EP3798290A1 - Verwendung eines anionisch modifizierten cellulosepolymers als ein farbstofftransferhemmer während eines textilwaschprozesses - Google Patents

Verwendung eines anionisch modifizierten cellulosepolymers als ein farbstofftransferhemmer während eines textilwaschprozesses Download PDF

Info

Publication number
EP3798290A1
EP3798290A1 EP19200559.3A EP19200559A EP3798290A1 EP 3798290 A1 EP3798290 A1 EP 3798290A1 EP 19200559 A EP19200559 A EP 19200559A EP 3798290 A1 EP3798290 A1 EP 3798290A1
Authority
EP
European Patent Office
Prior art keywords
dye
anionically
particles
cellulosic polymer
modified cellulosic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19200559.3A
Other languages
English (en)
French (fr)
Other versions
EP3798290B1 (de
Inventor
Steven George Patterson
Neil Joseph Lant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68104506&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3798290(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP19200559.3A priority Critical patent/EP3798290B1/de
Publication of EP3798290A1 publication Critical patent/EP3798290A1/de
Application granted granted Critical
Publication of EP3798290B1 publication Critical patent/EP3798290B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0021Dye-stain or dye-transfer inhibiting compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/225Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC

Definitions

  • the present invention relates to the use of an anionically-modified cellulosic polymer to prevent the redeposition of dyes in a textile laundering wash bath from coloured textiles onto white or differently-coloured textiles also present in the same wash bath.
  • the present invention relates to the use of an anionically-modified cellulosic polymer as a dye transfer inhibitor during a textile laundering process.
  • the textile laundering process can be a hand-washing process or an automatic washing machine laundering process.
  • DTI dye transfer inhibitor
  • DTI agents against such dyes especially polymers such as polyvinylpyrrolidone (e.g., Sokalan® HP 50 from BASF), vinylpyrrolidone-vinylimidazole copolymer (e.g., Sokalan® HP 56 from BASF), poly(4-vinylpyridine-N-oxide) (e.g., Reilline® 4035 and 350 from Vertellus) and poly(4-vinylpyridine N-carboxymethylbetaine) (e.g., Chromabond® S 400 from Ashland).
  • polyvinylpyrrolidone e.g., Sokalan® HP 50 from BASF
  • vinylpyrrolidone-vinylimidazole copolymer e.g., Sokalan® HP 56 from BASF
  • poly(4-vinylpyridine-N-oxide) e.g., Reilline® 4035 and 350 from Vertellus
  • anionically-modified cellulosic polymers such as carboxylmethyl cellulose (CMC) act as soil suspension polymers in laundry detergents. It is known that the soil suspension mechanism of these polymers is due to two mechanism. Firstly, the polymers adsorb at the interface of the suspended soil particle and the liquid of the laundering wash bath, which leads to a change in the electrical charge of the suspended soil particle. And secondly, the polymers adsorb onto the surface of the textile in the laundering wash bath, which leads to a change in the electrical and steric properties of the textile surface.
  • CMC carboxylmethyl cellulose
  • DTI agents such as polyvinylpyrrolidone, vinylpyrrolidone-vinylimidazole copolymer, poly(4-vinylpyridine-N-oxide) and poly(4-vinylpyridine N-carboxymethylbetaine) form complexes with dyes released from coloured fabrics thus preventing their redeposition on to other fabrics.
  • anionically-modified cellulosic polymers such as carboxymethyl cellulose (CMC), common soil suspension additives in laundry detergents, can significantly reduce dye transfer and hence function as an effective DTI agent.
  • CMC carboxymethyl cellulose
  • the inventors believe that the anionically-modified cellulosic polymer is reducing dye transfer through one or more of the following mechanisms:
  • the present invention relates to the use of an anionically-modified cellulosic polymer to prevent the redeposition of dyes in a textile laundering wash bath from coloured textiles onto white or differently-coloured textiles also present in the same wash bath.
  • the present invention relates to the use of an anionically-modified cellulosic polymer as a dye transfer inhibitor during a textile laundering process.
  • Anionically-modified cellulosic polymer is used to prevent the redeposition of dyes in a textile laundering wash bath from coloured textiles onto white or differently-coloured textiles also present in the same wash bath.
  • the anionically-modified cellulosic polymer is used as a dye transfer inhibitor during a textile laundering process.
  • a preferred anionically-modified cellulosic polymer is carboxymethyl cellulose (CMC).
  • CMC carboxymethyl cellulose
  • a preferred carboxymethyl cellulose has a degree of substitution (DS) of at least 0.55, and has a degree of blockiness (DB) of at least 0.35, and has a DS+DB in the range of from 1.05 to 2.00.
  • Suitable CMCs may also be additionally modified, for example ether modified carboxymethyl cellulose, ether modified carboxyethyl cellulose, ether modified carboxymethylethyl cellulose, ester modified carboxymethyl cellulose, ester modified carboxy ethylcellulose, ester modified carboxymethylethyl cellulose, amido modified carboxymethyl cellulose, amido modified carboxyethyl cellulose, amido modifed carboxymethylethyl cellulose, and mixtures thereof.
  • Other suitable anionically-modified cellulosic polymer is sulfoethyl cellulose and derivatives thereof. Further anionically-modified celluloses are disclosed in US 6,790,822 .
  • the anionically-modified cellulosic polymer may be comprised by any laundry detergent composition, such as a solid laundry detergent composition, a liquid laundry detergent composition, or a water-soluble unit dose laundry detergent composition (such as a detergent pouch).
  • a highly suitable laundry detergent composition is a solid laundry detergent composition, such a laundry detergent powder.
  • the anionically-modified cellulosic polymer can be used towards any dye present in the laundering wash bath, but is particularly useful towards direct dyes, acid dyes, vat dyes and sulfur dyes.
  • Suitable polymers are the carboxymethyl cellulose products sold under the tradenames Finnfix® (CP Kelco), Detercel® (Amtex), USK® (USK Kimya), Carbocel® (Lamberti), Mikro-Technik® (Mikro-Technik), Dencell® (Denglyph).
  • a suitable laundry detergent composition is a solid free-flowing particulate laundry detergent composition, such as a laundry detergent powder.
  • the laundry detergent composition is typically a fully formulated laundry detergent composition, not a portion thereof such as a spray-dried, extruded or agglomerate particle that only forms part of the laundry detergent composition.
  • the solid composition comprises a plurality of chemically different particles, such as spray-dried base detergent particles and/or agglomerated base detergent particles and/or extruded base detergent particles, in combination with one or more, typically two or more, or five or more, or even ten or more particles selected from: surfactant particles, including surfactant agglomerates, surfactant extrudates, surfactant needles, surfactant noodles, surfactant flakes; phosphate particles; zeolite particles; silicate salt particles, especially sodium silicate particles; carbonate salt particles, especially sodium carbonate particles; polymer particles such as carboxylate polymer particles, cellulosic polymer particles, starch particles, polyester particles, polyamine particles, terephthalate polymer particles, polyethylene glycol particles; aesthetic particles such as coloured noodles, needles, lamellae particles and ring particles; enzyme particles such as protease granulates, amylase granulates, lipase granulates, cellulase granulates, cell
  • Suitable laundry detergent compositions comprise a detergent ingredient selected from: detersive surfactant, such as anionic detersive surfactants, non-ionic detersive surfactants, cationic detersive surfactants, zwitterionic detersive surfactants and amphoteric detersive surfactants; polymers, such as carboxylate polymers, soil release polymer, anti-redeposition polymers, cellulosic polymers and care polymers; bleach, such as sources of hydrogen peroxide, bleach activators, bleach catalysts and pre-formed peracids; photobleach, such as such as zinc and/or aluminium sulphonated phthalocyanine; enzymes, such as proteases, amylases, cellulases, lipases; zeolite builder; phosphate builder; co-builders, such as citric acid and citrate; carbonate, such as sodium carbonate and sodium bicarbonate; sulphate salt, such as sodium sulphate; silicate salt such as sodium silicate; chloride salt
  • Suitable laundry detergent compositions may have a low buffering capacity. Such laundry detergent compositions typically have a reserve alkalinity to pH 9.5 of less than 5.0gNaOH/100g. These low buffered laundry detergent compositions typically comprise low levels of carbonate salt.
  • Suitable detersive surfactants include anionic detersive surfactants, non-ionic detersive surfactant, cationic detersive surfactants, zwitterionic detersive surfactants and amphoteric detersive surfactants.
  • Suitable detersive surfactants may be linear or branched, substituted or un-substituted, and may be derived from petrochemical material or biomaterial.
  • Anionic detersive surfactant Suitable anionic detersive surfactants include sulphonate and sulphate detersive surfactants.
  • Suitable sulphonate detersive surfactants include methyl ester sulphonates, alpha olefin sulphonates, alkyl benzene sulphonates, especially alkyl benzene sulphonates, preferably C 10-13 alkyl benzene sulphonate.
  • Suitable alkyl benzene sulphonate (LAS) is obtainable, preferably obtained, by sulphonating commercially available linear alkyl benzene (LAB); suitable LAB includes low 2-phenyl LAB, other suitable LAB include high 2-phenyl LAB, such as those supplied by Sasol under the tradename Hyblene®.
  • Suitable sulphate detersive surfactants include alkyl sulphate, preferably C 8-18 alkyl sulphate, or predominantly C 12 alkyl sulphate.
  • a preferred sulphate detersive surfactant is alkyl alkoxylated sulphate, preferably alkyl ethoxylated sulphate, preferably a C 8-18 alkyl alkoxylated sulphate, preferably a C 8-18 alkyl ethoxylated sulphate, preferably the alkyl alkoxylated sulphate has an average degree of alkoxylation of from 0.5 to 20, preferably from 0.5 to 10, preferably the alkyl alkoxylated sulphate is a C 8-18 alkyl ethoxylated sulphate having an average degree of ethoxylation of from 0.5 to 10, preferably from 0.5 to 5, more preferably from 0.5 to 3 and most preferably from 0.5 to 1.5.
  • alkyl sulphate, alkyl alkoxylated sulphate and alkyl benzene sulphonates may be linear or branched, substituted or un-substituted, and may be derived from petrochemical material or biomaterial.
  • anionic detersive surfactants include alkyl ether carboxylates.
  • Suitable anionic detersive surfactants may be in salt form, suitable counter-ions include sodium, calcium, magnesium, amino alcohols, and any combination thereof. A preferred counterion is sodium.
  • Non-ionic detersive surfactant Suitable non-ionic detersive surfactants are selected from the group consisting of: C 8 -C 18 alkyl ethoxylates, such as, NEODOL® non-ionic surfactants from Shell; C 6 -C 12 alkyl phenol alkoxylates wherein preferably the alkoxylate units are ethyleneoxy units, propyleneoxy units or a mixture thereof; C 12 -C 18 alcohol and C 6 -C 12 alkyl phenol condensates with ethylene oxide/propylene oxide block polymers such as Pluronic® from BASF; alkylpolysaccharides, preferably alkylpolyglycosides; methyl ester ethoxylates; polyhydroxy fatty acid amides; ether capped poly(oxyalkylated) alcohol surfactants; and mixtures thereof.
  • C 8 -C 18 alkyl ethoxylates such as, NEODOL® non-ionic surfactants from Shell
  • Suitable non-ionic detersive surfactants are alkylpolyglucoside and/or an alkyl alkoxylated alcohol.
  • Suitable non-ionic detersive surfactants include alkyl alkoxylated alcohols, preferably C 8-18 alkyl alkoxylated alcohol, preferably a C 8-18 alkyl ethoxylated alcohol, preferably the alkyl alkoxylated alcohol has an average degree of alkoxylation of from 1 to 50, preferably from 1 to 30, or from 1 to 20, or from 1 to 10, preferably the alkyl alkoxylated alcohol is a C 8-18 alkyl ethoxylated alcohol having an average degree of ethoxylation of from 1 to 10, preferably from 1 to 7, more preferably from 1 to 5 and most preferably from 3 to 7.
  • the alkyl alkoxylated alcohol can be linear or branched, and substituted or un-substituted.
  • Suitable nonionic detersive surfactants include secondary alcohol-based detersive surfactants.
  • Cationic detersive surfactant Suitable cationic detersive surfactants include alkyl pyridinium compounds, alkyl quaternary ammonium compounds, alkyl quaternary phosphonium compounds, alkyl ternary sulphonium compounds, and mixtures thereof.
  • Preferred cationic detersive surfactants are quaternary ammonium compounds having the general formula: (R)(R 1 )(R 2 )(R 3 )N + X - wherein, R is a linear or branched, substituted or unsubstituted C 6-18 alkyl or alkenyl moiety, R 1 and R 2 are independently selected from methyl or ethyl moieties, R 3 is a hydroxyl, hydroxymethyl or a hydroxyethyl moiety, X is an anion which provides charge neutrality, preferred anions include: halides, preferably chloride; sulphate; and sulphonate.
  • Suitable zwitterionic detersive surfactants include amine oxides and/or betaines.
  • Suitable polymers include carboxylate polymers, soil release polymers, anti-redeposition polymers, cellulosic polymers, care polymers and any combination thereof.
  • Carboxylate polymer The composition may comprise a carboxylate polymer, such as a maleate/acrylate random copolymer or polyacrylate homopolymer.
  • Suitable carboxylate polymers include: polyacrylate homopolymers having a molecular weight of from 4,000 Da to 9,000 Da; maleate/acrylate random copolymers having a molecular weight of from 50,000 Da to 100,000 Da, or from 60,000 Da to 80,000 Da.
  • Another suitable carboxylate polymer is a co-polymer that comprises: (i) from 50 to less than 98 wt% structural units derived from one or more monomers comprising carboxyl groups; (ii) from 1 to less than 49 wt% structural units derived from one or more monomers comprising sulfonate moieties; and (iii) from 1 to 49 wt% structural units derived from one or more types of monomers selected from ether bond-containing monomers represented by formulas (I) and (II): wherein in formula (I), R 0 represents a hydrogen atom or CH 3 group, R represents a CH 2 group, CH 2 CH 2 group or single bond, X represents a number 0-5 provided X represents a number 1-5 when R is a single bond, and R 1 is a hydrogen atom or C 1 to C 20 organic group; wherein in formula (II), R 0 represents a hydrogen atom or CH 3 group, R represents a CH 2 group, CH 2 CH 2 group or single bond,
  • Soil release polymer The composition may comprise a soil release polymer.
  • a suitable soil release polymer has a structure as defined by one of the following structures (I), (II) or (III): (I) -[(OCHR 1 -CHR 2 ) a -O-OC-Ar-CO-] d (II) -[(OCHR 3 -CHR 4 ) b -O-OC-sAr-CO-] e (III) -[(OCHR 5 -CHR 6 ) c -OR 7 ] f wherein:
  • Anti-redeposition polymer examples include polyethylene glycol polymers and/or polyethyleneimine polymers.
  • Suitable polyethylene glycol polymers include random graft co-polymers comprising: (i) hydrophilic backbone comprising polyethylene glycol; and (ii) hydrophobic side chain(s) selected from the group consisting of: C 4 -C 25 alkyl group, polypropylene, polybutylene, vinyl ester of a saturated C 1 -C 6 mono-carboxylic acid, C 1 -C 6 alkyl ester of acrylic or methacrylic acid, and mixtures thereof.
  • Suitable polyethylene glycol polymers have a polyethylene glycol backbone with random grafted polyvinyl acetate side chains.
  • the average molecular weight of the polyethylene glycol backbone can be in the range of from 2,000 Da to 20,000 Da, or from 4,000 Da to 8,000 Da.
  • the molecular weight ratio of the polyethylene glycol backbone to the polyvinyl acetate side chains can be in the range of from 1:1 to 1:5, or from 1:1.2 to 1:2.
  • the average number of graft sites per ethylene oxide unit can be less than 0.02, or less than 0.016, the average number of graft sites per ethylene oxide unit can be in the range of from 0.010 to 0.018, or the average number of graft sites per ethylene oxide unit can be less than 0.010, or in the range of from 0.004 to 0.008.
  • Suitable polyethylene glycol polymers are described in WO08/007320 .
  • a suitable polyethylene glycol polymer is Sokalan HP22.
  • Cellulosic polymer In addition to the anionically-modified cellulose, further cellulose polymers may be included in the composition such as alkyl cellulose, alkyl alkoxyalkyl cellulose, , methyl cellulose, methyl hydroxyethyl cellulose, and mixtures thereof.
  • Suitable care polymers include cellulosic polymers that are cationically modified or hydrophobically modified. Such modified cellulosic polymers can provide anti-abrasion benefits and dye lock benefits to fabric during the laundering cycle. Suitable cellulosic polymers include cationically modified hydroxyethyl cellulose.
  • Suitable care polymers include dye lock polymers, for example the condensation oligomer produced by the condensation of imidazole and epichlorhydrin, preferably in ratio of 1:4:1.
  • a suitable commercially available dye lock polymer is Polyquart® FDI (Cognis).
  • Suitable care polymers include amino-silicone, which can provide fabric feel benefits and fabric shape retention benefits.
  • Suitable bleach includes sources of hydrogen peroxide, bleach activators, bleach catalysts, pre-formed peracids and any combination thereof.
  • a particularly suitable bleach includes a combination of a source of hydrogen peroxide with a bleach activator and/or a bleach catalyst.
  • Source of hydrogen peroxide include sodium perborate and/or sodium percarbonate.
  • Suitable bleach activators include tetra acetyl ethylene diamine and/or alkyl oxybenzene sulphonate.
  • the composition may comprise a bleach catalyst.
  • Suitable bleach catalysts include oxaziridinium bleach catalysts, transistion metal bleach catalysts, especially manganese and iron bleach catalysts.
  • a suitable bleach catalyst has a structure corresponding to general formula below: wherein R 13 is selected from the group consisting of 2-ethylhexyl, 2-propylheptyl, 2-butyloctyl, 2-pentylnonyl, 2-hexyldecyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, iso-nonyl, iso-decyl, iso-tridecyl and iso-pentadecyl.
  • Pre-formed peracid Suitable pre-form peracids include phthalimido-peroxycaproic acid.
  • Enzymes include lipases, proteases, cellulases, amylases and any combination thereof.
  • Suitable proteases include metalloproteases and/or serine proteases.
  • suitable neutral or alkaline proteases include: subtilisins (EC 3.4.21.62); trypsin-type or chymotrypsin-type proteases; and metalloproteases.
  • the suitable proteases include chemically or genetically modified mutants of the aforementioned suitable proteases.
  • protease enzymes include those sold under the trade names Alcalase®, Savinase®, Primase®, Durazym®, Polarzyme®, Kannase®, Liquanase®, Liquanase Ultra®, Savinase Ultra®, Ovozyme®, Neutrase®, Everlase® and Esperase® by Novozymes A/S (Denmark), those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Preferenz P® series of proteases including Preferenz® P280, Preferenz® P281, Preferenz® P2018-C, Preferenz® P2081-WE, Preferenz® P2082-EE and Preferenz® P2083-A/J, Properase®, Purafect®, Purafect Prime®, Purafect Ox®, FN3®, FN4®, Excellase® and Purafect OXP® by DuPont, those sold
  • a suitable protease is described in WO11/140316 and WO11/072117 .
  • Amylase Suitable amylases are derived from AA560 alpha amylase endogenous to Bacillus sp. DSM 12649, preferably having the following mutations: R118K, D183*, G184*, N195F, R320K, and/or R458K.
  • Suitable commercially available amylases include Stainzyme®, Stainzyme® Plus, Natalase, Termamyl®, Termamyl® Ultra, Liquezyme® SZ, Duramyl®, Everest® (all Novozymes) and Spezyme® AA, Preferenz S® series of amylases, Purastar® and Purastar® Ox Am, Optisize® HT Plus (all Du Pont).
  • a suitable amylase is described in WO06/002643 .
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are also suitable. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum.
  • cellulases include Celluzyme®, Carezyme®, and Carezyme® Premium, Celluclean® and Whitezyme® (Novozymes A/S), Revitalenz® series of enzymes (Du Pont), and Biotouch® series of enzymes (AB Enzymes).
  • Suitable commercially available cellulases include Carezyme® Premium, Celluclean® Classic. Suitable cellulases are described in WO07/144857 and WO10/056652 .
  • Suitable lipases include those of bacterial, fungal or synthetic origin, and variants thereof. Chemically modified or protein engineered mutants are also suitable. Examples of suitable lipases include lipases from Humicola (synonym Thermomyces ), e.g., from H. lanuginosa ( T. lanuginosus ).
  • the lipase may be a "first cycle lipase", e.g. such as those described in WO06/090335 and WO13/116261 .
  • the lipase is a first-wash lipase, preferably a variant of the wild-type lipase from Thermomyces lanuginosus comprising T231R and/or N233R mutations.
  • Preferred lipases include those sold under the tradenames Lipex®, Lipolex® and Lipoclean® by Novozymes, Bagsvaerd, Denmark.
  • Liprl 139 e.g. as described in WO2013/171241
  • TfuLip2 e.g. as described in WO2011/084412 and WO2013/033318 .
  • Other enzymes are bleaching enzymes, such as peroxidases/oxidases, which include those of plant, bacterial or fungal origin and variants thereof.
  • peroxidases include Guardzyme® (Novozymes A/S).
  • suitable enzymes include choline oxidases and perhydrolases such as those used in Gentle Power BleachTM.
  • Suitable enzymes include pectate lyases sold under the tradenames X-Pect®, Pectaway® (from Novozymes A/S, Bagsvaerd, Denmark) and PrimaGreen® (DuPont) and mannanases sold under the tradenames Mannaway® (Novozymes A/S, Bagsvaerd, Denmark), and Mannastar® (Du Pont).
  • Zeolite builder The composition may comprise zeolite builder.
  • the composition may comprise from 0wt% to 5wt% zeolite builder, or 3wt% zeolite builder.
  • the composition may even be substantially free of zeolite builder; substantially free means "no deliberately added".
  • Typical zeolite builders include zeolite A, zeolite P and zeolite MAP.
  • the composition may comprise phosphate builder.
  • the composition may comprise from 0wt% to 5wt% phosphate builder, or to 3wt%, phosphate builder.
  • the composition may even be substantially free of phosphate builder; substantially free means "no deliberately added".
  • a typical phosphate builder is sodium tri-polyphosphate.
  • Carbonate salt The composition may comprise carbonate salt.
  • the composition may comprise from 0wt% to 10wt% carbonate salt, or to 5wt% carbonate salt.
  • the composition may even be substantially free of carbonate salt; substantially free means "no deliberately added".
  • Suitable carbonate salts include sodium carbonate and sodium bicarbonate.
  • Silicate salt The composition may comprise silicate salt.
  • the composition may comprise from 0wt% to 10wt% silicate salt, or to 5wt% silicate salt.
  • a preferred silicate salt is sodium silicate, especially preferred are sodium silicates having a Na 2 O:SiO 2 ratio of from 1.0 to 2.8, preferably from 1.6 to 2.0.
  • Sulphate salt A suitable sulphate salt is sodium sulphate.
  • Suitable fluorescent brighteners include: di-styryl biphenyl compounds, e.g. Tinopal® CBS-X, di-amino stilbene di-sulfonic acid compounds, e.g. Tinopal® DMS pure Xtra and Blankophor® HRH, and Pyrazoline compounds, e.g. Blankophor® SN, and coumarin compounds, e.g. Tinopal® SWN.
  • Preferred brighteners are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl)amino 1,3,5-triazin-2-yl)];amino ⁇ stilbene-2-2' disulfonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, and disodium 4,4'- bis(2-sulfostyryl)biphenyl.
  • a suitable fluorescent brightener is C.I. Fluorescent Brightener 260, which may be used in its beta or alpha crystalline forms, or a mixture of these forms.
  • the composition may also comprise a chelant selected from: diethylene triamine pentaacetate, diethylene triamine penta(methyl phosphonic acid), ethylene diamine-N'N'-disuccinic acid, ethylene diamine tetraacetate, ethylene diamine tetra(methylene phosphonic acid) and hydroxyethane di(methylene phosphonic acid).
  • a preferred chelant is ethylene diamine-N'N'-disuccinic acid (EDDS) and/or hydroxyethane diphosphonic acid (HEDP).
  • the composition preferably comprises ethylene diamine-N'N'- disuccinic acid or salt thereof.
  • the ethylene diamine-N'N'-disuccinic acid is in S,S enantiomeric form.
  • the composition comprises 4,5-dihydroxy-m-benzenedisulfonic acid disodium salt.
  • Preferred chelants may also function as calcium carbonate crystal growth inhibitors such as: 1-hydroxyethanediphosphonic acid (HEDP) and salt thereof; N,N-dicarboxymethyl-2-aminopentane-1,5-dioic acid and salt thereof; 2-phosphonobutane-1,2,4-tricarboxylic acid and salt thereof; and combination thereof.
  • Hueing agent Suitable hueing agents include small molecule dyes, typically falling into the Colour Index (C.I.) classifications of Acid, Direct, Basic, Reactive (including hydrolysed forms thereof) or Solvent or Disperse dyes, for example classified as Blue, Violet, Red, Green or Black, and provide the desired shade either alone or in combination.
  • C.I. Colour Index
  • Solvent or Disperse dyes for example classified as Blue, Violet, Red, Green or Black, and provide the desired shade either alone or in combination.
  • Preferred such hueing agents include Acid Violet 50, Direct Violet 9, 66 and 99, Solvent Violet 13 and any combination thereof.
  • hueing agents are known and described in the art which may be suitable for the present invention, such as hueing agents described in WO2014/089386 .
  • Suitable hueing agents include phthalocyanine and azo dye conjugates, such as described in WO2009/069077 .
  • Suitable hueing agents may be alkoxylated. Such alkoxylated compounds may be produced by organic synthesis that may produce a mixture of molecules having different degrees of alkoxylation. Such mixtures may be used directly to provide the hueing agent, or may undergo a purification step to increase the proportion of the target molecule.
  • Suitable hueing agents include alkoxylated bis-azo dyes, such as described in WO2012/054835 , and/or alkoxylated thiophene azo dyes, such as described in WO2008/087497 and WO2012/166768 .
  • the hueing agent may be incorporated into the detergent composition as part of a reaction mixture which is the result of the organic synthesis for a dye molecule, with optional purification step(s).
  • reaction mixtures generally comprise the dye molecule itself and in addition may comprise un-reacted starting materials and/or by-products of the organic synthesis route.
  • Suitable hueing agents can be incorporated into hueing dye particles, such as described in WO 2009/069077 .
  • Suitable dye transfer inhibitors include polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone, polyvinyloxazolidone, polyvinylimidazole and mixtures thereof.
  • Preferred are poly(vinyl pyrrolidone), poly(vinylpyridine betaine), poly(vinylpyridine N-oxide), poly(vinyl pyrrolidone-vinyl imidazole) and mixtures thereof.
  • Suitable commercially available dye transfer inhibitors include PVP-K15 and K30 (Ashland), Sokalan® HP165, HP50, HP53, HP59, HP56K, HP56, HP66 (BASF), Chromabond® S-400, S403E and S-100 (Ashland).
  • Suitable perfumes comprise perfume materials selected from the group: (a) perfume materials having a ClogP of less than 3.0 and a boiling point of less than 250°C (quadrant 1 perfume materials); (b) perfume materials having a ClogP of less than 3.0 and a boiling point of 250°C or greater (quadrant 2 perfume materials); (c) perfume materials having a ClogP of 3.0 or greater and a boiling point of less than 250°C (quadrant 3 perfume materials); (d) perfume materials having a ClogP of 3.0 or greater and a boiling point of 250°C or greater (quadrant 4 perfume materials); and (e) mixtures thereof.
  • the perfume may be in the form of a perfume delivery technology. Such delivery technologies further stabilize and enhance the deposition and release of perfume materials from the laundered fabric. Such perfume delivery technologies can also be used to further increase the longevity of perfume release from the laundered fabric. Suitable perfume delivery technologies include: perfume microcapsules, pro-perfumes, polymer assisted deliveries, molecule assisted deliveries, fiber assisted deliveries, amine assisted deliveries, cyclodextrin, starch encapsulated accord, zeolite and other inorganic carriers, and any mixture thereof. A suitable perfume microcapsule is described in WO2009/101593 .
  • Suitable silicones include polydimethylsiloxane and amino-silicones. Suitable silicones are described in WO05075616 .
  • the particles of the composition can be prepared by any suitable method. For example: spray-drying, agglomeration, extrusion and any combination thereof.
  • a suitable spray-drying process comprises the step of forming an aqueous slurry mixture, transferring it through at least one pump, preferably two pumps, to a pressure nozzle. Atomizing the aqueous slurry mixture into a spray-drying tower and drying the aqueous slurry mixture to form spray-dried particles.
  • the spray-drying tower is a counter-current spray-drying tower, although a co-current spray-drying tower may also be suitable.
  • the spray-dried powder is subjected to cooling, for example an air lift.
  • the spray-drying powder is subjected to particle size classification, for example a sieve, to obtain the desired particle size distribution.
  • the spray-dried powder has a particle size distribution such that weight average particle size is in the range of from 300 micrometers to 500 micrometers, and less than 10wt% of the spray-dried particles have a particle size greater than 2360 micrometers.
  • aqueous slurry mixture may be heated to elevated temperatures prior to atomization into the spray-drying tower, such as described in WO2009/158162 .
  • anionic surfactant such as linear alkyl benzene sulphonate
  • anionic surfactant such as linear alkyl benzene sulphonate
  • a gas such as air
  • a gas such as air
  • any inorganic ingredients such as sodium sulphate and sodium carbonate, if present in the aqueous slurry mixture, to be micronized to a small particle size such as described in WO2012/134969 .
  • a suitable agglomeration process comprises the step of contacting a detersive ingredient, such as a detersive surfactant, e.g. linear alkyl benzene sulphonate (LAS) and/or alkyl alkoxylated sulphate, with an inorganic material, such as sodium carbonate and/or silica, in a mixer.
  • a detersive ingredient such as a detersive surfactant, e.g. linear alkyl benzene sulphonate (LAS) and/or alkyl alkoxylated sulphate
  • LAS linear alkyl benzene sulphonate
  • an inorganic material such as sodium carbonate and/or silica
  • the agglomeration process may also be an in-situ neutralization agglomeration process wherein an acid precursor of a detersive surfactant, such as LAS, is contacted with an alkaline material, such as carbonate and/or sodium hydroxide, in a mixer, and wherein the acid precursor of a detersive surfactant is neutralized by the alkaline material to form a detersive surfactant during the agglomeration process.
  • a detersive surfactant such as LAS
  • Suitable detergent ingredients include polymers, chelants, bleach activators, silicones and any combination thereof.
  • the agglomeration process may be a high, medium or low shear agglomeration process, wherein a high shear, medium shear or low shear mixer is used accordingly.
  • the agglomeration process may be a multi-step agglomeration process wherein two or more mixers are used, such as a high shear mixer in combination with a medium or low shear mixer.
  • the agglomeration process can be a continuous process or a batch process.
  • the agglomerates may be subjected to a drying step, for example to a fluid bed drying step. It may also be preferred for the agglomerates to be subjected to a cooling step, for example a fluid bed cooling step.
  • the agglomerates are subjected to particle size classification, for example a fluid bed elutriation and/or a sieve, to obtain the desired particle size distribution.
  • particle size classification for example a fluid bed elutriation and/or a sieve
  • the agglomerates have a particle size distribution such that weight average particle size is in the range of from 300 micrometers to 800 micrometers, and less than 10wt% of the agglomerates have a particle size less than 150 micrometers and less than 10wt% of the agglomerates have a particle size greater than 1200 micrometers.
  • fines and over-sized agglomerates may be recycled back into the agglomeration process.
  • over-sized particles are subjected to a size reduction step, such as grinding, and recycled back into an appropriate place in the agglomeration process, such as the mixer.
  • fines are recycled back into an appropriate place in the agglomeration process, such as the mixer.
  • ingredients such as polymer and/or non-ionic detersive surfactant and/or perfume to be sprayed onto base detergent particles, such as spray-dried base detergent particles and/or agglomerated base detergent particles.
  • base detergent particles such as spray-dried base detergent particles and/or agglomerated base detergent particles.
  • this spray-on step is carried out in a tumbling drum mixer.
  • the method of laundering fabric comprises the step of contacting the solid composition to water to form a wash liquor, and laundering fabric in said wash liquor.
  • the wash liquor has a temperature of above 0°C to 90°C, or to 60°C, or to 40°C, or to 30°C, or to 20°C.
  • the fabric may be contacted to the water prior to, or after, or simultaneous with, contacting the solid composition with water.
  • the wash liquor is formed by contacting the laundry detergent to water in such an amount so that the concentration of laundry detergent composition in the wash liquor is from 0.2g/l to 20g/l, or from 0.5g/l to 10g/l, or to 5.0g/l.
  • the method of laundering fabric can be carried out in a front-loading automatic washing machine, top loading automatic washing machines, including high efficiency automatic washing machines, or suitable hand-wash vessels.
  • the wash liquor comprises 90 litres or less, or 60 litres or less, or 15 litres or less, or 10 litres or less of water.
  • 200g or less, or 150g or less, or 100g or less, or 50g or less of laundry detergent composition is contacted to water to form the wash liquor.
  • Solid free-flowing particulate laundry detergent composition examples include:
  • Anionic detersive surfactant such as alkyl benzene sulphonate, alkyl ethoxylated sulphate and mixtures thereof
  • Non-ionic detersive surfactant such as alkyl ethoxylated alcohol
  • Cationic detersive surfactant such as quaternary ammonium compounds
  • Other detersive surfactant such as zwiterionic detersive surfactants, amphoteric surfactants and mixtures thereof
  • Carboxylate polymer such as co-polymers of maleic acid and acrylic acid and/or carboxylate polymers comprising ether moieties and sulfonate moieties
  • Polyethylene glycol polymer such as a polyethylene glycol polymer comprising polyviny
  • fluorescent brightener 260 or C.I. fluorescent brightener 351 from 0.1wt% to 0.4wt% Protease (such as Savinase, Savinase Ultra, Purafect, FN3, FN4 and any combination thereof) from 0.1wt% to 0.4wt% Amylase (such as Termamyl, Termamyl ultra, Natalase, Optisize, Stainzyme, Stainzyme Plus and any combination thereof) from 0wt% to 0.2wt% Cellulase (such as Carezyme and/or Celluclean) from 0wt% to 0.2wt% Lipase (such as Lipex, Lipolex, Lipoclean and any combination thereof) from 0wt% to 1wt% Other enzyme (such as xyloglucanase, cutinase, pectate lyase, mannanase, bleaching enzyme) from 0wt% to 2wt% Fabric softener (such as montmor
  • a granular detergent with the following composition was used as a base detergent, this formulation is free from substituted cellulosic polymers.
  • Components and levels in the formulation are as follows: Formulation % Linear alkylbenzene sulfonate 12.00 Alcohol ethoxylate (7EO) 2.64 Zeolite 1.84 Sodium percarbonate 17.00 Tetraacetylethylenediamine (TAED) 3.80 Polycarboxylate 1.70 Sodium carbonate 19.32 Sodium silicate 8.26 Optical brightener & enzymes (protease/amylase/mannanase/lipase) 1.40 Sodium Sulphate Balance
  • the method involves the use of a tergotometer to simulate the action of a washing machine.
  • Test formulations were used to wash white tracer fabrics and bleeder fabrics together with knitted cotton ballast, added to maintain a 21:1 water:cloth ratio.
  • Tergotometer pots containing the test solution (1.0L) plus test fabrics, at 40°C were agitated at 300rpm for 40 mins. After the wash, the test fabrics and ballast were then rinsed in fresh water (6.8 US gpg hardness at 15°C) for 5 minutes.
  • the wash process was repeated using the test fabrics from the first wash cycle for a further 3 wash cycles. After 4 wash cycles, the test fabrics were dried at ambient room temperature for >12 hours. The whiteness level of the test fabrics (receiver fabric) was measured by spectrophotometer and show the dye transfer inhibition performance of the two CMCs as a function of level in formulation.
  • Table 1 Average CIE Whiteness of test fabrics. CIE Whiteness Example Terry Towel Knitted Cotton Brushed Cotton Average A (nil CMC) 119.2 124.9 127.5 123.9 B (0.25% BDA) 118.7 126.3 128.8 124.6 (+0.7) C (0.5% BDA) 120.4 128.6 129.0 126.0 (+2.1) D (1% BDA) 124.8 132.3 131.5 129.6 (+5.7) E (2% BDA) 122.7 132.6 130.3 128.5 (+4.6) F (3% BDA) 123.0 130.6 130.1 127.9 (+4.0) G (0.25% VT) 121.8 131.6 131.4 128.3 (+4.4) H (0.5% VT) 124.9 132.0 131.1 129.3 (+5.4) I (1% VT) 123.8 131.7 131.7 129.1 (+5.2) J (1.5% VT) 124.4 132.4 131.2 129.4 (+5.5)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
EP19200559.3A 2019-09-30 2019-09-30 Verwendung eines anionisch modifizierten cellulosepolymers als ein farbstofftransferhemmer während eines textilwaschprozesses Active EP3798290B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19200559.3A EP3798290B1 (de) 2019-09-30 2019-09-30 Verwendung eines anionisch modifizierten cellulosepolymers als ein farbstofftransferhemmer während eines textilwaschprozesses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19200559.3A EP3798290B1 (de) 2019-09-30 2019-09-30 Verwendung eines anionisch modifizierten cellulosepolymers als ein farbstofftransferhemmer während eines textilwaschprozesses

Publications (2)

Publication Number Publication Date
EP3798290A1 true EP3798290A1 (de) 2021-03-31
EP3798290B1 EP3798290B1 (de) 2022-08-17

Family

ID=68104506

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19200559.3A Active EP3798290B1 (de) 2019-09-30 2019-09-30 Verwendung eines anionisch modifizierten cellulosepolymers als ein farbstofftransferhemmer während eines textilwaschprozesses

Country Status (1)

Country Link
EP (1) EP3798290B1 (de)

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352604A (en) 1989-08-25 1994-10-04 Henkel Research Corporation Alkaline proteolytic enzyme and method of production
WO2000042144A1 (en) * 1999-01-13 2000-07-20 The Procter & Gamble Company Detergent compositions having a cellulose polymer
WO2005075616A1 (en) 2004-02-03 2005-08-18 The Procter & Gamble Company A composition for use in the laundering or treatment of fabrics
WO2006002643A2 (en) 2004-07-05 2006-01-12 Novozymes A/S Alpha-amylase variants with altered properties
WO2006090335A1 (en) 2005-02-22 2006-08-31 The Procter & Gamble Company Detergent compositions
WO2007144857A1 (en) 2006-06-16 2007-12-21 The Procter & Gamble Company Detergent compositions
WO2008007320A2 (en) 2006-07-07 2008-01-17 The Procter & Gamble Company Detergent compositions
WO2008087497A1 (en) 2007-01-19 2008-07-24 The Procter & Gamble Company Laundry care composition comprising a whitening agent for cellulosic substrates
WO2009069077A2 (en) 2007-11-26 2009-06-04 The Procter & Gamble Company Detergent compositions
WO2009101593A2 (en) 2008-02-15 2009-08-20 The Procter & Gamble Company Delivery particle
EP2135933A1 (de) * 2008-06-20 2009-12-23 The Procter and Gamble Company Waschzusammensetzung
WO2009158162A1 (en) 2008-06-25 2009-12-30 The Procter & Gamble Company Spray-drying process
WO2009158449A1 (en) 2008-06-25 2009-12-30 The Procter & Gamble Company A spray-drying process
WO2010056652A1 (en) 2008-11-14 2010-05-20 The Procter & Gamble Company Composition comprising polymer and enzyme
US20110034365A1 (en) * 2009-08-09 2011-02-10 Neil Joseph Lant Laundry Detergent Composition Comprising a Highly Water-Soluble Carboxymethyl Cellulose Particle
WO2011072117A1 (en) 2009-12-09 2011-06-16 The Procter & Gamble Company Fabric and home care products
WO2011084412A1 (en) 2009-12-21 2011-07-14 Danisco Us Inc. Detergent compositions containing thermobifida fusca lipase and methods of use thereof
WO2012054835A1 (en) 2010-10-22 2012-04-26 The Procter & Gamble Company Bis-azo colorants for use as bluing agents
WO2012134969A1 (en) 2011-03-25 2012-10-04 The Procter & Gamble Company Spray-dried laundry detergent particles
WO2012166768A1 (en) 2011-06-03 2012-12-06 The Procter & Gamble Company Laundry care compositions containing dyes
WO2013033318A1 (en) 2011-08-31 2013-03-07 Danisco Us Inc. Compositions and methods comprising a lipolytic enzyme variant
WO2013116261A2 (en) 2012-02-03 2013-08-08 The Procter & Gamble Company Compositions and methods for surface treatment with lipases
WO2013171241A1 (en) 2012-05-16 2013-11-21 Novozymes A/S Compositions comprising lipase and methods of use thereof
WO2013181205A1 (en) 2012-06-01 2013-12-05 The Procter & Gamble Company Spray-drying process
WO2014012867A1 (de) * 2012-07-19 2014-01-23 Henkel Ag & Co. Kgaa Flüssiges waschmittel mit farbübertragungsinhibierung
WO2014089386A1 (en) 2012-12-06 2014-06-12 The Procter & Gamble Company Soluble pouch comprising hueing dye

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8625475D0 (en) 1986-10-24 1986-11-26 Unilever Plc Detergent composition
CN108048236B (zh) 2017-12-01 2020-11-06 纳爱斯浙江科技有限公司 一种含有羧甲基纤维素的液体洗涤剂及其制备方法

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352604A (en) 1989-08-25 1994-10-04 Henkel Research Corporation Alkaline proteolytic enzyme and method of production
WO2000042144A1 (en) * 1999-01-13 2000-07-20 The Procter & Gamble Company Detergent compositions having a cellulose polymer
US6790822B1 (en) 1999-01-13 2004-09-14 The Proctor & Gamble Company Detergent compositions having an anionically modified cellulose polymer
WO2005075616A1 (en) 2004-02-03 2005-08-18 The Procter & Gamble Company A composition for use in the laundering or treatment of fabrics
WO2006002643A2 (en) 2004-07-05 2006-01-12 Novozymes A/S Alpha-amylase variants with altered properties
WO2006090335A1 (en) 2005-02-22 2006-08-31 The Procter & Gamble Company Detergent compositions
WO2007144857A1 (en) 2006-06-16 2007-12-21 The Procter & Gamble Company Detergent compositions
WO2008007320A2 (en) 2006-07-07 2008-01-17 The Procter & Gamble Company Detergent compositions
WO2008087497A1 (en) 2007-01-19 2008-07-24 The Procter & Gamble Company Laundry care composition comprising a whitening agent for cellulosic substrates
WO2009069077A2 (en) 2007-11-26 2009-06-04 The Procter & Gamble Company Detergent compositions
WO2009101593A2 (en) 2008-02-15 2009-08-20 The Procter & Gamble Company Delivery particle
EP2135933A1 (de) * 2008-06-20 2009-12-23 The Procter and Gamble Company Waschzusammensetzung
WO2009158162A1 (en) 2008-06-25 2009-12-30 The Procter & Gamble Company Spray-drying process
WO2009158449A1 (en) 2008-06-25 2009-12-30 The Procter & Gamble Company A spray-drying process
WO2010056652A1 (en) 2008-11-14 2010-05-20 The Procter & Gamble Company Composition comprising polymer and enzyme
US20110034365A1 (en) * 2009-08-09 2011-02-10 Neil Joseph Lant Laundry Detergent Composition Comprising a Highly Water-Soluble Carboxymethyl Cellulose Particle
WO2011072117A1 (en) 2009-12-09 2011-06-16 The Procter & Gamble Company Fabric and home care products
WO2011084412A1 (en) 2009-12-21 2011-07-14 Danisco Us Inc. Detergent compositions containing thermobifida fusca lipase and methods of use thereof
WO2012054835A1 (en) 2010-10-22 2012-04-26 The Procter & Gamble Company Bis-azo colorants for use as bluing agents
WO2012134969A1 (en) 2011-03-25 2012-10-04 The Procter & Gamble Company Spray-dried laundry detergent particles
WO2012166768A1 (en) 2011-06-03 2012-12-06 The Procter & Gamble Company Laundry care compositions containing dyes
WO2013033318A1 (en) 2011-08-31 2013-03-07 Danisco Us Inc. Compositions and methods comprising a lipolytic enzyme variant
WO2013116261A2 (en) 2012-02-03 2013-08-08 The Procter & Gamble Company Compositions and methods for surface treatment with lipases
WO2013171241A1 (en) 2012-05-16 2013-11-21 Novozymes A/S Compositions comprising lipase and methods of use thereof
WO2013181205A1 (en) 2012-06-01 2013-12-05 The Procter & Gamble Company Spray-drying process
WO2014012867A1 (de) * 2012-07-19 2014-01-23 Henkel Ag & Co. Kgaa Flüssiges waschmittel mit farbübertragungsinhibierung
WO2014089386A1 (en) 2012-12-06 2014-06-12 The Procter & Gamble Company Soluble pouch comprising hueing dye

Also Published As

Publication number Publication date
EP3798290B1 (de) 2022-08-17

Similar Documents

Publication Publication Date Title
EP3301154B1 (de) Wäschewaschmittelzusammensetzung
EP3075826B1 (de) Feste freifliessende partikelförmige waschmittelzusammensetzung
US10053654B2 (en) Solid free-flowing particulate laundry detergent composition
EP3301168B1 (de) Waschmittelzusammensetzung
US20160289612A1 (en) Solid free-flowing particulate laundry detergent composition
WO2018067486A1 (en) Low ph laundry detergent composition
WO2016160864A1 (en) Solid free-flowing particulate laundry detergent composition
WO2018067487A1 (en) Low ph laundry detergent composition
WO2018067484A1 (en) Laundry detergent composition
EP3301155A1 (de) Wäschewaschmittelzusammensetzung
EP3301161A1 (de) Wäschewaschmittelzusammensetzung
EP3075824B1 (de) Feste freifliessende partikelförmige waschmittelzusammensetzung
EP3301147A1 (de) Waschmittelzusammensetzung mit niedrigem ph
EP3301145A1 (de) Waschmittelzusammensetzung mit niedrigem ph
EP3075831A1 (de) Feste freifliessende partikelförmige waschmittelzusammensetzung
WO2018067488A1 (en) Low ph laundry detergent composition
EP3301157B1 (de) Wäschewaschmittelzusammensetzung
EP3301158B1 (de) Wäschewaschmittelzusammensetzung
EP3301148A1 (de) Waschmittelzusammensetzung mit niedrigem ph
EP3301146A1 (de) Waschmittelzusammensetzung mit niedrigem ph
EP3301149A1 (de) Waschmittelzusammensetzung mit niedrigem ph
EP3301159B1 (de) Wäschewaschmittelzusammensetzung
EP3301150A1 (de) Waschmittelzusammensetzung mit niedrigem ph
EP3798290B1 (de) Verwendung eines anionisch modifizierten cellulosepolymers als ein farbstofftransferhemmer während eines textilwaschprozesses
EP3546557B1 (de) Katalasehemmung während eines waschvorgangs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210920

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C11D 3/22 20060101ALI20220216BHEP

Ipc: C11D 3/00 20060101AFI20220216BHEP

INTG Intention to grant announced

Effective date: 20220302

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019018313

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1512185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220817

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221219

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221117

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1512185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602019018313

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

26 Opposition filed

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20230508

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221017

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230929

Year of fee payment: 5

Ref country code: GB

Payment date: 20230810

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230808

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190930