EP3804113A1 - Anlage und verfahren zum energieversorgen einer hochleis-tungslast - Google Patents

Anlage und verfahren zum energieversorgen einer hochleis-tungslast

Info

Publication number
EP3804113A1
EP3804113A1 EP18746609.9A EP18746609A EP3804113A1 EP 3804113 A1 EP3804113 A1 EP 3804113A1 EP 18746609 A EP18746609 A EP 18746609A EP 3804113 A1 EP3804113 A1 EP 3804113A1
Authority
EP
European Patent Office
Prior art keywords
connection
output
phase
converter
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP18746609.9A
Other languages
English (en)
French (fr)
Inventor
Martin Pieschel
Rainer Gruber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3804113A1 publication Critical patent/EP3804113A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/14Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion between circuits of different phase number
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • Plant and method for supplying energy to a high-performance load Plant and method for supplying energy to a high-performance load
  • the invention relates to a system for energy supply egg ner high-performance load.
  • a high-performance load is characterized in particular by the fact that a particularly high electrical output of more than 10 MW is required to supply the high-performance load.
  • An example of a single-phase high-performance load is a high-performance arc furnace.
  • Another example is an energy store for network stabilization of a supply network.
  • three-phase modular multi-stage converters known for example from WO 2016/155850 A1
  • a high operating voltage e.g. A particularly low-loss direct current transmission, a direct connection of a rail network supply with a special frequency or a generation of arcs for a chemical process
  • the known modular multi-stage converters have compared the requirements to high current carrying capacity, so that high costs of their application for feeding single-phase high-performance loads conflict with cost reasons.
  • a converter system with a modular multi-stage converter for converting a DC voltage into a three-phase AC voltage is known from EP 2 637 296 Al. There it is proposed to use a two-phase inverter, the output voltage of which is converted into a three-phase AC voltage by means of a two-to-three-phase transformer.
  • a Modular Multilevel Converter Based Railway Power Conditioner for Power Balance and Harmony Compensation in Scott Railway Traction System by Song et al., IEEE 2016, the use of a Scott transformer in a system for the compensation of harmonics or Reactive currents and for balancing an active power to supply a railway line.
  • the object of the invention is to propose a system of the above type, which is as cost-effective as possible and enables the most reliable supply of a high-performance load possible.
  • a type of system with a three-to-two-phase transformer which has a three-phase transformer connection on the output side for connecting to a three-phase supply network and a first output-side, single-phase transformer connection and a second output-side, single-phase transformer on the output side Transformer connection includes, as well as one
  • Converter arrangement with a first partial converter, which comprises a first input-side, single-phase AC voltage connection for connecting to the first output-side transformer connection of the three-to-two-phase transformer and a first single-phase output connection, and a second partial converter, which has a second input-side, single-phase Includes AC voltage connection for connecting to the second output-side transformer connection of the three-to-two-phase transformer and a second single-phase output connection, the partial converters being connected to one another in an output-side series and / or parallel connection and by forming a single-phase load connection for connecting to the high-performance load can be connected.
  • the single-phase connections described here are distinguished as such by the fact that each single-phase connection has two taps that are connected to a further single-phase connection or one two-pole and thus also single-phase load can be used.
  • the system according to the invention accordingly has a three-to-two-phase transformer which can be connected on the input side to a three-phase electrical network.
  • the three-to-two-phase transformer can be connected on the output side with a combination of two partial converters.
  • the partial converters can each be designed as one or two phases. This advantageously leads to a cost reduction compared to the use of three-phase converters.
  • a reliable supply of both those high-performance loads which have a high load voltage and those which require a high load current can be provided.
  • the three-to-two-phase transformer is preferably a Scott transformer or a LeBlanc transformer. These types of transformers have proven to be particularly effective and reliable.
  • the system further comprises a further transformer, which can be switched between the supply network and the three-to-two-phase transformer.
  • the mains voltage of the AC network on the input side can be transformed to a lower voltage at the input of the three-to-two-phase transformer.
  • the partial inverters are connected in series from the output side.
  • the determination of the series connection of the partial converters on the output side simplifies the construction of the system, which is particularly suitable for supplying a high-performance load with a high load voltage.
  • the partial converters are connected to one another in parallel on the output side. on.
  • the determination of the parallel connection of the partial converters on the output side in turn simplifies the construction of the system, which is therefore particularly suitable for supplying a high-performance load with a high load current.
  • the system comprises a switching device, the partial converter being selectively switchable in series or in parallel on the output side by means of the switching device.
  • the switching device can, for example, be arranged between the two partial converters.
  • the switching device is suitably four-pole, so that it can also be connected to the output connections of the two partial converters.
  • the system can be used particularly flexibly.
  • the first partial converter comprises four converter arms, a first converter arm extending between a first tap of the first input-side AC voltage connection and a first tap of the first output connection, a second converter arm extending between a first tap of the first input-side AC voltage connection and a two extends t tap of the first output connection, a third converter arm extends between a second tap of the first input-side AC voltage connection and a first tap of the first output connection, a fourth converter arm extends between a second tap of the first input-side AC voltage connection and a second tap of the first output connection, where the converter arms each have a series connection of
  • the first partial converter thus has the structure of a single-phase modular matrix converter. Depending on the design of the first partial converter
  • Switching modules and their regulation or control can generally generate an AC voltage or a DC voltage on the output side.
  • the design of the first partial converter as a single-phase modular matrix or Multi-stage converter offers the possibility of generating particularly advantageous output voltages. Accordingly, it is also possible to design the second partial converter as a single-phase modular matrix or multi-stage converter.
  • the first and the second partial converter are suitably constructed in the same way.
  • At least one, preferably all, of the switching modules comprises at least four semiconductor switches which can be switched off and an energy store which are connected to one another in a full-bridge circuit.
  • at least one, preferably all, of the switching modules comprises at least two semiconductor switches which can be switched off and an energy store, which are connected to one another in a half-bridge circuit.
  • the full bridge circuit has the advantage that output voltages of both polarities (positive and negative) can be generated.
  • Half-bridge circuit offers the advantage of lower losses. To supply a high-performance load with a DC voltage or a DC current, for example, only switching modules in half-bridge circuit can be used. This also lowers the cost of the system.
  • the invention further relates to a method for Energy/Voltage provide a high-performance load.
  • the object of the invention is to propose a species-appropriate Ver drive that is as reliable and inexpensive as possible.
  • the object is achieved by a method for supplying energy to a high-performance load, in which the high-performance load is supplied with electrical energy by means of a system according to the invention.
  • the advantages of the method according to the invention result in particular from the advantages described above in connection with the system according to the invention.
  • Figure 1 shows an embodiment of a system according to the invention in a schematic representation
  • Figure 2 shows a first example of an arrangement of Operaum converters for the system of Figure 1 in a schematic representation
  • Figure 3 shows a second example of an arrangement of partial converters for the system of Figure 1 in a schematic representation
  • Figure 4 shows a third example of an arrangement of partial converters for the system of Figure 1 in a schematic representation
  • Figure 5 shows a three-to-two-phase transformer in a Scott circuit in a schematic representation
  • Figure 6 shows a three-to-two-phase transformer in a LeBlanc circuit in a schematic representation
  • Figure 7 shows an example of a partial converter of the system of Figure 1 in a schematic representation
  • Figure 8 shows an example of a switching device for the system of Figure 1 in a schematic representation
  • Figure 9 shows an example of a converter arm for the partial converter of Figure 7 in a schematic representation
  • Figures 10 and 11 each show examples of switching modules for the converter arm of Figure 9 in a schematic Dar position.
  • Figure 1 is a system 1 for feeding a high-performance load 7 from a three-phase AC voltage or Ver supply network 6.
  • the high-performance load 7 can be, for example, a consumer, an electrical energy storage device or another AC voltage network.
  • the system 1 comprises an arrangement 2 with a three-to-two-phase transformer and a converter arrangement, the structure of which is discussed in more detail in the following FIGS. 2 to 4. Furthermore, the system 1 comprises a central control unit 5, by means of which the converter arrangement can be regulated or controlled. The control is taking into account voltage and current measured values, which are detected by means of a voltage measuring device 4 and a current measuring device 3. A three-phase transformer 8 is arranged to transform down the mains voltage of the AC network 6 between the arrangement 2 and the AC network 6.
  • FIG. 2 shows a converter arrangement 10 with a three-to-two-phase transformer 11, which can be used in system 1 in FIG. 1.
  • the three-to-two-phase transformer 11 comprises on the input side a three-phase transformer connection ABC for connecting to the three-phase transformer 8 or directly to the AC network 6 of FIG. 1. Furthermore, the three-to-two-phase transformer 11 has a first output side , single-phase transformer connection DE and a second output-side, single-phase transformer connection FG.
  • the converter arrangement 10 comprises a first partial converter 12 and a second partial converter 13.
  • the first partial converter ter 12 has a first input-side, single-phase AC voltage connection UV.
  • the two taps of the AC voltage connection UV are marked as U and V.
  • the second partial converter 13 has a second single-ended, single-phase AC voltage connection U'V '.
  • the two taps of the AC voltage connection U'V ' are identified as U' and V '.
  • the two alternating voltage connections UV, U'V 'on the input side are connected to associated transformer connections DE and FG.
  • the first part of converter 12 also has a first single-phase output connection XY with the taps X and Y.
  • the second part of the converter accordingly has a second single-phase output connection X'Y 'with the taps X' and Y '.
  • the at the partial converter 12 and 13 are connected on the output side in a series circuit, the second tap Y of the first output connector XY being connected to the first tap X 'of the second output connector X'Y' and the first tap X of the first output connector XY and the second tap Y 'of the second output connection X'Y' form a single-phase load connection 14 for connection to the high-power load, with a first load tap 14a and a second load tap 14b.
  • a load voltage Ulast can be generated at the load connection 14 by means of the converter arrangement 10.
  • FIG. 3 shows a converter arrangement 15 with a three-to-two-phase transformer 11, which can be used in system 1 in FIG. 1.
  • Converter arrangement 15 largely corresponds to that of converter arrangement 10 in FIG. 2.
  • identical and similar components are provided with the same reference numerals, so that only the differences between the examples in FIGS. 2 and 3 and 4 are discussed in more detail below becomes.
  • the two partial converters 12 and 13 of the converter arrangement 15 are connected to one another on the output side in a parallel connection.
  • the first load tap 14a is formed by the first tap X of the first output connection XY, connected to the first tap X 'of the second output connection X'Y'.
  • the second load tap 14b is formed by the second tap Y from the first output port XY, connected to the second tap Y 'of the second output port X'Y'.
  • FIG. 4 shows a converter arrangement 16 with a three-to-two-phase transformer 11, which can be used in system 1 in FIG. 1.
  • Converter arrangement 16 largely corresponds to that of converter arrangements 10 and 15 of FIGS. 2 and 3.
  • the converter arrangement 16 comprises a switching device 17.
  • the switching device 17 By means of the switching device 17, the two partial converters 12 and 13 of the converter arrangement 16 can optionally be connected to one another in a series or parallel connection on the output side.
  • the structure of the switching device 17 is discussed in greater detail in connection with the following FIG. 8.
  • FIG. 5 shows a three-to-two-phase transformer in the form of a Scott transformer 24.
  • the three-phase transformer connection ABC on the input side and the two single-phase transformer connections DE and FG on the output side can be seen.
  • FIG. 6 shows a three-to-two-phase transformer in the form of a LeBlanc transformer 25.
  • the three-phase transformer connection ABC on the input side and the two single-phase transformer connections DE and FG on the output side can be seen.
  • FIG. 7 shows a partial converter 26, which is the first or also the second partial converter for one of the Converter arrangements 10, 15, 16 of FIGS. 2 to 4 can be used.
  • the partial converter 26 comprises a first one
  • Converter arm 27, a second converter arm 28, a third converter arm 29 and a fourth converter arm 30 The partial converter 26 is accordingly designed as a single-phase matrix converter.
  • the first converter arm 27 is arranged between the first tap U of the first input-side alternating voltage connection UV and the first tap X of the first output connection XY
  • the second converter arm 28 is between the first tap U of the first input-side alternating voltage connection UV and the second tap Y arranged of the first output connection
  • the third converter arm 29 is arranged between a second tap V of the first input-side AC voltage connection UV and the first tap X from the first output connection XY
  • the fourth converter arm 30 is between the second tap V of the first input-side AC voltage connection UV and the second tap Y of the first output terminal XY is arranged.
  • the converter arms 27 to 30 are of the same design. Their structure is discussed in more detail in the following FIG. 9.
  • Figure 8 shows a formwork device 17 for the
  • the switching device is four-pole and can by means of a first switching connection 18 with the second tap Y of the first output connection XY of the first partial converter 12, by means of a second switching connection 19 with the first tap X 'of the second output connection X'Y 'of the second partial converter 13, by means of a third switching connection 20 to the first load tap 14a and by means of a fourth switching port 21 to the second load tap 14b.
  • a first switching position shown graphically in FIG. 8 by means of solid lines 22a, b an output-side parallel connection of the partial converters 12, 13 can be generated.
  • an output-side series connection of the partial converters 12, 13 can be generated.
  • FIG. 9 shows a converter arm 31 which can be used as one of the converter arms 27 to 30 in FIG. 7.
  • the converter arm 27 comprises a series connection of Wegmodu len 32, which are all constructed in the same way in the example shown, but this generally does not have to be the case.
  • the number of switching modules 32 used is basically arbitrary, which is indicated in FIG. 9 by an interrupted line 33.
  • the switching modules 32 comprise semiconductor switches and an energy store. These can be connected to one another, for example, in a half-bridge circuit or a full-bridge circuit. The structure of the switching modules is discussed in more detail in the following FIGS. 10 and 11.
  • the converter arm 31 further comprises a current sensor 34 for detecting a current through the converter arm 31 and a coupling inductor 35.
  • a switching module in a full-bridge circuit 36 for the converter arm 27 of FIG. 9 is shown in FIG.
  • the full bridge circuit 36 has a first semiconductor switch 37 and a second semiconductor switch 38, both in the form of IGBTs.
  • the forward direction of the two semiconductor scarf ter 37 and 38 is rectified.
  • the full bridge circuit 36 comprises a third semiconductor switch 39 and a fourth semiconductor switch 40, both likewise in the form of IGBTs.
  • the IGBTs can be replaced by other semi-conductor switches that can be switched off.
  • the forward direction of the semiconductor switches 39 and 40 is rectified.
  • a switching module capacitor 41 is arranged in parallel with the two series circuits of the semiconductor switches.
  • a first connection AC1 is arranged at a potential point 42 between the semiconductor switches 37, 38; a second connection AC2 is arranged at a potential point 43 between the semiconductor switches tern 39, 40 arranged.
  • a free-wheeling diode D is connected in anti-parallel to each of the semiconductor switches 37-40.
  • a switching module in a half-bridge circuit 45 for the converter arm 27 of FIG. 9 is shown in FIG.
  • the half-bridge circuit 45 has two semiconductor switches 37, 38 which can be switched off (in the illustrated case, they are IGBT switches, in general other switchable semiconductor switches, such as IGCT or the like, can also be used) and the energy store 41, the semiconductor switches 37 and 38 are connected to the energy storage device 41 in such a way that a voltage Uzk or a zero voltage can be generated at the output terminals AC1, 2 of the switching module.
  • a voltage sensor 44 is provided for detecting the voltage Uzk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

Die Erfindung betrifft eine Anlage (1) und ein Verfahren zur Energieversorgung einer Hochleistungslast (7) mittels der Anlage. Die erfindungsgemäße Anlage umfasst einen Drei-zu-zwei-Phasen-Transformator (11), der eingangsseitig einen dreiphasigen Transformatoranschluss (ABC) zum Verbinden mit einem dreiphasigen Versorgungsnetz (6) und ausgangsseitig einen ersten ausgangsseitigen, einphasigen Transformatoranschluss (DE) und einen zweiten ausgangsseitigen, einphasigen Transformatoranschluss (FG) umfasst, sowie eine Umrichteranordnung (10) mit einem ersten Teilumrichter (12), der einen ersten eingangsseitigen, einphasigen Wechselspannungsanschluss zum Verbinden mit dem ersten ausgangsseitigen Transformatoranschluss des Drei-zu-zwei-Phasen-Transformator sowie einen ersten einphasigen Ausgangsanschluss umfasst, einem zweiten Teilumrichter (13), der einen zweiten eingangsseitigen, ein- phasigen Wechselspannungsanschluss zum Verbinden mit dem zweiten ausgangsseitigen Transformatoranschluss des Drei-zu-zwei-Phasen-Transformator sowie einen zweiten einphasigen Ausgangsanschluss umfasst, wobei die Teilumrichter mittels der Ausgangsanschlüsse miteinander in einer ausgangsseitigen Reihen- und/oder Parallelschaltung und unter Ausbildung eines einphasigen Lastanschlusses (14) zum Verbinden mit der Hochleistungslast verbindbar sind.

Description

Beschreibung
Anlage und Verfahren zum Energieversorgen einer Hochleis tungslast
Die Erfindung betrifft eine Anlage zur Energieversorgung ei ner Hochleistungslast.
Eine Hochleistungslast zeichnet sich insbesondere dadurch aus, dass zur Speisung der Hochleistungslast eine besonders hohe elektrische Leistung von mehr als 10 MW notwendig ist. Ein Beispiel für eine einphasige Hochleistungslast ist ein Hochleistungslichtbogenofen. Ein weiteres Beispiel ist ein Energiespeicher zur Netzstabilisierung eines Versorgungsnet zes.
Es ist bekannt, dass dreiphasige modulare Mehrstufenumrich ter, bekannt beispielsweise aus der WO 2016/155850 Al, zur Erzeugung einer hohen Gleichspannung aus einem Drehstromnetz genutzt werden können. Bei Verbrauchern mit geringem Strombe darf aber einer hohen Betriebsspannung, wie z.B. einer beson ders verlustarmen Gleichstromübertragung, einem Direktan schluss einer Bahnnetzversorgung mit Sonderfrequenz oder ei ner Erzeugung von Lichtbögen für einen chemischen Prozess ha ben die bekannten modularen Mehrstufenumrichter eine vergli chen mit den Anforderungen zu hohe Stromtragfähigkeit, so dass hohe Kosten ihrer Anwendung zur Speisung einphasiger Hochleistungslasten aus Kostengründen entgegenstehen.
Eine Umrichteranlage mit einem modularen Mehrstufenumrichter zur Umwandlung einer Gleichspannung in eine dreiphasige Wech selspannung ist aus der EP 2 637 296 Al bekannt. Dort wird vorgeschlagen, einen zweiphasigen Wechselrichter einzusetzen, dessen Ausgangsspannung mittels eines Zwei-zu-drei-Phasen- Transformators in eine dreiphasige Wechselspannung umgewan delt wird. In dem Beitrag „A Modular Multilevel Converter Based Railway Power Conditioner for Power Balance and Harmonie Compensation in Scott Railway Traction System" von Song et al., IEEE 2016, wird die Verwendung eines Scott-Transformators in einer Anla ge zur Kompensation von Harmonischen bzw. Blindströmen und zur Symmetrierung einer Wirkleistung zur Versorgung einer Bahnleitung beschrieben.
Die Aufgabe der Erfindung ist es, eine Anlage der obigen Art vorzuschlagen, die möglichst kostengünstig ist und eine mög lichst zuverlässige Speisung einer Hochleistungslast ermög licht .
Die Aufgabe wird erfindungsgemäß durch eine artgemäße Anlage gelöst mit einem Drei-zu-zwei-Phasen-Transformator, der ein gangsseitig einen dreiphasigen Transformatoranschluss zum Verbinden mit einem dreiphasigen Versorgungsnetz und aus gangsseitig einen ersten ausgangsseitigen, einphasigen Trans formatoranschluss und einen zweiten ausgangsseitigen, einpha sigen Transformatoranschluss umfasst, sowie einer
Umrichteranordnung mit einem ersten Teilumrichter, der einen ersten eingangsseitigen, einphasigen Wechselspannungsan schluss zum Verbinden mit dem ersten ausgangsseitigen Trans formatoranschluss des Drei-zu-zwei-Phasen-Transformator sowie einen ersten einphasigen Ausgangsanschluss umfasst, und einem zweiten Teilumrichter, der einen zweiten eingangsseitigen, einphasigen Wechselspannungsanschluss zum Verbinden mit dem zweiten ausgangsseitigen Transformatoranschluss des Drei-zu- zwei-Phasen-Transformator sowie einen zweiten einphasigen Ausgangsanschluss umfasst, wobei die Teilumrichter mittels der Ausgangsanschlüsse miteinander in einer ausgangsseitigen Reihen- und/oder Parallelschaltung und unter Ausbildung eines einphasigen Lastanschlusses zum Verbinden mit der Hochleis tungslast verbindbar sind. Die hier beschriebenen einphasigen Anschlüsse zeichnen sich als solche dadurch aus, dass jeder einphasige Anschluss zwei Abgriffe aufweist, die zur Verbin dung mit einem weiteren einphasigen Anschluss oder einer zweipoligen und damit ebenfalls einphasigen Last einsetzbar sind. Die erfindungsgemäße Anlage weist demnach einen Drei- zu-zwei-Phasen-Transformator, der eingangsseitig mit einem dreiphasigen elektrischen Netz verbindbar ist. Der Drei-zu- zwei-Phasen-Transformator ist ausgangsseitig mit einer Kombi nation zweier Teilumrichter verbindbar. Die Teilumrichter können jeweils ein- oder zweiphasig ausgebildet sein. Dies führt vorteilhaft zu einer Kostensenkung gegenüber einer Ver wendung dreiphasiger Umrichter. Zudem kann durch die aus gangsseitig wahlweise Reihen- oder Parallelschaltung der Teilumrichter eine zuverlässige Versorgung sowohl solcher Hochleistungslasten, die eine hohe Lastspannung als auch sol cher, die einen hohen Laststrom erfordern, bereitgestellt werden .
Vorzugsweise ist der Drei-zu-zwei-Phasen-Transformator ein Scott-Transformator oder ein LeBlanc-Transformator . Diese Transformatorarten haben sich als besonders wirksam und zu verlässig erwiesen.
Es kann von Vorteil sein, wenn die Anlage ferner einen weite ren Transformator umfasst, der zwischen dem Versorgungsnetz und dem Drei-zu-zwei-Phasen-Transformator schaltbar ist. Mit tels des weiteren Transformators kann die Netzspannung des eingangsseitigen Wechselspannungsnetzes auf einer niedrigere Spannung am Eingang des Drei-zu-zwei-Phasen-Transformators transformiert werden.
In einer besonderen Ausführung sind die Teilumrichter aus gangsseitig in Reihe geschaltet. Die Festlegung auf die aus gangsseitige Reihenschaltung der Teilumrichter vereinfacht den Aufbau der Anlage, die zur Versorgung einer Hochleis tungslast mit einer hohen Lastspannung besonders geeignet ist .
In einer davon abweichenden Ausführung sind die Teilumrichter ausgangsseitig in einer Parallelschaltung miteinander ge- schaltet. Die Festlegung auf die ausgangsseitige Parallel schaltung der Teilumrichter vereinfacht wiederum den Aufbau der Anlage, die damit zur Versorgung einer Hochleistungslast mit einem hohen Laststrom besonders geeignet ist.
Gemäß einer Ausführungsform der Erfindung umfasst die Anlage eine Schaltvorrichtung, wobei mittels der Schaltvorrichtung die Teilumrichter ausgangsseitig wahlweise in Reihe oder pa rallel schaltbar sind. Die Schaltvorrichtung kann beispiels weise zwischen den beiden Teilumrichtern angeordnet sein. Die Schaltvorrichtung ist geeigneterweise vierpolig ausgebildet, so dass sie zugleich mit den Ausgangsanschlüssen der beiden Teilumrichter verbindbar ist. In dieser Ausführung ist die Anlage besonders flexibel einsetzbar.
Gemäß einer weiteren Ausführungsform der Erfindung umfasst der erste Teilumrichter vier Umrichterarme, wobei ein erster Umrichterarm sich zwischen einem ersten Abgriff des ersten eingangsseitigen Wechselspannungsanschlusses und einem ersten Abgriff des ersten Ausgangsanschlusses erstreckt, ein zweiter Umrichterarm sich zwischen einem ersten Abgriff des ersten eingangsseitigen Wechselspannungsanschlusses und einem zwei ten Abgriff des ersten Ausgangsanschlusses erstreckt, ein dritter Umrichterarm sich zwischen einem zweiten Abgriff des ersten eingangsseitigen Wechselspannungsanschlusses und einem ersten Abgriff des ersten Ausgangsanschlusses erstreckt, ein vierter Umrichterarm sich zwischen einem zweiten Abgriff des ersten eingangsseitigen Wechselspannungsanschlusses und einem zweiten Abgriff des ersten Ausgangsanschlusses erstreckt, wo bei die Umrichterarme jeweils eine Reihenschaltung von
Schaltmodulen mit Halbleiterschaltern umfassen. Der erste Teilumrichter weist damit die Struktur eines einphasigen mo dularen Matrixumrichters auf. Je nach Ausgestaltung der
Schaltmodule und deren Regelung bzw. Steuerung kann der erste Teilumrichter ausgangsseitig im Allgemeinen eine Wechselspan nung oder eine Gleichspannung erzeugen. Die Ausführung des ersten Teilumrichters als einphasigen modularen Matrix- oder Mehrstufenumrichter bietet die Möglichkeit der Erzeugung be sonders vorteilhafter Ausgangsspannungen. Es ist entsprechend möglich, auch den zweiten Teilumrichter als einphasigen modu laren Matrix- oder Mehrstufenumrichter auszugestalten.
Geeigneterweise sind der erste und der zweite Teilumrichter gleichartig aufgebaut.
Zweckmäßigerweise umfasst wenigstens eines, vorzugsweise alle der Schaltmodule wenigstens vier abschaltbare Halbleiter schalter und einen Energiespeicher, die in einer Vollbrücken schaltung miteinander verbunden sind. Alternativ oder in Kom bination dazu umfasst wenigstens eines, vorzugsweise alle der Schaltmodule wenigstens zwei abschaltbare Halbleiterschalter und einen Energiespeicher, die in einer Halbbrückenschaltung miteinander verbunden sind. Die Vollbrückenschaltung bietet den Vorteil, dass Ausgangsspannungen beider Polaritäten (po sitiv und negativ) erzeugbar sind. Halbbrückenschaltung bie tet den Vorteil der geringeren Verluste. Zur Versorgung einer Hochleistungslast mit einer Gleichspannung bzw. einem Gleich strom können beispielsweise ausschließlich Schaltmodule in Halbbrückenschaltung verwendet werden. Dies senkt zusätzlich die Kosten der Anlage.
Die Erfindung betrifft ferner ein Verfahren zum Energiever sorgen einer Hochleistungslast.
Ein solches Verfahren ist beispielsweise in der WO
2016/045722 Al offenbart.
Die Aufgabe der Erfindung besteht darin, ein artgemäßes Ver fahren vorzuschlagen, dass möglichst zuverlässig und kosten günstig ist.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren zum Energieversorgen einer Hochleistungslast, bei dem die Hoch leistungslast mittels einer erfindungsgemäßen Anlage mit elektrischer Energie versorgt wird. Die Vorteile des erfindungsgemäßen Verfahrens ergeben sich insbesondere aus den im Zusammenhang mit der erfindungsgemä ßen Anlage zuvor beschriebenen Vorteilen.
Die Erfindung wird im Folgenden anhand der Ausführungsbei spiele der Figuren 1 bis 11 weiter erläutert.
Figur 1 zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Anlage in einer schematischen Darstellung;
Figur 2 zeigt ein erstes Beispiel einer Anordnung von Teilum richtern für die Anlage der Figur 1 in einer schematischen Darstellung;
Figur 3 zeigt ein zweites Beispiel einer Anordnung von Teil umrichtern für die Anlage der Figur 1 in einer schematischen Darstellung;
Figur 4 zeigt ein drittes Beispiel einer Anordnung von Teil umrichtern für die Anlage der Figur 1 in einer schematischen Darstellung;
Figur 5 zeigt einen Drei-zu-zwei-Phasen-Transformator in ei ner Scott-Schaltung in einer schematischen Darstellung;
Figur 6 zeigt einen Drei-zu-zwei-Phasen-Transformator in ei ner LeBlanc-Schaltung in einer schematischen Darstellung;
Figur 7 zeigt ein Beispiel für einen Teilumrichter der Anlage der Figur 1 in einer schematischen Darstellung;
Figur 8 zeigt ein Beispiel für eine Schaltvorrichtung für die Anlage der Figur 1 in einer schematischen Darstellung;
Figur 9 zeigt ein Beispiel eines Umrichterarmes für den Teil umrichter der Figur 7 in einer schematischen Darstellung; Figuren 10 und 11 zeigen jeweils Beispiele für Schaltmodule für den Umrichterarm der Figur 9 in einer schematischen Dar stellung .
In Figur 1 ist eine Anlage 1 zur Speisung einer Hochleis tungslast 7 aus einem dreiphasigen Wechselspannung- bzw. Ver sorgungsnetz 6. Die Hochleistungslast 7 kann beispielsweise ein Verbraucher, ein elektrischer Energiespeicher oder auch ein weiteres Wechselspannungsnetz sein.
Die Anlage 1 umfasst eine Anordnung 2 mit einem Drei-zu-zwei- Phasen-Transformator und einer Umrichteranordnung, auf deren Aufbau in den nachfolgenden Figuren 2 bis 4 näher eingegangen wird. Ferner umfasst die Anlage 1 eine zentrale Ansteuerein heit 5, mittels der die Umrichteranordnung geregelt bzw. ge steuert werden kann. Die Regelung wird unter Berücksichtigung von Spannungs- und Strommesswerten, die mittels einer Span nungsmessvorrichtung 4 und einer Strommessvorrichtung 3 er fasst werden. Ein Dreiphasentransformator 8 ist zum Herunter transformieren der Netzspannung des Wechselspannungsnetzes 6 zwischen der Anordnung 2 und dem Wechselspannungsnetz 6 ange ordnet .
In Figur 2 ist eine Umrichteranordnung 10 mit einem Drei-zu- zwei-Phasen-Transformator 11 dargestellt, die in der Anlage 1 der Figur 1 einsetzbar ist. Der Drei-zu-zwei-Phasen- Transformator 11 umfasst eingangsseitig einen dreiphasigen Transformatoranschluss ABC zum Verbinden mit dem Dreiphasen transformator 8 oder direkt mit dem Wechselspannungsnetz 6 der Figur 1. Ferner weist der Drei-zu-zwei-Phasen- Transformator 11 einen ersten ausgangsseitigen, einphasigen Transformatoranschluss DE und einen zweiten ausgangsseitigen, einphasigen Transformatoranschluss FG auf.
Die Umrichteranordnung 10 umfasst einen ersten Teilumrichter 12 und einen zweiten Teilumrichter 13. Der erste Teilumrich- ter 12 weist einen ersten eingangsseitigen, einphasigen Wech selspannungsanschluss UV auf. Die beiden Abgriffe des Wech selspannungsanschlusses UV sind als U bzw. V gekennzeichnet. Der zweite Teilumrichter 13 weist einen zweiten eingangssei tigen, einphasigen Wechselspannungsanschluss U'V' auf. Die beiden Abgriffe des Wechselspannungsanschlusses U'V' sind als U' bzw. V' gekennzeichnet. Die beiden eingangsseitigen Wech selspannungsanschlüsse UV, U'V' sind mit ihnen zugeordneten Transformatoranschlüssen DE und FG verbunden. Der erste Teil umrichter 12 weist ferner einen ersten einphasigen Ausgangs anschluss XY mit den Abgriffen X und Y auf. Der zweite Teil umrichter weist entsprechend einen zweiten einphasigen Aus gangsanschluss X'Y' mit den Abgriffen X' und Y' auf. Die bei den Teilumrichter 12 und 13 sind ausgangsseitig in einer Rei henschaltung miteinander verbunden, wobei der zweite Abgriff Y des ersten Ausgangsanschlusses XY mit dem ersten Abgriff X' des zweiten Ausgangsanschlusses X'Y' verbunden ist und der erste Abgriff X des ersten Ausgangsanschlusses XY und der zweite Abgriff Y' des zweiten Ausgangsanschlusses X'Y' einen einphasigen Lastanschluss 14 zum Verbinden mit der Hochleis tungslast ausbilden, mit einem ersten Lastabgriff 14a und ei nem zweiten Lastabgriff 14b. Am Lastanschluss 14 ist mittels der Umrichteranordnung 10 eine Lastspannung Ulast erzeugbar.
In Figur 3 ist eine Umrichteranordnung 15 mit einem Drei-zu- zwei-Phasen-Transformator 11 dargestellt, die in der Anlage 1 der Figur 1 einsetzbar sind. Der Aufbau der
Umrichteranordnung 15 entspricht weitgehend demjenigen der Umrichteranordnung 10 der Figur 2. In den Figuren 2 bis 4 sind gleiche und gleichartige Komponenten mit gleichen Be zugszeichen versehen, so dass im Folgenden lediglich auf die Unterschiede zwischen den Beispielen der Figuren 2 und 3 bzw. 4 näher eingegangen wird.
Im Unterschied zur Umrichteranordnung 10 sind die beiden Teilumrichter 12 und 13 der Umrichteranordnung 15 ausgangs seitig in einer Parallelschaltung miteinander verbunden. Der erste Lastabgriff 14a ist durch den ersten Abgriff X des ers ten Ausgangsanschlusses XY, verbunden mit dem ersten Abgriff X' des zweiten Ausgangsanschlusses X'Y', gebildet. Entspre chend ist der zweite Lastabgriff 14b durch den zweiten Ab griff Y des ersten Ausgangsanschlusses XY, verbunden mit dem zweiten Abgriff Y' des zweiten Ausgangsanschlusses X'Y', ge bildet .
In Figur 4 ist eine Umrichteranordnung 16 mit einem Drei-zu- zwei-Phasen-Transformator 11 dargestellt, die in der Anlage 1 der Figur 1 einsetzbar sind. Der Aufbau der
Umrichteranordnung 16 entspricht weitgehend demjenigen der Umrichteranordnungen 10 bzw. 15 der Figuren 2 und 3.
Im Unterschied zu der Umrichteranordnung 10 der Figur 2 um fasst die Umrichteranordnung 16 eine Schaltvorrichtung 17. Mittels der Schaltvorrichtung 17 können die beiden Teilum richter 12 und 13 der Umrichteranordnung 16 ausgangsseitig wahlweise in einer Reihen- oder Parallelschaltung miteinander verbunden werden. Auf den Aufbau der Schaltvorrichtung 17 wird im Zusammenhang mit der nachfolgenden Figur 8 näher ein gegangen .
In Figur 5 ist ein Drei-zu-zwei-Phasen-Transformator in Form eines Scott-Transformators 24 dargestellt. Erkennbar sind der eingangsseitige, dreiphasige Transformatoranschluss ABC sowie die beiden ausgangsseitigen, einphasigen Transformatoran schlüsse DE und FG.
In Figur 6 ist ein Drei-zu-zwei-Phasen-Transformator in Form eines LeBlanc-Transformators 25 dargestellt. Erkennbar sind der eingangsseitige, dreiphasige Transformatoranschluss ABC sowie die beiden ausgangsseitigen, einphasigen Transformator anschlüsse DE und FG.
Figur 7 zeigt einen Teilumrichter 26, der als erster oder auch als zweiter Teilumrichter für eine der Umrichteranordnungen 10, 15, 16 der Figuren 2 bis 4 einsetz- bar ist. Der Teilumrichter 26 umfasst einen ersten
Umrichterarm 27, einen zweiten Umrichterarm 28, einen dritten Umrichterarm 29 und einen vierten Umrichterarm 30. Der Teil umrichter 26 ist demnach als einphasiger Matrixumrichter aus gebildet. Der erste Umrichterarm 27 ist zwischen dem ersten Abgriff U des ersten eingangsseitigen Wechselspannungsan schlusses UV und dem ersten Abgriff X des ersten Ausgangsan schlusses XY angeordnet, der zweite Umrichterarm 28 ist zwi schen dem ersten Abgriff U des ersten eingangsseitigen Wech selspannungsanschlusses UV und dem zweiten Abgriff Y des ers ten Ausgangsanschlusses angeordnet, der dritte Umrichterarm 29 ist zwischen einem zweiten Abgriff V des ersten eingangs seitigen Wechselspannungsanschlusses UV und dem ersten Ab griff X des ersten Ausgangsanschlusses XY angeordnet und der vierte Umrichterarm 30 ist zwischen dem zweiten Abgriff V des ersten eingangsseitigen Wechselspannungsanschlusses UV und dem zweiten Abgriff Y des ersten Ausgangsanschlusses XY ange ordnet. Im dargestellten Beispiel sind die Umrichterarme 27 bis 30 gleichartig ausgebildet. Auf deren Aufbau wird in der nachfolgenden Figur 9 näher eingegangen.
Figur 8 zeigt eine Schalvorrichtung 17 für die
Umrichteranordnung 16 der Figur 4. Die Schaltvorrichtung ist vierpolig und kann mittels eines ersten Schaltanschlusses 18 mit dem zweiten Abgriff Y des ersten Ausgangsanschlusses XY des ersten Teilumrichters 12, mittels eines zweiten Schaltan schlusses 19 mit dem ersten Abgriff X' des zweiten Ausgangs anschlusses X'Y' des zweiten Teilumrichters 13, mittels eines dritten Schaltanschlusses 20 mit dem ersten Lastabgriff 14a und mittels eines vierten Schaltanschlusses 21 mit dem zwei ten Lastabgriff 14b verbunden werden. In einer ersten, in Fi gur 8 grafisch mittels durchgezogener Linien 22a, b darge stellten Schaltstellung kann eine ausgangsseitige Parallel schaltung der Teilumrichter 12, 13 erzeugt werden. In einer zweiten, in Figur 8 grafisch mittels unterbrochener Linien 23a, b dargestellten Schaltstellung kann eine ausgangsseitige Reihenschaltung der Teilumrichter 12, 13 erzeugt werden.
In Figur 9 ist ein Umrichterarm 31 dargestellt, der als einer der Umrichterarme 27 bis 30 der Figur 7 einsetzbar ist. Der Umrichterarm 27 umfasst eine Reihenschaltung von Schaltmodu len 32, die im dargestellten Beispiel alle gleichartig aufge baut sind, was jedoch im Allgemeinen nicht der Fall sein muss. Auch die Anzahl der eingesetzten Schaltmodule 32 ist grundsätzlich beliebig, was in Figur 9 durch eine unterbro chene Linie 33 angedeutet ist. Die Schaltmodule 32 umfassen Halbleiterschalter sowie einen Energiespeicher. Diese können beispielsweise in einer Halbbrückenschaltung oder einer Voll brückenschaltung miteinander verbunden sein. Auf den Aufbau der Schaltmodule wird in den nachfolgenden Figuren 10 und 11 näher eingegangen.
Der Umrichterarm 31 umfasst ferner einen Stromsensor 34 zum Erfassen eines Stromes durch den Umrichterarm 31 sowie eine Koppelinduktivität 35.
Ein Schaltmodul in einer Vollbrückenschaltung 36 für den Umrichterarm 27 der Figur 9 ist in Figur 11 dargestellt. Die Vollbrückenschaltung 36 weist einen ersten Halbleiterschalter 37 sowie einen zweiten Halbleiterschalter 38, beide in Form von IGBTs. Die Durchlassrichtung der beiden Halbleiterschal ter 37 und 38 ist gleichgerichtet. Ferner umfasst die Voll brückenschaltung 36 einen dritten Halbleiterschalter 39 sowie einen vierten Halbleiterschalter 40, beide ebenfalls in Form von IGBTs. Die IGBTs können durch andere abschaltbare Halb leiterschalter ersetzt werden. Die Durchlassrichtung der bei den Halbleiterschalter 39 und 40 ist gleichgerichtet. Ein Schaltmodulkondensator 41 ist parallel zu den beiden Reihen schaltungen der Halbleiterschalter angeordnet. Ein erster An schluss AC1 ist an einem Potenzialpunkt 42 zwischen den Halb leiterschaltern 37, 38 angeordnet, ein zweiter Anschluss AC2 ist an einem Potenzialpunkt 43 zwischen den Halbleiterschal- tern 39, 40 angeordnet. Jedem der Halbleiterschalter 37-40 ist je eine Freilaufdiode D antiparallel geschaltet. Durch eine geeignete Steuerung der Leistungshalbleiter 37-40 kann die an den Anschlüssen AC1,2 abfallende Spannung erzeugt wer den, die der am Schaltmodulkondensator 41 abfallenden Span nung Uzk, der am Schaltmodulkondensator 41 abfallenden Span nung jedoch mit entgegengesetzter Polarität (-Uzk) oder der Nullspannung entspricht. Ferner ist ein Spannungssensor 44 zum Erfassen der Spannung Uzk vorgesehen.
Ein Schaltmodul in einer Halbbrückenschaltung 45 für den Umrichterarm 27 der Figur 9 ist in Figur 11 dargestellt. Die Halbbrückenschaltung 45 weist zwei abschaltbare Halbleiter schalter 37, 38 (im dargestellten Fall sind es IGBT-Schalter, wobei im Allgemeinen auch andere abschaltbare Halbleiter schalter, wie IGCT oder dergleichen verwendet werden können) und den Energiespeicher 41 auf, wobei die Halbleiterschalter 37 und 38 so mit dem Energiespeicher 41 verschaltet sind, dass an den Ausgangsklemmen AC1, 2 des Schaltmoduls eine an dem Schaltmodulkondensator 41 abfallende Spannung Uzk oder eine Nullspannung erzeugbar ist. Ferner ist ein Spannungssen sor 44 zum Erfassen der Spannung Uzk vorgesehen.

Claims

Patentansprüche
1. Anlage (1) zur Energieversorgung einer Hochleistungslast (7) umfassend
- einen Drei-zu-zwei-Phasen-Transformator (11), der eingangs seitig einen dreiphasigen Transformatoranschluss (ABC) zum Verbinden mit einem dreiphasigen Versorgungsnetz (6) und aus gangsseitig einen ersten ausgangsseitigen, einphasigen Trans formatoranschluss (DE) und einen zweiten ausgangsseitigen, einphasigen Transformatoranschluss (FG) umfasst,
- eine Umrichteranordnung (10) mit
einem ersten Teilumrichter (12), der einen ersten ein gangsseitigen, einphasigen Wechselspannungsanschluss (UV) zum Verbinden mit dem ersten ausgangsseitigen Transformatoran schluss des Drei-zu-zwei-Phasen-Transformators sowie einen ersten einphasigen Ausgangsanschluss (XY) umfasst,
einem zweiten Teilumrichter (13), der einen zweiten ein gangsseitigen, einphasigen Wechselspannungsanschluss (UC'V') zum Verbinden mit dem zweiten ausgangsseitigen Transformator anschluss des Drei-zu-zwei-Phasen-Transformator sowie einen zweiten einphasigen Ausgangsanschluss (C'U') umfasst, wobei die Teilumrichter (12, 13) mittels der Ausgangsanschlüsse miteinander in einer ausgangsseitigen Reihen- und/oder Paral lelschaltung und unter Ausbildung eines einphasigen Lastan schlusses (14) zum Verbinden mit der Hochleistungslast verbindbar sind.
2. Anlage (1) nach Anspruch 1, wobei der Drei-zu-zwei-Phasen- Transformator (11) ein Scott-Transformator (24) oder ein Le Blanc-Transformator (25) ist.
3. Anlage (1) nach einem der vorangehenden Ansprüche, wobei die Anlage (1) ferner einen weiteren Transformator (8) um fasst, der zwischen dem Versorgungsnetz (6) und dem Drei-zu- zwei-Phasen-Transformator (11) schaltbar ist.
4. Anlage (1) nach einem der vorangehenden Ansprüche, wobei die Teilumrichter (12, 13) ausgangsseitig in Reihe geschaltet sind .
5. Anlage (1) nach einem der vorangehenden Ansprüche, wobei die Teilumrichter (12, 13) ausgangsseitig parallel geschaltet sind .
6. Anlage (1) nach einem der vorangehenden Ansprüche, wobei die Anlage (1) eine Schaltvorrichtung (17) umfasst, wobei mittels der Schaltvorrichtung (17) die Teilumrichter (12, 13) ausgangsseitig wahlweise in Reihe oder parallel schaltbar sind .
7. Anlage (1) nach einem der vorangehenden Ansprüche, wobei der erste Teilumrichter (12) vier Umrichterarme (27-30) um fasst, wobei
ein erster Umrichterarm (27) sich zwischen einem ersten Abgriff des ersten eingangsseitigen Wechselspannungsanschlus ses und einem ersten Abgriff des ersten Ausgangsanschlusses erstreckt,
ein zweiter Umrichterarm (28) sich zwischen einem ersten Abgriff des ersten eingangsseitigen Wechselspannungsanschlus ses und einem zweiten Abgriff des ersten Ausgangsanschlusses erstreckt,
ein dritter Umrichterarm (29) sich zwischen einem zwei ten Abgriff des ersten eingangsseitigen Wechselspannungsan schlusses und einem ersten Abgriff des ersten Ausgangsan schlusses erstreckt,
ein vierter Umrichterarm (30) sich zwischen einem zwei ten Abgriff des ersten eingangsseitigen Wechselspannungsan schlusses und einem zweiten Abgriff des ersten Ausgangsan schlusses erstreckt, wobei
die Umrichterarme (27-30) jeweils eine Reihenschaltung von Schaltmodulen (32) mit Halbleiterschaltern umfassen.
8. Anlage (1) nach Anspruch 7, wobei wenigstens eines der Schaltmodule (32) wenigstens vier abschaltbare Halbleiter schalter (37-40) und einen Energiespeicher (41) umfasst, die in einer Vollbrückenschaltung miteinander verbunden sind.
9. Anlage (1) nach Anspruch 7 oder 8, wobei wenigstens eines der Schaltmodule (32) wenigstens zwei abschaltbare Halblei terschalter (37, 38) und einen Energiespeicher (41) umfasst, die in einer Halbbrückenschaltung miteinander verbunden sind
10. Verfahren zum Energieversorgen einer Hochleistungslast (7), bei dem die Hochleistungslast mittels einer Anlage (1) nach einem der Ansprüche 1 bis 9 mit elektrischer Energie versorgt wird.
EP18746609.9A 2018-07-10 2018-07-10 Anlage und verfahren zum energieversorgen einer hochleis-tungslast Ceased EP3804113A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/068636 WO2020011339A1 (de) 2018-07-10 2018-07-10 Anlage und verfahren zum energieversorgen einer hochleis-tungslast

Publications (1)

Publication Number Publication Date
EP3804113A1 true EP3804113A1 (de) 2021-04-14

Family

ID=63041978

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18746609.9A Ceased EP3804113A1 (de) 2018-07-10 2018-07-10 Anlage und verfahren zum energieversorgen einer hochleis-tungslast

Country Status (3)

Country Link
US (1) US11342859B2 (de)
EP (1) EP3804113A1 (de)
WO (1) WO2020011339A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230115752A1 (en) * 2020-03-24 2023-04-13 Siemens Energy Global GmbH & Co. KG Supply unit for a high-power load and arrangement including the supply unit
FR3112042B1 (fr) * 2020-06-29 2023-10-27 Inst Supergrid Convertisseur de tension AC/DC triphasé comprenant uniquement deux modules de conversion électrique

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459652A (en) * 1982-02-16 1984-07-10 Emerson Electric Company Phase-on ride-through control circuit
US5311419A (en) * 1992-08-17 1994-05-10 Sundstrand Corporation Polyphase AC/DC converter
SE510292C2 (sv) * 1996-01-23 1999-05-10 Asea Brown Boveri Strömriktarutrustning med ett antal dubbelströmriktare
EP2416486B1 (de) * 2009-03-30 2018-05-30 Hitachi, Ltd. Leistungswandler
WO2012130296A1 (de) * 2011-03-30 2012-10-04 Siemens Aktiengesellschaft Hybridumrichter und verfahren zu seiner regelung
EP2557675A1 (de) * 2011-08-08 2013-02-13 Siemens Aktiengesellschaft Elektrische Direkterwärmungsanordnung mit einem Transformator und einem Spannungszwischenkreis-Wechselstromumrichter
WO2013077250A1 (ja) * 2011-11-25 2013-05-30 国立大学法人東京工業大学 単相電力変換器、三相二相電力変換器および三相電力変換器
EP3148068B1 (de) * 2012-01-18 2017-08-23 Toshiba Mitsubishi-Electric Industrial Systems Corporation Stromwandler
EP2637296A1 (de) 2012-03-06 2013-09-11 Siemens Aktiengesellschaft HVDC Stromrichterstation mit zweiphasigem modularen Mehrpunktumrichter und Scott-T 2 nach 3 Phasen Transformator
JP6018934B2 (ja) * 2013-01-25 2016-11-02 株式会社日立製作所 電力変換装置
JP6326235B2 (ja) * 2014-01-30 2018-05-16 株式会社日立製作所 電力変換換装及び電力変換方法
EP3164934B1 (de) * 2014-08-15 2022-04-13 Siemens Energy Global GmbH & Co. KG Umrichteranordnung
US20170302192A1 (en) 2014-09-24 2017-10-19 Siemens Aktiengesellschaft Electrical arrangement and method for generating a direct current
EP3259839B1 (de) 2015-04-02 2021-09-29 Siemens Energy Global GmbH & Co. KG Umrichteranordnung sowie verfahren zu deren kurzschlussschutz
WO2018091065A1 (en) 2016-11-15 2018-05-24 Abb Schweiz Ag A modular multilevel converter for use in a high voltage traction system

Also Published As

Publication number Publication date
US11342859B2 (en) 2022-05-24
WO2020011339A1 (de) 2020-01-16
US20210305905A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
EP3172823B1 (de) Gleichspannungswandler mit transformator
EP2107672A1 (de) Dreiphasiger Wechselrichter ohne Verbindung zwischen dem Neutralleiter des Netzes und dem Mittelpunkt des Zwischenkreises
DE102019106485B4 (de) Weissach-Gleichrichteranordnung
WO2011154506A2 (de) Schaltungstopologie für einen phasenanschluss eines wechselrichters
WO2022207258A1 (de) Ladestation, system und verfahren
EP1766767B1 (de) Verfahren zum betrieb eines wechselrichters und anordnung zur durchführung des verfahrens
DE112009004627T5 (de) Leistungsumwandlungsvorrichtung
EP3934086A1 (de) Energieversorgungssystem
EP2992595A1 (de) Umrichteranordnung mit parallel geschalteten mehrstufen-umrichtern sowie verfahren zu deren steuerung
EP2807738B1 (de) Multizellenkonverter
EP3804113A1 (de) Anlage und verfahren zum energieversorgen einer hochleis-tungslast
EP2928060A1 (de) Modulare Stromrichterschaltung mit Submodulen, die unterschiedliches Schaltvermögen aufweisen
WO2017080928A1 (de) Modularer mehrstufenumrichter und verfahren zum betreiben eines modularen mehrstufenumrichters
WO2009156021A1 (de) Spannungswandlerschaltung und wechselrichter
WO2019063214A1 (de) Vorladung eines stromrichterspannungszwischenkreises mittels einer hilfsenergieversorgung
EP3176937A1 (de) Stromrichteranordnung
EP3729626B1 (de) Umrichter mit mindestens einem wandlermodul mit drei brückenzweigen, verfahren zum betreiben und verwendung eines solchen umrichters
WO2002023704A1 (de) Schaltungsanordnung zur energieversorgung für eine ansteuerschaltung eines leistungshalbleiterschalters und verfahren zur bereitstellung der ansteuerenergie für einen leistungshalbleiterschalter
WO2013186006A2 (de) Multizellenkonverter
EP3741023B1 (de) Vorrichtung und verfahren zum steuern eines lastflusses in einem wechselspannungsnetz
EP3331118B1 (de) Anlage zum übertragen elektrischer leistung
DE102021119899B4 (de) Verfahren zum betrieb eines wechselrichters und wechselrichter
DE102011075658B4 (de) Verfahren zum Erzeugen von Energie mittels einer Photovoltaikanlage und Photovoltaikanlage
EP3291433A1 (de) Gleichspannungswandler mit transformator
WO2022242936A1 (de) Verfahren zum betrieb eines gleichstromstellers zur versorgung einer elektrolyseeinrichtung mit elektrischer betriebsenergie

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20231213