Die bereits in ihre finale Form zurecht geschnitteten Folien 4, 3 weisen beispielsweise Abmessungen von etwa 1 ,1 m X 1 ,7 m auf. Geeignete Prozessparameter im Autoklav sind ein Druck von 12 bar, eine Temperatur von 100°C und eine Behandlungsdauer von 2,5 Stunden. Der Folienstapel wird dann dem Autoklav entnommen und man lässt ihn auf eine Temperatur von beispielsweise 40°C abkühlen. Dann wird die Trägerfolie 4 ausgehend von einer Ecke vorsichtig abgezogen und die Beschichtung 5 verbleibt auf der Verbindefolie 3 (Teil c). Wie für PVB-Folien üblich, weist die Verbindefolie 3 eine Oberfläche II höherer Rauigkeit und eine Oberfläche I geringerer Rauigkeit auf. Die Beschichtung 5 wird auf die Oberfläche I aufgebracht, wodurch eine bessere Haftung erreicht wird.
Fig. 2 zeigt einen Querschnitt einer erfindungsgemäß hergestellten Verbundscheibe 10. Sie umfasst eine erste Scheibe 1 aus Kalk-Natron-Glas mit einer Dicke von beispielsweise 2,1 mm und eine zweite Scheibe 2 aus Kalk-Natron-Glas mit einer Dicke von beispielsweise 1 ,6 mm, welche über die mit der polarisationsselektiven Beschichtung 5 versehenen Verbindefolie 3 miteinander verbunden sind. Die Beschichtung 5 ist dabei auf die zweite Scheibe 2 gerichtet. Die zur Verbindefolie 3 hingewandte Oberfläche der ersten Scheibe 1 sowie die von der Verbindefolie 3 abgewandte Oberfläche der zweiten Scheibe 2 sind mit einem umlaufenden, peripheren Abdeckdruck 6 versehen, wie er für Fensterscheiben für Fahrzeuge üblich ist. Der Abdeckdruck 6 verdeckt die Seitenkanten der Beschichtung 5.
Fig. 3 zeigt einen Querschnitt der Verbundscheibe 10 aus Figur 2 als Projektionsfläche einer Projektionsanordnung. Die Verbundscheibe 10 ist die Windschutzscheibe eines Kraftfahrzeugs. Die erste Scheibe 1 ist dabei die Außenscheibe, die zweite Scheibe 2 die Innenscheibe. Sie wird von einem Projektor P mit p-polarisierter Strahlung unter einem Winkel von etwa 65° bestrahlt. Die p-polarisierte Strahlung wird kaum von den Oberflächen der Scheiben 1 , 2 reflektiert, aber sehr effizient durch die polarisationsselektive Beschichtung 5. Dadurch wird eine Projektion erzeugt, die ein Betrachter O, beispielsweise der Fahrer des Fahrzeugs, wahrnehmen kann.
Fig. 4 zeigt eine Draufsicht auf eine Ausgestaltung der erfindungsgemäß hergestellten Verbundscheibe 10. Die Verbundscheibe 10 ist die Windschutzscheibe eines Kraftfahrzeugs und weist einen Sichtbereich B gemäß ECE-R43 auf. Sie ist vollflächig mit der polarisationsselektiven Beschichtung 5 versehen, abzüglich eines umlaufenden Randbereichs mit einer Breite von einigen Zentimetern. Daher deckt die Beschichtung 5 den Sichtbereich B komplett ab. Die Seitenkanten der Beschichtung 5 sind dabei durch den Abdeckdruck 6 versteckt. Diese Ausgestaltung eignet sich insbesondere als Projektionsfläche für ein kontaktanaloges Augmented Reality HUD. Auf der gesamten Scheibe können Projektionen erzeugt werden, und die Umwelt kann in die Darstellung mit einbezogen werden. So ist es beispielsweise möglich, einen Pfeil derart zu projizieren, dass er scheinbar auf einer Fahrspur liegt und diese für den Fahrer markiert.
Fig. 5 zeigt eine Draufsicht auf eine weitere Ausgestaltung der erfindungsgemäß hergestellten Verbundscheibe 10. Die Verbundscheibe 10 ist ebenfalls die Windschutzscheibe eines Kraftfahrzeugs und weist einen Sichtbereich B gemäß ECE-R43 auf. Nur ein relativ kleiner Bereich der Verbundscheibe 10 ist mit der polarisationsselektiven Beschichtung 5 versehen, welcher vollständig außerhalb des Sichtbereichs B liegt. Dort können dem Betrachter beliebige Informationen eingeblendet werden. Außerhalb des Sichtbereichs B kann ein zusätzlicher Abdeckdruck 6 angeordnet werden, um die Seitenkanten der Beschichtung B zu verstecken.
Fig. 6 zeigt ein Flussdiagramm eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens zur Herstellung einer Verbundscheibe.
Bezugszeichenliste:
(10) Verbundscheibe (1 ) erste Scheibe
(2) zweite Scheibe
(3) Verbindefolie
(4) Trägerfolie
(5) polarisationsselektive Beschichtung
(6) Abdeckdruck
(20) Autoklav
(21 ) erste Pressplatte
(22) zweite Pressplatte
(I) Oberfläche der Verbindefolie 3 mit geringerer Rauigkeit
(II) Oberfläche der Verbindefolie 3 mit höherer Rauigkeit
(P) Projektor
(O) Betrachter / Fahrzeugfahrer
(B) zentrales Sichtfeld der Verbundscheibe 10

Claims

Patentansprüche
1. Verfahren zur Herstellung einer Verbundscheibe (10), die als Projektionsfläche einer Projektionsanordnung geeignet ist, wobei:
(a) eine polarisationsselektive Beschichtung (5) auf einer Trägerfolie (4) bereitgestellt wird;
(b) die polarisationsselektive Beschichtung (5) von der Trägerfolie (4) auf eine Verbindefolie (3) übertragen wird, indem
(i) die Trägerfolie (4) und die Verbindefolie (3) mit dazwischenliegender Beschichtung (5) flächig zu einem Folienstapel aufeinander angeordnet werden,
(ii) der Folienstapel für mindestens 2 Stunden bei einem Druck von mindestens 8 bar und einer Temperatur von 80°C bis 120°C in einem Autoklav (20) behandelt wird, und
(iii) die Trägerfolie (4) von der Verbindefolie (3) abgezogen wird, wobei die Beschichtung (5) auf der Verbindefolie (3) verbleibt;
(c) die Verbindefolie (3) flächig zwischen einer ersten Scheibe (1 ) und einer zweiten Scheibe (2) angeordnet wird; und
(d) die erste Scheibe (1 ) mit der zweiten Scheibe (2) über die Verbindefolie (3) zur Verbundscheibe (10) laminiert wird.
2. Verfahren nach Anspruch 1 , wobei die polarisationsselektive Beschichtung (5) Flüssigkristalle enthält, bevorzugt Flüssigkristalle in einer cholesterischen Phase.
3. Verfahren nach Anspruch 1 oder 2, wobei die Trägerfolie (4) Polyethylenterephthalat (PET) enthält.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Verbindefolie (3) Polyvinylbutyral (PVB), Ethylenvinylacetat (EVA), Polyurethan (PU) oder Gemische oder Copolymere oder Derivate davon enthält, bevorzugt PVB.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Verbindefolie (3) eine Oberfläche geringerer Rauigkeit (I) und eine Oberfläche höherer Rauigkeit (II) aufweist, und wobei in Schritt (i) die Oberfläche geringerer Rauigkeit (I) der Trägerfolie (4) zugewandt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei der Folienstapel in Schritt (ii) zwischen zwei Pressplatten (21 , 22) angeordnet ist.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die Temperatur des Folienstapels in Schritt (iii)von 30 °C bis 65°C beträgt.
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die polarisationsselektive Beschichtung (5) in direktem Kontakt zur ersten oder zweiten Scheibe (1 , 2) angeordnet wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die erste Scheibe (1 ) und/oder die zweite Scheibe (2) einen Abdeckdruck (6) aufweist, welcher nach der Lamination die Seitenkanten der polarisationsselektiven Beschichtung (5) verdeckt.
10. Verfahren nach einem der Ansprüche 1 bis 9, wobei die Verbundscheibe (10) eine Windschutzscheibe ist und die polarisationsselektive Beschichtung (5) das zentrale Sichtfeld B nach ECE-R43 im Wesentlichen abdeckt.
11. Verfahren nach einem der Ansprüche 1 bis 9, wobei die Verbundscheibe (10) eine Windschutzscheibe ist und die polarisationsselektive Beschichtung (5) außerhalb des zentralen Sichtfelds B nach ECE-R43 angeordnet wird.
12. Verfahren nach einem der Ansprüche 1 bis 11 , wobei die Lamination in Schritt (d) in einem Autoklav bei einer Temperatur von weniger als 130°C durchgeführt wird, bevorzugt höchstens 100°C.
13. Verfahren nach einem der Ansprüche 1 bis 12, wobei die polarisationsselektive Beschichtung (5) derart in der Verbundscheibe (10) angeordnet wird, dass ihr Reflexionsgrad gegenüber p-polarisierter Strahlung maximiert wird.
14. Verfahren zur Herstellung einer Projektionsanordnung, umfassend:
(a) Herstellung einer Verbundscheibe (10) nach dem Verfahren nach einem der Ansprüche 1 bis 13; (b) Anordnen eines Projektors (P), so dass die polarisationsselektive Beschichtung (5) bestrahlt werden kann.
15. Verfahren nach Anspruch 14, wobei der Projektor (P) die polarisationsselektive Beschichtung (5) mit p-polarisierter Strahlung bestrahlt.
EP19719527.4A 2018-06-21 2019-04-29 Verfahren zur herstellung einer verbundscheibe mit polarisationsselektiver beschichtung Withdrawn EP3810419A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18178923 2018-06-21
PCT/EP2019/060841 WO2019242915A1 (de) 2018-06-21 2019-04-29 Verfahren zur herstellung einer verbundscheibe mit polarisationsselektiver beschichtung

Publications (1)

Publication Number Publication Date
EP3810419A1 true EP3810419A1 (de) 2021-04-28

Family

ID=62748761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19719527.4A Withdrawn EP3810419A1 (de) 2018-06-21 2019-04-29 Verfahren zur herstellung einer verbundscheibe mit polarisationsselektiver beschichtung

Country Status (11)

Country Link
US (1) US20210031494A1 (de)
EP (1) EP3810419A1 (de)
JP (1) JP2021514923A (de)
KR (1) KR20210008386A (de)
CN (1) CN110856440A (de)
BR (1) BR112020011263A2 (de)
MA (1) MA52928A (de)
MX (1) MX2020013404A (de)
PE (1) PE20201196A1 (de)
RU (1) RU2759685C1 (de)
WO (1) WO2019242915A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10981358B2 (en) * 2018-04-03 2021-04-20 AGC Inc. Laminated glass
KR102668165B1 (ko) * 2019-02-25 2024-05-23 주식회사 엘지화학 광학 디바이스의 제조방법 및 광학 디바이스
WO2021180635A1 (de) 2020-03-13 2021-09-16 Saint-Gobain Glass France Verbundscheibe mit projektionselement und funktionselement
GB202014637D0 (en) * 2020-09-17 2020-11-04 Central Glass Co Ltd Method for producing a laminated glazing having a functional coating layer
EP4359211A1 (de) 2021-06-24 2024-05-01 Saint-Gobain Glass France Verbundscheibe mit diffus reflektierenden eigenschaften und elektrochromem funktionselement
EP4359210A1 (de) 2021-06-24 2024-05-01 Saint-Gobain Glass France Verbundscheibe mit diffus reflektierendem element und elektrochromem funktionselement
CN113858730B (zh) * 2021-10-08 2023-04-28 福耀玻璃工业集团股份有限公司 夹层玻璃及抬头显示系统
WO2023198500A1 (de) * 2022-04-13 2023-10-19 Saint-Gobain Glass France Verbundscheibe für eine projektionsanordnung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1041344A (en) * 1974-05-30 1978-10-31 Lewis O. Jones High surface area carrier
JP2958418B2 (ja) * 1992-07-23 1999-10-06 セントラル硝子株式会社 表示装置
FR2762541B1 (fr) * 1997-04-24 1999-07-02 Saint Gobain Vitrage Procede de fabrication d'un vitrage feuillete
JP4208990B2 (ja) 1998-04-10 2009-01-14 新日本石油株式会社 コレステリック液晶性積層体
US20030034119A1 (en) * 2000-04-27 2003-02-20 Serge Molinari Liquid assisted lamination of polyvinylbutyral films
US6952312B2 (en) 2002-12-31 2005-10-04 3M Innovative Properties Company Head-up display with polarized light source and wide-angle p-polarization reflective polarizer
US20070009714A1 (en) 2005-05-11 2007-01-11 Lee David J Polymeric interlayers having a wedge profile
JP2007223883A (ja) 2005-12-26 2007-09-06 Asahi Glass Co Ltd 車両用合せガラス
GB0607744D0 (en) * 2006-04-20 2006-05-31 Pilkington Plc Head-up display
JP5335401B2 (ja) * 2008-12-19 2013-11-06 富士フイルム株式会社 偏光フィルム及び偏光フィルムの製造方法、偏光板及び偏光板の製造方法、並びに乗り物用映り込み防止フィルム
JP5321102B2 (ja) * 2009-02-05 2013-10-23 セントラル硝子株式会社 断熱合わせガラス
RU2429210C1 (ru) * 2009-12-29 2011-09-20 Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Наноструктурированное поляризованное стекло и способ его получения
JP5671365B2 (ja) * 2011-02-18 2015-02-18 富士フイルム株式会社 赤外光反射板並びに合わせガラス用積層中間膜シート及び合わせガラスとそれらの製造方法
GB201402815D0 (en) * 2014-02-18 2014-04-02 Pilkington Group Ltd Laminated glazing
ES2912341T3 (es) * 2016-05-17 2022-05-25 Saint Gobain Sistema de visualización frontal
TWI724155B (zh) * 2016-05-19 2021-04-11 德商可樂麗歐洲有限公司 一種包含功能性薄膜之層合玻璃
JP6768567B2 (ja) * 2016-11-04 2020-10-14 富士フイルム株式会社 ウインドシールドガラス、ヘッドアップディスプレイシステム、およびハーフミラーフィルム

Also Published As

Publication number Publication date
KR20210008386A (ko) 2021-01-21
CN110856440A (zh) 2020-02-28
PE20201196A1 (es) 2020-11-06
WO2019242915A1 (de) 2019-12-26
MA52928A (fr) 2021-04-28
RU2759685C1 (ru) 2021-11-16
BR112020011263A2 (pt) 2023-02-23
MX2020013404A (es) 2021-02-26
US20210031494A1 (en) 2021-02-04
JP2021514923A (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
EP3810419A1 (de) Verfahren zur herstellung einer verbundscheibe mit polarisationsselektiver beschichtung
EP3429844B1 (de) Verbundscheibe mit elektrisch leitfähiger beschichtung für ein head-up-display
EP4226204A1 (de) Fahrzeugscheibe für head-up-display
EP3507091B1 (de) Verbundscheibe für ein head-up-display
DE68912246T2 (de) Kraftfahrzeugwindschutzscheibe für ein Anzeige-Sichtsystem.
WO2016091435A1 (de) Verbundglas mit geringer dicke für ein head-up-display (hud)
EP3706997B1 (de) Verbundscheibe mit funktionselement mit elektrisch steuerbaren optischen eigenschaften
WO2022073860A1 (de) Fahrzeugscheibe für head-up-display
WO2022161894A1 (de) Fahrzeugscheibe für head-up-display
EP4210942A1 (de) Verfahren zur herstellung einer verbundscheibe mit hologramm
WO2022161821A1 (de) Verbundscheibe und verfahren zur herstellung einer verbundscheibe
EP3756882B1 (de) Fahrzeug-verbundscheibe mit sensorbereich und keilwinkelförmiger thermoplastischer zwischenschicht im sensorbereich
WO2022268691A1 (de) Verbundscheibe mit funktionsfolie mit opakem aufdruck
EP4210943A1 (de) Verbundscheibe für ein holographisches head-up-display
WO2021254910A1 (de) Verbundscheibe
DE202020103631U1 (de) Vorrichtung zur Herstellung einer keilförmigen Glasscheibe
EP3826836A1 (de) Verfahren zur herstellung einer verbundscheibe mit funktionselement mit elektrisch steuerbaren optischen eigenschaften
EP4126539B1 (de) Verfahren zur herstellung einer verbundscheibe mit displayfolie
WO2022229140A1 (de) Verfahren zum herstellen einer verbundscheibe mit einer folie mit funktionellen eigenschaften
WO2023186715A1 (de) Head-up-display für eine fahrzeugscheibe
WO2022122640A1 (de) Verbundscheibe für ein head-up-display
WO2023186717A1 (de) Head-up-display für eine fahrzeugscheibe
WO2023138829A1 (de) Verbundscheibe mit eingelagerter funktionsfolie
WO2023104631A1 (de) Verbundscheibe für ein head-up-display system mit p-polarisierter strahlung
WO2021254911A1 (de) Keilförmige mehrlagige zwischenschicht mit akustisch dämpfenden eigenschaften

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20201106

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G02B 27/28 20060101ALI20220119BHEP

Ipc: G02B 5/00 20060101ALI20220119BHEP

Ipc: B32B 17/10 20060101AFI20220119BHEP

INTG Intention to grant announced

Effective date: 20220207

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220618