EP3808012A1 - Dispositif et procédé de communication de données dans un sous-ensemble d'aéronef - Google Patents

Dispositif et procédé de communication de données dans un sous-ensemble d'aéronef

Info

Publication number
EP3808012A1
EP3808012A1 EP19737836.7A EP19737836A EP3808012A1 EP 3808012 A1 EP3808012 A1 EP 3808012A1 EP 19737836 A EP19737836 A EP 19737836A EP 3808012 A1 EP3808012 A1 EP 3808012A1
Authority
EP
European Patent Office
Prior art keywords
transmitter
aircraft
optical channel
light signal
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19737836.7A
Other languages
German (de)
English (en)
Inventor
Patrick Gonidec
Jean-Paul Rami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Nacelles SAS
Original Assignee
Safran Nacelles SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Nacelles SAS filed Critical Safran Nacelles SAS
Publication of EP3808012A1 publication Critical patent/EP3808012A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/02Arrangements or adaptations of signal or lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/76Control or regulation of thrust reversers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2203/00Aircraft or airfield lights using LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/306Mass flow
    • F05D2270/3061Mass flow of the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/50Control logic embodiments
    • F05D2270/54Control logic embodiments by electronic means, e.g. electronic tubes, transistors or IC's within an electronic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05D2270/804Optical devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05D2270/804Optical devices
    • F05D2270/8041Cameras
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to communication between electronic systems in an aircraft sub-assembly, in particular in an aircraft propulsion assembly.
  • An aircraft propulsion unit communicates a large number of low-level data and signals either within the propulsion assemblies or between the propulsion assemblies and the aircraft.
  • Optical cables are for example known from document US 5,960,626 A.
  • the electrical cables are shielded, which increases their bulk and the weight of the aircraft.
  • the stiffness of the shielded cables leads to integration difficulties in the propulsion units. This results in an increase in the cost of the propulsion units and, in certain cases, a modification of the shape of the aerodynamic lines.
  • the communication of such data can also be carried out by carrier currents, that is to say by transmission of low level signals in electric power cables.
  • An object of the present invention is to overcome the aforementioned drawbacks by proposing an aircraft subassembly facilitating the integration of communication systems, reducing manufacturing or assembly costs, and / or limiting the risks of signal pollution low levels by high frequency signals.
  • the invention relates to an aircraft sub-assembly such as a propulsion unit, comprising data processing systems.
  • these data processing systems can be chosen from: a full authority digital regulation calculator, called “FADEC”; a thrust reverser control system, called “ETRAS”, for controlling the opening and closing of a thrust reverser of the propulsion unit; one or more systems for measuring and / or analyzing physical parameters such as gas acceleration, pressure or flow; one or more position sensors; etc.
  • This aircraft sub-assembly comprises at least one interior volume defining an optical channel.
  • this optical channel is not necessarily intended to provide a clear line between a transmitter and a receiver of an optical signal. Indeed, light can be transmitted in a very congested volume by multiple reflections and diffusions on surfaces present in the volume defining the optical channel.
  • communications by wireless light signals can be implemented by multiple reflections and diffusions on surfaces present in this volume.
  • At least one of the data processing systems comprises at least one transmitter capable of transmitting a light signal in said at least one optical channel.
  • this emitted light signal is also called “emission signal”.
  • Said at least one transmitter is arranged to modulate the light signal as a function of data to be transmitted generated by this data processing system.
  • at least one other of the data processing systems comprises at least one receiver capable of receiving the light signal emitted by said at least one transmitter.
  • Such an aircraft subset makes it possible to communicate data by reducing the number of electrical or optical cables.
  • this invention can make it possible to reduce the overall mass of a propulsion unit up to 90 kg.
  • Such wireless communication also ensures the independence of low-level signals from high-power signals.
  • the invention makes it possible to avoid the disconnection of cables at the level of the pylon.
  • the invention also makes it possible to communicate members mounted on supports movable relative to one another, such as for example a sliding cover of thrust reverser and the fixed structure which supports it.
  • the at least one transmitter can include a light emitting diode.
  • said at least one other of the data processing systems can be arranged to transmit a return signal in the at least one optical channel.
  • the return signal can be in a bandwidth different from that of the transmission signal.
  • Such bandwidth segregation can for example be effected by a difference in modulation of the light signals by the use of signals of different colors filtered in color on reception.
  • the aircraft subassembly may include a wall defining two interior volumes. These two volumes respectively form a first and a second optical channel.
  • the sub-assembly comprises at least one transmission module capable of transmitting in the second optical channel a light signal emitted in the first optical channel.
  • Such a transmission module makes it possible to transmit a light signal through a substantially opaque wall or partition.
  • the transmission module can comprise a receiver arranged to receive the light signal emitted in the first optical channel, a transmitter arranged to emit the light signal in the second optical channel, and an electric cable passing through the wall so as to transmit the light signal from the receiver of this transmission module to the transmitter of this transmission module in the form of an electrical signal.
  • the wall may include a translucent part forming the transmission module.
  • a first wall can comprise a transmission module according to the first variant and a second wall can comprise a transmission module according to the second variant.
  • the aircraft subassembly may comprise a pylon having an interior volume constituting an optical channel.
  • the aircraft subassembly may comprise a portable digital tablet, this tablet constituting a data processing system comprising at least one of said at least one transmitter and / or comprising at least one said at least one receiver.
  • Such a tablet can allow a maintenance agent to dialogue with data processing systems of the propulsion unit or of the aircraft when at least one of the pod covers is open: the volume included under the open cover constitutes an optical channel capable of transmitting maintenance data by light signals under standard lighting conditions.
  • the invention also relates to a data communication method implementing a subset of aircraft as defined above.
  • Figures 1 to 7 are schematic views in partial longitudinal section of an aircraft subassembly according to the invention.
  • Figure 8 is a schematic cross-sectional view of an aircraft sub-assembly according to the invention in the maintenance configuration.
  • FIG. 1 An aircraft sub-assembly according to the invention is shown in FIG. 1.
  • This sub-assembly comprises a propulsion unit 1 and a pylon 2 connected to a wing 3 of the aircraft.
  • the propulsion unit 1 taken as an example consists of a nacelle and a turbofan engine, and includes a thrust reverser.
  • the present invention can be implemented in any type of aircraft and any type of corresponding propulsion unit.
  • the subset of FIG. 1 comprises multiple data processing systems, in particular a full control digital control computer 10 (FADEC), a thrust reverser control system 11 (ETRAS) arranged to control the opening and closing the thrust reverser, systems for measuring and analyzing physical parameters such as the acceleration, pressure or flow of a gas, and position sensors.
  • FADEC full control digital control computer
  • ETRAS thrust reverser control system 11
  • the invention can be implemented in a propulsion unit provided with all the data processing systems necessary for its operation.
  • the sub-assembly which is illustrated therein comprises a plurality of interior volumes IA, IB, 2A ... These volumes are delimited by walls, partitions or components of this sub-assembly.
  • the volume IA is delimited by an internal wall 106 and an external wall 108 of a middle section of the nacelle of the propulsion unit 1, by a wall 100 separating the middle section of an upstream section of the nacelle, and by a wall 102 separating the middle section from a rear section of the nacelle.
  • the volume 2A is a volume delimited by the walls of the pylon 2.
  • These interior volumes are volumes already existing in the propulsion systems of the prior art. These volumes are generally narrow and cluttered with elements or bodies constituting obstacles. These volumes are relatively protected from external light without necessarily being optically closed.
  • the invention therefore takes advantage of such confined volumes to communicate data using light signals emitted in these volumes which thus define optical channels, by direct lines or multiple diffusions or reflections on the surfaces present in these volumes.
  • At least one of the data processing systems comprises at least one transmitter 20 capable of transmitting a light signal in the optical channel IA.
  • This transmitter 20 is arranged to modulate the light signal as a function of the data to be transmitted generated by this data processing system 10.
  • at least one other of the data processing systems for example ETRAS 11, comprises at least a receiver 31 able to receive the light signal emitted by the transmitter 20.
  • the ETRAS 11 - or more generally said at least one other of the data processing systems - can be arranged to send a return signal in the optical channel IA, preferably in a different bandwidth of the bandwidth of the transmission signal.
  • the ETRAS 11 - or this other data processing system - may include a return transmitter 41 capable of emitting a light signal in the optical channel IA and arranged to modulate this light signal as a function of the data to be transmitted generated by this other data processing system 11.
  • the FADEC 10 comprises a return receiver 50 capable of receiving the return light signal emitted by the return transmitter 41.
  • FIG. 2 illustrates such a communication between FADEC 10 and ETRAS 11: the FADEC 10 transmits an order to ETRAS 11 by emission of a light signal in the optical channel IA via the transmitter 20.
  • the light signal emitted by the transmitter 20 is represented by arrows in solid line: this order signal transmitted by the transmitter 20 is in this example reflected on the wall 102 before arriving at the receiver 31, due to the presence of an obstacle 91.
  • ETRAS 11 transmits a return signal to FADEC 10 by sending a light signal in the optical channel IA via the return transmitter 41.
  • the light signal transmitted by the return transmitter 41 is represented by an arrow in line interrupted.
  • the return signal emitted by the return transmitter 41 arrives directly at the return receiver 50, possibly with multi-reflections between the engine and the covers taking into account the geometry of the volume (between cover and engine for example).
  • the data processing system 11 may consist not of an ETRAS but of a system for controlling the variation in section of a secondary nozzle of the propulsion unit (not shown).
  • FIG. 3 illustrates a communication between the FADEC 10 and an actuator 12 provided for modifying the geometry of a high pressure turbine (not shown) of the propulsion unit 1.
  • actuator 12 is commonly designated by the acronym "VSV” ("Variable Stator Valve” in English).
  • the FADEC 10 transmits an order to the actuator 12 by emission of a light signal in the optical channel IA via the transmitter 20.
  • the light signal emitted by the transmitter 20 is represented by an arrow in solid line and arrives in this example directly at a receiver 36 mounted on the wall 102 so that the receiver 36 opens into the optical channel IA.
  • a transmitter 26 is mounted on the wall 102 facing the receiver 36 so that this transmitter 26 opens into a volume IB defining an optical channel of the rear section of the nacelle.
  • the receiver 36 and the transmitter 26 can be connected by an electric cable passing through the wall 102 so as to transmit the light signal from the receiver 36 to the transmitter 26 in the form of an electric signal.
  • the light signal is then re-emitted by the transmitter 26 in the optical channel IB to arrive at a receiver 32 of the actuator 12 (arrows in solid line).
  • the command signal emitted by the transmitter 26 is reflected on an obstacle 92 before arriving at the receiver 32 of the actuator 12.
  • the actuator 12 transmits a return signal to the FADEC 10 by emission of a light signal in the optical channel IB via a return transmitter 42.
  • the light signal emitted by this return transmitter 42 is shown by dashed arrows.
  • the return signal emitted by the return transmitter 42 arrives at a return receiver 56 after reflection on the obstacle 92.
  • the return receiver 56 is mounted on the wall 102 so that this return receiver 56 opens into the channel IB optics.
  • a return transmitter 46 is mounted on the wall 102 facing the return receiver 56 so that this return transmitter 46 opens into the optical channel IA.
  • the return receiver 56 and the return transmitter 46 can be connected by an electric cable passing through the wall 102 so as to transmit the light signal from the return receiver 56 to the return transmitter 46 in the form of an electric signal.
  • the invention thus makes it possible to communicate a signal through a wall separating two interior volumes respectively forming a first and a second optical channel.
  • the transmitter 26 and the receiver 36 constitute a transmission module: the receiver 36 is arranged to receive the light signal transmitted in the optical channel IA, the transmitter 26 is arranged to transmit the signal bright in the optical channel IB.
  • this transmission module is able to transmit in the optical channel IB a light signal emitted in the optical channel IA.
  • the return transmitter 46 and the return receiver 56 constitute another similar transmission module.
  • a part of the wall delimiting two optical channels can be translucent so as to constitute a transmission module requiring no transmitter or receiver.
  • FIGS. 4 to 7 Other examples of data transmission between data processing systems are represented in FIGS. 4 to 7: in the same way as in the examples of FIGS. 2 and 3, the order signals are represented by solid lines and the signals back not broken lines.
  • FIG. 4 illustrates a data transmission between, on the one hand, a system 13 for measuring a physical parameter such as the flow of air entering the nacelle and, on the other hand, the FADEC 10.
  • FIG. 5 illustrates a data transmission between a computer (not shown) located in the aircraft and a system 14, for example a locking system ("Tertiary Lock System”) offset towards the rear of the nacelle.
  • FIG. 6 illustrates a data transmission between a sensor 15 and TETRAS 11. This sensor 15 can be powered or autonomous.
  • FIG. 7 illustrates a mutual data transmission between a computer (not shown) located on the aircraft and the FADEC 10.
  • a portable digital tablet 19 constitutes a data processing system.
  • This tablet 19 includes a transmitter 29 and a receiver 39.
  • the modulation of the light signal can comprise a frequency and / or amplitude modulation of the carrier wave, and / or a modification of the color of the light signal.
  • a transmitter and a receiver of a data processing system can be coupled in a single member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Optical Communication System (AREA)

Abstract

La présente invention concerne la communication entre systèmes électroniques (10, 11) dans un sous-ensemble d'aéronef tel qu'un ensemble propulsif (1). Selon l'invention, cette communication est au moins partiellement réalisée par des signaux lumineux transmis au travers d'au moins un volume intérieur (1A) du sous-ensemble, ce volume intérieur définissant un canal optique. A cet effet, au moins l'un de ces systèmes(10) comprend un émetteur(20) agencé pour émettre un signal lumineux et le moduler en fonction de données à transmettre générées par ce système(10), et au moins un autre de ces systèmes(11) comprend au moins un récepteur(31) apte à recevoir ce signal lumineux.

Description

Dispositif et procédé de communication de données dans un sous-ensemble d'aéronef
La présente invention concerne la communication entre systèmes électroniques dans un sous-ensemble d'aéronef, en particulier dans un ensemble propulsif d'aéronef.
Un ensemble propulsif d'avion communique un grand nombre de données et de signaux de bas niveaux soit au sein des ensembles propulsifs soit entre les ensembles propulsifs et l'avion.
La communication de telles données est réalisée par des câbles électriques ou optiques qui posent de nombreux problèmes d'intégration.
Des câbles optiques sont par exemple connus du document US 5 960 626 A.
Typiquement, les câbles électriques sont blindés ce qui augmente leur encombrement et la masse de l'aéronef. De plus, la raideur des câbles blindés entraîne des difficultés d'intégration dans les ensembles propulsifs. Il en résulte une augmentation du coût des ensembles propulsifs et, dans certains cas, une modification de la forme des lignes aérodynamiques.
La communication de telles données peut aussi être réalisée par des courants porteurs, c'est-à-dire par transmission des signaux de bas niveaux dans des câbles électriques de puissance.
La mise en œuvre de courants porteurs est toutefois délicate puisque les signaux de forte puissance sont susceptibles de polluer les signaux de bas niveaux et la protection de ces signaux de bas niveaux contre les effets électromagnétiques externes requiert des blindages de câbles de puissance augmentant ainsi leur volume.
Un but de la présente invention est de surmonter les inconvénients précités en proposant un sous-ensemble d'aéronef facilitant l'intégration des systèmes de communication, réduisant les coûts de fabrication ou d'assemblage, et/ou limitant les risques de pollution des signaux bas niveaux par des signaux hautes fréquences.
A cet effet, l'invention se rapporte à un sous-ensemble d'aéronef tel qu'un ensemble propulsif, comprenant des systèmes de traitement de données. De manière non limitative, ces systèmes de traitement de données peuvent être choisis parmi : un calculateur de régulation numérique à pleine autorité, appelé « FADEC » ; un système de commande d'inverseur de poussée, appelé « ETRAS », pour commander l'ouverture et la fermeture d'un inverseur de poussée de l'ensemble propulsif ; un ou plusieurs systèmes de mesure et/ou d'analyse de paramètres physiques tels que l'accélération, la pression ou le débit d'un gaz ; un ou plusieurs capteurs de position ; etc.
Ce sous-ensemble d'aéronef comprend au moins un volume intérieur définissant un canal optique.
II est à noter que ce canal optique n'a pas nécessairement vocation à fournir une ligne dégagée entre un émetteur et un récepteur d'un signal optique. En effet, de la lumière peut être transmise dans un volume très encombré par réflexions et diffusions multiples sur des surfaces présentes dans le volume définissant le canal optique.
Dans ce canal optique ou volume intérieur, les communications par signaux lumineux sans fil sont émises en espace libre dans ce volume intérieur. En d'autres termes, les signaux lumineux se propagent dans le volume intérieur sans être guidées.
Avantageusement, les communications par signaux lumineux sans fil peuvent être mises en œuvre par réflexions et diffusions multiples sur des surfaces présentes dans ce volume.
Selon l'invention, l'un au moins des systèmes de traitement de données comprend au moins un émetteur apte à émettre un signal lumineux dans ledit moins un canal optique. Dans le présent document, ce signal lumineux émis est aussi appelé « signal d'émission ». Ledit au moins un émetteur est agencé pour moduler le signal lumineux en fonction de données à transmettre générées par ce système de traitement de données. De plus, au moins un autre des systèmes de traitement de données comprend au moins un récepteur apte à recevoir le signal lumineux émis par ledit au moins un émetteur.
Un tel sous-ensemble d'aéronef permet de communiquer des données en réduisant le nombre de câbles électriques ou optiques.
On limite ou évite ainsi les inconvénients liés à la communication par câbles électriques ou optiques.
En particulier, les inventeurs estiment que cette invention peut permettre de réduire la masse globale d'un ensemble propulsif jusqu'à 90 kg.
Une telle communication sans fil permet aussi d'assurer l'indépendance des signaux de bas niveaux par rapport aux signaux de forte puissance.
De plus, en cas de dépose du moteur, l'invention permet d'éviter la déconnexion de câbles au niveau du pylône. L'invention permet aussi de faire communiquer des organes montés sur des supports déplaçables l'un par rapport à l'autre, comme par exemple un capot coulissant d'inverseur de poussée et la structure fixe qui le supporte.
Dans un mode de réalisation, l'au moins un émetteur peut comprendre une diode électroluminescente.
Dans un mode de réalisation, ledit au moins un autre des systèmes de traitement de données peut être agencé pour émettre un signal de retour dans l'au moins un canal optique. De préférence, le signal de retour peut être dans une bande passante différente de celle du signal d'émission.
Une telle ségrégation de bande passante peut par exemple s'effectuer par une différence de modulation des signaux lumineux par l'utilisation de signaux de couleurs différentes filtrés en couleur à la réception.
Dans un mode de réalisation, le sous-ensemble d'aéronef peut comprendre une paroi délimitant deux volumes intérieurs. Ces deux volumes forment respectivement un premier et un deuxième canal optique. Selon ce mode de réalisation, le sous-ensemble comprend au moins module de transmission apte à transmettre dans le deuxième canal optique un signal lumineux émis dans le premier canal optique.
Un tel module de transmission permet de transmettre un signal lumineux au travers d'une paroi ou cloison sensiblement opaque.
Selon une première variante, le module de transmission peut comprendre un récepteur agencé pour recevoir le signal lumineux émis dans le premier canal optique, un émetteur agencé pour émettre le signal lumineux dans le deuxième canal optique, et un câble électrique traversant la paroi de manière à transmettre le signal lumineux du récepteur de ce module de transmission à l'émetteur de ce module de transmission sous forme d'un signal électrique. Ces deux éléments peuvent être fusionnés en un seul émetteur-récepteur dont une partie traverse la paroi.
Selon une deuxième variante, la paroi peut comprendre une partie translucide formant le module de transmission.
Ces deux variantes sont cumulables : par exemple, une première paroi peut comprendre un module de transmission selon la première variante et une deuxième paroi peut comprendre un module de transmission selon la deuxième variante.
Dans un mode de réalisation, le sous-ensemble d'aéronef peut comprendre un pylône ayant un volume intérieur constituant un canal optique. Dans un autre mode de réalisation, le sous-ensemble d'aéronef peut comprendre une tablette numérique portative, cette tablette constituant un système de traitement de données comprenant l'un au moins dudit au moins un émetteur et/ou comprenant l'un au moins dudit au moins un récepteur.
Une telle tablette peut permettre à un agent de maintenance de dialoguer avec des systèmes de traitement de données de l'ensemble propulsif ou de l'aéronef lorsque l'un au moins des capots de la nacelle est ouvert : le volume compris sous le capot ouvert constitue un canal optique apte à transmettre des données de maintenance par signaux lumineux dans des conditions d'éclairage standard.
Selon un autre aspect, l'invention concerne aussi un procédé de communication de données mettant en œuvre un sous-ensemble d'aéronef tel que défini ci-dessus.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description nullement limitative qui suit et des figures annexées, dans lesquelles :
Les figures 1 à 7 sont des vues schématiques en coupe longitudinale partielle d'un sous-ensemble d'aéronef conforme à l'invention ;
La figure 8 est une vue schématique en coupe transversale d'un sous-ensemble d'aéronef conforme à l'invention en configuration de maintenance.
Les éléments identiques ou similaires sont repérés par des signes de référence identiques sur l'ensemble des figures.
Un sous-ensemble d'avion conforme à l'invention est représenté à la figure 1. Ce sous-ensemble comprend un ensemble propulsif 1 et un pylône 2 relié à une aile 3 de l'avion.
Dans la description qui suit, l'ensemble propulsif 1 pris pour exemple est constitué d'une nacelle et d'un turboréacteur à double flux, et comprend un inverseur de poussée. Bien entendu, la présente invention peut être mise en œuvre dans tout type d'aéronef et tout type d'ensemble propulsif correspondant.
Le sous-ensemble de la figure 1 comprend de multiples systèmes de traitement de données, notamment un calculateur de régulation numérique à pleine autorité 10 (FADEC), un système de commande d'inverseur de poussée 11 (ETRAS) agencé pour commander l'ouverture et la fermeture de l'inverseur de poussée, des systèmes de mesure et d'analyse de paramètres physiques tels que l'accélération, la pression ou le débit d'un gaz, et des capteurs de position. De manière générale, l'invention peut être mise en œuvre dans un ensemble propulsif doté de tous les systèmes de traitement de données nécessaires à son fonctionnement.
En référence à la figure 1, le sous-ensemble qui y est illustré comprend une pluralité de volumes intérieurs IA, IB, 2A... Ces volumes sont délimités par des parois, cloisons ou composants de ce sous-ensemble. Par exemple, le volume IA est délimité par une paroi interne 106 et une paroi externe 108 d'une section médiane de la nacelle de l'ensemble propulsif 1, par une paroi 100 séparant la section médiane d'une section amont de la nacelle, et par une paroi 102 séparant la section médiane d'une section arrière de la nacelle. Pour autre exemple, le volume 2A est un volume délimité par des parois du pylône 2.
Ces volumes intérieurs sont des volumes déjà existants dans les ensembles propulsifs de l'art antérieur. Ces volumes sont généralement étroits et encombrés d'éléments ou organes constituant des obstacles. Ces volumes sont relativement protégés de la lumière externe sans pour autant être nécessairement optiquement clos. L'invention tire donc profit de tels volumes confinés pour communiquer des données à l'aide de signaux lumineux émis dans ces volumes qui définissent ainsi des canaux optiques, par lignes directes ou diffusions ou réflexions multiples sur les surfaces présentes dans ces volumes.
Selon l'invention, l'un au moins des systèmes de traitement de données, par exemple le FADEC 10, comprend au moins un émetteur 20 apte à émettre un signal lumineux dans le canal optique IA. Cet émetteur 20 est agencé pour moduler le signal lumineux en fonction de données à transmettre générées par ce système de traitement de données 10. De plus, au moins un autre des systèmes de traitement de données, par exemple l'ETRAS 11, comprend au moins un récepteur 31 apte à recevoir le signal lumineux émis par l'émetteur 20.
Pour communiquer des données dans le sens inverse, l'ETRAS 11 - ou plus généralement ledit au moins un autre des systèmes de traitement de données - peut être agencé pour émettre un signal de retour dans le canal optique IA, préférentiellement dans une bande passante différente de la bande passante du signal d'émission. Pour ce faire, l'ETRAS 11 - ou cet autre système de traitement de données - peut comprendre un émetteur retour 41 apte à émettre un signal lumineux dans le canal optique IA et agencé pour moduler ce signal lumineux en fonction de données à transmettre générées par cet autre système de traitement de données 11.
Dans cet exemple, le FADEC 10 comprend un récepteur retour 50 apte à recevoir le signal lumineux de retour émis par l'émetteur retour 41. La figure 2 illustre une telle communication entre FADEC 10 et ETRAS 11 : le FADEC 10 transmet un ordre à l'ETRAS 11 par émission d'un signal lumineux dans le canal optique IA via l'émetteur 20. Le signal lumineux émis par l'émetteur 20 est représenté par des flèches en trait continu : ce signal d'ordre émis par l'émetteur 20 est dans cet exemple réfléchi sur la paroi 102 avant d'arriver au récepteur 31, en raison de la présence d'un obstacle 91. Réciproquement, l'ETRAS 11 transmet un signal de retour au FADEC 10 par émission d'un signal lumineux dans le canal optique IA via l'émetteur retour 41. Le signal lumineux émis par l'émetteur retour 41 est représenté par une flèche en trait interrompu. Dans cet exemple, le signal de retour émis par l'émetteur retour 41 arrive directement au récepteur retour 50, éventuellement avec multiréflexions entre le moteur et les capots compte tenu de la géométrie du volume (entre capot et moteur par exemple).
Ce qui précède s'applique bien entendu à la communication entre toute couple de systèmes de traitement de données séparés par un canal optique défini par un volume intérieur d'un sous-ensemble d'aéronef.
Par exemple, en référence au mode de réalisation qui vient d'être décrit, le système de traitement de données 11 peut consister non pas en un ETRAS mais en un système de commande de variation de section d'une tuyère secondaire de l'ensemble propulsif (non représenté).
La figure 3 illustre une communication entre le FADEC 10 et un actionneur 12 prévu pour modifier la géométrie d'une turbine haute pression (non représentée) de l'ensemble propulsif 1. Un tel actionneur 12 est communément désigné par l'acronyme « VSV » (« Variable Stator Valve » en anglais).
Dans l'exemple de la figure 3, le FADEC 10 transmet un ordre à l'actionneur 12 par émission d'un signal lumineux dans le canal optique IA via l'émetteur 20. Le signal lumineux émis par l'émetteur 20 est représenté par une flèche en trait continu et arrive dans cet exemple directement à un récepteur 36 monté sur la paroi 102 de sorte que le récepteur 36 débouche dans le canal optique IA. Un émetteur 26 est monté sur la paroi 102 en vis-à-vis du récepteur 36 de sorte que cet émetteur 26 débouche dans un volume IB définissant un canal optique de la section arrière de la nacelle. Le récepteur 36 et l'émetteur 26 peuvent être reliés par un câble électrique traversant la paroi 102 de manière à transmettre le signal lumineux du récepteur 36 à l'émetteur 26 sous forme d'un signal électrique. Le signal lumineux est ensuite réémis par l'émetteur 26 dans le canal optique IB pour arriver à un récepteur 32 de l'actionneur 12 (flèches en trait continu). Dans cet exemple, le signal d'ordre émis par l'émetteur 26 est réfléchi sur un obstacle 92 avant d'arriver au récepteur 32 de l'actionneur 12. Dans l'exemple de la figure 3, l'actionneur 12 transmet un signal de retour au FADEC 10 par émission d'un signal lumineux dans le canal optique IB via un émetteur retour 42. Le signal lumineux émis par cet émetteur retour 42 est représenté par des flèches en trait interrompu. Dans cet exemple, le signal de retour émis par l'émetteur retour 42 arrive à un récepteur retour 56 après réflexion sur l'obstacle 92. Le récepteur retour 56 est monté sur la paroi 102 de sorte que ce récepteur retour 56 débouche dans le canal optique IB. Un émetteur retour 46 est monté sur la paroi 102 en vis-à-vis du récepteur retour 56 de sorte que cet émetteur retour 46 débouche dans le canal optique IA. Le récepteur retour 56 et l'émetteur retour 46 peuvent être reliés par un câble électrique traversant la paroi 102 de manière à transmettre le signal lumineux du récepteur retour 56 à l'émetteur retour 46 sous forme d'un signal électrique.
L'invention permet ainsi de communiquer un signal au travers d'une paroi séparant deux volumes intérieurs formant respectivement un premier et un deuxième canal optique.
Dans l'exemple décrit ci-dessus, l'émetteur 26 et le récepteur 36 constituent un module de transmission : le récepteur 36 est agencé pour recevoir le signal lumineux émis dans le canal optique IA, l'émetteur 26 est agencé pour émettre le signal lumineux dans le canal optique IB. Ainsi, ce module de transmission est apte à transmettre dans le canal optique IB un signal lumineux émis dans le canal optique IA.
L'émetteur retour 46 et le récepteur retour 56 constituent un autre module de transmission similaire.
Alternativement, une partie de la paroi délimitant deux canaux optiques peut être translucide de manière à constituer un module de transmission ne nécessitant aucun émetteur ni récepteur.
D'autres exemples de transmission de données entre systèmes de traitement de données sont représentés aux figures 4 à 7 : de la même manière que dans les exemples des figures 2 et 3, les signaux d'ordre sont représentés par des traits continus et les signaux de retour pas des traits interrompus.
La figure 4 illustre une transmission de données entre, d'une part, un système 13 de mesure d'un paramètre physique tel que le débit de l'air entrant dans la nacelle et, d'autre part, le FADEC 10.
La figure 5 illustre une transmission de données entre un calculateur (non représenté) situé dans l'avion et un système 14, par exemple un système de verrouillage (« Tertiary Lock System ») déporté vers l'arrière de la nacelle. La figure 6 illustre une transmission de données entre un capteur 15 et TETRAS 11. Ce capteur 15 peut être alimenté ou autonome.
La figure 7 illustre une transmission mutuelle de données entre un calculateur (non représenté) situé dans l'avion et le FADEC 10.
Dans l'exemple de la figure 8, une tablette numérique portative 19 constitue un système de traitement de données. Cette tablette 19 comprend un émetteur 29 et un récepteur 39.
Bien entendu, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention. Par exemple, la modulation du signal lumineux peut comprendre une modulation de fréquence et/ou d'amplitude de l'onde porteuse, et/ou une modification de la couleur du signal lumineux. Par exemple encore, un émetteur et un récepteur d'un système de traitement de données peuvent être couplés dans un unique organe.
Dans le cas où un récepteur et un émetteur peuvent se voir en ligne droite, il sera avantageux de réduire l'angle d'ouverture de la lumière émise ou de la focaliser vers le récepteur, par exemple en émettant des rayons sensiblement parallèles visant le récepteur. Ceci est particulièrement avantageux dans une ambiance assez fortement polluée lumineusement, par exemple lorsqu'un capot est ouvert ou au voisinage d'un orifice non protégé de la lumière extérieure.

Claims

REVENDICATIONS
1. Sous-ensemble d'aéronef comprenant des systèmes de traitement de données, ce sous-ensemble d'aéronef comprenant au moins un volume intérieur (IA) définissant un canal optique, l'un au moins des systèmes de traitement de données (10) comprenant au moins un émetteur (20) apte à émettre un signal lumineux dans ledit moins un canal optique (IA), ledit au moins un émetteur (20) étant agencé pour moduler le signal lumineux en fonction de données à transmettre générées par ce système de traitement de données (10), et en ce qu'au moins un autre des systèmes de traitement de données (11) comprend au moins un récepteur (31) apte à recevoir le signal lumineux émis par ledit au moins un émetteur (20), caractérisé en ce que le volume intérieur permet une communication par signaux lumineux sans fil émis dans ce volume par lignes directes ou diffusions ou réflexions multiples sur les surfaces présentes dans ce volume.
2. Sous-ensemble d'aéronef, caractérisé en ce qu'il est un ensemble propulsif
(1).
3. Sous-ensemble d'aéronef, caractérisé en ce qu'il comprenant des systèmes de traitement de données comprenant
- un calculateur de régulation numérique à pleine autorité (10), et/ou
- un système de commande d'inverseur de poussée (11) agencé pour commander l'ouverture et la fermeture d'un inverseur de poussée de l'ensemble propulsif (1), et/ou
- un ou plusieurs systèmes de mesure et/ou d'analyse de paramètres physiques tels que l'accélération, la pression ou le débit d'un gaz, et/ou
- un ou plusieurs capteurs de position.
4. Sous-ensemble d'aéronef selon l'une quelconque des revendications précédentes, dans lequel l'au moins un émetteur (20) comprend une diode électroluminescente.
5. Sous-ensemble d'aéronef selon l'une quelconque des revendications précédentes, dans lequel ledit au moins un autre des systèmes de traitement de données (11) est agencé pour émettre un signal de retour dans l'au moins un canal optique (IA), le signal de retour étant de préférence dans une bande passante différente de celle du signal d'émission.
6. Sous-ensemble d'aéronef selon l'une quelconque des revendications précédentes, comprenant une paroi (102) délimitant deux volumes intérieurs (IA, IB), ces deux volumes (IA, IB) formant respectivement un premier et un deuxième canal optique, et comprenant au moins module de transmission apte à transmettre dans le deuxième canal optique (IB) un signal lumineux émis dans le premier canal optique (IA).
7. Sous-ensemble d'aéronef selon la revendication 6, dans lequel le module de transmission comprend un récepteur (36) agencé pour recevoir le signal lumineux émis dans le premier canal optique (IA), un émetteur (26) agencé pour émettre le signal lumineux dans le deuxième canal optique (IB), et un câble électrique traversant la paroi (102) de manière à transmettre le signal lumineux du récepteur (36) de ce module de transmission à l'émetteur (26) de ce module de transmission sous forme d'un signal électrique.
8. Sous-ensemble d'aéronef selon la revendication 6 ou 7, dans lequel la paroi comprend une partie translucide formant un module de transmission.
9. Sous-ensemble d'aéronef selon l'une quelconque des revendications 1 à 8, comprenant un pylône (2) ayant un volume intérieur (2A) constituant un canal optique.
10. Sous-ensemble d'aéronef selon l'une quelconque des revendications 1 à 9, comprenant une tablette numérique portative (19 ; Fig.8), cette tablette (19) constituant un système de traitement de données comprenant l'un au moins dudit au moins un émetteur (29) et/ou comprenant l'un au moins dudit au moins un récepteur (39).
11. Procédé de communication de données mettant en œuvre un sous- ensemble d'aéronef selon l'une quelconque des revendications 1 à 10.
EP19737836.7A 2018-06-18 2019-06-04 Dispositif et procédé de communication de données dans un sous-ensemble d'aéronef Pending EP3808012A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1855322A FR3082687B1 (fr) 2018-06-18 2018-06-18 Dispositif et procede de communication de donnees dans un sous-ensemble d’aeronef
PCT/FR2019/051320 WO2019243694A1 (fr) 2018-06-18 2019-06-04 Dispositif et procédé de communication de données dans un sous-ensemble d'aéronef

Publications (1)

Publication Number Publication Date
EP3808012A1 true EP3808012A1 (fr) 2021-04-21

Family

ID=65494173

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19737836.7A Pending EP3808012A1 (fr) 2018-06-18 2019-06-04 Dispositif et procédé de communication de données dans un sous-ensemble d'aéronef

Country Status (4)

Country Link
US (1) US11773788B2 (fr)
EP (1) EP3808012A1 (fr)
FR (1) FR3082687B1 (fr)
WO (1) WO2019243694A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506571B2 (en) * 2019-09-09 2022-11-22 Rohr, Inc. System and method for gathering flight load data

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755730B1 (fr) * 1996-11-14 1999-01-08 Hispano Suiza Sa Systeme de commande electrique pour inverseur de poussee de turboreacteur
US6614126B1 (en) * 2001-10-24 2003-09-02 Rockwell Collins, Inc. Integrated lighting and data communication apparatus
US6655125B2 (en) * 2001-12-05 2003-12-02 Honeywell International Inc. System architecture for electromechanical thrust reverser actuation systems
EP1858179A1 (fr) * 2002-10-24 2007-11-21 Nakagawa Laboratories, Inc. Dispositif de diffusion pour communication
DE102004046503B4 (de) * 2004-09-23 2009-04-09 Eads Deutschland Gmbh Indirektes optisches Freiraum-Kommunikationssystem zur breitbandigen Übertragung von hochratigen Daten im Passagierraum eines Flugzeugs
US8571409B1 (en) * 2009-01-20 2013-10-29 Intelligent Fiber Optic Systems, Inc. Wavelength-multiplexed optical controller using a ring architecture
US8666254B2 (en) * 2011-04-26 2014-03-04 The Boeing Company System and method of wireless optical communication
US20150090810A1 (en) * 2013-02-11 2015-04-02 Spirit Aerosystems, Inc. Thrust reverser hydraulic actuation system with servo synchronization
US9334807B2 (en) * 2014-05-13 2016-05-10 The Boeing Company Methods and apparatus to determine airflow conditions at an inlet of an engine
JP6833352B2 (ja) * 2016-06-09 2021-02-24 キヤノン株式会社 無線通信装置及び機器

Also Published As

Publication number Publication date
WO2019243694A1 (fr) 2019-12-26
US11773788B2 (en) 2023-10-03
US20210285382A1 (en) 2021-09-16
FR3082687B1 (fr) 2021-10-01
FR3082687A1 (fr) 2019-12-20

Similar Documents

Publication Publication Date Title
EP1571080A1 (fr) Système de montage interposé entre un moteur d'aéronef et une structure rigide d'un mât d'accrochage fixé sous une voilure de cet aéronef
EP3225546B1 (fr) Drone, notamment de type aile volante, muni d'un element de superstructure multifonction
CA2850704A1 (fr) Inverseur de poussee a grilles mobiles et capot mobile monobloc
FR2965304A1 (fr) Dispositif de decharge d'air pour turboreacteur d'avion a double flux
WO2014019720A1 (fr) Système de sonde, sonde mixte de référence primaire pour aéronef, aéronef et procédé de mesure associés
EP0538089A1 (fr) Connecteur optique, notament sous-marin
EP0870105B1 (fr) Tuyere divergent deployable de propulseur
EP2331404B1 (fr) Dispositif de centrage d'une structure d'entree d'air sur une structure mediane d'une nacelle
EP3808012A1 (fr) Dispositif et procédé de communication de données dans un sous-ensemble d'aéronef
FR3034601A1 (fr) Reseau de communication, installation de communication a bord d'un aeronef et aeronef comprenant une telle installation de communication
EP1607328B1 (fr) Installation motrice pour avion supersonique
FR2755729A1 (fr) Turbomoteur a double flux pourvu d'une tuyere confluente et d'un inverseur de poussee
FR3065754B1 (fr) Cellule d'absorption acoustique pour turboreacteur et panneau de traitement acoustique associe
WO2005066024A1 (fr) Systeme optronique modulaire embarquable sur un porteur
EP3719293A1 (fr) Turboréacteur comportant une nacelle équipée d'un système inverseur et une grille de cascades mobile
EP1315319B1 (fr) Système de transmission de signaux numériques pour véhicule spatial
CA2869924A1 (fr) Nacelle de turboreacteur a section aval
FR2686709A1 (fr) Dispositif de fixation et de raccordement, notamment d'un ensemble intensificateur de lumiere sur un generateur d'images d'un viseur de casque pilote.
FR3078951A1 (fr) Turboreacteur comportant une nacelle equipee d'un carter de soufflante et d'une structure fixe
EP4144647B1 (fr) Système d'attache moteur avant pour un moteur d'aéronef qui comporte une structure compacte
EP3877799B1 (fr) Dispositif de pointage optique bi-axe
FR2973342A1 (fr) Procede de communication sur un vehicule aerien ou spatial via l'environnement exterieur
FR3105453A1 (fr) Module optique pour l’éclairage et la transmission de données par la technologie Li-Fi
WO2015082514A1 (fr) Systeme d'imagerie ir refroidi a filtre virtuellement froid
EP1334397A2 (fr) Viseur tete haute pour aeronef a pare-brise courbe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230418