EP3805019A1 - Fahrzeugluftreifen - Google Patents
Fahrzeugluftreifen Download PDFInfo
- Publication number
- EP3805019A1 EP3805019A1 EP20197116.5A EP20197116A EP3805019A1 EP 3805019 A1 EP3805019 A1 EP 3805019A1 EP 20197116 A EP20197116 A EP 20197116A EP 3805019 A1 EP3805019 A1 EP 3805019A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- incision
- amplitude
- depth
- pneumatic vehicle
- vehicle tire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007423 decrease Effects 0.000 claims abstract description 21
- 230000000750 progressive effect Effects 0.000 claims abstract description 10
- 230000000694 effects Effects 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 5
- 230000007425 progressive decline Effects 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
- B60C11/1204—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
- B60C11/1218—Three-dimensional shape with regard to depth and extending direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
- B60C11/1204—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
- B60C2011/1213—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface
Definitions
- the invention relates to a pneumatic vehicle tire with a tread with tread elements, such as tread blocks, which are provided with incisions parallel to one another in plan view and at an angle of 0 ° to 50 ° to the axial direction, each incision in plan view over at least one section in shape of a harmonic wave and each notch extends radially inward from the outer surface of the profile element with a progressive reduction in the amplitude of the harmonic waveform.
- tread elements such as tread blocks
- Such a pneumatic vehicle tire is for example from U.S. 4,598,747 A known.
- the tread of this tire has tread blocks with incisions that run parallel to one another and harmoniously undulating when viewed from above.
- the amplitude of the wave shape of the incisions decreases radially inward from the outer surface of the respective profile block in a linear, that is to say uniform, manner.
- the amplitude of the waveform of the incisions is preferably constant in a radially outer incision area and only decreases in a radially inner incision area.
- a pneumatic vehicle tire of the type mentioned is known.
- the incisions formed in the profile elements of the tread with an undulating section are oriented in the axial direction.
- the wave length of the wave shape of the incisions increases from the outer surface of the profile element to the base of the incision by 5% to 30%.
- the amplitude of the waveform also increases Cut down to the base of the cut by 30% to 70%, which results in advantages with regard to the rigidity of the tread blocks.
- Another pneumatic vehicle tire of the type mentioned is from DE 10 2016 224 370 A1 known.
- the tread of this tire has central tread blocks with incisions which, according to preferred embodiments, run in a wave-like manner, the amplitude and / or the wavelength decreasing radially inward, starting from the outer surface of the tread blocks.
- Incisions formed in profile elements of treads reduce the transverse stiffness of the profile elements in a known manner, with undulating incisions, due to the mutual support or interlocking of the profile segments formed by the incisions under transverse loading, reducing the transverse rigidity to a lesser extent than straight incisions.
- the invention is based on the object of designing a pneumatic vehicle tire of the type mentioned at the outset in such a way that, with progressive wear of the tread, the tread elements are optimally stiff for good handling properties.
- the object is achieved according to the invention in that the amplitude of the harmonic wave form of the incision decreases from the outer surface of the profile element radially inward in a progressive manner.
- the incisions made according to the invention show, with increasing tread wear, a specially changing twisting behavior under transverse loading of the profile.
- the amplitude of the waveform, starting from the outer surface of the profile element initially only decreases slightly and with increasing depth in a continuously accelerating manner (cf. Fig. 2a ).
- a very pronounced twisting behavior of the incisions remains after the initial tread wear, due to the initially hardly decreasing amplitude.
- the entanglement effects of the cuts decrease as the tread wear increases significantly then disproportionately (for example, based on every additional millimeter of tread wear). Since the tread elements become disproportionately stiffer as the tread wear progresses, the decreasing entanglement effects are compensated for.
- the amplitude of the harmonic waveform of the incision decreases progressively to a depth of at least 65%, in particular of at least 80%, of the depth of the incision.
- the beneficial effects of the cuts were therefore retained over the life of the tire.
- the amplitude of the harmonic waveform of the incision decreases over the entire depth of the incision so that the amplitude has its maximum value at the tread periphery and its minimum value at the base of the incision. This measure contributes to maintaining optimum rigidity as the tread wear progresses.
- the minimum value of the amplitude is 20% to 40%, in particular 23% to 33%, of the maximum value of the amplitude. This feature characterizes the preferred extent of the progressive decrease in the amplitude and is advantageous for optimum stiffness of the tread elements as the tread wear progresses.
- the amplitude of the harmonic waveform of the incision at a depth of 50% of the depth of the incision is 20% to 30%, in particular 22% to 26%, greater than that from the minimum value and the Maximum value calculated arithmetic mean value of the amplitude, as well as if the The amplitude of the harmonic waveform of the incision at a depth of 75% of the depth of the incision is 15% to 25%, in particular 18% to 22%, greater than the mean value of the amplitude which is derived from the amplitude at a depth of 50% of the Depth of the incision and the minimum value of the amplitude is calculated.
- the wavelength of the harmonic wave form of the incision remains constant over the radial extent of the wave form.
- the wavelength of the waveform of the incision also changes in a special way in the radial direction, it being particularly preferred if the wavelength of the harmonic waveform of the incision increases steadily radially inward.
- the wavelength also has an influence on the entanglement effects of the incisions and on the net contact area of the profile elements.
- the increase in wavelength has a similar effect to the decrease in amplitude.
- the entanglement effects decrease, since less or less pronounced "wave peaks" and "wave troughs” interlock under load.
- the decrease in the entanglement effects is compensated for by the increasing rigidity of the abrasive profile elements.
- the length of the undulating incision section decreases (cf. Figures 3a to 3c ), so that the incision runs increasingly "straighter" as the abrasion progresses, whereby an additional increase in the net contact area of the profile elements is achieved.
- Another embodiment of the incision in this preferred embodiment is characterized in that, determined at the deepest point of the incision, the wavelength of the harmonic waveform of the incision is 30.0 to 40.0 times, in particular 33.0 to 37.0 times the amplitude of the harmonic waveform.
- the amplitude at a depth of 40% of the depth of the incision is 7% to 17%, in particular 9% to 14%, greater than the sum of the 0.6 times the maximum value of the amplitude and 0.4 times the minimum value of the amplitude.
- the wavelength of the harmonic waveform of the incision is 4.0 to 5.0 times, in particular 4.2 to 4.6 times, the amplitude of the harmonic waveform.
- the waveform of the incisions can be designed in various ways.
- the harmonic wave form of the incision is based on a sine wave, a cosine wave, a rectangular wave, a triangular wave, a sawtooth wave or a trapezoidal wave.
- Pneumatic vehicle tires designed according to the invention are, in particular, tires of radial construction for passenger cars, vans or light trucks, the pneumatic vehicle tires being particularly well suited for driving under wintry driving conditions.
- Fig. 1 shows four tread blocks 1, which belong to two rows of tread blocks running next to one another in the middle tread area, which are separated from one another by a circumferential groove 2 running straight in the embodiment shown, with further circumferential grooves, not designated, delimiting the tread block rows on the outside.
- the double arrow U indicates the circumferential direction of the tire.
- the circumferential groove 2 has the tread depth provided for the respective pneumatic vehicle tire, which is in particular 6.5 mm to 10.0 mm.
- a transverse groove 3 which, in the exemplary embodiment shown, has a depth that corresponds to the circumferential groove 2.
- each profile block 1 is provided with two correspondingly designed incisions 4, which are arranged evenly distributed within each profile block 1, extend parallel to one another and in the transverse direction and traverse the respective profile block 1.
- Preferred configurations of the incisions 4 are described below with reference to FIG Figures 2 and 2a , which show a first variant of the incision 4, and based on Figures 3 and 3a to 3c , which show a second variant of the incision 4, explained in more detail.
- the incision 4 is delimited by two corresponding incision walls 5 and an incision base 6.
- the incision 4 has a constant width b 1 of 0.4 mm to 1.2 mm, in particular of up to 0.8 mm, and a maximum depth t 1 of 70 in the radial direction at its deepest point or in its deepest region % to 100%, in particular from a maximum of 95%, of the profile depth.
- the incision 4 is composed of a main section 4a that runs harmoniously undulating in plan view and two end sections 4b that run straight in plan view, with the main section 4a extending over at least 50% of the length of the incision 4 when the tire is new.
- the waveform of the main section 4a is based on a sinusoidal wave, the main section 4a extending over several wavelengths in the embodiment shown.
- the main section 4a can also only run over a single wavelength.
- the wave shape of the main section 4a continues, as will be described in more detail below, in the radial direction up to the incision base 6.
- the incision 4 has asymmetrically raised edge sections 4c designed in a manner known per se.
- Fig. 2 are drawn in different positions (tread periphery, depth of 50% of the depth t 1 , depth of 75% of the depth t 1 and depth t 1 ) of the incision 4 in each case several lines characterizing the locally present incision course, the section-wise undulating center line m E des Incision 4 is also shown in each case.
- the following explanations relating to the waveform of the main section 4a each relate to the center line m E of the incision 4.
- the waveform of the main section 4a is based on a wavelength ⁇ and an amplitude A.
- the wavelength ⁇ of the waveform is constant over the entire depth of the main section 4a.
- the amplitude A of the waveform decreases steadily, i.e.
- the amplitude A therefore has its maximum value at the tread periphery and its minimum value at the incision base 6, the minimum value of the amplitude being 20% to 40%, in particular 23% to 33%, of the maximum value of the amplitude.
- An arithmetic mean value of the amplitude results from the maximum value and the minimum value of the amplitude (sum of maximum value and minimum value, divided by two).
- the amplitude determined at a depth of 50% of the depth t 1 of the incision 4 is 20% to 30%, in particular 22% to 26%, greater than the arithmetic mean of the amplitude.
- the amplitude is 15% to 25%, in particular 18% to 22%, greater than the mean value of the amplitude, which is derived from the amplitude at a depth of 50% of the depth t 1 and the amplitude in the depth t 1 (minimum value of the amplitude) is calculated.
- the size of the wavelength ⁇ is 4.0 to 5.0 times, in particular 4.2 to 4.6 times, the size of the amplitude A at the tread periphery amounts to.
- the incision 4 is composed of a harmoniously undulating main section 4a and two straight end sections 4b, the main section 4a in the exemplary embodiment running over slightly more than three wave lengths and being designed as a sine wave.
- Figures 3a to 3c each show a top view of the incision 4, the associated profile block 1 in FIG Fig. 3a to 50% of the depth t 1 of the incision 4, in Figure 3b to 75% of the depth t 1 of the incision 4 and in Figure 3c is rubbed off to the level of the incision base 6.
- the waveform of the main section 4a is based on a wavelength ⁇ and an amplitude A, the amplitude A steadily decreasing starting from the tread periphery in the direction of the incision base 6 ( Figures 3a to 3c ) and wherein the wavelength ⁇ increases steadily from the tread periphery in the direction of the incision base 6.
- the amplitude A decreases radially starting from the outer surface of the profile element inside in a progressive way.
- the minimum value of the amplitude A is 20% to 40%, in particular 23% to 33%, of the maximum value of the amplitude A.
- the amplitude A is at a depth of 40% of the depth t 1 (measured from the tread periphery), by 7% to 17%, in particular by 9% to 14%, greater than the sum of 0.6 times the maximum value of the amplitude A and the 0.4- Times the minimum value of the amplitude A.
- the size of the wavelength ⁇ is 4.0 to 5.0 times, in particular 4.2 to 4, 6 times the size of the amplitude A.
- the wavelength ⁇ is determined at the deepest point of the incision 4 to be 30.0 to 40.0 times, in particular 33.0 to 37.0 times, the amplitude A is.
- Figures 4a to 4c show schematic top views of incisions 4 with alternative wave shapes.
- the incision 4 in Figure 4a lies a Reckteck wave, in Figure 4b a triangle wave and Figure 4c based on a sawtooth wave.
- the wavelength ⁇ and the amplitude A are shown in each case.
- the waveform can also be based on a trapezoidal wave or a cosine wave.
- a waveform embodied as a cosine wave differs in a known manner from a waveform embodied as a sine wave only in the relative position of its wave ends with respect to the rest of the waveform.
- the incisions can also be free of edge-side incision sections and / or extend undulating over their entire extent in plan view, so that the amplitude and possibly the wavelength change over the entire extent of the respective incision.
- the incisions can turn under one of the axial directions extend up to 50 ° different angle and be formed in any profile elements of a tread, such as profile strips.
- the amplitude of the harmonic wave form of the incisions preferably decreases progressively to a depth of at least 65%, in particular of at least 80%, of the maximum depth of the respective incision.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Description
- Die Erfindung betrifft einen Fahrzeugluftreifen mit einem Laufstreifen mit Profilelementen, wie beispielsweise Profilblöcken, welche mit in Draufsicht parallel zueinander sowie zur axialen Richtung unter einem Winkel von 0° bis 50° verlaufenden Einschnitten versehen sind, wobei jeder Einschnitt in Draufsicht zumindest über einen Abschnitt in Form einer harmonischen Welle verläuft und sich jeder Einschnitt unter fortlaufender Verringerung der Amplitude der harmonischen Wellenform von der Außenfläche des Profilelementes radial nach innen erstreckt.
- Ein derartiger Fahrzeugluftreifen ist beispielsweise aus der
US 4 598 747 A bekannt. Der Laufstreifen dieses Reifens weist Profilblöcke mit parallel zueinander und in Draufsicht harmonisch wellenförmig verlaufenden Einschnitten auf. Gemäß einer Variante nimmt die Amplitude der Wellenform der Einschnitte von der Außenfläche des jeweiligen Profilblockes radial nach innen auf lineare, also gleichmäßige, Weise ab. Bevorzugter Weise ist die Amplitude der Wellenform der Einschnitte in einem radial äußeren Einschnittbereich konstant und nimmt nur in einem radial inneren Einschnittbereich ab. - Ferner ist auch aus der
EP 3 277 523 B1 ein Fahrzeugluftreifen der eingangs genannten Art bekannt. Die in den Profilelementen des Laufstreifens ausgebildeten Einschnitte mit wellenförmig verlaufendem Abschnitt sind in axialer Richtung orientiert. Die Wellenlänge der Wellenform der Einschnitte vergrößert sich ausgehend von der Außenfläche des Profilelements bis zum Einschnittgrund um 5% bis 30%. Dadurch sollen die Winterperformance des Reifens, insbesondere der Schneegriff, und die Handlingeigenschaften mit fortschreitendem Laufstreifenabrieb erhalten bleiben. Gemäß einer bevorzugten Ausführung nimmt zusätzlich die Amplitude der Wellenform des Einschnittes bis zum Einschnittgrund um 30% bis 70% ab, wodurch Vorteile im Hinblick auf die Steifigkeit der Profilblöcke erzielt werden. - Ein weiterer Fahrzeugluftreifen der eingangs genannten Art ist aus der
DE 10 2016 224 370 A1 bekannt. Der Laufstreifen dieses Reifen weist mittlere Profilblöcke mit Einschnitten auf, welche gemäß bevorzugten Ausführungen wellenförmig verlaufen, wobei sich die Amplitude und/oder die Wellenlänge ausgehend von der Außenfläche der Profilblöcke radial nach innen verringern. - In Profilelementen von Laufstreifen ausgebildete Einschnitte reduzieren bekannter Weise die Quersteifigkeit der Profilelemente, wobei wellenförmig verlaufende Einschnitte, bedingt durch die unter Querbelastung auftretende gegenseitige Abstützung bzw. Verzahnung der durch die Einschnitte gebildeten Profilsegmente, die Quersteifigkeit in geringerem Ausmaß verringern als gerade verlaufende Einschnitte.
- Der Erfindung liegt die Aufgabe zugrunde, einen Fahrzeugluftreifen eingangs genannter Art derart zu gestalten, dass sich bei fortschreitendem Abrieb des Laufstreifens eine für gute Handlingeigenschaften optimale Steifigkeit der Profilelemente einstellt.
- Gelöst wird die gestellte Aufgabe erfindungsgemäß dadurch, dass die Amplitude der harmonischen Wellenform des Einschnittes von der Außenfläche des Profilelementes radial nach innen auf progressive Weise abnimmt.
- Die erfindungsgemäß ausgeführten Einschnitte zeigen mit zunehmendem Laufstreifenabrieb ein sich speziell veränderndes Verschränkungsverhalten unter Querbelastung des Profils. Entsprechend der progressiven Abnahme nimmt die Amplitude der Wellenform ausgehend von der Außenfläche des Profilelementes zunächst nur wenig und mit zunehmender Tiefe auf eine sich kontinuierlich beschleunigende Weise ab (vergleiche
Fig. 2a ). Ausgehend von einem neuen Reifen bleibt daher nach anfänglichem Laufstreifenabrieb, bedingt durch die zunächst kaum abnehmende Amplitude, ein recht ausgeprägtes Verschränkungsverhalten der Einschnitte erhalten. Mit deutlich fortschreitendem Laufstreifenabrieb nehmen die Verschränkungseffekte der Einschnitte dann überproportional ab (beispielsweise bezogen auf jeden weiteren Millimeter Laufstreifenabrieb). Da bei fortschreitendem Laufstreifenabrieb gleichzeitig die Profilelemente überproportional steifer werden, werden die dabei abnehmenden Verschränkungseffekte kompensiert. Es bleibt daher fortlaufend eine optimale Steifigkeit der Profilelemente erhalten. Mit der sich mit fortschreitendem Laufstreifenabrieb verringernden Amplitude geht auch eine Abnahme der Länge der wellenförmig verlaufenden Einschnittabschnitte einher (sieheFig. 2 ), wodurch sich vorteilhafter Weise die Nettokontaktfläche der Profilelemente vergrößert. - Gemäß einer bevorzugten Ausführung nimmt die Amplitude der harmonischen Wellenform des Einschnittes bis in eine Tiefe von zumindest 65%, insbesondere von zumindest 80%, der Tiefe des Einschnittes auf progressive Weise ab. Die vorteilhaften Effekte der Einschnitte blieben daher über die Lebensdauer des Reifens erhalten.
- Ferner ist es vorteilhaft, wenn die Amplitude der harmonischen Wellenform des Einschnittes über die gesamte Tiefenerstreckung des Einschnittes abnimmt, sodass die Amplitude an der Laufstreifenperipherie ihren Maximalwert und am Einschnittgrund des Einschnittes ihren Minimalwert aufweist. Diese Maßnahme trägt zur Beibehaltung einer optimalen Steifigkeit mit fortschreitendem Laufstreifenabrieb bei.
- Weitere bevorzugte Ausführungen betreffen einen besonders vorteilhaften Verlauf der progressiven Abnahme der Amplitude.
- So ist es bevorzugt, wenn der Minimalwert der Amplitude 20% bis 40%, insbesondere 23% bis 33%, des Maximalwertes der Amplitude beträgt. Dieses Merkmal kennzeichnet das bevorzugte Ausmaß der progressiven Abnahme der Amplitude und ist für eine optimale Steifigkeit der Profilelemente mit fortschreitendem Laufstreifenabrieb von Vorteil.
- In diesem Zusammenhang ist es ferner bevorzugt, wenn die Amplitude der harmonischen Wellenform des Einschnittes in einer Tiefe von 50% der Tiefe des Einschnittes um 20% bis 30%, insbesondere um 22% bis 26%, größer ist als der aus dem Minimalwert und dem Maximalwert errechnete arithmetische Mittelwert der Amplitude, sowie wenn die Amplitude der harmonischen Wellenform des Einschnittes in einer Tiefe von 75% der Tiefe des Einschnittes um 15% bis 25%, insbesondere um 18% bis 22%, größer ist als jener Mittelwert der Amplitude, welcher aus der Amplitude in einer Tiefe von 50% der Tiefe des Einschnittes und dem Minimalwert der Amplitude errechnet ist.
- Bei dieser Ausführung ist es dabei bevorzugt, dass die Wellenlänge der harmonischen Wellenform des Einschnittes über die radiale Erstreckung der Wellenform konstant bleibt.
- Bei einer weiteren bevorzugten Ausführung verändert sich auch die Wellenlänge der Wellenform des Einschnittes in radialer Richtung auf spezielle Weise, wobei es insbesondere bevorzugt ist, wenn die Wellenlänge der harmonischen Wellenform des Einschnittes radial nach innen stetig zunimmt. Auch die Wellenlänge nimmt einen Einfluss auf die Verschränkungseffekte der Einschnitte und auf die Nettokontaktfläche der Profilelemente. Die Zunahme der Wellenlänge wirkt dabei ähnlich wie die Abnahme der Amplitude. Mit fortschreitendem Laufstreifenabrieb nehmen die Verschränkungseffekte ab, da weniger oder weniger ausgeprägte "Wellenberge" und "Wellentäler" unter Belastung ineinandergreifen. Die Abnahme der Verschränkungseffekte wird durch die zunehmende Steifigkeit der sich abreibenden Profilelemente kompensiert. Gleichzeitig nimmt die Länge des wellenförmig verlaufenden Einschnittabschnittes ab (vergleiche
Fig. 3a bis Fig. 3c ), sodass der Einschnitt mit fortschreitendem Abrieb zunehmend "gerader" verläuft, wodurch eine zusätzliche Vergrößerung der Nettokontaktfläche der Profilelemente erzielt wird. - Bei dieser Ausführung ist es besonders vorteilhaft, wenn die Wellenlänge der harmonischen Wellenform des Einschnittes über die gesamte Tiefenerstreckung des Einschnittes zunimmt. Dadurch sind die vorteilhaften Effekte über die gesamte Lebensdauer des Reifens vorhanden.
- Eine weitere Ausgestaltung des Einschnittes bei dieser bevorzugten Ausführung ist dadurch gekennzeichnet, dass, jeweils ermittelt an der tiefsten Stelle des Einschnittes, die Wellenlänge der harmonischen Wellenform des Einschnittes das 30,0- bis 40,0-Fache, insbesondere das 33,0- bis 37,0-Fache, der Amplitude der harmonischen Wellenform beträgt.
- Bei Ausführungen mit in radialer Richtung und nach innen zunehmender Wellenlänge ist es von Vorteil, wenn die Amplitude in einer Tiefe von 40% der Tiefe des Einschnittes um 7% bis 17%, insbesondere um 9% bis 14%, größer als die Summe aus dem 0,6-Fachen des Maximalwertes der Amplitude und dem 0,4-Fachen des Minimalwertes der Amplitude.
- Bei sämtlichen Ausführungen ist es bevorzugt, wenn, jeweils ermittelt an der Laufstreifenperipherie, die Wellenlänge der harmonischen Wellenform des Einschnittes das 4,0- bis 5,0-Fache, insbesondere das 4,2- bis 4,6-Fache, der Amplitude der harmonischen Wellenform beträgt.
- Die Wellenform der Einschnitte kann auf verschiedene Weise gestaltet sein. Insbesondere liegt der harmonischen Wellenform des Einschnittes eine Sinus-Welle, eine Cosinus-Welle, eine Reckteck-Welle, eine Dreieck-Welle, eine Sägezahn-Welle oder eine Trapez-Welle zugrunde.
- Weitere Merkmale, Vorteile und Einzelheiten der Erfindung werden nun anhand der Zeichnung, die schematisch Ausführungsbeispiele der Erfindung zeigt, näher beschrieben. Dabei zeigen
-
Fig. 1 eine Ansicht einiger Profilblöcke eines Laufstreifens eines Fahrzeugluftreifens, -
Fig. 2 eine Visualisierung eines Einschnittes gemäß einer ersten Ausführungsvariante der Erfindung, -
Fig. 2a einen Querschnitt durch einen in einem Profilblock ausgebildeten und gemäßFig. 2 gestalteten Einschnitt, -
Fig. 3 eine vergrößerte Draufsicht auf einen in einem Profilblock ausgebildeten Einschnitt gemäß einer zweiten Ausführungsvariante der Erfindung, -
Fig. 3a bis Fig. 3c je eine Draufsicht auf den Einschnitt ausFig. 3 in unterschiedlichen Abriebzuständen des Profilblockes und -
Fig. 4a bis Fig. 4c schematische Draufsichten auf Einschnitte mit unterschiedlichen Verläufen. - Gemäß der Erfindung ausgeführte Fahrzeugluftreifen sind insbesondere Reifen in Radialbauart für Personenkraftwagen, Vans oder Light-Trucks, wobei die Fahrzeugluftreifen zum Fahren unter winterlichen Fahrbedingungen besonders gut geeignet sind.
-
Fig. 1 zeigt vier Profilblöcke 1, welche zu zwei im mittleren Laufstreifenbereich nebeneinander verlaufenden Profilblockreihen gehören, die durch eine beim gezeigten Ausführungsbeispiel gerade verlaufende Umfangsrille 2 voneinander getrennt sind, wobei weitere nicht bezeichnete Umfangsrillen die Profilblockreihen außen begrenzen. Der Doppelpfeil U kennzeichnet die Umfangrichtung des Reifens. - Die Umfangsrille 2 weist die für den jeweiligen Fahrzeugluftreifen vorgesehene Profiltiefe auf, welche insbesondere 6,5 mm bis 10,0 mm beträgt. Innerhalb der Profilblockreihen sind in Umfangsrichtung benachbarte Profilblöcke 1 jeweils durch eine Querrille 3 voneinander getrennt, welche beim gezeigten Ausführungsbeispiel eine mit der Umfangsrille 2 übereinstimmende Tiefe aufweist.
- Jeder Profilblock 1 ist beim gezeigten Ausführungsbeispiel mit zwei übereinstimmend ausgeführten Einschnitten 4 versehen, welche innerhalb jedes Profilblockes 1 gleichmäßig verteilt angeordnet sind, sich parallel zueinander und in Querrichtung erstrecken und den jeweiligen Profilblock 1 durchqueren. Bevorzugte Ausgestaltungen der Einschnitte 4 werden nachfolgend anhand der
Fig. 2 und 2a , welche eine erste Variante des Einschnittes 4 zeigen, und anhand vonFig. 3 und Fig. 3a bis Fig. 3c , welche eine zweite Variante des Einschnittes 4 zeigen, näher erläutert. - Wie der Querschnitt in
Fig. 2a zeigt, ist der Einschnitt 4 durch zwei korrespondierende Einschnittwände 5 und einen Einschnittgrund 6 begrenzt. Der Einschnitt 4 weist eine konstante Breite b1 von 0,4 mm bis 1,2 mm, insbesondere von bis zu 0,8 mm, sowie in radialer Richtung an seiner tiefsten Stelle bzw. in seinem tiefsten Bereich eine maximale Tiefe t1 von 70% bis 100%, insbesondere von höchstens 95%, der Profiltiefe auf. - Wie die Visualisierung eines Einschnittes 4 in
Fig. 2 zeigt, setzt sich der Einschnitt 4 gemäß der ersten Variante aus einem in Draufsicht harmonisch wellenförmig verlaufenden Hauptabschnitt 4a und zwei in Draufsicht gerade verlaufenden Endabschnitten 4b zusammen, wobei sich der Hauptabschnitt 4a bei neuem Reifen insbesondere über zumindest 50% der Erstreckungslänge des Einschnittes 4 erstreckt. Beim gezeigten Ausführungsbeispiel liegt der Wellenform des Hauptabschnittes 4a eine sinusförmige Welle zugrunde, wobei der Hauptabschnitt 4a beim gezeigten Ausführungsbeispiel über mehrere Wellenlängen verläuft. Alternativ kann der Hauptabschnitt 4a auch nur über eine einzige Wellenlänge verlaufen. Die Wellenform des Hauptabschnittes 4a setzt sich, wie nachfolgend noch genauer beschrieben wird, in radialer Richtung bis zum Einschnittgrund 6 fort. Ferner weist der Einschnitt 4 in an sich bekannter Weise ausgeführte, asymmetrisch angehobene Randabschnitte 4c auf. - In
Fig. 2 sind in unterschiedlichen Positionen (Laufstreifenperipherie, Tiefe von 50% der Tiefe t1, Tiefe von 75% der Tiefe t1 und Tiefe t1) des Einschnittes 4 jeweils mehrere den lokal vorliegenden Einschnittverlauf kennzeichnende Linien eingezeichnet, wobei die abschnittsweise wellenförmige Mittellinie mE des Einschnittes 4 ebenfalls jeweils eingezeichnet ist. Die nachfolgenden, die Wellenform des Hauptabschnittes 4a betreffenden Ausführungen beziehen sich jeweils auf die Mittlinie mE des Einschnittes 4. Der Wellenform des Hauptabschnittes 4a liegt eine Wellenlänge λ und eine Amplitude A zugrunde. Die Wellenlänge λ der Wellenform ist über die gesamte Tiefenerstreckung des Hauptabschnittes 4a konstant. Die Amplitude A der Wellenform verringert sich ausgehend von der Laufstreifenperipherie in Richtung zum und bis zum Einschnittgrund 6 stetig, also nicht sprunghaft, wobei die Abnahme der Amplitude A auf progressive (beschleunigte) Weise erfolgt (Fig. 2a ). WieFig. 2 in Kombination mitFig. 2a zeigt, nimmt die Amplitude A entsprechend der progressiven Abnahme ausgehend von der Laufstreifenperipherie zunächst nur geringfügig und mit zunehmender Tiefe auf eine beschleunigte, also verstärkte, Weise ab, wodurch der Einschnitt 4, im Querschnitt betrachtet, durchgehend gekrümmt ist (Fig. 2a ). Die Amplitude A weist daher an der Laufstreifenperipherie ihren Maximalwert und am Einschnittgrund 6 ihren Minimalwert auf, wobei der Minimalwert der Amplitude 20% bis 40%, insbesondere 23% bis 33%, des Maximalwertes der Amplitude beträgt. Aus dem Maximalwert und dem Minimalwert der Amplitude ergibt sich ein arithmetischer Mittelwert der Amplitude (Summe aus Maximalwert und Minimalwert, geteilt durch zwei). Die in einer Tiefe von 50% der Tiefe t1 des Einschnittes 4 ermittelte Amplitude ist um 20% bis 30%, insbesondere um 22% bis 26%, größer als der arithmetische Mittelwert der Amplitude. In einer Tiefe von 75% der Tiefe t1 des Einschnittes 4 (gemessen von der Laufstreifenperipherie) ist die Amplitude 15% bis 25%, insbesondere 18% bis 22%, größer als jener Mittelwert der Amplitude, welcher aus der Amplitude in einer Tiefe von 50% der Tiefe t1 und der Amplitude in der Tiefe t1 (Minimalwert der Amplitude) errechnet ist. - Bei der ersten Variante des Einschnittes 4 ist es bevorzugt, wenn an der Laufstreifenperipherie die Größe der Wellenlänge λ das 4,0- bis 5,0-Fache, insbesondere das 4,2- bis 4,6-Fache, der Größe der Amplitude A beträgt.
- Wie
Fig. 3 zeigt, setzt sich der Einschnitt 4 gemäß der zweiten Variante aus einen harmonisch wellenförmig verlaufenden Hauptabschnitt 4a und zwei gerade verlaufende Endabschnitten 4b zusammen, wobei der Hauptabschnitt 4a beim Ausführungsbeispiel über etwas mehr als drei Wellenlägen verläuft und als Sinus-Welle ausgeführt ist.Fig. 3a bis Fig. 3c zeigen je eine Draufsicht auf den Einschnitt 4, wobei der zugehörige Profilblock 1 inFig. 3a auf 50% der Tiefe t1 des Einschnittes 4, inFig. 3b auf 75% der Tiefe t1 des Einschnittes 4 und inFig. 3c auf das Niveau des Einschnittgrundes 6 abgerieben ist. - Der Wellenform des Hauptabschnittes 4a liegt eine Wellenlänge λ und eine Amplitude A zugrunde, wobei die Amplitude A ausgehend von der Laufstreifenperipherie in Richtung zum Einschnittgrund 6 stetig abnimmt (
Fig. 3a bis Fig. 3c ) und wobei die Wellenlänge λ von der Laufstreifenperipherie in Richtung zum Einschnittgrund 6 stetig zunimmt. Die Amplitude A nimmt dabei ausgehend von der Außenfläche des Profilelementes radial nach innen auf progressive Weise ab. Wie bei der ersten Variante des Einschnittes 4 beträgt auch bei der zweiten Variante des Einschnittes 4 der Minimalwert der Amplitude A 20% bis 40%, insbesondere 23% bis 33%, des Maximalwertes der Amplitude A. Ferner ist die Amplitude A in einer Tiefe von 40% der Tiefe t1 (gemessen von der Laufstreifenperipherie), um 7% bis 17%, insbesondere um 9% bis 14%, größer als die Summe aus dem 0,6-Fachen des Maximalwertes der Amplitude A und dem 0,4-Fachen des Minimalwertes der Amplitude A. - Bei der zweiten Variante des Einschnittes 4 ist es bevorzugt, wenn, übereinstimmend zur ersten Variante des Einschnittes 4, an der Laufstreifenperipherie die Größe der Wellenlänge λ das 4,0- bis 5,0-Fache, insbesondere das 4,2- bis 4,6-Fache, der Größe der Amplitude A beträgt.
- Ferner ist es bei der zweiten Variante bevorzugt, wenn jeweils ermittelt an der tiefsten Stelle des Einschnittes 4, die Wellenlänge λ das 30,0- bis 40,0-Fache, insbesondere das 33,0- bis 37,0-Fache, der Amplitude A beträgt.
-
Fig. 4a bis Fig. 4c zeigen schematische Draufsichten auf Einschnitte 4 mit alternativen Wellenformen. Dem Einschnitt 4 inFig. 4a liegt eine Reckteck-Welle, inFig. 4b eine Dreieck-Welle undFig. 4c eine Sägezahn-Welle zugrunde. Die Wellenlänge λ und die Amplitude A sind jeweils eingezeichnet. Insbesondere kann der Wellenform auch eine Trapez-Welle oder eine Cosinus-Welle zugrunde liegen. Eine als Cosinus-Welle ausgeführte Wellenform unterscheidet sich von einer als Sinus-Welle ausgeführte Wellenformen in bekannter Weise lediglich durch die relative Lage ihrer Wellenenden gegenüber der sonstigen Wellenform. - Die Erfindung ist auf die beschriebenen Ausführungsbeispiele nicht beschränkt.
- Die Einschnitte können auch frei von randseitige Einschnittabschnitten sein und/oder über ihre gesamte Erstreckung in Draufsicht wellenförmig verlaufen, sodass sich die Amplitude und gegebenenfalls die Wellenlänge über die gesamte Erstreckung des jeweiligen Einschnitts ändert. Die Einschnitte können sich unter einem von der axialen Richtung um bis zu 50° abweichenden Winkel erstrecken sowie in beliebigen Profilelementen eines Laufstreifens, etwa Profilbändern, ausgebildet sein.
- Die Amplitude der harmonischen Wellenform der Einschnitte nimmt vorzugsweise bis in eine Tiefe von zumindest 65%, insbesondere von zumindest 80%, der maximalen Tiefe des jeweiligen Einschnittes auf progressive Weise ab.
-
- 1
- Profilblock
- 2
- Umfangsrille
- 3
- Querrille
- 4
- Einschnitt
- 4a
- Hauptabschnitt
- 4b
- Endabschnitt
- 4c
- Randabschnitte
- 5
- Einschnittwand
- 6
- Einschnittgrund
- A
- Amplitude
- b1
- Breite
- mE
- Mittellinie
- t1
- Tiefe
- U
- Doppelpfeil (Umfangsrichtung)
- λ
- Wellenlänge
Claims (13)
- Fahrzeugluftreifen mit einem Laufstreifen mit Profilelementen (1), wie beispielsweise Profilblöcken (1), welche mit sich in Draufsicht parallel zueinander sowie zur axialen Richtung unter einem Winkel von 0° bis 50° erstreckenden Einschnitten (4) versehen sind, wobei jeder Einschnitt (4) in Draufsicht zumindest über einen Abschnitt (4a) in Form einer harmonischen Welle verläuft und sich jeder Einschnitt (4) unter fortlaufender Verringerung der Amplitude (A) der harmonischen Wellenform von der Außenfläche des Profilelementes (1) radial nach innen erstreckt,
dadurch gekennzeichnet,
dass die Amplitude (A) der harmonischen Wellenform des Einschnittes (4) von der Außenfläche des Profilelementes (1) radial nach innen auf progressive Weise abnimmt. - Fahrzeugluftreifen nach Anspruch 1, dadurch gekennzeichnet, dass die Amplitude (A) der harmonischen Wellenform des Einschnittes (4) bis in eine Tiefe von zumindest 65%, insbesondere von zumindest 80%, der Tiefe (ti) des Einschnittes (4) auf progressive Weise abnimmt.
- Fahrzeugluftreifen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Amplitude (A) der harmonischen Wellenform des Einschnittes (4) über die gesamte Tiefenerstreckung des Einschnittes (4) abnimmt, sodass die Amplitude an der Laufstreifenperipherie ihren Maximalwert und am Einschnittgrund (6) des Einschnittes (4) ihren Minimalwert aufweist.
- Fahrzeugluftreifen nach Anspruch 3, dadurch gekennzeichnet, dass der Minimalwert der Amplitude 20% bis 40%, insbesondere 23% bis 33%, des Maximalwertes der Amplitude beträgt.
- Fahrzeugluftreifen nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Amplitude (A) der harmonischen Wellenform des Einschnittes (4) in einer Tiefe von 50% der Tiefe (ti) des Einschnittes (4) um 20% bis 30%, insbesondere um 22% bis 26%, größer ist als der aus dem Minimalwert und dem Maximalwert errechnete arithmetische Mittelwert der Amplitude.
- Fahrzeugluftreifen nach Anspruch 5, dadurch gekennzeichnet, dass die Amplitude (A) der harmonischen Wellenform des Einschnittes (4) in einer Tiefe von 75% der Tiefe (ti) des Einschnittes (4) um 15% bis 25%, insbesondere um 18% bis 22%, größer ist als jener Mittelwert der Amplitude, welcher aus der Amplitude in einer Tiefe von 50% der Tiefe (t1) des Einschnittes (4) und dem Minimalwert der Amplitude errechnet ist.
- Fahrzeugluftreifen nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Wellenlänge (λ) der harmonischen Wellenform des Einschnittes (4) über die radiale Erstreckung der Wellenform konstant ist.
- Fahrzeugluftreifen nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Wellenlänge (λ) der harmonischen Wellenform des Einschnittes (4) radial nach innen stetig zunimmt.
- Fahrzeugluftreifen nach Anspruch 8, dadurch gekennzeichnet, dass die Wellenlänge (λ) der harmonischen Wellenform des Einschnittes (4) über die gesamte Tiefenerstreckung des Einschnittes (4) zunimmt.
- Fahrzeugluftreifen nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass, jeweils ermittelt an der tiefsten Stelle des Einschnittes (4), die Wellenlänge (λ) der harmonischen Wellenform des Einschnittes (4) das 30,0- bis 40,0-Fache, insbesondere das 33,0- bis 37,0-Fache, der Amplitude (A) der harmonischen Wellenform beträgt.
- Fahrzeugluftreifen nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Amplitude (A) in einer Tiefe von 40% der Tiefe (t1) des Einschnittes (4) um 7% bis 17%, insbesondere um 9% bis 14%, größer als die Summe aus dem 0,6-Fachen des Maximalwertes der Amplitude (A) und dem 0,4-Fachen des Minimalwertes der Amplitude (A).
- Fahrzeugluftreifen nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass, jeweils ermittelt an der Laufstreifenperipherie, die Wellenlänge (λ) der harmonischen Wellenform des Einschnittes (4) das 4,0- bis 5,0-Fache, insbesondere das 4,2- bis 4,6-Fache, der Amplitude (A) der harmonischen Wellenform beträgt.
- Fahrzeugluftreifen nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der harmonischen Wellenform des Einschnittes (4) eine Sinus-Welle, eine Cosinus-Welle, eine Reckteck-Welle, eine Dreieck-Welle, eine Sägezahn-Welle oder eine Trapez-Welle zugrunde liegt.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019215505.7A DE102019215505A1 (de) | 2019-10-10 | 2019-10-10 | Fahrzeugluftreifen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3805019A1 true EP3805019A1 (de) | 2021-04-14 |
EP3805019B1 EP3805019B1 (de) | 2022-11-09 |
Family
ID=72603371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20197116.5A Active EP3805019B1 (de) | 2019-10-10 | 2020-09-21 | Fahrzeugluftreifen |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3805019B1 (de) |
DE (1) | DE102019215505A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4364974A1 (de) | 2022-11-07 | 2024-05-08 | Toyo Tire Corporation | Luftreifen und reifenform |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4598747A (en) | 1983-04-12 | 1986-07-08 | Compagnie Generale Des Etablissements Michelin | Tire tread relief elements having undulated or broken line incisions |
EP1795372A2 (de) * | 2005-12-06 | 2007-06-13 | Continental Aktiengesellschaft | Laufstreifenprofil |
EP2133217A1 (de) * | 2008-06-14 | 2009-12-16 | Continental Aktiengesellschaft | Fahrzeugluftreifen |
DE102016224370A1 (de) | 2016-12-07 | 2018-06-07 | Continental Reifen Deutschland Gmbh | Fahrzeugluftreifen |
CN108340740A (zh) * | 2017-01-25 | 2018-07-31 | 韩国轮胎株式会社 | 轮胎的立体型胎面切口 |
EP3354485A1 (de) * | 2017-01-17 | 2018-08-01 | Hankook Tire Co., Ltd. | Laufflächenkerbe eines winterreifens |
EP3277523B1 (de) | 2015-03-31 | 2019-02-27 | Continental Reifen Deutschland GmbH | Fahrzeugluftreifen |
-
2019
- 2019-10-10 DE DE102019215505.7A patent/DE102019215505A1/de active Pending
-
2020
- 2020-09-21 EP EP20197116.5A patent/EP3805019B1/de active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4598747A (en) | 1983-04-12 | 1986-07-08 | Compagnie Generale Des Etablissements Michelin | Tire tread relief elements having undulated or broken line incisions |
EP1795372A2 (de) * | 2005-12-06 | 2007-06-13 | Continental Aktiengesellschaft | Laufstreifenprofil |
EP2133217A1 (de) * | 2008-06-14 | 2009-12-16 | Continental Aktiengesellschaft | Fahrzeugluftreifen |
EP3277523B1 (de) | 2015-03-31 | 2019-02-27 | Continental Reifen Deutschland GmbH | Fahrzeugluftreifen |
DE102016224370A1 (de) | 2016-12-07 | 2018-06-07 | Continental Reifen Deutschland Gmbh | Fahrzeugluftreifen |
EP3354485A1 (de) * | 2017-01-17 | 2018-08-01 | Hankook Tire Co., Ltd. | Laufflächenkerbe eines winterreifens |
CN108340740A (zh) * | 2017-01-25 | 2018-07-31 | 韩国轮胎株式会社 | 轮胎的立体型胎面切口 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4364974A1 (de) | 2022-11-07 | 2024-05-08 | Toyo Tire Corporation | Luftreifen und reifenform |
Also Published As
Publication number | Publication date |
---|---|
DE102019215505A1 (de) | 2021-04-15 |
EP3805019B1 (de) | 2022-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018158021A1 (de) | Fahrzeugluftreifen | |
EP3277523B1 (de) | Fahrzeugluftreifen | |
DE102020212456A1 (de) | Fahrzeugluftreifen | |
EP4171972B1 (de) | Fahrzeugluftreifen | |
DE4108745A1 (de) | Luftreifen | |
EP2138327B1 (de) | Laufflächenprofil für einen Fahrzeugluftreifen | |
EP3551477B1 (de) | Fahrzeugluftreifen | |
EP3888948B1 (de) | Fahrzeugluftreifen, insbesondere nutzfahrzeugreifen | |
EP3805019B1 (de) | Fahrzeugluftreifen | |
EP3724006A1 (de) | Nutzfahrzeugreifen | |
EP2138329B1 (de) | Laufflächenprofil für einen Fahrzeugluftreifen | |
EP3560735B1 (de) | Nutzfahrzeugreifen | |
EP3597449B1 (de) | Fahrzeugluftreifen | |
DE102020201730A1 (de) | Fahrzeugluftreifen | |
EP3585625B1 (de) | Fahrzeugluftreifen | |
DE102019214093A1 (de) | Fahrzeugluftreifen | |
EP2138328B1 (de) | Fahrzeugluftreifen | |
DE102018208349A1 (de) | Fahrzeugluftreifen | |
DE102020205836A1 (de) | Fahrzeugluftreifen | |
EP4076995A1 (de) | Fahrzeugluftreifen | |
EP3554855B1 (de) | Fahrzeugluftreifen | |
EP3978274B1 (de) | Nutzfahrzeugreifen | |
EP4147885B1 (de) | Fahrzeugreifen | |
EP3753753B1 (de) | Fahrzeugluftreifen | |
DE102019210431A1 (de) | Fahrzeugluftreifen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211014 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B60C 11/12 20060101AFI20220422BHEP |
|
INTG | Intention to grant announced |
Effective date: 20220513 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1530119 Country of ref document: AT Kind code of ref document: T Effective date: 20221115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020001957 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230309 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230209 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230309 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230210 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502020001957 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20230920 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502020001957 Country of ref document: DE Owner name: CONTINENTAL REIFEN DEUTSCHLAND GMBH, DE Free format text: FORMER OWNER: CONTINENTAL REIFEN DEUTSCHLAND GMBH, 30165 HANNOVER, DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230921 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230921 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221109 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230921 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240930 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240918 Year of fee payment: 5 |