EP3794990A1 - Appareil de substitution du tabac - Google Patents

Appareil de substitution du tabac Download PDF

Info

Publication number
EP3794990A1
EP3794990A1 EP19198651.2A EP19198651A EP3794990A1 EP 3794990 A1 EP3794990 A1 EP 3794990A1 EP 19198651 A EP19198651 A EP 19198651A EP 3794990 A1 EP3794990 A1 EP 3794990A1
Authority
EP
European Patent Office
Prior art keywords
aerosol
smoking substitute
chamber
main body
generation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP19198651.2A
Other languages
German (de)
English (en)
Inventor
designation of the inventor has not yet been filed The
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nerudia Ltd
Original Assignee
Nerudia Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nerudia Ltd filed Critical Nerudia Ltd
Priority to EP19198651.2A priority Critical patent/EP3794990A1/fr
Priority to EP20789839.6A priority patent/EP3930502A1/fr
Priority to PCT/EP2020/076261 priority patent/WO2021053210A1/fr
Publication of EP3794990A1 publication Critical patent/EP3794990A1/fr
Priority to US17/685,101 priority patent/US20220256919A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • the present invention relates to a smoking substitute apparatus and, in particular, a smoking substitute apparatus that is able to reduce fluid leakage during use, as well as to deliver nicotine to a user in an effective manner.
  • the smoking of tobacco is generally considered to expose a smoker to potentially harmful substances. It is thought that a significant amount of the potentially harmful substances are generated through the burning and/or combustion of the tobacco and the constituents of the burnt tobacco in the tobacco smoke itself.
  • Such smoking substitute systems can form part of nicotine replacement therapies aimed at people who wish to stop smoking and overcome a dependence on nicotine.
  • Known smoking substitute systems include electronic systems that permit a user to simulate the act of smoking by producing an aerosol (also referred to as a "vapour") that is drawn into the lungs through the mouth (inhaled) and then exhaled.
  • the inhaled aerosol typically bears nicotine and/or a flavourant without, or with fewer of, the health risks associated with conventional smoking.
  • smoking substitute systems are intended to provide a substitute for the rituals of smoking, whilst providing the user with a similar, or improved, experience and satisfaction to those experienced with conventional smoking and with combustible tobacco products.
  • smoking substitute systems have grown rapidly in the past few years. Although originally marketed as an aid to assist habitual smokers wishing to quit tobacco smoking, consumers are increasingly viewing smoking substitute systems as desirable lifestyle accessories. There are a number of different categories of smoking substitute systems, each utilising a different smoking substitute approach. Some smoking substitute systems are designed to resemble a conventional cigarette and are cylindrical in form with a mouthpiece at one end. Other smoking substitute devices do not generally resemble a cigarette (for example, the smoking substitute device may have a generally box-like form, in whole or in part).
  • a vaporisable liquid, or an aerosol precursor or aerosol precursor sometimes typically referred to herein as “e-liquid”
  • a heating device sometimes referred to herein as an electronic cigarette or “e-cigarette” device
  • the e-liquid typically includes a base liquid, nicotine and may include a flavourant.
  • the resulting vapour therefore also typically contains nicotine and/or a flavourant.
  • the base liquid may include propylene glycol and/or vegetable glycerine.
  • a typical e-cigarette device includes a mouthpiece, a power source (typically a battery), a tank for containing e-liquid and a heating device.
  • a power source typically a battery
  • a tank for containing e-liquid In use, electrical energy is supplied from the power source to the heating device, which heats the e-liquid to produce an aerosol (or "vapour") which is inhaled by a user through the mouthpiece.
  • E-cigarettes can be configured in a variety of ways.
  • there are "closed system" vaping smoking substitute systems which typically have a sealed tank and heating element. The tank is prefilled with e-liquid and is not intended to be refilled by an end user.
  • One subset of closed system vaping smoking substitute systems include a main body which includes the power source, wherein the main body is configured to be physically and electrically couplable to a consumable including the tank and the heating element. In this way, when the tank of a consumable has been emptied of e-liquid, that consumable is removed from the main body and disposed of. The main body can then be reused by connecting it to a new, replacement, consumable.
  • Another subset of closed system vaping smoking substitute systems are completely disposable, and intended for one-use only.
  • vaping smoking substitute systems which typically have a tank that is configured to be refilled by a user. In this way the entire device can be used multiple times.
  • An example vaping smoking substitute system is the mybluTM e-cigarette.
  • the mybluTM e-cigarette is a closed system which includes a main body and a consumable.
  • the main body and consumable are physically and electrically coupled together by pushing the consumable into the main body.
  • the main body includes a rechargeable battery.
  • the consumable includes a mouthpiece and a sealed tank which contains e-liquid.
  • the consumable has an inlet which is fluidly connected to an outlet at the mouthpiece by an air flow channel.
  • the consumable further includes a heater, which for this device is a heating filament coiled around a portion of a wick positioned across the width of the air flow passage. The wick is partially immersed in the e-liquid, and conveys e-liquid from the tank to the heating filament.
  • the system is controlled by a microprocessor on board the main body.
  • the system includes a sensor for detecting when a user is inhaling through the mouthpiece, the microprocessor then activating the device in response.
  • electrical energy is supplied from the power source to the heating device, which heats e-liquid from the tank to produce a vapour, which promptly condenses to form an aerosol as it is cooled by an air flow passing through the air flow passage. A user may therefore inhale the generated aerosol through the mouthpiece.
  • the aerosol droplets have a size distribution that is not suitable for delivering nicotine to the lungs. Aerosol droplets of a large particle size tend to be deposited in the mouth and/or upper respiratory tract. Aerosol particles of a small (e.g. sub-micron) particle size can be inhaled into the lungs but may be exhaled without delivering nicotine to the lungs. As a result the user would require drawing a longer puff, more puffs, or vaporising e-liquid with a higher nicotine concentration in order to achieve the desired experience.
  • the air inlet is often positioned at the base of the vaporising chamber.
  • coalesced aerosol droplets that are too large to be suspended in the air flow, as well as excess aerosol precursor that is wicked from the sealed tank, may undesirably leak through the air inlet by gravity.
  • the present invention relates to a smoking substitute apparatus that, when placed in an upright orientation, has at least one chamber inlet positioned above the aerosol generator in an aerosol generation chamber. As such, substantially all of the air flow entering the aerosol generation chamber is directed away from the aerosol generator.
  • a smoking substitute apparatus for generating an aerosol comprising:
  • the aerosol generation chamber may be provided at or towards a first end of a housing of the apparatus.
  • the base of the aerosol generation chamber may form the base of the housing.
  • Said first end of the housing may be engageable with a main body of a smoking substitute system.
  • the chamber outlet may open towards the second end of the housing and in fluid communication with an outlet at a mouthpiece at the second end of the housing, onto which the user may puff in order to draw an air flow through the aerosol generation chamber.
  • a user may draw on the apparatus with or without making physical contact with the apparatus.
  • a mouthpiece or other intervening structure may be provided, separate from and/or separable from the housing of the smoking substitute apparatus, and the user's lips may make contact with this mouthpiece or other intervening structure when drawing on the apparatus.
  • the at least one chamber inlet may be located at a position above the aerosol generator in said upright orientation.
  • the chamber inlet may be positioned downstream to the aerosol generator in the direction of aerosol flow.
  • substantially all of the air flow may enter the aerosol generation chamber along an air flow path between the at least one chamber inlet and the chamber outlet, and wherein the aerosol generator may be arranged to be spaced from the air flow path.
  • the at least one chamber inlet may open, at the aerosol generation chamber, in a direction away from the aerosol generator, e.g. the at least one chamber inlet may open in a direction parallel to the aerosol generator.
  • such arrangement may avoid having the majority of air flow directly impinging upon the aerosol generator, and therefore it may reduce the amount of turbulence in the vicinity of the aerosol generator. As a result, an aerosol with enlarged droplet sizes may be formed.
  • the aerosol precursor may comprise a liquid aerosol precursor, and wherein the aerosol generator may comprise a heater configured to generate the aerosol by vaporising the liquid aerosol precursor.
  • the liquid aerosol precursor may be an e-liquid and may comprise nicotine and a base liquid such as propylene glycol and/or vegetable glycerine and may include a flavourant.
  • the aerosol generator may be a heater such as a heater coil wound around a wick.
  • the aerosol generator may vaporise the aerosol precursor to form a vapour.
  • the vapour may expand or flow from the aerosol generator to merge or entrain into the air flow entering the chamber through the at least one chamber inlet.
  • the formation of vapour may increase the internal pressure at the aerosol generation chamber, and may advantageously aid the convection of the vapour towards the chamber outlet.
  • Said vapour may cool and condense to from an aerosol in the aerosol generation chamber and subsequently be discharged towards the chamber outlet. More specifically, substantially all of the air flow entering the aerosol generation chamber may not directly pass over the aerosol generator but may only come into contact with the vapour and/or aerosol once it is formed.
  • the turbulence in the vicinity of the aerosol generator in the present disclosure is significantly lower than the amount of turbulence that would otherwise occurred in prior art consumables.
  • the base of the aerosol generation chamber may be sealed against air flow. This is discussed in more detail below.
  • the aerosol generation chamber is sealed against air flow into or out of the chamber in a region level with and below the position of the aerosol generator.
  • the chamber outlet of the aerosol generation chamber may face an upward direction, with the sealed region of the aerosol generation chamber positioned below both the chamber inlet and chamber outlet. That is, in the sealed region of the aerosol generation chamber may be free from apertures that allow the passage of an air flow.
  • the sealed region of the aerosol generation chamber may comprise sealed apertures for allowing electrical contact to extending therethrough.
  • some air flow may be permitted to enter the aerosol generation chamber. However, where such air flow is permitted, preferably this is only in an amount that does not significantly affect the degree of turbulence around the aerosol generator.
  • the chamber inlet may form on a sidewall of the aerosol generation chamber at a position in between the aerosol generator and the chamber outlet.
  • at least a portion of the sidewall of the aerosol generation chamber may be defined by the housing, and wherein the chamber inlet may form on said portion of sidewall through the housing.
  • the chamber inlet may open on a sidewall of the housing and into the aerosol generation chamber.
  • the aerosol generation chamber may form separately to the housing.
  • the aerosol generation chamber may extend coaxially with the housing, and an annulus may be defined between the respective sidewalls of the aerosol generation chamber and the housing.
  • the annulus may comprises a tank for storing a reservoir of aerosol precursor.
  • an air inlet passage may extend from an opening of the sidewall of the housing, through the annulus to the chamber inlet of the aerosol generation chamber.
  • the smoking substitute apparatus is configured to generate an aerosol having a droplet size, d 50 , of at least 1 ⁇ m.
  • the smoking substitute apparatus is configured to generate an aerosol having a droplet size, d 50 , ranged between 1 ⁇ m to 4 ⁇ m.
  • the smoking substitute apparatus is configured to generate an aerosol having a droplet size, d 50 , ranged between 2 ⁇ m to 3 ⁇ m.
  • aerosol having droplets in such size ranges may improve delivery of nicotine into the user's lung, by reducing the likelihood of nicotine deposition in the mouth and/or upper respiratory tract, e.g. in the case of oversized aerosol droplets, or not being absorbed at all, e.g. in the case of undersized aerosol droplets.
  • the aerosol generator is adjacent to the base of the aerosol generation chamber.
  • such arrangement may allow the aerosol generator to be located at a position furthest away from the chamber inlet and the air flow entering therethrough, and therefore it may limit the turbulence in the vicinity of the aerosol generator. Further, such arrangement may increase the residence time of the vapour in the aerosol generation chamber and thus it may allow some aerosol droplets to form and even coalesce before being entrained in the air flow.
  • the wick of the heater may absorb excess aerosol precursor that is collected at the base of aerosol generation chamber, and subsequently allowing it to be vaporised.
  • the aerosol generator is located at a position adjacent to the chamber inlet, e.g. the aerosol generator is immediately upstream of the chamber inlet.
  • this may shorten the path of travel for the aerosol and thereby allow the aerosol to be promptly entrained or merged into the air flow.
  • the aerosol generation chamber is configured to have a substantially uniform cross sectional profile along its length.
  • the aerosol flow path along the length of the aerosol generation chamber may have the same cross-sectional area.
  • this may reduce turbulence, as well as fluctuation in pressure in the aerosol flow path and thereby such arrangement may lead to an increase in the size of aerosol droplets.
  • the smoking substitute apparatus further comprises a housing containing the aerosol generation chamber, wherein one or more electrical contacts are provided on a first end of the housing and electrically connected with the aerosol generator, and wherein the one or more electrical contacts are configured to engage with corresponding electrical terminals on a main body of a smoking substitute system.
  • electrical connectors may extend from the aerosol generator, through respective sealed apertures at the base of the aerosol generation chamber, to establish electrical connection with the one or more electrical contacts.
  • such arrangement may allow electrical connection between the main body and the aerosol generator to establish by biasing the housing towards the main body.
  • the smoking substitute apparatus further comprises a housing containing the aerosol generation chamber, wherein one or more electrical contacts have an electrically conductive surface which extends orthogonally to the longitudinal axis of the housing.
  • the electrical conductive surface may form from conductor strips, e.g. copper strips that extends partially across the first end of the housing.
  • such arrangement may increase the surface area of the electrical contacts.
  • one or more electrical contacts are provided on a sidewall of the housing and electrically connected with the aerosol generator, wherein the one or more electrical contacts are configured to engage with corresponding electrical terminals on a main body of a smoking substitute system.
  • electrical connectors may extend from the aerosol generator, through respective sealed apertures at the sidewalls of the aerosol generation chamber, to establish electrical connection with the one or more electrical contacts.
  • such arrangement may allow electrical connection between the main body and the aerosol generator to establish by sliding the housing into a cavity of the main body.
  • the one or more electrical contacts have an electrically conductive surface which is parallel to the longitudinal axis of the housing.
  • the electrical conductive surface may form from conductor strips, e.g. copper strips that extends along the sidewall of the housing.
  • such arrangement may increase the surface area of the electrical contacts.
  • the one or more electrical contacts are provided on an outer surface of the housing.
  • the electrical contacts may form on the external surface at the base of the housing, or they may form on the external surface at the sidewall of the housing.
  • such arrangement may allow the one or more electrical contacts to establish connection with corresponding electrical contacts formed on an internal surface of a cavity of the main body.
  • the one or more electrical contacts are resiliently movable for effecting a secure electrical connection with the corresponding electrical terminals on the main body.
  • the electrical contacts may form an interference fit with the corresponding electrical terminals of main body, whereby such interference fit may help retaining the housing within the main body.
  • the smoking substitute apparatus may be in the form of a consumable.
  • the consumable may be configured for engagement with a main body.
  • the combination of the consumable and the main body may form a smoking substitute system such as a closed smoking substitute system.
  • the consumable may comprise components of the system that are disposable, and the main body may comprise non-disposable or non-consumable components (e.g. power supply, controller, sensor, etc.) that facilitate the generation and/or delivery of aerosol by the consumable.
  • the aerosol precursor e.g. e-liquid
  • the smoking substitute apparatus may be a non-consumable apparatus (e.g. that is in the form of an open smoking substitute system).
  • an aerosol precursor e.g. e-liquid
  • the aerosol precursor may be replenished by re-filling, e.g. a reservoir of the smoking substitute apparatus, with the aerosol precursor (rather than replacing a consumable component of the apparatus).
  • the smoking substitute apparatus may alternatively form part of a main body for engagement with the smoking substitute apparatus. This may be the case in particular when the smoking substitute apparatus is in the form of a consumable.
  • the main body and the consumable may be configured to be physically coupled together.
  • the consumable may be at least partially received in a recess of the main body, such that there is an interference fit between the main body and the consumable.
  • the main body and the consumable may be physically coupled together by screwing one onto the other, or through a bayonet fitting, or the like.
  • the smoking substitute apparatus may comprise one or more engagement portions for engaging with a main body.
  • one end of the smoking substitute apparatus may be coupled with the main body, whilst an opposing end of the smoking substitute apparatus may define a mouthpiece of the smoking substitute system.
  • the smoking substitute apparatus may comprise a reservoir configured to store an aerosol precursor, such as an e-liquid.
  • the e-liquid may, for example, comprise a base liquid.
  • the e-liquid may further comprise nicotine.
  • the base liquid may include propylene glycol and/or vegetable glycerine.
  • the e-liquid may be substantially flavourless. That is, the e-liquid may not contain any deliberately added additional flavourant and may consist solely of a base liquid of propylene glycol and/or vegetable glycerine and nicotine.
  • the reservoir may be in the form of a tank. At least a portion of the tank may be light-transmissive.
  • the tank may comprise a window to allow a user to visually assess the quantity of e-liquid in the tank.
  • a housing of the smoking substitute apparatus may comprise a corresponding aperture (or slot) or window that may be aligned with a light-transmissive portion (e.g. window) of the tank.
  • the reservoir may be referred to as a "clearomizer” if it includes a window, or a "cartomizer” if it does not.
  • the smoking substitute apparatus may comprise a passage for fluid flow therethrough.
  • the passage may extend through (at least a portion of) the smoking substitute apparatus, from the chamber outlet to an outlet of the apparatus.
  • the outlet may be at a mouthpiece of the smoking substitute apparatus.
  • the passage may be at least partially defined by the tank.
  • the tank may substantially (or fully) define the passage, for at least a part of the length of the passage. In this respect, the tank may surround the passage, e.g. in an annular arrangement around the passage.
  • the aerosol generator may comprise a wick.
  • the aerosol generator may further comprise a heater.
  • the wick may comprise a porous material, capable of wicking the aerosol precursor. A portion of the wick may be exposed in the aerosol generation chamber, however said portion of the wick may be spaced from the air flow path.
  • the wick may also comprise one or more portions in contact with liquid stored in the reservoir. For example, opposing ends of the wick may protrude into the reservoir and an intermediate portion (between the ends) may extend across the aerosol generation chamber. Thus, liquid may be drawn (e.g. by capillary action) along the wick, from the reservoir to the portion of the wick exposed in the aerosol generation chamber.
  • the heater may comprise a heating element, which may be in the form of a filament wound about the wick (e.g. the filament may extend helically about the wick in a coil configuration).
  • the heating element may be wound about the intermediate portion of the wick that is extended across the aerosol generation chamber.
  • the heating element may be electrically connected (or connectable) to a power source.
  • the power source may apply a voltage across the heating element so as to heat the heating element by resistive heating. This may cause liquid stored in the wick (i.e. drawn from the tank) to be heated so as to form a vapour in the aerosol generation chamber. This vapour may subsequently cool to form an aerosol in the aerosol generation chamber, typically downstream from the heating element.
  • vaporised e-liquid may be drawn towards the chamber outlet.
  • the vapour may cool, and thereby nucleate and/or condense to form a plurality of aerosol droplets, e.g. nicotine-containing aerosol droplets.
  • a portion of these aerosol droplets may be delivered to and be absorbed at a target delivery site, e.g. a user's lung, whilst a portion of the aerosol droplets may instead adhere onto other parts of the user's respiratory tract, e.g. the user's oral cavity and/or throat.
  • the aerosol droplets as measured at the outlet of the passage e.g. at the mouthpiece, may have a droplet size, d 50 , of less than 1 ⁇ m.
  • the particle droplet sizes, d 50 , of an aerosol may be measured by a laser diffraction technique.
  • the stream of aerosol output from the outlet of the passage may be drawn through a Malvern Spraytec laser diffraction system, where the intensity and pattern of scattered laser light are analysed to calculate the size and size distribution of aerosol droplets.
  • the particle size distribution may be expressed in terms of d 10 , d 50 and d 90 , for example.
  • the d 10 particle size is the particle size below which 10% by volume of the sample lies.
  • the d 50 particle size is the particle size below which 50% by volume of the sample lies.
  • the d 90 particle size is the particle size below which 90% by volume of the sample lies.
  • the particle size measurements are volume-based particle size measurements, rather than number-based or mass-based particle size measurements.
  • the smoking substitute apparatus (or main body engaged with the smoking substitute apparatus) may comprise a power source.
  • the power source may be electrically connected (or connectable) to a heater of the smoking substitute apparatus (e.g. when the smoking substitute apparatus is engaged with the main body).
  • the power source may be a battery (e.g. a rechargeable battery).
  • a connector in the form of e.g. a USB port may be provided for recharging this battery.
  • the smoking substitute apparatus When the smoking substitute apparatus is in the form of a consumable, the smoking substitute apparatus may comprise an electrical interface for interfacing with a corresponding electrical interface of the main body.
  • One or both of the electrical interfaces may include one or more electrical contacts.
  • the electrical interface of the main body when the main body is engaged with the consumable, the electrical interface of the main body may be configured to transfer electrical power from the power source to a heater of the consumable via the electrical interface of the consumable.
  • the electrical interface of the smoking substitute apparatus may also be used to identify the smoking substitute apparatus (in the form of a consumable) from a list of known types.
  • the consumable may have a certain concentration of nicotine and the electrical interface may be used to identify this.
  • the electrical interface may additionally or alternatively be used to identify when a consumable is connected to the main body.
  • the main body may comprise an identification means, which may, for example, be in the form of an RFID reader, a barcode or QR code reader.
  • This identification means may be able to identify a characteristic (e.g. a type) of a consumable engaged with the main body.
  • the consumable may include any one or more of an RFID chip, a barcode or QR code, or memory within which is an identifier and which can be interrogated via the identification means.
  • the smoking substitute apparatus or main body may comprise a controller, which may include a microprocessor.
  • the controller may be configured to control the supply of power from the power source to the heater of the smoking substitute apparatus (e.g. via the electrical contacts).
  • a memory may be provided and may be operatively connected to the controller.
  • the memory may include non-volatile memory.
  • the memory may include instructions which, when implemented, cause the controller to perform certain tasks or steps of a method.
  • the main body or smoking substitute apparatus may comprise a wireless interface, which may be configured to communicate wirelessly with another device, for example a mobile device, e.g. via Bluetooth®.
  • the wireless interface could include a Bluetooth® antenna.
  • Other wireless communication interfaces, e.g. WiFi®, are also possible.
  • the wireless interface may also be configured to communicate wirelessly with a remote server.
  • a puff sensor may be provided that is configured to detect a puff (i.e. inhalation from a user).
  • the puff sensor may be operatively connected to the controller so as to be able to provide a signal to the controller that is indicative of a puff state (i.e. puffing or not puffing).
  • the puff sensor may, for example, be in the form of a pressure sensor or an acoustic sensor. That is, the controller may control power supply to the heater of the consumable in response to a puff detection by the sensor. The control may be in the form of activation of the heater in response to a detected puff. That is, the smoking substitute apparatus may be configured to be activated when a puff is detected by the puff sensor.
  • the puff sensor When the smoking substitute apparatus is in the form of a consumable, the puff sensor may be provided in the consumable or alternatively may be provided in the main body.
  • flavourant is used to describe a compound or combination of compounds that provide flavour and/or aroma.
  • the flavourant may be configured to interact with a sensory receptor of a user (such as an olfactory or taste receptor).
  • the flavourant may include one or more volatile substances.
  • the flavourant may be provided in solid or liquid form.
  • the flavourant may be natural or synthetic.
  • the flavourant may include menthol, liquorice, chocolate, fruit flavour (including e.g. citrus, cherry etc.), vanilla, spice (e.g. ginger, cinnamon) and tobacco flavour.
  • the flavourant may be evenly dispersed or may be provided in isolated locations and/or varying concentrations.
  • a smoking substitute system for generating an aerosol comprising:
  • the main body comprises corresponding electrical terminals configured to engage with the one or more electrical contacts by a sliding fit.
  • the smoking substitute system may be configured such that electrical connections between the heater and the main body by sliding the housing into a cavity of the main body.
  • a third aspect there is provided a method of using the smoking substitute apparatus of the first aspect, comprising
  • the present inventors consider that a flow rate of 1.3 L min -1 is towards the lower end of a typical user expectation of flow rate through a conventional cigarette and therefore through a user-acceptable smoking substitute apparatus.
  • the present inventors further consider that a flow rate of 2.0 L min -1 is towards the higher end of a typical user expectation of flow rate through a conventional cigarette and therefore through a user-acceptable smoking substitute apparatus.
  • Embodiments of the present invention therefore provide an aerosol with advantageous particle size characteristics across a range of flow rates of air through the apparatus.
  • the aerosol may have a Dv50 of at least 1.1 ⁇ m, at least 1.2 ⁇ m, at least 1.3 ⁇ m, at least 1.4 ⁇ m, at least 1.5 ⁇ m, at least 1.6 ⁇ m, at least 1.7 ⁇ m, at least 1.8 ⁇ m, at least 1.9 ⁇ m or at least 2.0 ⁇ m.
  • the aerosol may have a Dv50 of not more than 4.9 ⁇ m, not more than 4.8 ⁇ m, not more than 4.7 ⁇ m, not more than 4.6 ⁇ m, not more than 4.5 ⁇ m, not more than 4.4 ⁇ m, not more than 4.3 ⁇ m, not more than 4.2 ⁇ m, not more than 4.1 ⁇ m, not more than 4.0 ⁇ m, not more than 3.9 ⁇ m, not more than 3.8 ⁇ m, not more than 3.7 ⁇ m, not more than 3.6 ⁇ m, not more than 3.5 ⁇ m, not more than 3.4 ⁇ m, not more than 3.3 ⁇ m, not more than 3.2 ⁇ m, not more than 3.1 ⁇ m or not more than 3.0 ⁇ m.
  • a particularly preferred range for Dv50 of the aerosol is in the range 2-3 ⁇ m.
  • the average magnitude of velocity of air in the vaporisation chamber may be not more than 0.001 ms -1 , or not more than 0.005 ms -1 , or not more than 0.01 ms -1 , or not more than 0.05 ms -1 .
  • the aerosol generator may comprise a vaporiser element loaded with aerosol precursor, the vaporiser element being heatable by a heater and presenting a vaporiser element surface to air in the vaporisation chamber.
  • a vaporiser element region may be defined as a volume extending outwardly from the vaporiser element surface to a distance of 1 mm from the vaporiser element surface.
  • the air inlet, flow passage, outlet and the vaporisation chamber may be configured so that, when the air flow rate inhaled by the user through the apparatus is 1.3 L min -1 , the average magnitude of velocity of air in the vaporiser element region is in the range 0-1.2 ms -1 .
  • the average magnitude of velocity of air in the vaporiser element region may be calculated using computational fluid dynamics.
  • the average magnitude of velocity of air in the vaporiser element region may be not more than 0.001 ms -1 , or not more than 0.005 ms -1 , or not more than 0.01 ms -1 , or not more than 0.05 ms -1 .
  • the resultant aerosol particle size is advantageously controlled to be in a desirable range. It is further considered that the velocity of air in the vaporiser element region is more relevant to the resultant particle size characteristics than consideration of the velocity in the vaporisation chamber as a whole. This is in view of the significant effect of the velocity of air in the vaporiser element region on the cooling of the vapour emitted from the vaporiser element surface.
  • the air inlet, flow passage, outlet and the vaporisation chamber may be configured so that, when the air flow rate inhaled by the user through the apparatus is 1.3 L min -1 , the maximum magnitude of velocity of air in the vaporiser element region is in the range 0-2.0 ms -1 .
  • the maximum magnitude of velocity of air in the vaporiser element region may be not more than 0.001 ms -1 , or not more than 0.005 ms -1 , or not more than 0.01 ms -1 , or not more than 0.05 ms -1 .
  • the air inlet, flow passage, outlet and the vaporisation chamber may be configured so that, when the air flow rate inhaled by the user through the apparatus is 1.3 L min -1 , the turbulence intensity in the vaporiser element region is not more than 1%.
  • the turbulence intensity in the vaporiser element region may be not more than 0.95%, not more than 0.9%, not more than 0.85%, not more than 0.8%, not more than 0.75%, not more than 0.7%, not more than 0.65% or not more than 0.6%.
  • the particle size characteristics of the generated aerosol may be determined by the cooling rate experienced by the vapour after emission from the vaporiser element (e.g. wick).
  • the vaporiser element e.g. wick
  • imposing a relatively slow cooling rate on the vapour has the effect of generating aerosols with a relatively large particle size.
  • the parameters discussed above are considered to be mechanisms for implementing a particular cooling dynamic to the vapour.
  • the air inlet, flow passage, outlet and the vaporisation chamber may be configured so that a desired cooling rate is imposed on the vapour.
  • the particular cooling rate to be used depends of course on the nature of the aerosol precursor and other conditions. However, for a particular aerosol precursor it is possible to define a set of testing conditions in order to define the cooling rate, and by extension this imposes limitations on the configuration of the apparatus to permit such cooling rates as are shown to result in advantageous aerosols.
  • the air inlet, flow passage, outlet and the vaporisation chamber may be configured so that the cooling rate of the vapour is such that the time taken to cool to 50 °C is not less than 16 ms, when tested according to the following protocol.
  • the aerosol precursor is an e-liquid consisting of 1.6% freebase nicotine and the remainder a 65:35 propylene glycol and vegetable glycerine mixture, the e-liquid having a boiling point of 209 °C.
  • Air is drawn into the air inlet at a temperature of 25 °C.
  • the vaporiser is operated to release a vapour of total particulate mass 5 mg over a 3 second duration from the vaporiser element surface in an air flow rate between the air inlet and outlet of 1.3 L min -1 .
  • the air inlet, flow passage, outlet and the vaporisation chamber may be configured so that the cooling rate of the vapour is such that the time taken to cool to 50 °C is not less than 16 ms, when tested according to the following protocol.
  • the aerosol precursor is an e-liquid consisting of 1.6% freebase nicotine and the remainder a 65:35 propylene glycol and vegetable glycerine mixture, the e-liquid having a boiling point of 209 °C.
  • Air is drawn into the air inlet at a temperature of 25 °C.
  • the vaporiser is operated to release a vapour of total particulate mass 5 mg over a 3 second duration from the vaporiser element surface in an air flow rate between the air inlet and outlet of 2.0 L min -1 .
  • Cooling of the vapour such that the time taken to cool to 50 °C is not less than 16 ms corresponds to an equivalent linear cooling rate of not more than 10 °C/ms.
  • the equivalent linear cooling rate of the vapour to 50 °C may be not more than 9 °C/ms, not more than 8 °C/ms, not more than 7 °C/ms, not more than 6 °C/ms or not more than 5 °C/ms.
  • Cooling of the vapour such that the time taken to cool to 50 °C is not less than 32 ms corresponds to an equivalent linear cooling rate of not more than 5 °C/ms.
  • the testing protocol set out above considers the cooling of the vapour (and subsequent aerosol) to a temperature of 50 °C. This is a temperature which can be considered to be suitable for an aerosol to exit the apparatus for inhalation by a user without causing significant discomfort. It is also possible to consider cooling of the vapour (and subsequent aerosol) to a temperature of 75 °C. Although this temperature is possibly too high for comfortable inhalation, it is considered that the particle size characteristics of the aerosol are substantially settled by the time the aerosol cools to this temperature (and they may be settled at still higher temperature).
  • the air inlet, flow passage, outlet and the vaporisation chamber may be configured so that the cooling rate of the vapour is such that the time taken to cool to 75 °C is not less than 4.5 ms, when tested according to the following protocol.
  • the aerosol precursor is an e-liquid consisting of 1.6% freebase nicotine and the remainder a 65:35 propylene glycol and vegetable glycerine mixture, the e-liquid having a boiling point of 209 °C.
  • Air is drawn into the air inlet at a temperature of 25 °C.
  • the vaporiser is operated to release a vapour of total particulate mass 5 mg over a 3 second duration from the vaporiser element surface in an air flow rate between the air inlet and outlet of 1.3 L min -1 .
  • the air inlet, flow passage, outlet and the vaporisation chamber may be configured so that the cooling rate of the vapour is such that the time taken to cool to 75 °C is not less than 4.5 ms, when tested according to the following protocol.
  • the aerosol precursor is an e-liquid consisting of 1.6% freebase nicotine and the remainder a 65:35 propylene glycol and vegetable glycerine mixture, the e-liquid having a boiling point of 209 °C.
  • Air is drawn into the air inlet at a temperature of 25 °C.
  • the vaporiser is operated to release a vapour of total particulate mass 5 mg over a 3 second duration from the vaporiser element surface in an air flow rate between the air inlet and outlet of 2.0 L min -1 .
  • the equivalent linear cooling rate of the vapour to 75 °C may be not more than 29 °C/ms, not more than 28 °C/ms, not more than 27 °C/ms, not more than 26 °C/ms, not more than 25 °C/ms, not more than 24 °C/ms, not more than 23 °C/ms, not more than 22 °C/ms, not more than 21 °C/ms, not more than 20 °C/ms, not more than 19 °C/ms, not more than 18 °C/ms, not more than 17 °C/ms, not more than 16 °C/ms, not more than 15 °C/ms, not more than 14 °C/ms, not more than 13 °C/ms, not more than 12 °C/ms, not more than 11 °C/ms or not more than 10 °C/ms.
  • Cooling of the vapour such that the time taken to cool to 75 °C is not less than 13 ms corresponds to an equivalent linear cooling rate of not more than 10 °C/ms.
  • the invention includes the combination of the aspects and preferred features described except where such a combination is clearly impermissible or expressly avoided.
  • FIGS 17 and 18 illustrate a smoking substitute system in the form of an e-cigarette system 110.
  • the system 110 comprises a main body 120 of the system 110, and a smoking substitute apparatus in the form of an e-cigarette consumable (or "pod") 150.
  • the consumable 150 (sometimes referred to herein as a smoking substitute apparatus) is removable from the main body 120, so as to be a replaceable component of the system 110.
  • the e-cigarette system 110 is a closed system in the sense that it is not intended that the consumable should be refillable with e-liquid by a user.
  • the consumable 150 is configured to engage the main body 120.
  • Figure 17 shows the main body 120 and the consumable 150 in an engaged state
  • Figure 18 shows the main body 120 and the consumable 150 in a disengaged state.
  • a portion of the consumable 150 is received in a cavity of corresponding shape in the main body 120 and is retained in the engaged position by way of a snap-engagement mechanism.
  • the main body 120 and consumable 150 may be engaged by screwing one into (or onto) the other, or through a bayonet fitting, or by way of an interference fit.
  • the system 110 is configured to vaporise an aerosol precursor, which in the illustrated embodiment is in the form of a nicotine-based e-liquid 160.
  • the e-liquid 160 comprises nicotine and a base liquid including propylene glycol and/or vegetable glycerine.
  • the e-liquid 160 is flavoured by a flavourant.
  • the e-liquid 160 may be flavourless and thus may not include any added flavourant.
  • FIG 19 shows a schematic longitudinal cross sectional view of a smoking substitute apparatus according to a reference arrangement that is configured to form part of the smoking substitute system shown in Figures 17 and 18 .
  • the smoking substitute apparatus, or consumable 150 as shown in Figure 19 is provided as a reference arrangement to illustrate the features of a consumable 150 and its interaction with the main body 120.
  • the e-liquid 160 is stored within a reservoir in the form of a tank 152 that forms part of the consumable 150.
  • the consumable 150 is a "single-use" consumable 150. That is, upon exhausting the e-liquid 160 in the tank 152, the intention is that the user disposes of the entire consumable 150.
  • the term "single-use” does not necessarily mean the consumable is designed to be disposed of after a single smoking session. Rather, it defines the consumable 150 is not arranged to be refilled after the e-liquid contained in the tank 152 is depleted.
  • the tank may include a vent (not shown) to allow ingress of air to replace e-liquid that has been used from the tank.
  • the consumable 150 preferably includes a window 158 (see Figures 17 and 18 ), so that the amount of e-liquid in the tank 152 can be visually assessed.
  • the main body 120 includes a slot 157 so that the window 158 of the consumable 150 can be seen whilst the rest of the tank 152 is obscured from view when the consumable 150 is received in the cavity of the main body 120.
  • the consumable 150 may be referred to as a "clearomizer” when it includes a window 158, or a "cartomizer” when it does not.
  • the e-liquid i.e. aerosol precursor
  • the tank may be refillable with e-liquid or the e-liquid may be stored in a non-consumable component of the system.
  • the e-liquid may be stored in a tank located in the main body or stored in another component that is itself not single-use (e.g. a refillable cartomizer).
  • the external wall of tank 152 is provided by a casing of the consumable 150.
  • the tank 152 annularly surrounds, and thus defines a portion of, a passage 170 that extends between a vaporiser inlet 172 and an outlet 174 at opposing ends of the consumable 150.
  • the passage 170 comprises an upstream end at the end of the consumable 150 that engages with the main body 120, and a downstream end at an opposing end of the consumable 150 that comprises a mouthpiece 154 of the system 110.
  • a plurality of device air inlets 176 are formed at the boundary between the casing of the consumable and the casing of the main body.
  • the device air inlets 176 are in fluid communication with the vaporiser inlet 172 through an inlet flow channel 178 formed in the cavity of the main body which is of corresponding shape to receive a part of the consumable 150. Air from outside of the system 110 can therefore be drawn into the passage 170 through the device air inlets 176 and the inlet flow channels 178.
  • the passage 170 may be partially defined by a tube (e.g. a metal tube) extending through the consumable 150.
  • the passage 170 is shown with a substantially circular cross-sectional profile with a constant diameter along its length.
  • the passage may have other cross-sectional profiles, such as oval shaped or polygonal shaped profiles.
  • the cross sectional profile and the diameter (or hydraulic diameter) of the passage may vary along its longitudinal axis.
  • the smoking substitute system 110 is configured to vaporise the e-liquid 160 for inhalation by a user.
  • the consumable 150 comprises an aerosol generator for example a heater, the heater having a porous wick 162 and a resistive heating element in the form of a heating filament 164 that is helically wound (in the form of a coil) around a portion of the porous wick 162.
  • the porous wick 162 extends across the passage 170 (i.e. transverse to a longitudinal axis of the passage 170 and thus also transverse to the air flow along the passage 170 during use) and opposing ends of the wick 162 extend into the tank 152 (so as to be immersed in the e-liquid 160). In this way, e-liquid 160 contained in the tank 152 is conveyed from the opposing ends of the porous wick 162 to a central portion of the porous wick 162 so as to be exposed to the air flow in the passage 170.
  • the helical filament 164 is wound about the exposed central portion of the porous wick 162 and is electrically connected to an electrical interface in the form of electrical contacts 156 mounted at the end of the consumable that is proximate the main body 120 (when the consumable and the main body are engaged).
  • electrical contacts 156 make contact with corresponding electrical contacts (not shown) of the main body 120.
  • the main body electrical contacts are electrically connectable to a power source (not shown) of the main body 120, such that (in the engaged position) the filament 164 is electrically connectable to the power source. In this way, power can be supplied by the main body 120 to the filament 164 in order to heat the filament 164.
  • the filament 164 and the exposed central portion of the porous wick 162 are positioned across the passage 170. More specifically, the part of passage that contains the filament 164 and the exposed portion of the porous wick 162 forms a vaporisation chamber, or aerosol generation chamber.
  • the aerosol generation chamber has the same cross-sectional diameter as the passage 170. However, in other embodiments the aerosol generation chamber may have a different cross sectional profile as the passage 170. For example, the aerosol generation chamber may have a larger cross sectional diameter than at least some of the downstream part of the passage 170 so as to enable a longer residence time for the air inside the aerosol generation chamber.
  • FIG 20 illustrates in more detail the aerosol generation chamber of the reference arrangement as shown in Figure 3 and therefore the region of the consumable 150 around the wick 162 and filament 164.
  • the helical filament 164 is wound around a central portion of the porous wick 162.
  • the porous wick extends across passage 170.
  • E-liquid 160 contained within the tank 152 is conveyed as illustrated schematically by arrows 401, i.e. from the tank and towards the central portion of the porous wick 162.
  • porous wick 162 When the user inhales, air is drawn from through the inlets 176 shown in Figure 19 , along inlet flow channel 178 to aerosol generation chamber inlet 172 and into the aerosol generation chamber containing porous wick 162.
  • the porous wick 162 extends substantially transverse to the air flow direction.
  • the air flow passes around the porous wick, at least a portion of the air flow substantially following the surface of the porous wick 162.
  • the air flow may follow a curved path around an outer periphery of the porous wick 162.
  • the filament 164 is heated so as to vaporise the e-liquid which has been wicked into the porous wick.
  • the air flow passing around the porous wick 162 picks up this vaporised e-liquid, and the vapour-containing air flow is drawn in direction 403 further down passage 170.
  • the power source of the main body 120 may be in the form of a battery (e.g. a rechargeable battery such as a lithium ion battery).
  • the main body 120 may comprise a connector in the form of e.g. a USB port for recharging this battery.
  • the main body 120 may also comprise a controller that controls the supply of power from the power source to the main body electrical contacts (and thus to the filament 164). That is, the controller may be configured to control a voltage applied across the main body electrical contacts, and thus the voltage applied across the filament 164. In this way, the filament 164 may only be heated under certain conditions (e.g. during a puff and/or only when the system is in an active state).
  • the main body 120 may include a puff sensor (not shown) that is configured to detect a puff (i.e. inhalation).
  • the puff sensor may be operatively connected to the controller so as to be able to provide a signal, to the controller, which is indicative of a puff state (i.e. puffing or not puffing).
  • the puff sensor may, for example, be in the form of a pressure sensor or an acoustic sensor.
  • the main body 120 and consumable 150 may comprise a further interface which may, for example, be in the form of an RFID reader, a barcode or QR code reader.
  • This interface may be able to identify a characteristic (e.g. a type) of a consumable 150 engaged with the main body 120.
  • the consumable 150 may include any one or more of an RFID chip, a barcode or QR code, or memory within which is an identifier and which can be interrogated via the interface.
  • Figures 21A and 21B respectively illustrates an enlarged longitudinal cross sectional view of a smoking substitute system in a disengaged and an engaged position according to the first embodiment of the present disclosure.
  • the consumable 250 is configured to engage and disengage with the main body 120 and is interchangeable with the reference arrangement 150 as shown in Figures 19 and 20 .
  • the consumable 250 is configured to interact with the main body 120 in the same manner as the reference arrangement 150 and the user may operate the consumable 250 in the same manner as the reference arrangement 150.
  • the consumable 250 in Figures 21A and 21B is shown oriented upright, which is an orientation the apparatus is put into when a user draws on the consumable 250.
  • the consumable 250 comprises a housing which defines an aerosol generation chamber 280 at a first end of the housing.
  • the aerosol generation chamber 280 and housing shares the same longitudinal axis along a dashed line as shown in Figure 21A .
  • Said first end of the consumable 250 is configured to be received in a cavity of the main body 120.
  • the aerosol generation chamber 280 comprises a heater located adjacent to or above a base 284 of aerosol generation chamber 280.
  • the heater comprises a porous wick 262 and a heating filament 264 helically wound around a portion of the porous wick 162.
  • the end portions of the porous wick 262 is configured to be in fluid communication with a tank (not shown) and thereby allow aerosol precursor stored in the tank to be wicked towards the porous wick 262.
  • the heating element is energised and thereby vaporises aerosol precursor in the porous wick 262 to form a vapour. A portion of the vapour may promptly cool in the vicinity of the heater and thereby condenses to form an aerosol.
  • the flow path of the aerosol and/or aerosol 414 is shown as dotted arrows in Figure 21B .
  • the aerosol generation chamber 280 takes the form of an open ended container, or a cup, having a plurality of chamber inlets 272 opened through the sidewall of the aerosol generation chamber 280 and opposite to each other.
  • a single chamber inlet may be provided.
  • the plurality of chamber inlets are arranged circumferentially on the sidewall aerosol generation chamber 280.
  • the aerosol generation chamber 280 is defined by the housing, e.g. the aerosol generation chamber 280 and housing share the same sidewall. Therefore the chamber inlets 272 also form the air inlets of the housing.
  • the aerosol generation chamber 280 further comprises a chamber outlet 282 opened towards an outlet (not shown) at the second end of the housing opposite the first end.
  • the second end of the consumable 250 comprises a mouthpiece 254 onto which a user may puff, in order to draw an air flow through the chamber inlets 272 and aerosol generation chamber 280 before exhausting through the chamber outlet 282 and the outlet. Substantially all of the air flow entering the chamber inlet is directed away from the heater.
  • the flow path of the air flow 412 is shown as solid arrows in Figure 21B .
  • the chamber inlets 272 are positioned higher than the heater and therefore the aerosol generation chamber 280 is sealed against air flow into and out of the chamber 280 at least in a region level with or below the position of the heater. That is, the chamber inlets 272 are shown positioned between the heater and the chamber outlet 282 along the longitudinal axis of the aerosol generation chamber. More specifically, the chamber inlets 272 are provided downstream of heater in the direction of aerosol flow, e.g. the direction where generated aerosol flows from the heater towards the chamber outlet 282. Furthermore, the chamber inlets 272 and chamber outlet 282 form the only apertures at the aerosol generation chamber 280 that allow gas flow passage.
  • the base of aerosol generation chamber may permit only an insignificant amount of air to ingress into the aerosol generation chamber, e.g. through a gap or an aperture formed at said base.
  • aerosol precursor As aerosol precursor is vaporised from the heated portion of the wick, further aerosol precursor is drawn along the wick from the tank to replace said vaporised aerosol precursor.
  • excess aerosol precursor may be drawn, by momentum or by gravity, into the wick and subsequently collected in the aerosol generation chamber 280, e.g. at the base of the aerosol generation chamber 280.
  • Such arrangement may reduce or eliminate excess aerosol precursor in the porous wick 262 leaking through the consumable 250, e.g. said excess aerosol precursor is retained and subsequently collected at the base of aerosol generation chamber by gravity.
  • the flow path 412 of substantially all of the air flow entering the aerosol generation chamber 280 of the present embodiment is directed away and spaced from the heater. Because as the air flow enters through the chamber inlets 272 at the sidewall, it enters the aerosol generation chamber 280 in a direction away from the aerosol generator, e.g. in a radial direction and parallel to the heater, the resulting air flow path 412 does not directly impinge upon the heater.
  • Such arrangement reduces the turbulence in the vicinity of the heater and thereby allows aerosol precursor to be vaporised in absence of a direct air flow. Therefore, the vicinity of the heater may be considered to be a "stagnant" volume.
  • volumetric flowrate of vapour and/or aerosol in the vicinity of the heater may be less than 0.1 litre per minute.
  • the vaporised aerosol precursor, or vapour may cool and therefore condense in the vicinity of the heater to form an aerosol, which is subsequently merged or entrained with the air flow passing along flow path 412.
  • a portion of the vaporised aerosol precursor may not immediate condense in the vicinity of the heater but may cool to form an aerosol as it entrains into the air flow passing along flow path 412.
  • the aerosol as generated by the illustrated embodiment has a droplet size d 50 of at least 1 ⁇ m. More preferably, the aerosol as generated by the illustrated embodiment has a droplet size d 50 of ranged between 2 ⁇ m to 3 ⁇ m.
  • the aerosol generation chamber is configured to have a length of 20mm and a volume of 680mm 3 .
  • the aerosol generation chamber may be configured to have an internal volume ranging between 68mm 3 to 680mm 3 , wherein the length of the aerosol generation chamber may range between 2mm to 20mm.
  • the heater is positioned at the base 284 of the aerosol generation chamber 280, e.g. the heater is spaced from the chamber inlets 272.
  • Such arrangement may reduce the amount of air flow that may interact with the heater, and therefore it may minimise the amount of turbulence in the vicinity of the heater.
  • such arrangement may increase the residence time of vapour in the stagnant aerosol generation chamber 280 for the vapour to cool and condense, and thereby it may result in the formation of larger aerosol droplets.
  • such arrangement may allow excess aerosol precursor collected at the base of the aerosol generation chamber to be absorbed into the wick, and thereby reduces the likelihood of leakage of said excess aerosol precursor.
  • the heater may be positioned adjacent to, or immediately upstream of, the chamber inlets along the longitudinal axis of the housing, and therefore that the flow path of aerosol from the heater to merge with the air flow may be shortened. This may allow aerosol to entrain with the air flow in a more efficient manner.
  • a region of the aerosol generation chamber 280 level with and below the aerosol generator is sealed against air flow into and out of the chamber 280.
  • the heating filament 284 is electrically connected to electrical contacts 256 through sealed apertures at the base 284 of the aerosol generation chamber 280.
  • Such arrangement prevents air ingress, as well as fluid leakage, through the base 284 of the aerosol generation chamber 280.
  • the electrical contacts 256 contact corresponding electrical contacts 259 in the cavity of the main body 120.
  • the heater is put in electrical connection with the power source in the main body 120.
  • the electrical contacts 256 have an electrically conductive surface provided at the external surface of base 284 and extends orthogonally to the longitudinal axis of the housing.
  • the corresponding electrical contacts 259 have an electrically conductive surface provided at the internal surface of cavity of the main body and extends orthogonally to the longitudinal axis of the main body.
  • the electrical contacts 256 overlay the corresponding electrical contacts 259 in the engaged position.
  • One, or both, of the electrical contacts 259 and the corresponding electrical contacts 259 may be resiliently movable in the axial direction.
  • the electrical contacts 256 and corresponding electrical contacts 259 may comprise a cantilever spring or coil spring. The resilient movement may help to ensure a secure electrical connection.
  • the electrical contacts 256 may have the same configuration as corresponding electrical contacts 259.
  • Figures 22A and 22B respectively illustrates an enlarged longitudinal cross sectional view of a smoking substitute system in a disengaged and an engaged position according to a second embodiment of the present disclosure.
  • the system comprises a main body 320, and a consumable 350 configured to slide into a cavity of the main body 320 to form an engagement between the two.
  • the consumable 350 and main body 320 in this illustrated embodiment is structurally similar to the consumable 250 and main body 120 shown in Figures 21A and 21B , and operates in the same manner to generate an aerosol.
  • the consumable 350 and main body 320 in this illustrated embodiment however, comprises electrical contacts 356 that are formed on the external sidewall of the consumable 350 for establishing electrical connection with corresponding electrical contacts 359 formed on the internal sidewall of the cavity of the main body 320.
  • the electrical contacts 356 have an electrically conductive surface which is parallel to the longitudinal axis of the housing.
  • the corresponding electrical contacts 359 have an electrically conductive surface which is parallel to the longitudinal axis of the main body 320.
  • the electrical contacts 356 and corresponding electrical contacts 359 lie against one another in the engaged position.
  • the electrical contacts 356 and corresponding electrical contacts 359 may physically slide against one another as the consumable 350 is moved into the engaged position.
  • One, or both, of the electrical contacts 356 and corresponding electrical contacts 359 may be resiliently movable in the radial direction.
  • the electrical contacts 356 and corresponding electrical contacts 359 may comprise a cantilever spring or coil spring. The resilient movement may help to ensure a secure electrical connection.
  • the electrical contacts 356 may have the same configuration as corresponding electrical contacts 359.
  • a pair of electrical conductive surfaces are provided in each of the electrical contacts 356 and corresponding electrical contacts 359.
  • the pairing of electrical conductive surfaces are shown at diametrically opposite locations on the consumable 350 and the cavity of the main body 320. This provides maximum physical separation of pair of electrical conductive surface.
  • the electrical contacts 356 and corresponding electrical contacts 359 may be respectively located at other positions around the perimeter of the housing of the consumable 150 and around the perimeter of the cavity of the main body 120.
  • the electrical contacts are provided on an external surface at the side of consumable housing and corresponding electrical contacts are provided on an internal surface at the side of the cavity of the main body.
  • the electrical contacts and corresponding electrical contacts may overlay and press against one another in an axial direction (i.e. parallel to the longitudinal axis of the housing or of the main body) in the engaged position.
  • One, or both, of the electrical connects and corresponding electrical contacts may be resiliently movable in the axial direction. For example, as the consumable is moved into the engaged position, corresponding contacts in the cavity are movable axially inwardly, while continuing to exert a force against electrical contacts of the consumable. The resilient movement may help to ensure a secure electrical connection.
  • the electrical contacts may have the same configuration as corresponding electrical contacts.
  • the experimental work reported here is relevant to the embodiments disclosed above in view of the "stagnant chamber” nature of the embodiments.
  • the experimental work shows that control over the flow conditions at the wick has an effect on the particle size of the generated aerosol.
  • Aerosol droplet size is a considered to be an important characteristic for smoking substitution devices. Droplets in the range of 2-5 ⁇ m are preferred in order to achieve improved nicotine delivery efficiency and to minimise the hazard of second-hand smoking. However, at the time of writing (September 2019), commercial EVP devices typically deliver aerosols with droplet size averaged around 0.5 ⁇ m, and to the knowledge of the inventors not a single commercially available device can deliver an aerosol with an average particle size exceeding 1 ⁇ m.
  • the present inventors speculate, without themselves wishing to be bound by theory, that there has to date been a lack of understanding in the mechanisms of e-liquid evaporation, nucleation and droplet growth in the context of aerosol generation in smoking substitute devices. The present inventors have therefore studied these issues in order to provide insight into mechanisms for the generation of aerosols with larger particles. The present inventors have carried out experimental and modelling work alongside theoretical investigations, leading to significant achievements as now reported.
  • This disclosure considers the roles of air velocity, air turbulence and vapour cooling rate in affecting aerosol particle size.
  • a Malvern PANalytical Spraytec laser diffraction system was employed for the particle size measurement.
  • the same coil and wick 1.5 ohms Ni-Cr coil, 1.8 mm Y07 cotton wick
  • Y07 represents the grade of cotton wick, meaning that the cotton has a linear density of 0.7 grams per meter.
  • Particle sizes were measured in accordance with ISO 13320:2009(E), which is an international standard on laser diffraction methods for particle size analysis. This is particularly well suited to aerosols, because there is an assumption in this standard that the particles are spherical (which is a good assumption for liquid-based aerosols). The standard is stated to be suitable for particle sizes in the range 0.1 micron to 3 mm.
  • Figure 2 shows a schematic perspective longitudinal cross sectional view of an example rectangular tube 1170 with a wick 1162 and heater coil 1164 installed.
  • the location of the wick is about half way along the length of the tube. This is intended to allow the flow of air along the tube to settle before reaching the wick.
  • Figure 3 shows a schematic transverse cross sectional view an example rectangular tube 1170 with a wick 1162 and heater coil 1164 installed.
  • the internal width of the tube is 12 mm
  • the rectangular tubes were manufactured to have same internal depth of 6 mm in order to accommodate the standardized coil and wick, however the tube internal width varied from 4.5 mm to 50 mm.
  • the "tube size” is referred to as the internal width of rectangular tubes.
  • the rectangular tubes with different dimensions were used to generate aerosols that were tested for particle size in a Malvern PANalytical Spraytec laser diffraction system.
  • An external digital power supply was dialled to 2.6A constant current to supply 10W power to the heater coil in all experiments. Between two runs, the wick was saturated manually by applying one drop of e-liquid on each side of the wick.
  • Table 1 shows a list of experiments in this study.
  • the values in "calculated air velocity” column were obtained by simply dividing the flow rate by the intersection area at the centre plane of wick.
  • Turbulence intensity was introduced as a quantitative parameter to assess the level of turbulence. The definition and simulation of turbulence intensity is discussed below (see section 3.2).
  • Figures 4A-4D show air flow streamlines in the four devices used in this turbulence study.
  • Figure 4A is a standard 12mm rectangular tube with wick and coil installed as explained in the previous section, with no jetting panel.
  • Figure 4B has a jetting panel located 10mm below (upstream from) the wick.
  • Figure 4C has the same jetting panel 5mm below the wick.
  • Figure 4D has the same jetting panel 2.5mm below the wick.
  • the jetting panel has an arrangement of apertures shaped and directed in order to promote jetting from the downstream face of the panel and therefore to promote turbulent flow.
  • the jetting panel can introduce turbulence downstream, and the panel causes higher level of turbulence near the wick when it is positioned closer to the wick.
  • the four geometries gave turbulence intensities of 0.55%, 0.77%, 1.06% and 1.34%, respectively, with Figure 4A being the least turbulent, and Figure 4D being the most turbulent.
  • the experimental set up is shown in Figure 5 .
  • the testing used a Carbolite Gero EHA 12300B tube furnace 3210 with a quartz tube 3220 to heat up the air. Hot air in the tube furnace was then led into a transparent housing 3158 that contains the EVP device 3150 to be tested.
  • a thermocouple meter 3410 was used to assess the temperature of the air pulled into the EVP device. Once the EVP device was activated, the aerosol was pulled into the Spraytec laser diffraction system 3310 via a silicone connector 3320 for particle size measurement.
  • pod 1 is the commercially available "myblu optimised" pod ( Figure 6 ); pod 2 is a pod featuring an extended inflow path upstream of the wick ( Figure 7 ); and pod 3 is pod with the wick located in a stagnant vaporisation chamber and the inlet air bypassing the vaporisation chamber but entraining the vapour from an outlet of the vaporisation chamber ( Figures 8A and 8B ).
  • Pod 1 shown in longitudinal cross sectional view (in the width plane) in Figure 6 , has a main housing that defines a tank 160x holding an e-liquid aerosol precursor. Mouthpiece 154x is formed at the upper part of the pod. Electrical contacts 156x are formed at the lower end of the pod. Wick 162x is held in a vaporisation chamber. The air flow direction is shown using arrows.
  • Pod 2 shown in longitudinal cross sectional view (in the width plane) in Figure 7 , has a main housing that defines a tank 160y holding an e-liquid aerosol precursor. Mouthpiece 154y is formed at the upper part of the pod. Electrical contacts 156y are formed at the lower end of the pod. Wick 162y is held in a vaporisation chamber. The air flow direction is shown using arrows. Pod 2 has an extended inflow path (plenum chamber 157y) with a flow conditioning element 159y, configured to promote reduced turbulence at the wick 162y.
  • Figure 8A shows a schematic longitudinal cross sectional view of pod 3.
  • Figure 8B shows a schematic longitudinal cross sectional view of the same pod 3 in a direction orthogonal to the view taken in Figure 8A .
  • Pod 3 has a main housing that defines a tank 160z holding an e-liquid aerosol precursor. Mouthpiece 154z is formed at the upper part of the pod. Electrical contacts 156z are formed at the lower end of the pod. Wick 162z is held in a vaporisation chamber. The air flow direction is shown using arrows.
  • Pod 3 uses a stagnant vaporiser chamber, with the air inlets bypassing the wick and picking up the vapour/aerosol downstream of the wick.
  • Air velocity in the vicinity of the wick is believed to play an important role in affecting particle size.
  • the air velocity was calculated by dividing the flow rate by the intersection area, which is referred to as "calculated velocity" in this work. This involves a very crude simplification that assumes velocity distribution to be homogeneous across the intersection area.
  • the CFD model uses a laminar single-phase flow setup.
  • the outlet was configured to a corresponding flowrate
  • the inlet was configured to be pressure-controlled
  • the wall conditions were set as "no slip”.
  • a 1 mm wide ring-shaped domain (wick vicinity) was created around the wick surface, and domain probes were implemented to assess the average and maximum magnitudes of velocity in this ring-shaped wick vicinity domain.
  • the CFD model outputs the average velocity and maximum velocity in the vicinity of the wick for each set of experiments carried out in section 2.1. The outcomes are reported in Table 2.
  • turbulence intensity values represent higher levels of turbulence.
  • turbulence intensity below 1% represents a low-turbulence case
  • turbulence intensity between 1% and 5% represents a medium-turbulence case
  • turbulence intensity above 5% represents a high-turbulence case.
  • Turbulence intensity was assessed within the volume up to 1 mm away from the wick surface (defined as the wick vicinity domain). For the four experiments explained in section 2.2, the turbulence intensities are 0.55%, 0.77%, 1.06% and 1.34%, respectively, as also shown in Figures 4A-4D .
  • the cooling rate modelling involves three coupling models in COMSOL Multiphysics: 1) laminar two-phase flow; 2) heat transfer in fluids, and 3) particle tracing.
  • the model is setup in three steps:
  • Laminar mixture flow physics was selected in this study.
  • the outlet was configured in the same way as in section 3.1.
  • this model includes two fluid phases released from two separate inlets: the first one is the vapour released from wick surface, at an initial velocity of 2.84 cm/s (calculated based on 5 mg total particulate mass over 3 seconds puff duration) with initial velocity direction normal to the wick surface; the second inlet is air influx from the base of tube, the rate of which is pressure-controlled.
  • the inflow and outflow settings in heat transfer physics was configured in the same way as in the two-phase flow model.
  • the air inflow was set to 25 °C
  • the vapour inflow was set to 209 °C (boiling temperature of the e-liquid formulation).
  • the heat transfer physics is configured to be two-way coupled with the laminar mixture flow physics.
  • the above model reaches steady state after approximately 0.2 second with a step size of 0.001 second.
  • the particle tracing physics has one-way coupling with the previous model, which means the fluid flow exerts dragging force on the particles, whereas the particles do not exert counterforce on the fluid flow. Therefore, the particles function as moving probes to output vapour temperature at each timestep.
  • the model outputs average vapour temperature at each time steps.
  • a MATLAB script was then created to find the time step when the vapour cools to a target temperature (50°C or 75°C), based on which the vapour cooling rates were obtained (Table 3).
  • Table 3 Average vapour cooling rate obtained from Multiphysics modelling Tube size Flow rate Cooling rate to 50°C Cooling rate to 75°C [mm] [lpm] [°C/ms] [°C/ms] 1.3 lpm constant flow rate 4.5 1.3 11.4 44.7 6 1.3 5.48 14.9 7 1.3 3.46 7.88 8 1.3 2.24 5.15 10 1.3 1.31 2.85 12 1.3 0.841 1.81 20 1.3 0* 0.536 50 1.3 0 0 2.0 Ipm constant flow rate 4.5 2.0 19.9 670 5 2.0 13.3 67 6 2.0 8.83 26.8 8 2.0 3.61 8.93 12 2.0 1.45 3.19 20 2.0 0.395 0.761 50 2.0 0 0 * Zero cooling rate when the average vapour temperature is still above target temperature after
  • Particle size measurement results for the rectangular tube testing are shown in Table 4.
  • Table 4 For every tube size and flow rate combination, five repetition runs were carried out in the Spraytec laser diffraction system. The Dv50 values from five repetition runs were averaged, and the standard deviations were calculated to indicate errors, as shown in Table 4.
  • the particle size (Dv50) experimental results are plotted against calculated air velocity in Figure 9 .
  • the graph shows a strong correlation between particle size and air velocity.
  • Figure 10 shows the results of three experiments with highly different setup arrangements: 1) 5mm tube measured at 1.4 Ipm flow rate with Reynolds number of 155; 2) 8mm tube measured at 2.8 Ipm flow rate with Reynolds number of 279; and 3) 20mm tube measured at 8.6 Ipm flow rate with Reynolds number of 566. It is relevant that these setup arrangements have one similarity: the air velocities are all calculated to be 1 m/s.
  • Figure 10 shows that, although these three sets of experiments have different tube sizes, flow rates and Reynolds numbers, they all delivered similar particle sizes, as the air velocity was kept constant. These three data points were also plotted out in Figure 9 (1 m/s data with star marks) and they tie in nicely into particle size-air velocity trendline.
  • the particle size measurement data were plotted against the average velocity ( Figure 11 ) and maximum velocity ( Figure 12 ) in the vicinity of the wick, as obtained from CFD modelling.
  • the data in these two graphs indicates that in order to obtain an aerosol with Dv50 larger than 1 ⁇ m, the average velocity should be less than or equal to 1.2 m/s in the vicinity of the wick and the maximum velocity should be less than or equal to 2.0 m/s in the vicinity of the wick.
  • the average velocity should be less than or equal to 0.6 m/s in the vicinity of the wick and the maximum velocity should be less than or equal to 1.2 m/s in the vicinity of the wick.
  • typical commercial EVP devices deliver aerosols with Dv50 around 0.5 ⁇ m, and there is no commercially available device that can deliver aerosol with Dv50 exceeding 1 ⁇ m. It is considered that typical commercial EVP devices have average velocity of 1.5-2.0 m/s in the vicinity of the wick.
  • turbulence intensity is a quantitative characteristic that indicates the level of turbulence.
  • four tubes of different turbulence intensities were used to general aerosols which were measured in the Spraytec laser diffraction system.
  • the particle size (Dv50) experimental results are plotted against turbulence intensity in Figure 13 .
  • the graph suggests a correlation between particle size and turbulence intensity, that lower turbulence intensity is beneficial for obtaining larger particle size. It is noted that when turbulence intensity is above 1% (medium-turbulence case), there are relatively large measurement fluctuations. In Figure 13 , the tube with a jetting panel 10mm below the wick has the largest error bar, because air jets become unpredictable near the wick after traveling through a long distance.
  • Figure 14 shows the high temperature testing results. Larger particle sizes were observed from all 3 pods when the temperature of inlet air increased from room temperature (23°C) to 50 °C. When the pods were heated as well, two of the three pods saw even larger particle size measurement results, while pod 2 was unable to be measured due to significant amount of leakage.
  • laminar flow allows slow and gradual mixing between cold air and hot vapour, which means the vapour can cool down in slower rate when the airflow is laminar, resulting in larger particle size.
  • vapour cooling rates for each tube size and flow rate combination were obtained via multiphysics simulation.
  • particle size measurement results were plotted against vapour cooling rate to 50°C and 75°C, respectively.
  • the apparatus in order to obtain an aerosol with Dv50 larger than 1 ⁇ m, the apparatus should be operable to require more than 16 ms for the vapour to cool to 50°C, or an equivalent (simplified to an assumed linear) cooling rate being slower than 10 °C/ms.
  • the apparatus in order to obtain an aerosol with Dv50 larger than 1 ⁇ m, the apparatus should be operable to require more than 4.5 ms for the vapour to cool to 75°C, or an equivalent (simplified to an assumed linear) cooling rate slower than 30 °C/ms.
  • the apparatus should be operable to require more than 32 ms for the vapour to cool to 50°C, or an equivalent (simplified to an assumed linear) cooling rate being slower than 5 °C/ms.
  • the apparatus in order to obtain an aerosol with Dv50 of 2 ⁇ m or larger, should be operable to require more than 13 ms for the vapour to cool to 75°C, or an equivalent (simplified to an assumed linear) cooling rate slower than 10 °C/ms.
  • particle size (Dv50) of aerosols generated in a set of rectangular tubes was studied in order to decouple different factors (flow rate, air velocity, Reynolds number, tube size) affecting aerosol particle size. It is considered that air velocity is an important factor affecting particle size - slower air velocity leads to larger particle size. When air velocity was kept constant, the other factors (flow rate, Reynolds number, tube size) has low influence on particle size.

Landscapes

  • Catching Or Destruction (AREA)
  • Medicinal Preparation (AREA)
EP19198651.2A 2019-09-20 2019-09-20 Appareil de substitution du tabac Ceased EP3794990A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19198651.2A EP3794990A1 (fr) 2019-09-20 2019-09-20 Appareil de substitution du tabac
EP20789839.6A EP3930502A1 (fr) 2019-09-20 2020-09-21 Appareil de substitution pour fumeur
PCT/EP2020/076261 WO2021053210A1 (fr) 2019-09-20 2020-09-21 Appareil de substitution pour fumeur
US17/685,101 US20220256919A1 (en) 2019-09-20 2022-03-02 Smoking substitute apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19198651.2A EP3794990A1 (fr) 2019-09-20 2019-09-20 Appareil de substitution du tabac

Publications (1)

Publication Number Publication Date
EP3794990A1 true EP3794990A1 (fr) 2021-03-24

Family

ID=67998332

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19198651.2A Ceased EP3794990A1 (fr) 2019-09-20 2019-09-20 Appareil de substitution du tabac
EP20789839.6A Pending EP3930502A1 (fr) 2019-09-20 2020-09-21 Appareil de substitution pour fumeur

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20789839.6A Pending EP3930502A1 (fr) 2019-09-20 2020-09-21 Appareil de substitution pour fumeur

Country Status (3)

Country Link
US (1) US20220256919A1 (fr)
EP (2) EP3794990A1 (fr)
WO (1) WO2021053210A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018191766A1 (fr) * 2017-04-20 2018-10-25 Von Erl. Gmbh Embout buccal pour un inhalateur
US20190124996A1 (en) * 2016-10-12 2019-05-02 Changzhou Patent Electronic Technology Co., LTD Electronic cigarette
EP3504989A1 (fr) * 2013-12-23 2019-07-03 Juul Labs UK Holdco Limited Systèmes et procédés de dispositifs de vaporisation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3504989A1 (fr) * 2013-12-23 2019-07-03 Juul Labs UK Holdco Limited Systèmes et procédés de dispositifs de vaporisation
US20190124996A1 (en) * 2016-10-12 2019-05-02 Changzhou Patent Electronic Technology Co., LTD Electronic cigarette
WO2018191766A1 (fr) * 2017-04-20 2018-10-25 Von Erl. Gmbh Embout buccal pour un inhalateur

Also Published As

Publication number Publication date
WO2021053210A1 (fr) 2021-03-25
US20220256919A1 (en) 2022-08-18
EP3930502A1 (fr) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2021053233A1 (fr) Appareil de substitution au tabagisme
EP3930496A1 (fr) Appareil de substitution pour fumeur
EP3930513B1 (fr) Appareil de substitution du tabac
EP3794969A1 (fr) Appareil de substitution du tabac
EP3794997A1 (fr) Appareil de substitution du tabac
EP3795010A1 (fr) Appareil de substitution du tabac
EP3794975A1 (fr) Appareil de substitution du tabac
EP3795013A1 (fr) Appareil de substitution du tabac
EP3795009A1 (fr) Appareil de substitution du tabac
EP3794990A1 (fr) Appareil de substitution du tabac
EP3895554A1 (fr) Appareil de substitution du tabac
US20220202076A1 (en) Smoking substitute apparatus
EP3794982A1 (fr) Appareil de substitution du tabac
EP3895553A1 (fr) Appareil de substitution du tabac
EP3795012A1 (fr) Appareil de substitution du tabac
EP3795002A1 (fr) Appareil de substitution du tabac
EP3795001A1 (fr) Appareil de substitution du tabac
EP3794967A1 (fr) Appareil de substitution du tabac
EP3794988A1 (fr) Appareil de substitution du tabac
EP3795003A1 (fr) Appareil de substitution du tabac
EP3794992A1 (fr) Appareil de substitution du tabac
EP3795008A1 (fr) Appareil de substitution du tabac
EP3794980A1 (fr) Appareil de substitution du tabac
EP3795004A1 (fr) Appareil de substitution du tabac
EP3794996A1 (fr) Appareil de substitution du tabac

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20210424