EP3800411B1 - Optimaler betrieb eines wärmetauschers - Google Patents

Optimaler betrieb eines wärmetauschers Download PDF

Info

Publication number
EP3800411B1
EP3800411B1 EP20199205.4A EP20199205A EP3800411B1 EP 3800411 B1 EP3800411 B1 EP 3800411B1 EP 20199205 A EP20199205 A EP 20199205A EP 3800411 B1 EP3800411 B1 EP 3800411B1
Authority
EP
European Patent Office
Prior art keywords
signal
measure
performance
coefficient
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20199205.4A
Other languages
English (en)
French (fr)
Other versions
EP3800411A1 (de
Inventor
Armin Reichlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Publication of EP3800411A1 publication Critical patent/EP3800411A1/de
Application granted granted Critical
Publication of EP3800411B1 publication Critical patent/EP3800411B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures

Definitions

  • the present disclosure relates to a heat exchanger such as a heat pump, a refrigerator, or an air conditioning system. More specifically, the instant disclosure focuses on operation of a heat exchanger at or above a minimum coefficient of performance.
  • HVAC heating, ventilation and/or air-conditioning
  • a coefficient of performance COP describes an efficiency of such heat pumps.
  • a coefficient of performance typically exceeds one ( COP >1). That is, an amount of heat Q transferred between a source and a sink typically exceeds the amount of received power W of the heat exchanger. For cooling purposes, heat is transferred from a cold reservoir to a hot reservoir. For heating purposes, heat is transferred from a hot reservoir to a cold reservoir.
  • Any cost of cooling and/or of heating generally is a function of the coefficient of performance of a heat exchanger.
  • An operator can require a minimum coefficient of performance during operation of a heat exchanger. Operation at a minimum coefficient of performance can, however, not be technically feasible in some circumstances. That is, operation of a heat exchanger can become uneconomical for certain supply temperatures and/or for certain return temperatures. The operator can then switch over from one heat exchanger to an alternate source of cooling and/or to an alternate source of heating. The operator thereby tries to minimize cost at a system level.
  • lookup tables provide coefficients of performance as a function of supply and return temperatures. COP values in between tabulated pairs of supply and return temperatures are then determined via (linear) interpolation. In other words, a compressor of a heat exchanger will be enabled if the COP at given supply and return temperatures exceeds a predetermined minimum.
  • the present disclosure teaches use of a learning algorithm to improve on control of heating, ventilation and/or air-conditioning.
  • the present disclosure yields accurate predictions of coefficients of performance.
  • the instant disclosure provides a learning algorithm to update a lookup table with coefficients of performance.
  • a coefficient of performance is measured with a heat exchanger in operation.
  • supply side and return temperatures are measured.
  • An entry is read from the lookup table that corresponds to the measured supply side and return temperatures.
  • the measured coefficient of performance is compared to the entry read from the lookup table. If the measured coefficient of performance deviates from the entry read from the lookup table by more than a threshold value, corrective action will be taken. That is, the entry read from the lookup table will be replaced by the measured coefficient of performance.
  • the modified lookup table will be stored. The system will rely on the modified lookup table for future operation.
  • the modified lookup table is loaded from a memory prior to operation of the heat exchanger.
  • the heat exchanger will be started on the condition that the coefficient of performance according to the modified lookup table exceeds a threshold value.
  • the learning algorithm modifies entries adjacent the entry that corresponds to the measured supply side and return temperatures. It is envisaged that the learning algorithm modifies nearest neighbors only.
  • the learning algorithm is applied to a subset of the entries of the lookup table.
  • the learning algorithm can, be way of non-limiting example, be applied also to second nearest neighbors or also to third nearest neighbors.
  • the learning algorithm modifies each entry of the lookup table as a function of a distance measure.
  • the distance measure describes a distance between the supply side and return temperatures of an individual entry from the measured supply side and return temperatures.
  • Most power systems operate at or near alternating voltages of 110 Volts phase-to-ground, 190 Volts phase-to-phase, 240 Volts phase-to-ground, or 415 Volts phase-to-phase.
  • the electric amount of power received by a heat pump is then proportional to an amount of electric current feeding the heat exchanger.
  • the coefficient of performance can thus be determined as a function of the inverse of that electric current.
  • a heat exchanger can, by way of non-limiting example, have supply side and return temperature sensors and supply side and return side flow sensors. An amount of heat transferred by the heat exchanger can then be determined from the readings of such sensors.
  • flow sensors having a wide dynamic range are employed either on the supply side or on the return side of the heat exchanger. These sensors afford determinations of amounts of transferred heat in an equally wide range.
  • Each circuit (3, 5) is provided with one or several temperatures sensors (4a, 4b, 6a, 6b). In addition to the temperature sensors, the circuits (3, 5) also have flow meters (7, 9).
  • a heat pump (10) couples the source circuit (5) to the sink circuit (3). Heat is exchanged (15) between the source circuit (3) and the heat pump (10). Heat is also exchanged (14) between the heat pump (10) and the sink circuit (3).
  • the heat pump (10) comprises an expansion valve (13).
  • the heat pump (10) further comprises a compressor (2).
  • a compressor meter (8) connects to the compressor (2).
  • the compressor meter (8) records signals indicative of electric amounts of power received by the compressor (2). It is envisaged that the compressor meter (8) is an integral part of the compressor (2).
  • Determination of a coefficient of performance requires signals indicative of an amount of power absorbed by a first circuit (3; 5).
  • the first circuit (3; 5) is selected from the sink circuit (3) or from the source circuit (5).
  • the first circuit (3; 5) has a first temperature sensor (4a; 6a) and a second temperature sensor (4b; 6b).
  • the first (4a; 6a) and the second temperature sensors (4b; 6b) allow for a determination of a temperature drop in the first circuit (3; 5).
  • An additional signal from a first flow meter (7; 9) is then retrieved.
  • the signal from the first flow meter (7; 9) is multiplied with the temperature drop in the first circuit (3; 5). This product indicates an amount of power absorbed by or dissipated by the first circuit (3; 5).
  • Determination of a coefficient of performance also requires a signal indicative of a received amount of power.
  • the received amount of power is received by the heat exchange assembly (1).
  • this signal is obtained from a compressor meter (8) connected to the compressor (2).
  • a coefficient of performance is then determined by relating the amount of power associated to the first circuit (3; 5) by the power received by the compressor (2).
  • a signal is obtained from a second circuit (5; 3).
  • the second circuit (5; 3) is selected from the source circuit (5) or from the sink circuit (3).
  • the second circuit (5; 3) is different from the first circuit (3; 5).
  • the second circuit (5; 3) has a third temperature sensor (6a; 4a) and a fourth temperature sensor (6b; 4b).
  • the third (6a; 4a) and the fourth temperature sensors (6b; 4b) allow for a determination of a temperature drop in the second circuit (5; 3).
  • An additional signal from a second flow meter (9; 7) is then retrieved.
  • the signal from the second flow meter (9; 7) is multiplied with the temperature drop in the second circuit (5; 3). This product indicates an amount of power absorbed by or dissipated by the second circuit (5; 3).
  • a received amount of power is then determined as a difference between amounts of power associated with the first (3; 5) and the second circuits (5; 3).
  • a coefficient of performance is obtained.
  • the components (2, 4a, 4b, 6a, 6b, 7 - 9) of the heat exchange assembly (1) are in operative communication with an appliance controller (11).
  • the appliance controller (11) as shown on FIG 2 comprises a microcontroller and/or comprises a microcomputer.
  • the appliance controller (11) comprises an analog-to-digital converter.
  • the analog-to-digital converter provides conversion of analog signals from the components (2, 4a, 4b, 6a, 6b, 7 - 9) into (digital) measures.
  • the analog-to-digital converter can be an integral part of the appliance controller (11). That is, the analog-to-digital converter and the appliance controller (11) are arranged on the same system-on-a-chip.
  • the appliance controller (11) comprises a sigma-delta converter.
  • the sigma-delta converter provides conversion of analog signals from the components (2, 4a, 4b, 6a, 6b, 7 - 9) into (digital) measures.
  • the sigma-delta converter can be an integral part of the appliance controller (11). That is, the sigma-delta converter and the appliance controller (11) are arranged on the same system-on-a-chip.
  • FIG 3 illustrates that the appliance controller (11) can be in operative communication with a remote controller (12).
  • the remote controller (12) can be a system controller and can control several appliance controllers (11).
  • the remote controller (12) can also be part of an energy management system of a site.
  • connection between the appliance controller (11) and the remote controller (12) can be bidirectional. A bidirectional connection affords flexibility.
  • the connection between the appliance controller (11) and the remote controller (12) can also be unidirectional. Communication from the remote controller (12) to the appliance controller (11) is facilitated by such a unidirectional connection. A unidirectional connection reduces complexity.
  • the present disclosure teaches a method of operating a heat exchange assembly (1), the heat exchange assembly (1) comprising a first circuit (3; 5) having a first (4a; 6a) and a second temperature sensor (4b; 6b), and a first flow meter (7; 9), the heat exchange assembly (1) comprising a second circuit (5; 3) having a third temperature sensor (6a; 4a), the heat exchange assembly (1) comprising a heat pump (10) having a compressor (2) and an expansion valve (13) and coupling the first circuit (3; 5) to the second circuit (5; 3) for heat exchange (15) between the first circuit (3; 5) and the second circuit (5; 3), the heat exchange assembly (1) further comprising a first heat exchanger (16; 17) and a second heat exchanger (17; 16), the heat exchange assembly (1) further comprising a power meter selected from a compressor meter (8) connected to the compressor (2) or from a second circuit meter comprising the third temperature sensor (6a; 4a), a fourth temperature sensor (6b; 4b) mounted to the second circuit (5
  • the instant disclosure teaches a method of operating a heat exchange assembly (1), the heat exchange assembly (1) comprising a compressor (2), a first circuit (3; 5) having a first (4a; 6a) and a second temperature sensor (4b; 6b), and a first flow meter (7; 9), a second circuit (5; 3) having a third temperature sensor (6a; 4a), the heat exchange assembly (1) further comprising a power meter selected from a compressor meter (8) connected to the compressor (2) or from a second circuit meter comprising the third temperature sensor (6a; 4a), a fourth temperature sensor (6b; 4b) mounted to the second circuit (5; 3), and a second flow meter (9; 7) mounted to the second circuit (5; 3), the method comprising:
  • the first temperature sensor (4a; 6a) is different from the second temperature sensor (4b; 6b) and is different from the third temperature sensor (6a; 4a) and is different from the fourth temperature sensor (6b; 4b).
  • the second temperature sensor (4b; 6b) is different from the third temperature sensor (6a; 4a) and is different from the fourth temperature sensor (6b; 4b).
  • the first flow meter (7; 9) is different from the second flow meter (9; 7).
  • the first temperature sensor (4a; 6a) is or comprises a flow temperature sensor.
  • the second temperature sensor (4b; 6b) preferably is or comprises a return temperature sensor.
  • the circuit (5) advantageously is or comprises a source circuit.
  • the circuit (3) ideally is or comprises a sink circuit.
  • the heat exchange assembly (1) comprises a heat pump (10) having the compressor (2).
  • the compressor (2) is or comprises a scroll compressor.
  • the heat pump (10) advantageously also comprises the compressor meter (8).
  • the heat pump (10) can also comprise an expansion valve (13) such as a thermostatic expansion valve.
  • the expansion valve (13) is preferably arranged in series with the compressor (2).
  • the sixth signal is or comprises an aggregate signal having a plurality of signals.
  • the sixth signal is or comprises an aggregate signal having a plurality of sensor signals.
  • This plurality of sensor signals can, by way of non-limiting example, comprise signals read from the third temperature sensor (6a; 4a), from the fourth temperature sensor (6b; 4b), and from the second flow meter (9; 7).
  • the determination of the first expected coefficient of performance comprises the steps of:
  • determination of the actual coefficient of performance comprises the steps of:
  • the instant disclosure also teaches a method of operating a heat exchange assembly (1), the heat exchange assembly (1) comprising a source circuit (5) and a sink circuit (3), a heat pump (10) having an expansion valve (13) and coupling the source circuit (5) to the sink circuit (3) for heat exchange (15) between the source circuit (5) and the sink circuit (3), the heat exchange assembly (1) further comprising a first heat exchanger (16; 17) and a second heat exchanger (17; 16), a compressor (2), a first circuit (3; 5) having a first (4a; 6a) and a second temperature sensor (4b; 6b), and a first flow meter (7; 9), a second circuit (5; 3) having a third temperature sensor (6a; 4a), the heat exchange assembly (1) further comprising a power meter selected from a compressor meter (8) connected to the compressor (2) or from a second circuit meter comprising the third temperature sensor (6a; 4a), a fourth temperature sensor (6b; 4b) mounted to the second circuit (5; 3), and a second flow meter (9; 7) mounted
  • the present disclosure also teaches any method of the aforementioned methods, the method comprising the steps of:
  • the method ideally comprises the steps of:
  • the present disclosure also teaches any method of the aforementioned methods, the method comprising the steps of:
  • the method ideally comprises the steps of:
  • the memory is a non-volatile memory.
  • the heat exchange assembly (1) comprises the memory.
  • the heat exchange assembly (1) comprises a controller (11) such as a microcontroller and/or a microprocessor, the controller (11) comprising the memory such as the non-volatile memory.
  • the heat pump (10) comprises the memory.
  • the heat pump (10) comprises a controller such as a microcontroller and/or a microprocessor, the controller comprising the memory such as the non-volatile memory.
  • the compressor (2) comprises the memory.
  • the compressor (2) comprises a controller such as a microcontroller and/or a microprocessor, the controller comprising the memory such as the non-volatile memory.
  • the instant disclosure also teaches any method of the aforementioned methods, the method comprising the step of: modifying the first expected coefficient of performance by setting the first expected coefficient of performance equal to the actual expected coefficient of performance.
  • the present disclosure also teaches any method of the aforementioned methods, the method comprising the steps of:
  • the power meter is the second circuit meter.
  • the present disclosure also teaches any method of the aforementioned methods, wherein the power meter is the second circuit meter, the method comprising the steps of:
  • determination of the actual coefficient of performance comprises the steps of:
  • the power meter is the second circuit meter.
  • the instant disclosure also teaches any method of the aforementioned methods, wherein the power meter is the compressor meter (8), the method comprising the step of:
  • the present disclosure also teaches the aforementioned method, the method comprising the steps of:
  • determination of the actual coefficient of performance comprises the steps of:
  • the power meter is the compressor meter (8).
  • the instant disclosure also teaches any method of the aforementioned methods, the method comprising the step of: storing the modified first expected coefficient of performance in a memory.
  • a lookup table is modified as a function of the modified first expected coefficient of performance.
  • the modified lookup table is then stored in a memory.
  • the modified lookup table is preferably stored in a non-volatile memory such as a non-volatile memory of the heat exchange assembly (1) and/or a non-volatile memory of the heat pump (10) and/or a non-volatile memory of the compressor (2).
  • a mathematical relationship is modified as a function of the modified first expected coefficient of performance.
  • the mathematical relationship is or comprises a polynomial equation.
  • a polynomial coefficient of the polynomial equation can in this case be modified as a function of the modified first coefficient of performance.
  • the modified mathematical relationship is then stored in a memory.
  • the modified mathematical relationship is preferably stored in a non-volatile memory such as a non-volatile memory of the heat exchange assembly (1) and/or a non-volatile memory of the heat pump (10) and/or a non-volatile memory of the compressor (2).
  • a neural network such as a convolutional neural network is modified as a function of the modified first expected coefficient of performance.
  • the neural network advantageously has an input layer with input neurons each for the first temperature signal and for the second temperature signal.
  • the neural network also has an output layer with a neuron representing the first expected coefficient of performance.
  • the neural network can further comprise one or several hidden layers in between the input layer and the output layer. Weighed connections provide connections between the layers.
  • the neural network is modified by changing at least one weight of at least one connection between two neurons. The weight of the at least one connection thus changes as a function of the modified first expected coefficient of performance.
  • the present disclosure also teaches any method of the aforementioned methods, the method comprising the steps of:
  • a start signal will be sent to the compressor (2) if the second expected coefficient of performance exceeds the minimum coefficient.
  • the start signal causes the compressor (2) to start.
  • the start signal advantageously causes the compressor (2) to start in response to the compressor (2) receiving the start signal.
  • the instant disclosure also teaches any of the aforementioned methods involving a modified first expected coefficient stored in a memory and determination of a second expected coefficient of performance, the method comprising the steps of:
  • Determination of the second expected coefficient of performance preferably comprises the steps of:
  • the instant disclosure also teaches any of the aforementioned methods involving a comparison between a minimum signal and a predetermined threshold, the method comprising the step of: if and only if the second expected coefficient of performance exceeds the minimum signal by a predetermined threshold: starting the compressor (2).
  • a start signal will be sent to the compressor (2) if and only if the second expected coefficient of performance exceeds the minimum signal by a predetermined threshold.
  • the start signal causes the compressor (2) to start.
  • the start signal advantageously causes the compressor (2) to start in response to the compressor (2) receiving the start signal.
  • the compressor (2) is started and/or is enabled if and only if the second expected coefficient of performance exceeds the minimum coefficient at least by 0.1. According to a special aspect of the instant disclosure, the compressor (2) is started and/or is enabled if and only if the second expected coefficient of performance exceeds the minimum coefficient at least by 0.2. According to a further aspect of the instant disclosure, the compressor (2) is started and/or is enabled if and only if the second expected coefficient of performance exceeds the minimum coefficient at least by 0.5.
  • the minimum coefficient is received from a remote controller (12) such as a system controller.
  • the minimum coefficient of performance can also be received from and/or be manually entered by an operator.
  • the minimum coefficient is received by reading the minimum coefficient from a memory of the heat exchange assembly (1) such as a non-volatile memory of the heat exchange assembly (1).
  • the minimum coefficient is received by reading the minimum coefficient from a memory of the heat pump (10) such as a non-volatile memory of the heat pump (10).
  • the minimum coefficient is received by reading the minimum coefficient from a memory of the compressor (2) such as a non-volatile memory of the compressor (2).
  • the instant disclosure further teaches a non-transitory, computer-readable medium containing a program which executes the steps of any of the methods of the instant disclosure.
  • the present disclosure still teaches a non-transitory computer-readable medium having stored thereon instructions that, in response to execution, cause a system comprising a processor to perform the operations according to any method of this disclosure.
  • the computer-readable medium advantageously contains instructions that when executed perform a method according to the present disclosure. It is also envisaged that the computer-readable medium is tangible.
  • the instant disclosure further teaches a heat exchange assembly (1) comprising a first circuit (3; 5) having a first (4a; 6a) and a second temperature sensor (4b; 6b), and a first flow meter (7; 9), the heat exchange assembly (1) comprising a second circuit (5; 3) having a third temperature sensor (6a; 4a), the heat exchange assembly (1) comprising a heat pump (10) having a compressor (2) and an expansion valve (13) and coupling the first circuit (3; 5) to the second circuit (5; 3) for heat exchange (15) between the first circuit (3; 5) and the second circuit (5; 3), the heat exchange assembly (1) further comprising a first heat exchanger (16; 17) and a second heat exchanger (17; 16), the heat exchange assembly (1) further comprising a power meter selected from a compressor meter (8) connected to the compressor (2) or from a second circuit meter comprising the third temperature sensor (6a; 4a), a fourth temperature sensor (6b; 4b) mounted to the second circuit (5; 3), and a second flow meter (9; 7) mounted to
  • the present disclosure also teaches a heat exchange assembly (1) comprising a compressor (2), a first circuit (3; 5) having a first temperature sensor (4a; 6a) and a second temperature sensor (4b; 6b), and a first flow meter (7; 9), a second circuit (5; 3) having a third temperature sensor (6a; 4a), the heat exchange assembly (1) further comprising a power meter selected from a compressor meter (8) connected to the compressor (2) or from a second circuit meter comprising the third temperature sensor (6a; 4a), a fourth temperature sensor (6b; 4b) mounted to the second circuit (5; 3), and a second flow meter (9; 7) mounted to the second circuit (5; 3), the heat exchange assembly (1) further comprising an appliance controller (11) in operative communication with the first temperature sensor (4a; 6a), with the second temperature sensor (4b; 6b), with the first flow meter (7; 9), with the compressor (2), and with the power meter, the appliance controller (11) being configured to:
  • the controller (11) is advantageously configured to:
  • the heat exchange assembly (1) comprises one or more heat exchangers (16, 17).
  • a first heat exchanger (16; 17) couples the first circuit (3; 5) to the heat pump (10).
  • a second heat exchanger (17; 16) couples the second circuit (5; 3) to the heat pump (10).
  • appliance controller (11) is configured to:
  • the appliance controller (11) is advantageously configured to:
  • the heat exchange assembly (1) comprises a heat pump (10) having the compressor (2).
  • the compressor (2) is or comprises a scroll compressor.
  • the heat pump (10) advantageously also comprises the compressor meter (8).
  • the heat pump (10) can also comprise an expansion valve (13) such as a thermostatic expansion valve.
  • the expansion valve (13) is preferably arranged in series with the compressor (2).
  • the compressor (2) is ideally configured to be started and/or to be stopped.
  • a start of the compressor (2) starts and/or enables operation of the compressor (2).
  • a start of the compressor (2) also starts and/or enables operation of the heat pump (10).
  • a stop of the compressor (2) stops and/or disables and/or halts operation of the compressor (2).
  • a stop of the compressor (2) also stops and/or disables and/or halts operation of the heat pump (10).
  • the first flow meter (7; 9) is advantageously secured relative to the first circuit (3; 5).
  • the second flow meter (9; 7) is advantageously secured relative to the second circuit (5; 3).
  • the first flow meter (7; 9) is ideally mounted to the first circuit (3; 5).
  • the second flow meter (9; 7) is ideally mounted to the second circuit (5; 3).
  • the first flow meter (7; 9) is preferably associated with the first circuit (3; 5).
  • the second flow meter (9; 7) is preferably associated with the second circuit (5; 3).
  • the heat exchange assembly (1) comprises a first conduit, the first conduit having the first circuit (3; 5). It is also envisaged that the heat exchange assembly (1) comprises a second conduit, the second conduit having the second circuit (5; 3).
  • the compressor meter (8) is advantageously configured to produce a compressor power signal, the compressor power signal being indicative of an amount of power received by the compressor (2).
  • the compressor meter (8) is ideally configured to produce a compressor power signal, the compressor power signal being indicative of an electric amount of power received by the compressor (2).
  • the heat exchange assembly (1) advantageously comprises a first circuit meter having the first temperature sensor (4a; 6a), the second temperature sensor (4b; 6b), and the first flow meter (7; 9).
  • the first circuit meter is advantageously configured to produce a first circuit power signal, the first circuit power signal being indicative of an amount of thermal power dissipated by or absorbed by the first circuit (3; 5).
  • Production of the first circuit power signal typically comprises the steps of:
  • the second circuit meter is advantageously configured to produce a second circuit power signal, the second circuit power signal being indicative of an amount of thermal power dissipated by or absorbed by the second circuit (5; 3).
  • Production of the second circuit power signal typically comprises the steps of:
  • the first flow meter (7; 9) is or comprises a volume flow sensor. In an alternate embodiment, the first flow meter (7; 9) is or comprises a mass flow sensor. In an ultrasonic embodiment, the first flow meter (7; 9) is or comprises an ultrasonic flow sensor. In a special ultrasonic embodiment, the first flow meter (7; 9) is or comprises an ultrasonic flow sensor assembly.
  • the second flow meter (9; 7) is or comprises a volume flow sensor. In an alternate embodiment, the second flow meter (9; 7) is or comprises a mass flow sensor. In an ultrasonic embodiment, the second flow meter (9; 7) is or comprises an ultrasonic flow sensor. In a special ultrasonic embodiment, the second flow meter (9; 7) is or comprises an ultrasonic flow sensor assembly.
  • the instant disclosure further teaches a heat exchange assembly (1) comprising a source circuit (5) and a sink circuit (3), a heat pump (10) having an expansion valve (13) and coupling the source circuit (5) to the sink circuit (3) for heat exchange (15) between the source circuit (5) and the sink circuit (3), the heat exchange assembly (1) further comprising a first heat exchanger (16; 17) and a second heat exchanger (17; 16), a compressor (2), a first circuit (3; 5) having a first temperature sensor (4a; 6a) and a second temperature sensor (4b; 6b), and a first flow meter (7; 9), a second circuit (5; 3) having a third temperature sensor (6a; 4a), the heat exchange assembly (1) further comprising a power meter selected from a compressor meter (8) connected to the compressor (2) or from a second circuit meter comprising the third temperature sensor (6a; 4a), a fourth temperature sensor (6b; 4b) mounted to the second circuit (5; 3), and a second flow meter (9; 7) mounted to the second circuit (5; 3), the
  • first heat exchanger (16; 17) comprises the first circuit (3; 5). It is still envisaged that the second heat exchanger (17; 16) comprises the second circuit (5; 3).
  • the first circuit (3; 5) is advantageously selected from a sink circuit (3) or a source circuit (5).
  • the first circuit (3; 5) is preferably selected from exactly one of a sink circuit (3) or a source circuit (5).
  • the second circuit (5; 3) is advantageously selected from a source circuit (5) or a sink circuit (3).
  • the second circuit (5; 3) is preferably selected from at least one of a source circuit (5) or a sink circuit (3).
  • the first circuit (3; 5) is ideally different from the second circuit (5; 3).
  • the instant disclosure also teaches any of the aforementioned heat exchangers and/or heat exchange assemblies (1), wherein the appliance controller (11) is in operative communication with a remote controller (12), the appliance controller (11) being configured to:
  • the remote controller (12) is advantageously installed in a location that is remote from the heat exchange assembly (1).
  • the appliance controller (11) advantageously is in operative communication with the remote controller (12) via a communication bus such as a digital communication bus.
  • the appliance controller (11) ideally is in operative communication with the remote controller (12) using a communication bus protocol such as a digital communication bus protocol.
  • the remote controller (12) is or comprises a system controller. It is also envisaged that the second circuit meter is or comprises a second circuit power meter. It is further envisaged that the compressor meter (8) is or comprises a compressor power meter.
  • any steps of a method according to the present disclosure can be embodied in hardware, in a software module executed by a processor, in a software module being executed using operating-system-level virtualization, in a cloud computing arrangement, or in a combination thereof.
  • the software can include a firmware, a hardware driver run in the operating system, or an application program.
  • the disclosure also relates to a computer program product for performing the operations presented herein. If implemented in software, the functions described can be stored as one or more instructions on a computer-readable medium.
  • RAM random access memory
  • ROM read only memory
  • flash memory EPROM memory
  • EEPROM memory electrically erasable programmable read-only memory
  • registers a hard disk, a removable disk, other optical disks, or any available media that can be accessed by a computer or any other IT equipment and appliance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Claims (15)

  1. Verfahren zum Betreiben einer Wärmetauschanordnung (1), die einen ersten Kreislauf (3; 5) mit einem ersten (4a; 6a) und einem zweiten Temperatursensor (4b; 6b) und einem ersten Durchflussmesser (7; 9) umfasst, wobei die Wärmetauschanordnung (1) einen zweiten Kreislauf (5; 3) mit einem dritten Temperatursensor (6a; 4a) umfasst, wobei die Wärmetauschanordnung (1) eine Wärmepumpe (10) mit einem Kompressor (2) und einem Expansionsventil (13) umfasst, die den ersten Kreislauf (3; 5) für den Wärmeaustausch (15) zwischen dem ersten Kreislauf (3; 5) und dem zweiten Kreislauf (5; 3) an den zweiten Kreislauf (5; 3) ankoppelt, wobei die Wärmetauschanordnung (1) ferner einen ersten Wärmetauscher (16; 17) umfasst, der den ersten Kreislauf (3; 5) an die Wärmepumpe (10) ankoppelt, und einen zweiten Wärmetauscher (17; 16) umfasst, der den zweiten Kreislauf (5; 3) an die Wärmepumpe (10) ankoppelt, wobei die Wärmetauschanordnung (1) ferner einen Leistungsmesser umfasst, der unter einem mit dem Kompressor (2) verbundenen Kompressormessapparat (8) und einem zweiten Kreislaufmesser mit dem dritten Temperatursensor (6a; 4a), einem an dem zweiten Kreislauf (5; 3) angebrachten vierten Temperatursensor (6b; 4b) und einem an dem zweiten Kreislauf (5; 3) angebrachten zweiten Durchflussmesser (9; 7) ausgewählt wird, wobei das Verfahren Folgendes umfasst:
    Auslesen eines ersten Temperatursignals aus einem Sensor, der unter dem ersten Temperatursensor (4a; 6a) und dem zweiten Temperatursensor (4b; 6b) ausgewählt wird, und Auslesen eines zweiten Temperatursignals aus dem dritten Temperatursensor (6a; 4a),
    Bestimmen einer ersten voraussichtlichen Leistungszahl aus dem ersten und dem zweiten Temperatursignal,
    Starten des Kompressors (2),
    dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:
    nach dem Starten des Kompressors (2) Auslesen eines dritten Signals aus dem ersten Temperatursensor (4a; 6a), eines vierten Signals aus dem zweiten Temperatursensor (4b; 6b), eines fünften Signals aus dem ersten Durchflussmesser (7; 9) und eines sechsten Signals aus dem Leistungsmesser,
    Bestimmen einer Ist-Leistungszahl in Abhängigkeit von dem dritten bis sechsten Signal,
    Vergleichen der Ist-Leistungszahl mit der ersten voraussichtlichen Leistungszahl und,
    wenn die Ist-Leistungszahl geringer ist als die erste voraussichtliche Leistungszahl:
    Ändern der ersten voraussichtlichen Leistungszahl in Abhängigkeit von der Ist-Leistungszahl.
  2. Das Verfahren nach Anspruch 1, das folgende Schritte umfasst:
    Auslesen einer Nachschlagetabelle aus einem Speicher,
    Einsetzen der Nachschlagetabelle zum Bestimmen der ersten voraussichtlichen Leistungszahl in Abhängigkeit von dem ersten und dem zweiten Temperatursignal.
  3. Das Verfahren nach einem der Ansprüche 1 bis 2, das folgende Schritte umfasst:
    Auslesen einer mathematischen Beziehung aus einem Speicher und
    Einsetzen der mathematischen Beziehung zum Berechnen der ersten voraussichtlichen Leistungszahl in Abhängigkeit von dem ersten und in Abhängigkeit von dem zweiten Temperatursignal.
  4. Das Verfahren nach einem der Ansprüche 1 bis 3, das folgenden Schritt umfasst:
    Ändern der ersten voraussichtlichen Leistungszahldurch Gleichsetzen der ersten voraussichtlichen Leistungszahl mit der voraussichtlichen Ist-Leistungszahl.
  5. Das Verfahren nach einem der Ansprüche 1 bis 4, das folgende Schritte umfasst:
    nach dem Starten des Kompressors (2) Auslesen eines sechsten Signals aus dem Leistungsmesser
    durch Auslesen eines siebenten Signals aus dem dritten Temperatursensor (6a; 4a) und
    durch Auslesen eines achten Signals aus dem vierten Temperatursensor (6b; 4b) und
    durch Auslesen eines neunten Signals aus dem zweiten Durchflussmesser (9; 7).
  6. Das Verfahren nach Anspruch 5, das folgende Schritte umfasst:
    Erzeugen eines Messwerts für die bezogene Energie aus dem sechsten Signal,
    Erzeugen eines dritten Messwerts aus dem dritten Signal, eines vierten Messwerts aus dem vierten Signal und eines fünften Messwerts aus dem fünften Signal,
    Bestimmen eines Messwerts für die Temperaturdifferenz zwischen dem dritten und dem vierten Messwert,
    Bestimmen eines Messwerts für die gelieferte Energie in Abhängigkeit von einem Produkt aus dem Messwert für die Temperaturdifferenz und dem fünften Messwert,
    Bestimmen eines Messwerts für die Energiedifferenz als Differenz zwischen dem Messwert für die gelieferte Energie und dem Messwert für die bezogene Energie und
    Bestimmen der Ist-Leistungszahl durch Inbeziehungsetzen des Messwerts für die gelieferte Energie zum Messwert für die Energiedifferenz.
  7. Das Verfahren nach einem der Ansprüche 1 bis 4, das folgenden Schritt umfasst:
    nach dem Starten des Kompressors (2) Auslesen eines sechsten Signals aus dem Leistungsmesser durch
    Auslesen eines sechsten Signals aus dem Kompressormessapparat (8), wobei das sechste Signal einen Betrag für die von dem Kompressor (2) aufgenommene Leistung angibt.
  8. Das Verfahren nach Anspruch 7, das folgende Schritte umfasst:
    Erzeugen eines dritten Messwerts aus dem dritten Signal, eines vierten Messwerts aus dem vierten Signal und eines fünften Messwerts aus dem fünften Signal,
    Bestimmen eines Messwerts für die Temperaturdifferenz zwischen dem dritten und dem vierten Messwert,
    Bestimmen eines Messwerts für die gelieferte Energie in Abhängigkeit von einem Produkt aus dem Messwert für die Temperaturdifferenz und dem fünften Messwert,
    Erzeugen eines Messwerts für die Kompressorleistung aus dem sechsten Signal und
    Bestimmen der Ist-Leistungszahl durch Inbeziehungsetzen des Messwerts für die gelieferte Energie zum Messwert für die Kompressorleistung.
  9. Das Verfahren nach einem der Ansprüche 1 bis 8, das folgenden Schritt umfasst:
    Speichern der geänderten ersten voraussichtlichen Leistungszahl in einem Speicher.
  10. Das Verfahren nach einem der Ansprüche 1 bis 9, das folgende Schritte umfasst:
    Empfangen einer Mindestzahl, die eine Mindestleistungszahl angibt,
    Stoppen des Kompressors (2),
    bei gestopptem Kompressor Auslesen eines zehnten Signals aus einem Sensor, der unter dem ersten Temperatursensor (4a; 6a) und dem zweiten Temperatursensor (4b; 6b) ausgewählt wird, und Auslesen eines elften Signals aus dem dritten Temperatursensor (6a; 4a),
    Erzeugen eines zehnten Messwerts aus dem zehnten Signal und eines elften Messwerts aus dem elften Signal,
    Bestimmen einer zweiten voraussichtlichen Leistungszahl in Abhängigkeit von dem zehnten Messwert, dem elften Messwert und der geänderten ersten Leistungszahl,
    Vergleichen der zweiten voraussichtlichen Leistungszahl mit der Mindestzahl und,
    wenn die zweite voraussichtliche Leistungszahl größer ist als die Mindestzahl:
    Starten des Kompressors (2).
  11. Das Verfahren nach Anspruch 9 und 10, das folgende Schritte umfasst:
    Auslesen der geänderten ersten voraussichtlichen Leistungszahl aus dem Speicher und
    nach dem Auslesen der geänderten ersten voraussichtlichen Leistungszahl aus dem Speicher Bestimmen einer zweiten voraussichtlichen Leistungszahl in Abhängigkeit von dem zehnten Messwert, dem elften Messwert und der geänderten ersten Leistungszahl.
  12. Das Verfahren nach einem der Ansprüche 10 bis 11, das folgenden Schritt umfasst:
    nur wenn die zweite voraussichtliche Leistungszahl um einen vorgegebenen Grenzwert größer ist als das Mindestsignal:
    Starten des Kompressors (2).
  13. Nichtflüchtiges, computerlesbares Medium, das ein Programm enthält, welches die Schritte aus einem der Ansprüche 1 bis 12 ausführt.
  14. Wärmetauschanordnung (1), die einen ersten Kreislauf (3; 5) mit einem ersten (4a; 6a) und einem zweiten Temperatursensor (4b; 6b) und einem ersten Durchflussmesser (7; 9) umfasst, wobei die Wärmetauschanordnung (1) einen zweiten Kreislauf (5; 3) mit einem dritten Temperatursensor (6a; 4a) umfasst, wobei die Wärmetauschanordnung (1) eine Wärmepumpe (10) mit einem Kompressor (2) und einem Expansionsventil (13) umfasst und den ersten Kreislauf (3; 5) für den Wärmeaustausch (15) zwischen dem ersten Kreislauf (3; 5) und dem zweiten Kreislauf (5; 3) an den zweiten Kreislauf (5; 3) ankoppelt, wobei die Wärmetauschanordnung (1) ferner einen ersten Wärmetauscher (16; 17) umfasst, der den ersten Kreislauf (3; 5) an die Wärmepumpe (10) ankoppelt, und einen zweiten Wärmetauscher (17; 16) umfasst, der den zweiten Kreislauf (5; 3) an die Wärmepumpe (10) ankoppelt, wobei die Wärmetauschanordnung (1) ferner einen Leistungsmesser umfasst, der unter einem mit dem Kompressor (2) verbundenen Kompressormessapparat (8) und einem zweiten Kreislaufmesser mit dem dritten Temperatursensor (6a; 4a), einem an dem zweiten Kreislauf (5; 3) angebrachten vierten Temperatursensor (6b; 4b) und einem an dem zweiten Kreislauf (5; 3) angebrachten zweiten Durchflussmesser (9; 7) ausgewählt wird, wobei die Wärmetauschanordnung (1) ferner eine Gerätesteuerung (11) umfasst, die mit dem ersten Temperatursensor (4a; 6a), dem zweiten Temperatursensor (4b; 6b), dem ersten Durchflussmesser (7; 9), dem Kompressor (2) und dem Leistungsmesser wirkverbunden ist, wobei die Gerätesteuerung (11) so konfiguriert ist, dass sie:
    aus einem unter dem ersten Temperatursensor (4a; 6a) und dem zweiten Temperatursensor (4b; 6b) ausgewählten Sensor ein erstes Signal und aus dem dritten Temperatursensor (6a; 4a) ein zweites Signal ausliest,
    aus dem ersten Signal einen ersten Messwert und aus dem zweiten Signal einen zweiten Messwert erzeugt,
    aus dem ersten und dem zweiten Messwert eine erste voraussichtliche Leistungszahl bestimmt,
    ein Startsignal zum Kompressor (2) sendet, das diesen dazu veranlasst, mit dem Betrieb zu beginnen,
    dadurch gekennzeichnet, dass die Steuerung (11) so konfiguriert ist, dass sie:
    nach dem Senden des Startsignals aus dem ersten Temperatursensor (4a; 6a) ein drittes Signal, aus dem zweiten Temperatursensor (4b; 6b) ein viertes Signal, aus dem ersten Durchflussmesser (7; 9) ein fünftes Signal und aus dem Leistungsmesser ein sechstes Signal ausliest,
    aus dem dritten Signal einen dritten Messwert, aus dem vierten Signal einen vierten Messwert, aus dem fünften Signal einen fünften Messwert und aus dem sechsten Signal einen sechsten Messwert erzeugt,
    aus dem dritten, dem vierten, dem fünften und dem sechsten Messwert eine Ist-Leistungszahl bestimmt,
    die Ist-Leistungszahl mit der ersten voraussichtlichen Leistungszahl vergleicht und,
    wenn die Ist-Leistungszahl geringer ist als die erste voraussichtliche Leistungszahl:
    die erste voraussichtliche Leistungszahl in Abhängigkeit von der Ist-Leistungszahl ändert.
  15. Wärmetauschanordnung (1) nach Anspruch 14, wobei die Gerätesteuerung (11) mit einer externen Steuerung (12) wirkverbunden ist, wobei die Gerätesteuerung (11) so konfiguriert ist, dass sie:
    von der externen Steuerung (12) eine Mindestzahl empfängt, die eine Mindestleistungszahl angibt,
    ein Stoppsignal zum Kompressor (2) sendet, das diesen dazu veranlasst, den Betrieb einzustellen,
    nach dem Senden des Stoppsignals aus einem unter dem ersten Temperatursensor (4a; 6a) und dem zweiten Temperatursensor (4b; 6b) ausgewählten Sensor ein zehntes Signal und aus dem dritten Temperatursensor (6a; 4a) ein elftes Signal ausliest,
    aus dem zehnten Signal einen zehnten Messwert und aus dem elften Signal einen elften Messwert erzeugt,
    in Abhängigkeit von dem zehnten Messwert, dem elften Messwert und der geänderten ersten Leistungszahl eine zweite voraussichtliche Leistungszahl bestimmt,
    die zweite voraussichtliche Leistungszahl mit der Mindestzahl vergleicht und,
    wenn die zweite voraussichtliche Leistungszahl größer ist als die Mindestzahl:
    ein weiteres Startsignal zum Kompressor (2) sendet, das diesen dazu veranlasst, mit dem Betrieb zu beginnen.
EP20199205.4A 2019-10-01 2020-09-30 Optimaler betrieb eines wärmetauschers Active EP3800411B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19200669 2019-10-01
EP20156890.4A EP3800410A1 (de) 2019-10-01 2020-02-12 Optimaler betrieb eines wärmetauschers

Publications (2)

Publication Number Publication Date
EP3800411A1 EP3800411A1 (de) 2021-04-07
EP3800411B1 true EP3800411B1 (de) 2022-04-27

Family

ID=68109144

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20156890.4A Withdrawn EP3800410A1 (de) 2019-10-01 2020-02-12 Optimaler betrieb eines wärmetauschers
EP20199205.4A Active EP3800411B1 (de) 2019-10-01 2020-09-30 Optimaler betrieb eines wärmetauschers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20156890.4A Withdrawn EP3800410A1 (de) 2019-10-01 2020-02-12 Optimaler betrieb eines wärmetauschers

Country Status (1)

Country Link
EP (2) EP3800410A1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701725B2 (en) * 2001-05-11 2004-03-09 Field Diagnostic Services, Inc. Estimating operating parameters of vapor compression cycle equipment
JP4642100B2 (ja) * 2008-09-01 2011-03-02 三菱電機株式会社 ヒートポンプ装置
JP5523972B2 (ja) * 2010-07-29 2014-06-18 三菱重工業株式会社 ターボ冷凍機の性能評価装置
US9261542B1 (en) * 2013-01-24 2016-02-16 Advantek Consulting Engineering, Inc. Energy efficiency ratio meter for direct expansion air-conditioners and heat pumps

Also Published As

Publication number Publication date
EP3800410A1 (de) 2021-04-07
EP3800411A1 (de) 2021-04-07

Similar Documents

Publication Publication Date Title
US10684055B2 (en) Sensor failure error handling
CN108340771B (zh) 冷却风机和主动格栅百叶窗控制
US9835366B2 (en) System for calibration of a compressor unit in a heating, ventilation, and air conditioning system
US7962250B2 (en) Control method for cooling an industrial plant
US20130345995A1 (en) Air Flow Control And Power Usage Of An Indoor Blower In An HVAC System
EP3492822B1 (de) Steuerungsverfahren und -vorrichtung für ein heizsystem oder kühlsystem
CN109435680A (zh) 车辆动力系统温度控制装置及其控制方法
EP3115703B1 (de) Steuerung von heizung, lüftung, klimatisierung
CN105144014B (zh) 用于对it环境的空气调节的期望值进行调整的方法
EP3765797B1 (de) Verminderung der kondensation in wasserheizern
CA3058316A1 (en) Systems and methods of predicting energy usage
CN105264299A (zh) 用于建筑物中气候控制的系统以及方法
EP3800411B1 (de) Optimaler betrieb eines wärmetauschers
EP3587946B1 (de) Klimaanlage
CN104238591A (zh) 通过温度模型对用电器的控制
CN114427742A (zh) 中央空调冷站能效控制方法、装置、设备以及存储介质
EP3460349B1 (de) Latentwärmereduzierung
JP5955206B2 (ja) デマンド制御装置及びその方法
JP5926660B2 (ja) 冷温水循環ポンプの回転数制御システムおよび方法
EP4227754A1 (de) Schätzungen von kühl- oder heizleistung
EP3982048B1 (de) Steuerung des wärmeaustauschs
US20240318863A1 (en) Automated sweat prevention for climate control systems
EP3076090B1 (de) Heizungs-, lüftungs- und klimaregelung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20210304

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1487205

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020002844

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220427

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1487205

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020002844

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

26N No opposition filed

Effective date: 20230130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230911

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231120

Year of fee payment: 4

Ref country code: CH

Payment date: 20231205

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240916

Year of fee payment: 5