EP3802956B1 - Method for tamping a track in the region of a railway switch - Google Patents

Method for tamping a track in the region of a railway switch Download PDF

Info

Publication number
EP3802956B1
EP3802956B1 EP19717905.4A EP19717905A EP3802956B1 EP 3802956 B1 EP3802956 B1 EP 3802956B1 EP 19717905 A EP19717905 A EP 19717905A EP 3802956 B1 EP3802956 B1 EP 3802956B1
Authority
EP
European Patent Office
Prior art keywords
branch
track
tamping
recorded
correction values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19717905.4A
Other languages
German (de)
French (fr)
Other versions
EP3802956A1 (en
EP3802956C0 (en
Inventor
Martin BÜRGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Original Assignee
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasser und Theurer Export Von Bahnbaumaschinen GmbH filed Critical Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Publication of EP3802956A1 publication Critical patent/EP3802956A1/en
Application granted granted Critical
Publication of EP3802956B1 publication Critical patent/EP3802956B1/en
Publication of EP3802956C0 publication Critical patent/EP3802956C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • E01B27/17Sleeper-tamping machines combined with means for lifting, levelling or slewing the track
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/02Applications of measuring apparatus or devices for track-building purposes for spacing, for cross levelling; for laying-out curves
    • E01B35/04Wheeled apparatus
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/12Tamping devices
    • E01B2203/125Tamping devices adapted for switches or crossings
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B7/00Switches; Crossings

Definitions

  • the invention relates to a method for tamping a track in the area of a set of points using a tamping machine that can be moved along the track, in which a first branch is brought into a desired position and tamped in a first work cycle, with the tamping machine then moving backwards to a branch point and in a second A second branch is brought into a target position and stuffed during the work cycle.
  • Track-movable tamping machines for tamping track sections and switch sections have been known for a long time.
  • the EP 1 143 069 A1 such a machine.
  • This includes a lifting/straightening unit for leveling and straightening a main track (main track) and an additional lifting device for lifting a branch track branching off from the main track (branch line of a switch).
  • the branch track is also lifted in the effective range of the additional lifting device while driving on the main track, with a common measuring system ensuring a controlled lifting of the points.
  • the invention is based on the object of specifying improvements over the prior art for a method of the type mentioned at the outset.
  • an actual position of the second branch is detected by means of a sensor arrangement, in particular in relation to the position of the first branch, and correction values for the position of the second branch are calculated on the basis of this detected actual position.
  • the reverse travel which is necessary in any case, is used in this way to determine the position of the second branch that has changed during the course of the first work pass. This eliminates the need for a time-consuming manual intermediate measurement before the second work cycle can begin.
  • the first branch here is the track that is lifted and straightened during the first work pass, regardless of whether it is a main track or a branch track.
  • the actual position of the second branch is detected in a detection area that extends beyond a switch end.
  • the end of the switch is usually the last continuous common sleeper of the main track and branch track.
  • a further improvement provides that a reference plane defined by the position of the first branch is specified and that correction values for the position of the second branch are calculated as deviations from this reference plane.
  • the correction of the second branch, carried out in the second pass is carried out in relation to the first branch, which has already been stuffed.
  • the correction of the second branch can also take place with respect to another predetermined desired position.
  • surface contours of the two branches are advantageously detected by means of the sensor arrangement.
  • the actual positions of the track axes can be calculated in a simple manner and the correction values can then be specified.
  • the surface contours are recorded as a cloud of points and evaluated by means of a computing unit.
  • Efficient algorithms are known for processing the corresponding data, which enable the track axes to be determined quickly and precisely. Filter methods can also be used to reduce the amount of data. For example, only the surface points of the rails are processed further. With known algorithms, imaging errors, distortion errors or other detection errors are also reliably detected and eliminated.
  • a development of the method provides that the calculated correction values are transmitted to a so-called control computer of the tamping machine.
  • the control computer is a computing unit for carrying out a track geometry correction, with the tamping machine being guided according to a specified target geometry of the track.
  • the control computer specifies the appropriate parameters for the control devices of the tamping machine.
  • the tamping machine 1 shown can be moved on a track 3 by means of driven rail carriages 2 .
  • Track 3 includes Sleepers 4, which form a track grid with rails 5 fastened to them, which is mounted in a ballast bed 6.
  • a switch 7 branches the track 3 into two branches 8,9. In the case of a simple switch according to 2 are these a main track and a branch track.
  • curved points, double points and crossing points Special procedures and special tamping machines are used to correct the position of such switch sections.
  • the tamping machine 1 comprises a tamping unit 10, a lifting device 11 and a measuring device 12 with measuring carriages 13 and measuring chords 14.
  • the measuring chords 14 are, for example, tensioned steel chords or optical chords that run between light-emitting elements and light sensors.
  • the lifting adjustment device 11 has two laterally extendable additional lifting adjustment devices 16. A branching branch 9 is lifted and straightened by means of the respective additional lifting reporting device 16 until a maximum lateral processing limit 17 is reached.
  • a sensor arrangement 19 is attached to the front face in the working direction 18 .
  • This includes a laser scanner 20 and/or a light section sensor 21 and an evaluation device 22 for calculating a point cloud. Further information can be recorded by means of a camera 23 .
  • the point cloud can be supplemented with color information.
  • a switch section to be processed with a simple switch 7 comprises a switch heart 24, switch tongues 25 and check rails 26 as well as a switch start 27 and two switch ends 28.
  • the main track and the branch track have continuous sleepers 4 up to the switch ends 28, so that lifting or straightening of one branch inevitably affects the other branch.
  • the first branch 8 When correcting the track position in the switch section, the first branch 8 is initially brought into a predetermined target position in a first work step.
  • the elevation reporting device 11 lifts and aligns the track grid, with the current track position being measured continuously by means of the measuring device 12 is recorded and compared with the specified target position.
  • the track grid is stabilized in its position by compacting the ballast bed 6 by means of the tamping unit 10 .
  • the tamping machine 1 is guided with a so-called master computer 29 according to a known desired geometry of the track 3.
  • master computer 29 As an alternative to this, there is also the possibility of guiding the tamping machine 1 with an unknown target geometry.
  • a measuring run is carried out with the tamping machine 1 before the track position is corrected, and the target position is determined with corresponding correction values from the measured actual position of the track 3 by means of an electronic versine correction.
  • the sensor arrangement 19 is set up in such a way that the actual position of the second branch 9 is detected while the tamping machine 1 is reversing up to a junction point. Since the tamping machine 1 moves along the first branch 8, this forms the reference basis for detecting the actual position of the second branch 9. Correction values 30, 31, 32 for the position of the second branch 9 are calculated from this.
  • the position of the second branch 9 is detected in a detection area 33 in which the actual position of the second branch 9 was changed during the first work cycle. This detection area 33 extends at least beyond the processing limit 17 and advantageously beyond the switch end 28 .
  • the larger detection area 33 allows reliable detection of the entire section of the second branch 9 that was changed during the first work pass.
  • the laser scanner 20 is arranged on the front face of the tamping machine 1 in the middle in the upper area, so that a wide area is covered on both sides of the tamping machine 1 .
  • a laser beam rotating about a longitudinal axis of the tamping machine 1 sweeps over the surface of the track 3 and its surroundings, a distance to the irradiated surface point being measured at clocked intervals. In this way, a grid-like detection of the surface is created.
  • a cross-section of the track and its surroundings is measured, with a helical juxtaposition of measuring points takes place. The sum of all measuring points provides a point cloud of the track and its surroundings.
  • light section sensors 21 are arranged above each rail. These also emit laser beams and measure the distance to an illuminated surface point using a detector based on the principle of triangulation.
  • the result is a point cloud of the track and its surroundings. With the simultaneous use of several sensors 20, 21, 23, sensor fusion brings together all the measurement data by means of the evaluation device 22.
  • the resulting point cloud contains precise position information and possibly color information of the surface points of track 3 and its surroundings.
  • An orthogonal coordinate system x, y, z following the course of the track is advantageously specified as a common reference system ( 3 ).
  • the origin of the coordinates is preferably on the so-called track axis 34 (center of the track), which runs at half the track width between the two rails 5 .
  • the x-axis of the coordinate system points in the direction of travel, the y-axis in the transverse direction of the track.
  • the z-axis values then indicate height deviations of the detected surface points with respect to the xy plane.
  • the distance s to a reference point fixed along the track is continuously recorded (kilometre counting), for example by means of an odometer.
  • a GNSS device can be used to determine the current measurement position.
  • the y-coordinates and z-coordinates relevant to the track position are thus assigned to an exact position on track 3. The same applies when specifying a stationary or inertial coordinate system as a common reference system.
  • the detected point cloud is usually initially related to a different coordinate system, which is moved with the sensor device 19, for example.
  • the position of the track axis 34 is first calculated from coordinates of the surface points 35 on the inner edges of the rails 5 of the track 3 traveled on. This Surface points 35 are determined using known pattern recognition methods.
  • the coordinates of all points or a previously filtered point set of the point cloud are transformed to the x, y, z coordinate system following the course of the track.
  • the transformation process preferably takes place in a computing unit 36 of the tamping machine 1, in which software for pattern recognition and coordinate transformation is set up.
  • the surface points of the second branch 9 in relation to the first branch 8 are recorded during the reverse movement of the tamping machine 1 after the first work pass has taken place.
  • the software set up in the computing unit 36 determines the coordinates of the surface points 35 on the inner edges of the rails 5 of the second branch 9 and the corresponding track axis 34. This is done by means of pattern recognition and, if necessary, by interpolation if no recorded surface point can be assigned to the respective inner rail edge is.
  • the reach unit 36 calculates correction values 30, 31, 32 for the two rails 5 or the track axis 34 for the second work cycle, depending on the distance s along the second branch 9. Specifically, all relevant points of the point cloud along the two branches 8, 9 for the calculation of the correction values 30, 31, 32 used. It is irrelevant that during the measurement by means of the laser scanner 20 a transverse profile of the track 3 recorded on the first branch 8 results in a profile of the track 3 running obliquely for the second branch 9 . As soon as all the scanned surface profiles have been put together to form the spatial point cloud, the entire actual geometry of the two detected branches 8, 9 is known in a common reference system.
  • the second branch 9 is usually raised to the level of the first branch 8 that has already been processed.
  • the correction values are easy to determine because the first branch is specified as the reference system for capturing the point cloud.
  • a reference plane 37 predetermined by the position of the first branch 8 is determined and deviations from this plane are used as correction values 30, 31, 32 Reference plane 37 calculated.
  • the correction values 30, 31, 32 correspond to the detected deviations in the direction of the z-axis. If the specified target position of the first branch 8 was not reached in the first work run, this target position that was not reached is used as the reference system for the calculation of the correction values 30 , 31 , 32 . There is therefore no error propagation.
  • the correction values 30, 31, 32 are calculated accordingly Correction work continued as usual. This transition can be recognized by the fact that the actual position of the second branch 9 recorded during reversing corresponds to a previously measured actual position at the corresponding track location.
  • the control computer 29 calculates the working and adjustment parameters that are required to control the tamping machine 1 .
  • the actual position of the second line 9 can be transmitted to the control computer 29, in particular as a course of arrow heights.
  • the correction values 30, 31, 32 are then calculated by means of the control computer 29 by comparison with a stored target position of the corresponding track section. During the work passes, the measuring device 12 is used to ensure that the specified corrections are achieved.

Description

Gebiet der Technikfield of technology

Die Erfindung betrifft ein Verfahren zum Unterstopfen eines Gleises im Bereich einer Weiche mittels einer gleisverfahrbaren Stopfmaschine, wobei in einem ersten Arbeitsdurchgang ein erster Zweig in eine Solllage gebracht und unterstopft wird, wobei danach eine Rückwärtsfahrt der Stopfmaschine bis vor eine Abzweigstelle erfolgt und wobei in einem zweiten Arbeitsdurchgang ein zweiter Zweig in eine Solllage gebracht und unterstopft wird.The invention relates to a method for tamping a track in the area of a set of points using a tamping machine that can be moved along the track, in which a first branch is brought into a desired position and tamped in a first work cycle, with the tamping machine then moving backwards to a branch point and in a second A second branch is brought into a target position and stuffed during the work cycle.

Stand der TechnikState of the art

Gleisverfahrbare Stopfmaschinen zum Unterstopfen von Gleisstrecken und Weichenabschnitten sind seit langem bekannt. Beispielsweise offenbart die EP 1 143 069 A1 eine solche Maschine. Diese umfasst ein Hebe-/Richtaggregat zum Nivellieren und Richten eines Stammgleises (Hauptgleis) und eine Zusatzhebeeinrichtung zum Anheben eines vom Stammgleis abzweigenden Zweiggleises (Abzweigstrang einer Weiche). Dabei wird in einem ersten Arbeitsdurchgang während des Befahrens des Stammgleises das Zweiggleis im Wirkbereich der Zusatzhebeeinrichtung mitgehoben, wobei ein gemeinsames Messsystem eine kontrollierte Anhebung der Weiche sicherstellt.Track-movable tamping machines for tamping track sections and switch sections have been known for a long time. For example, the EP 1 143 069 A1 such a machine. This includes a lifting/straightening unit for leveling and straightening a main track (main track) and an additional lifting device for lifting a branch track branching off from the main track (branch line of a switch). In the first work step, the branch track is also lifted in the effective range of the additional lifting device while driving on the main track, with a common measuring system ensuring a controlled lifting of the points.

Auf diese Weise wird die Istlage des Zweiggleises im Bereich der Weiche verändert und eine gegebenenfalls zuvor vorgenommene Vermessung ist nicht mehr nutzbar, um Vorgaben für ein Anheben bzw. Richten und ein Unterstopfen des weiterführenden Zweiggleises zu liefern. Vor einem zweiten Arbeitsdurchgang, bei dem das Zweiggleis befahren und unterstopft wird, muss deshalb nach dem Stand der Technik eine manuelle Vermessung des Ergebnisses des ersten Arbeitsdurchgangs erfolgen.In this way, the actual position of the branch track is changed in the area of the switch and any measurement previously carried out can no longer be used to provide specifications for raising or straightening and tamping the continuing branch track. According to the state of the art, a manual measurement of the result of the first work pass must therefore be carried out before a second work pass, in which the branch track is driven on and tamped.

Zusammenfassung der ErfindungSummary of the Invention

Der Erfindung liegt die Aufgabe zugrunde, für ein Verfahren der eingangs genannten Art Verbesserungen gegenüber dem Stand der Technik anzugeben.The invention is based on the object of specifying improvements over the prior art for a method of the type mentioned at the outset.

Erfindungsgemäß wird diese Aufgabe gelöst durch die Merkmalskombination des unabhängigen Anspruchs 1. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.According to the invention, this object is achieved by the combination of features of independent claim 1. Advantageous developments of the invention result from the dependent claims.

Dabei wird während der Rückwärtsfahrt mittels einer Sensoranordnung eine Istlage des zweiten Zweiges erfasst, insbesondere in Bezug auf die Lage des ersten Zweiges, und es werden auf Basis dieser erfassten Istlage Korrekturwerte für die Lage des zweiten Zweiges berechnet. Die ohnedies notwendige Rückwärtsfahrt wird auf diese Weise genutzt, um die im Zuge des ersten Arbeitsdurchgangs veränderte Lage des zweiten Zweiges zu ermitteln. Damit entfällt eine aufwändige manuelle Zwischenmessung, bevor der zweite Arbeitsdurchgang beginnen kann. Als erster Zweig ist hier jenes Gleis bezeichnet, das während des ersten Arbeitsdurchgangs gehoben und gerichtet wird, unabhängig davon, ob es sich um ein Stammgleis oder ein Zweiggleis handelt.During reversing, an actual position of the second branch is detected by means of a sensor arrangement, in particular in relation to the position of the first branch, and correction values for the position of the second branch are calculated on the basis of this detected actual position. The reverse travel, which is necessary in any case, is used in this way to determine the position of the second branch that has changed during the course of the first work pass. This eliminates the need for a time-consuming manual intermediate measurement before the second work cycle can begin. The first branch here is the track that is lifted and straightened during the first work pass, regardless of whether it is a main track or a branch track.

Vorteilhafterweise erfolgt die Erfassung der Istlage des zweiten Zweiges in einem über ein Weichenende hinausgehenden Erfassungsbereich. Als Weichenende ist dabei gewöhnlich die letzte durchgehende gemeinsame Schwelle von Stammgleis und Zweiggleis festgelegt. Somit wird während der Rückwärtsfahrt der gesamte Bereich erfasst, in dem der zweite Zweig nach dem ersten Arbeitsdurchgang eine neue Lage aufweist.Advantageously, the actual position of the second branch is detected in a detection area that extends beyond a switch end. The end of the switch is usually the last continuous common sleeper of the main track and branch track. Thus, while reversing, the entire area is covered in which the second branch has a new position after the first work pass.

Eine weitere Verbesserung sieht vor, dass eine durch die Lage des ersten Zweiges definierte Bezugsebene vorgegeben wird und dass Korrekturwerte für die Lage des zweiten Zweiges als Abweichungen bezüglich dieser Bezugsebene berechnet werden. Auf diese Weise erfolgt die im zweiten Arbeitsdurchgang durchgeführte Korrektur des zweiten Zweiges in Bezug auf den bereits unterstopften ersten Zweig. Alternativ dazu kann die Korrektur des zweiten Zweiges auch gegenüber einer anderen vorgegebenen Solllage erfolgen.A further improvement provides that a reference plane defined by the position of the first branch is specified and that correction values for the position of the second branch are calculated as deviations from this reference plane. In this way, the correction of the second branch, carried out in the second pass, is carried out in relation to the first branch, which has already been stuffed. As an alternative to this, the correction of the second branch can also take place with respect to another predetermined desired position.

Zur Erfassung der Istlage werden vorteilhafterweise mittels der Sensoranordnung Oberflächenkonturen der beiden Zweige erfasst. Insbesondere anhand der Oberflächenkonturen der Schienen können auf einfache Weise die Istlagen der Gleisachsen berechnet und in weiterer Folge die Korrekturwerte vorgegeben werden.To detect the actual position, surface contours of the two branches are advantageously detected by means of the sensor arrangement. Using the surface contours of the rails in particular, the actual positions of the track axes can be calculated in a simple manner and the correction values can then be specified.

Dabei ist es günstig, wenn die Oberflächenkonturen als Punktwolke erfasst und mittels einer Recheneinheit ausgewertet werden. Für die Verarbeitung entsprechender Daten sind leistungsfähige Algorithmen bekannt, die eine schnelle und genaue Bestimmung der Gleisachsen ermöglichen. Zudem können Filtermethoden eingesetzt werden, um die Datenmenge zu reduzieren. Beispielsweise werden nur die Oberflächenpunkte der Schienen weiterverarbeitet. Mit bekannten Algorithmen werden auch Abbildungsfehler, Verzeichnungsfehler oder sonstige Erfassungsfehler zuverlässig erkannt und eliminiert.It is favorable here if the surface contours are recorded as a cloud of points and evaluated by means of a computing unit. Efficient algorithms are known for processing the corresponding data, which enable the track axes to be determined quickly and precisely. Filter methods can also be used to reduce the amount of data. For example, only the surface points of the rails are processed further. With known algorithms, imaging errors, distortion errors or other detection errors are also reliably detected and eliminated.

Eine Weiterbildung des Verfahrens sieht vor, dass die berechneten Korrekturwerte einem sogenannten Leitcomputer der Stopfmaschine übermittelt werden. Beim Leitcomputer handelt es sich um eine Recheneinheit zur Durchführung einer Gleislagekorrektur, wobei die Stopfmaschine nach einer vorgegebenen Soll-Geometrie des Gleises geführt wird. Der Leitcomputer gibt dabei den Steuereinrichtungen der Stopfmaschine die entsprechenden Parameter vor.A development of the method provides that the calculated correction values are transmitted to a so-called control computer of the tamping machine. The control computer is a computing unit for carrying out a track geometry correction, with the tamping machine being guided according to a specified target geometry of the track. The control computer specifies the appropriate parameters for the control devices of the tamping machine.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die beigefügten Figuren erläutert. Es zeigen in schematischer Darstellung:

Fig. 1
Stopfmaschine in einer Seitenansicht
Fig. 2
Weichenabschnitt in einer Aufsicht
Fig. 3
Querschnitt eines Stammgleises und eines Zweiggleises
The invention is explained below in an exemplary manner with reference to the accompanying figures. They show in a schematic representation:
1
Tamping machine in a side view
2
Switch section in a top view
3
Cross-section of a main track and a branch track

Beschreibung der AusführungsformenDescription of the embodiments

Die in Fig. 1 dargestellte Stopfmaschine 1 ist mittels angetriebener Schienenfahrwerke 2 auf einem Gleis 3 verfahrbar. Das Gleis 3 umfasst Schwellen 4, die mit darauf befestigten Schienen 5 einen Gleisrost bilden, der in einem Schotterbett 6 gelagert ist. Eine Weiche 7 zweigt das Gleis 3 in zwei Zweige 8, 9 auf. Im Falle einer einfachen Weiche gemäß Fig. 2 sind das ein Stammgleis und ein Zweiggleis. Zudem unterscheidet man Bogenweichen, Doppelweichen und Kreuzungsweichen. Zur Lagekorrektur solcher Weichenabschnitte kommen besondere Verfahren und spezielle Weichenstopfmaschinen zum Einsatz.In the 1 The tamping machine 1 shown can be moved on a track 3 by means of driven rail carriages 2 . Track 3 includes Sleepers 4, which form a track grid with rails 5 fastened to them, which is mounted in a ballast bed 6. A switch 7 branches the track 3 into two branches 8,9. In the case of a simple switch according to 2 are these a main track and a branch track. In addition, a distinction is made between curved points, double points and crossing points. Special procedures and special tamping machines are used to correct the position of such switch sections.

Zur Durchführung einer Gleislagekorrektur umfasst die Stopfmaschine 1 ein Stopfaggregat 10, eine Heberichteinrichtung 11 und eine Messeinrichtung 12 mit Messwägen 13 und Messsehnen 14. Bei den Messsehnen 14 handelt es sich beispielsweise um gespannte Stahlsehnen oder um optische Sehnen, die zwischen lichtgebenden Elementen und Lichtsensoren verlaufen. Die Heberichteinrichtung 11 weist neben einer Hauptheberichteinrichtung 15 zwei seitlich ausfahrbare Zusatzheberichteinrichtungen 16 auf. Mittels der jeweiligen Zusatzheberichteinrichtung 16 wird ein abzweigender Zweig 9 bis zum Erreichen einer maximalen seitlichen Bearbeitungsgrenze 17 gehoben und gerichtet.To carry out a track position correction, the tamping machine 1 comprises a tamping unit 10, a lifting device 11 and a measuring device 12 with measuring carriages 13 and measuring chords 14. The measuring chords 14 are, for example, tensioned steel chords or optical chords that run between light-emitting elements and light sensors. In addition to a main lifting adjustment device 15, the lifting adjustment device 11 has two laterally extendable additional lifting adjustment devices 16. A branching branch 9 is lifted and straightened by means of the respective additional lifting reporting device 16 until a maximum lateral processing limit 17 is reached.

In Arbeitsrichtung 18 ist an der vorderen Stirnseite eine Sensoranordnung 19 angebracht. Diese umfasst einen Laserscanner 20 und/oder einen Lichtschnittsensor 21 sowie eine Auswerteeinrichtung 22 zur Errechnung einer Punktwolke. Mittels einer Kamera 23 sind weitere Informationen erfassbar. Beispielsweise kann die Punktwolke mit Farbinformationen ergänzt werden.A sensor arrangement 19 is attached to the front face in the working direction 18 . This includes a laser scanner 20 and/or a light section sensor 21 and an evaluation device 22 for calculating a point cloud. Further information can be recorded by means of a camera 23 . For example, the point cloud can be supplemented with color information.

Ein zu bearbeitender Weichenabschnitt mit einer einfachen Weiche 7 umfasst ein Weichenherz 24, Weichenzungen 25 und Radlenker 26 sowie einen Weichenanfang 27 und zwei Weichenenden 28. Das Stammgleis und das Zweiggleis weisen bis zu den Weichenenden 28 durchgängige Schwellen 4 auf, sodass ein Heben bzw. Richten des einen Zweiges zwangsläufig auch auf den anderen Zweig wirkt.A switch section to be processed with a simple switch 7 comprises a switch heart 24, switch tongues 25 and check rails 26 as well as a switch start 27 and two switch ends 28. The main track and the branch track have continuous sleepers 4 up to the switch ends 28, so that lifting or straightening of one branch inevitably affects the other branch.

Bei einer Gleislagekorrektur im Weichenabschnitt wird zunächst in einem ersten Arbeitsdurchgang der erste Zweig 8 in eine vorgegebene Solllage gebracht. Dabei hebt und richtet die Heberichteinrichtung 11 den Gleisrost, wobei mittels der Messeinrichtung 12 laufend die momentane Gleislage erfasst und mit der vorgegebenen Solllage abgeglichen wird. Bei Erreichen der Solllage wird der Gleisrost durch Verdichten des Schotterbettes 6 mittels des Stopfaggregats 10 in seiner Lage stabilisiert.When correcting the track position in the switch section, the first branch 8 is initially brought into a predetermined target position in a first work step. The elevation reporting device 11 lifts and aligns the track grid, with the current track position being measured continuously by means of the measuring device 12 is recorded and compared with the specified target position. When the target position is reached, the track grid is stabilized in its position by compacting the ballast bed 6 by means of the tamping unit 10 .

Dabei wird die Stopfmaschine 1 mit einem sogenannten Leitcomputer 29 entsprechend einer bekannten Soll-Geomentrie des Gleises 3 geführt. Alternativ dazu besteht auch die Möglichkeit, die Stopfmaschine 1 mit unbekannter Soll-Geometrie zu führen. Dazu wird vor der Gleislagekorrektur eine Messfahrt mit der Stopfmaschine 1 durchgeführt und mittels eines elektronischen Pfeilhöhenausgleichs aus der aufgemessenen Istlage des Gleises 3 die Solllage mit entsprechenden Korrekturwerten bestimmt.The tamping machine 1 is guided with a so-called master computer 29 according to a known desired geometry of the track 3. As an alternative to this, there is also the possibility of guiding the tamping machine 1 with an unknown target geometry. For this purpose, a measuring run is carried out with the tamping machine 1 before the track position is corrected, and the target position is determined with corresponding correction values from the measured actual position of the track 3 by means of an electronic versine correction.

Die Sensoranordnung 19 ist erfindungsgemäß in der Weise eingerichtet, dass während einer Rückwärtsfahrt der Stopfmaschine 1 bis vor eine Abzweigstelle die Istlage des zweiten Zweiges 9 erfasst wird. Da die Stopfmaschine 1 dabei den ersten Zweig 8 befährt, bildet dieser die Bezugsbasis für die Istlagenerfassung des zweiten Zweiges 9. Daraus werden Korrekturwerte 30, 31, 32 für die Lage des zweiten Zweiges 9 berechnet. Die Lageerfassung des zweiten Zweiges 9 erfolgt dabei in einem Erfassungsbereich 33, in dem während des ersten Arbeitsdurchgangs die Istlage des zweiten Zweiges 9 verändert wurde. Dieser Erfassungsbereich 33 reicht zumindest über die Bearbeitungsgrenze 17 und vorteilhafterweise über das Weichenende 28 hinaus. Der größere Erfassungsbereich 33 erlaubt eine sichere Erfassung des gesamten während des ersten Arbeitsdurchgangs geänderten Abschnitts des zweiten Zweiges 9.According to the invention, the sensor arrangement 19 is set up in such a way that the actual position of the second branch 9 is detected while the tamping machine 1 is reversing up to a junction point. Since the tamping machine 1 moves along the first branch 8, this forms the reference basis for detecting the actual position of the second branch 9. Correction values 30, 31, 32 for the position of the second branch 9 are calculated from this. The position of the second branch 9 is detected in a detection area 33 in which the actual position of the second branch 9 was changed during the first work cycle. This detection area 33 extends at least beyond the processing limit 17 and advantageously beyond the switch end 28 . The larger detection area 33 allows reliable detection of the entire section of the second branch 9 that was changed during the first work pass.

Vorteilhafterweise ist der Laserscanner 20 an der vorderen Stirnseite der Stopfmaschine 1 mittig im oberen Bereich angeordnet, sodass beidseits der Stopfmaschine 1 ein weiter Bereich erfasst wird. Ein um eine Längsachse der Stopfmaschine 1 rotierender Laserstrahl überstreicht die Oberfläche des Gleises 3 und seiner Umgebung, wobei in getakteten Abständen eine Entfernung zum angestrahlten Oberflächenpunkt gemessen wird. Auf diese Weise entsteht eine rasterartige Erfassung der Oberfläche. Konkret wird bei jeder Umdrehung des Laserstrahls ein Querprofil des Gleises samt Umgebung vermessen, wobei während einer Vor- oder Rückwärtsfahrt eine helixförmige Aneinanderreihung von Messpunkten erfolgt. Die Summe aller Messpunkte liefert eine Punktwolke des Gleises und seiner Umgebung.Advantageously, the laser scanner 20 is arranged on the front face of the tamping machine 1 in the middle in the upper area, so that a wide area is covered on both sides of the tamping machine 1 . A laser beam rotating about a longitudinal axis of the tamping machine 1 sweeps over the surface of the track 3 and its surroundings, a distance to the irradiated surface point being measured at clocked intervals. In this way, a grid-like detection of the surface is created. Specifically, with each revolution of the laser beam, a cross-section of the track and its surroundings is measured, with a helical juxtaposition of measuring points takes place. The sum of all measuring points provides a point cloud of the track and its surroundings.

Alternativ dazu oder ergänzend sind über jeder Schiene Lichtschnittsensoren 21 angeordnet. Diese senden ebenfalls Laserstrahlen aus und messen die Entfernung zu einem angestrahlten Oberflächenpunkt mittels eines Detektors nach dem Prinzip der Triangulation. Auch hier ist das Resultat eine Punktwolke des Gleises und seiner Umgebung. Durch Sensorfusion erfolgt bei gleichzeitiger Verwendung mehrerer Sensoren 20, 21, 23 mittels der Auswerteeinrichtung 22 eine Zusammenführung aller Messdaten. Die sich ergebende Punktwolke enthält genaue Lageinformationen und gegebenenfalls Farbinformationen der Oberflächenpunkte des Gleises 3 und seiner Umgebung.As an alternative to this or in addition to this, light section sensors 21 are arranged above each rail. These also emit laser beams and measure the distance to an illuminated surface point using a detector based on the principle of triangulation. Here, too, the result is a point cloud of the track and its surroundings. With the simultaneous use of several sensors 20, 21, 23, sensor fusion brings together all the measurement data by means of the evaluation device 22. The resulting point cloud contains precise position information and possibly color information of the surface points of track 3 and its surroundings.

Als gemeinsames Bezugssystem wird vorteilhafterweise ein dem Gleisverlauf folgendes orthogonales Koordinatensystem x, y, z vorgegeben (Fig. 3). Dabei liegt der Koordinatenursprung vorzugsweise auf der sogenannten Gleisachse 34 (Gleismitte), welche auf der halben Spurweite zwischen den beiden Schienen 5 verläuft. Die x-Achse des Koordinatensystems weist in Fahrtrichtung, die y-Achse in Gleisquerrichtung. Die Werte der z-Achse geben dann Höhenabweichungen der erfassten Oberflächenpunkte bezüglich der x-y-Ebene an.An orthogonal coordinate system x, y, z following the course of the track is advantageously specified as a common reference system ( 3 ). The origin of the coordinates is preferably on the so-called track axis 34 (center of the track), which runs at half the track width between the two rails 5 . The x-axis of the coordinate system points in the direction of travel, the y-axis in the transverse direction of the track. The z-axis values then indicate height deviations of the detected surface points with respect to the xy plane.

Zusätzlich zur Lageerfassung bezüglich des Koordinatensystems wird beispielsweise mittels eines Odometers laufend die Wegstrecke s zu einem entlang des Gleises festgelegten Referenzpunkt erfasst (Kilometrierung). Alternativ dazu oder ergänzend ist eine GNSS-Einrichtung zur Bestimmung der aktuellen Messposition nutzbar. Damit sind die für die Gleislage relevanten y-Koordinaten und z-Koordinaten einer genauen Position am Gleis 3 zugeordnet. Dasselbe gilt bei Vorgabe eines ortsfesten bzw. inertialen Koordinatensystems als gemeinsames Bezugssystem.In addition to detecting the position with respect to the coordinate system, the distance s to a reference point fixed along the track is continuously recorded (kilometre counting), for example by means of an odometer. Alternatively or in addition, a GNSS device can be used to determine the current measurement position. The y-coordinates and z-coordinates relevant to the track position are thus assigned to an exact position on track 3. The same applies when specifying a stationary or inertial coordinate system as a common reference system.

Gewöhnlich ist die erfasste Punktwolke zunächst auf ein anderes Koordinatensystem bezogen, das beispielsweise mit der Sensoreinrichtung 19 mitbewegt wird. Für eine Koordinatentransformation wird zunächst die Lage der Gleisachse 34 aus Koordinaten der Oberflächenpunkte 35 an den Innenkanten der Schienen 5 des befahren Gleises 3 errechnet. Diese Oberflächenpunkte 35 werden dabei mittels bekannter Verfahren der Mustererkennung ermittelt. In weiterer Folge werden die Koordinaten aller Punkte oder eine zuvor gefilterte Punktmenge der Punktwolke auf das dem Gleisverlauf folgende Koordinatensystem x, y, z transformiert. Der Transformationsvorgang erfolgt vorzugsweise in einer Recheneinheit 36 der Stopfmaschine 1, in der eine Software zur Mustererkennung und Koordinatentransformation eingerichtet ist.The detected point cloud is usually initially related to a different coordinate system, which is moved with the sensor device 19, for example. For a coordinate transformation, the position of the track axis 34 is first calculated from coordinates of the surface points 35 on the inner edges of the rails 5 of the track 3 traveled on. This Surface points 35 are determined using known pattern recognition methods. Subsequently, the coordinates of all points or a previously filtered point set of the point cloud are transformed to the x, y, z coordinate system following the course of the track. The transformation process preferably takes place in a computing unit 36 of the tamping machine 1, in which software for pattern recognition and coordinate transformation is set up.

Auf diese Weise werden während der Rückwärtsfahrt der Stopfmaschine 1 nach erfolgtem ersten Arbeitsdurchgang die Oberflächenpunkte des zweiten Zweiges 9 in Bezug auf den ersten Zweig 8 erfasst. Die in der Recheneinheit 36 eingerichtete Software ermittelt in einem nächsten Verfahrensschritt die Koordinaten der Oberflächenpunkte 35 an den Innenkanten der Schienen 5 des zweiten Zweiges 9 sowie der entsprechenden Gleisachse 34. Dies geschieht mittels Mustererkennung und gegebenenfalls durch Interpolation, falls kein erfasster Oberflächenpunkt der jeweiligen Schieneninnenkante zuordenbar ist.In this way, the surface points of the second branch 9 in relation to the first branch 8 are recorded during the reverse movement of the tamping machine 1 after the first work pass has taken place. In a next method step, the software set up in the computing unit 36 determines the coordinates of the surface points 35 on the inner edges of the rails 5 of the second branch 9 and the corresponding track axis 34. This is done by means of pattern recognition and, if necessary, by interpolation if no recorded surface point can be assigned to the respective inner rail edge is.

Auf Basis dieser Daten errechnet die Reicheneinheit 36 für den zweiten Arbeitsdurchgang Korrekturwerte 30, 31, 32 für die beiden Schienen 5 bzw. die Gleisachse 34 in Abhängigkeit der Wegstrecke s entlang des zweiten Zweiges 9. Konkret werden alle relevanten Punkte der Punktewolke entlang der beiden Zweige 8, 9 für die Berechnung der Korrekturwerte 30, 31, 32 herangezogen. Dabei ist es unerheblich, dass während der Messung mittels des Laserscanners 20 ein am ersten Zweig 8 erfasstes Querprofil des Gleises 3 für den zweiten Zweig 9 ein schräg verlaufendes Profil des Gleises 3 ergibt. Sobald alle gescannten Oberflächenprofile zu der räumlichen Punktwolke zusammengesetzt sind, ist die gesamte Ist-Geometrie der beiden erfassten Zweige 8, 9 in einem gemeinsamen Bezugssystem bekannt.Based on this data, the reach unit 36 calculates correction values 30, 31, 32 for the two rails 5 or the track axis 34 for the second work cycle, depending on the distance s along the second branch 9. Specifically, all relevant points of the point cloud along the two branches 8, 9 for the calculation of the correction values 30, 31, 32 used. It is irrelevant that during the measurement by means of the laser scanner 20 a transverse profile of the track 3 recorded on the first branch 8 results in a profile of the track 3 running obliquely for the second branch 9 . As soon as all the scanned surface profiles have been put together to form the spatial point cloud, the entire actual geometry of the two detected branches 8, 9 is known in a common reference system.

Gewöhnlich wird der zweite Zweig 9 auf das Höhenniveau des bereits bearbeiteten ersten Zweiges 8 gehoben. Die Korrekturwerte sind deshalb einfach bestimmbar, weil für die Erfassung der Punktwolke der erste Zweig als Bezugssystem vorgegeben ist. Im einfachsten Fall wird eine durch die Lage des erstens Zweiges 8 vorgegebene Bezugsebene 37 bestimmt und als Korrekturwerte 30, 31, 32 werden Abweichungen gegenüber dieser Bezugsebene 37 berechnet. Anders ausgedrückt entsprechen die Korrekturwerte 30, 31, 32 den erfassten Abweichungen in Richtung der z-Achse. Falls im ersten Arbeitsdurchgang die vorgegebene Solllage des ersten Zweigs 8 nicht erreicht wurde, wird für die Berechnung der Korrekturwerte 30, 31, 32 diese nicht erreichte Solllage als Bezugssystem herangezogen. Es findet somit keine Fehlerfortpflanzung statt.The second branch 9 is usually raised to the level of the first branch 8 that has already been processed. The correction values are easy to determine because the first branch is specified as the reference system for capturing the point cloud. In the simplest case, a reference plane 37 predetermined by the position of the first branch 8 is determined and deviations from this plane are used as correction values 30, 31, 32 Reference plane 37 calculated. In other words, the correction values 30, 31, 32 correspond to the detected deviations in the direction of the z-axis. If the specified target position of the first branch 8 was not reached in the first work run, this target position that was not reached is used as the reference system for the calculation of the correction values 30 , 31 , 32 . There is therefore no error propagation.

Wenn in Ausnahmefällen für den zweiten Zweig 9 eigene Längsneigungen vorgegeben sind, erfolgt eine entsprechend angepasste Berechnung der Korrekturwerte 30, 31, 32. Sobald die Stopfmaschine 1 am zweiten Zweig 9 in einen Bereich gelangt, der durch den ersten Arbeitsdurchgang unbeeinflusst geblieben ist, werden die Korrekturarbeiten wie gewohnt fortgesetzt. Erkennbar ist dieser Übergang daran, dass die während der Rückwärtsfahrt erfasste Istlage des zweiten Zweiges 9 mit einer zuvor aufgemessenen Istlage an der entsprechenden Gleisstelle übereinstimmt.If, in exceptional cases, the second branch 9 has its own longitudinal gradients, the correction values 30, 31, 32 are calculated accordingly Correction work continued as usual. This transition can be recognized by the fact that the actual position of the second branch 9 recorded during reversing corresponds to a previously measured actual position at the corresponding track location.

Nach Übergabe der Korrekturwerte 30, 31, 32 an den Leitcomputer 29 berechnet dieser die Arbeits- und Verstellparameter, die zur Führung der Stopfmaschine 1 benötigt werden. Alternativ dazu kann die Istlage des zweiten Strangs 9, insbesondere als Verlauf von Pfeilhöhen, an den Leitcomputer 29 übermittelt werden. Die Berechnung der Korrekturwerte 30, 31, 32 erfolgt dann mittels des Leitcomputers 29 durch einen Abgleich mit einer abgespeicherten Solllage des entsprechenden Gleisabschnitts. Während der Arbeitsdurchgänge kommt die Messeinrichtung 12 zum Einsatz, um das Erreichen der vorgegebenen Korrekturen sicherzustellen.After the correction values 30 , 31 , 32 have been transferred to the control computer 29 , the control computer 29 calculates the working and adjustment parameters that are required to control the tamping machine 1 . As an alternative to this, the actual position of the second line 9 can be transmitted to the control computer 29, in particular as a course of arrow heights. The correction values 30, 31, 32 are then calculated by means of the control computer 29 by comparison with a stored target position of the corresponding track section. During the work passes, the measuring device 12 is used to ensure that the specified corrections are achieved.

Claims (6)

  1. A method of tamping a track (3) in the area of a switch (7) by means of a tamping machine (1) mobile on a track, wherein in a first working pass a first branch (8) is brought into a target position and tamped, wherein subsequently the tamping machine travels rearward to a location ahead of a branch-off point, and wherein in a second working pass a second branch (9) is brought into a target position and tamped, characterized in that, during the rearward travel, an actual position of the second branch (9) is recorded by means of a sensor arrangement (19), in particular with respect to the position of the first branch (8), and that - based on this recorded actual position - correction values (30, 31, 32) for the position of the second branch (9) are calculated.
  2. A method according to claim 1, characterized in that the recording of the actual position of the second branch (9) takes place in a recording area (33) extending beyond a switch end point (28).
  3. A method according to claim 1 or 2, characterized in that a reference plane (37) defined by the position of the first branch (8) is specified, and that correction values (30, 31, 32) for the position of the second branch (9) are calculated as deviations with regard to said reference plane (37).
  4. A method according to one of claims 1 to 3, characterized in that surface contours of the two branches (8, 9) are recorded by means of the sensor arrangement (19).
  5. A method according to claim 4, characterized in that the surface contours are recorded as a point cloud and evaluated by means of a computer unit (36).
  6. A method according to one of claims 1 to 5, characterized in that the calculated correction values (30, 31, 32) are transmitted to a so-called guiding computer (29) of the tamping machine (1).
EP19717905.4A 2018-05-24 2019-04-16 Method for tamping a track in the region of a railway switch Active EP3802956B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA148/2018A AT520824B1 (en) 2018-05-24 2018-05-24 Method and machine for submerging a track in the area of a switch
PCT/EP2019/059729 WO2019223939A1 (en) 2018-05-24 2019-04-16 Method and machine for tamping a track in the region of a switch

Publications (3)

Publication Number Publication Date
EP3802956A1 EP3802956A1 (en) 2021-04-14
EP3802956B1 true EP3802956B1 (en) 2023-06-21
EP3802956C0 EP3802956C0 (en) 2023-06-21

Family

ID=66182595

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19717905.4A Active EP3802956B1 (en) 2018-05-24 2019-04-16 Method for tamping a track in the region of a railway switch

Country Status (8)

Country Link
US (1) US20210156094A1 (en)
EP (1) EP3802956B1 (en)
JP (1) JP7326338B2 (en)
CN (1) CN112154234B (en)
AT (1) AT520824B1 (en)
CA (1) CA3095693A1 (en)
EA (1) EA202000262A1 (en)
WO (1) WO2019223939A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112857329B (en) * 2021-02-02 2022-08-30 中国铁路设计集团有限公司 Existing railway turnout center measuring method and system, storage medium and electronic equipment
CN113255066B (en) * 2021-07-15 2021-10-15 北京交通大学 Pulling-out amount comprehensive optimization method based on tamping vehicle operation characteristics
AT525332A1 (en) * 2021-08-04 2023-02-15 Hp3 Real Gmbh Procedure for correcting the lateral distance and the vertical distance of a platform edge to the track axis

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT391502B (en) * 1988-08-08 1990-10-25 Plasser Bahnbaumasch Franz MOBILE TRACK, LIFTING AND LEVELING MACHINE FOR LIFTING AND / OR OR SHIFTING A TRACK IN THE SWITCH AND CROSSING AREA
AT391903B (en) * 1989-01-26 1990-12-27 Plasser Bahnbaumasch Franz DRIVABLE TRACK MACHINE WITH A DEVICE FOR CONTROLLING THE WORKING POSITION OF YOUR WORKING AGGREGATE OR. -TOOLS
EP0930398A1 (en) * 1998-01-19 1999-07-21 Franz Plasser Bahnbaumaschinen-Industriegesellschaft m.b.H. Correction method for the position of a railway track
JP3978554B2 (en) 1998-06-15 2007-09-19 十三 松井 Track work machine for roadbed tamping
AT3739U3 (en) * 2000-04-07 2001-03-26 Plasser Bahnbaumasch Franz STAMPING MACHINE
AT3877U3 (en) * 2000-06-09 2001-03-26 Plasser Bahnbaumasch Franz STAMPING MACHINE
JP2002146702A (en) 2000-11-08 2002-05-22 Nagoya Railroad Co Ltd Tamping method for ballast and tamping machine for ballast
JP6269409B2 (en) 2014-09-17 2018-01-31 三菱電機株式会社 Gauge measuring device, gauge measuring method
AT516358B1 (en) * 2014-10-14 2017-01-15 System 7 - Railsupport GmbH Tamping machine for compacting the ballast bed of a track
AT516590B1 (en) * 2014-11-28 2017-01-15 System 7 - Railsupport GmbH Method and device for compacting the ballast bed of a track
US10125456B2 (en) * 2015-07-10 2018-11-13 Harsco Technologies LLC Workhead assembly for rail applications
AT518373B1 (en) 2016-02-24 2018-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Machine with stabilization unit and measuring method

Also Published As

Publication number Publication date
AT520824A4 (en) 2019-08-15
JP7326338B2 (en) 2023-08-15
CA3095693A1 (en) 2019-11-28
AT520824B1 (en) 2019-08-15
WO2019223939A1 (en) 2019-11-28
US20210156094A1 (en) 2021-05-27
EP3802956A1 (en) 2021-04-14
EA202000262A1 (en) 2021-03-18
JP2021523992A (en) 2021-09-09
CN112154234A (en) 2020-12-29
CN112154234B (en) 2022-11-11
EP3802956C0 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
EP3442849B1 (en) Method and measuring system for sensing a fixed point next to a track
DE3137194C2 (en)
EP3802956B1 (en) Method for tamping a track in the region of a railway switch
AT518692B1 (en) Method and system for maintaining a track for rail vehicles
EP0986732B1 (en) Measurement of grooves and long waves on rails with a longitudinal streak of light
EP3535456B1 (en) Track-laying machine with track-layout-measuring system
EP3481999B1 (en) System and method for measuring a track
EP2176465B1 (en) Method for measuring a track position
AT523627B1 (en) Method and system for determining a target track course for a position correction
DE4222333A1 (en) METHOD FOR DETERMINING THE DEVIATIONS OF THE ACTUAL LOCATION OF A TRACK SECTION
EP2142707B1 (en) Correction device for lateral drift
AT520795B1 (en) Track construction machine and method for leveling a track
AT515208A4 (en) Track-laying machine for performing track position corrections and procedures
AT520291A4 (en) Method for determining an actual position of rails of a track
EP1270814B1 (en) Track building machine and method for measuring a track
EP1001085B1 (en) Method and apparatus for tamping a railway track
EP3044374B1 (en) Method for correcting a rail track
AT524435B1 (en) Method and system for determining correction values for a position correction of a track
DE102018208189B4 (en) Method and device for determining the torsional errors of a machine axis
DE4102871A1 (en) TRACKING MACHINE
DE2434073C2 (en) Method for straightening and / or longitudinally leveling railway tracks by means of a rail-traveling junction-straightening leveling machine and device for carrying out the method
EP4130379A1 (en) Method for correcting the lateral and vertical distances between a railway platform edge of a railway platform and a rail axis
EP3996967A1 (en) Rail recognition using lidar
DE102022005083A1 (en) Self-propelled tillage machine
AT514667A1 (en) Method for submerging a track

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230209

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008262

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1580975

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230705

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230731

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230726

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621