EP3793835B1 - Method for treating the surface of a part and associated facility - Google Patents

Method for treating the surface of a part and associated facility Download PDF

Info

Publication number
EP3793835B1
EP3793835B1 EP19709074.9A EP19709074A EP3793835B1 EP 3793835 B1 EP3793835 B1 EP 3793835B1 EP 19709074 A EP19709074 A EP 19709074A EP 3793835 B1 EP3793835 B1 EP 3793835B1
Authority
EP
European Patent Office
Prior art keywords
deposition
substance
microcontroller
pulse train
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19709074.9A
Other languages
German (de)
French (fr)
Other versions
EP3793835A1 (en
EP3793835B8 (en
Inventor
Michel DEMARCHI
Jérôme BONIFACE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROBO
SMRC Automotive Holdings Netherlands BV
Original Assignee
SMRC Automotive Holdings Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMRC Automotive Holdings Netherlands BV filed Critical SMRC Automotive Holdings Netherlands BV
Publication of EP3793835A1 publication Critical patent/EP3793835A1/en
Application granted granted Critical
Publication of EP3793835B1 publication Critical patent/EP3793835B1/en
Publication of EP3793835B8 publication Critical patent/EP3793835B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00214Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects
    • B41J3/40731Holders for objects, e. g. holders specially adapted to the shape of the object to be printed or adapted to hold several objects

Definitions

  • the present invention relates to the field of the surface treatment of parts, and preferably the printing of parts by means of printing of the inkjet type.
  • the document US 2016/263920 A1 discloses a method of surface treatment of a part. This method comprises a measurement step and a deposition step. In this deposition step, deposition means eject a substance to deposit it on the surface of the part.
  • the print head which ejects a substance, such as ink, can be moved by a robotic arm relative to a part which remains fixed.
  • the printing means which usually incorporate a four-color set, are generally bulky, and it is then very difficult to move them. This is all the more true when these printing means are, in addition, associated with a module for partial drying of the drops of the substance, arranged directly under the print head.
  • the printheads may be subject to disturbances or position variations due to the rapid movement of the robotic arm. To limit these disturbances, it is then necessary to limit the speed of movement of the robotic arm, which reduces the rate, as well as industrial efficiency.
  • sudden variations in the orientation of the print head have the effect of impacting the quality of the print. Indeed, inside the print head the air is in a slight depression to prevent the substance from flowing out by gravity.
  • sudden variations in orientation have the consequence of modifying the balance between the atmospheric pressure and the pressure inside the printhead, and therefore of disturbing the ejection of the substance.
  • the object of the present invention is to propose an improved solution, flexible as a function of the geometry of the part, making it possible to obtain high precision whatever the geometry of the part and its object is to overcome the aforementioned drawbacks.
  • This treatment process advantageously allows the decoration of a part 2 by creating a pattern (not shown) by depositing at least one substance 13 using deposition means 6. Due to the geometry of the part 2, it is generally necessary to vary the speed of movement of the part 2 and therefore that of the means of movement 3, to avoid collisions with the deposition means 6, during movement and to deposit the substance 13 while taking care of correct the speed variations of the means of displacement 3. Thanks to the processing method, according to the invention, this variability of the speed of movement of the means of displacement 3 does not impact the quality of the decoration obtained at the end of the process treatment according to the invention.
  • the instantaneous velocities v1, v2, v3, v4, v5 of the part 2 are measured prior to the deposition step, on a predetermined trajectory, during the measurement step . Then, these instantaneous speeds v1, v2, v3, v4, v5 are stored in a computer 7.
  • the instantaneous speeds v1, v2, v3, v4, v5 can be stored in the form of a table T of instantaneous speeds v1, v2 , v3, v4, v5.
  • the moving means 3 it is possible to move again and, subsequently, the part 2, according to the same predetermined trajectory and the same kinematics, that is to say the same speed of movement, which can be variable or constant, and this in particular during the deposition step. From these instantaneous speeds v1, v2, v3, v4, v5 stored in the computer 7, then transmitted to the microcontroller 8, it is also then possible to generate a pulse train signal S. During step deposit, and therefore at the same time that the part 2 is moved by the displacement means 3 along the predetermined path, this pulse train signal S is transmitted to the deposit means 6.
  • the processing of the part 2 by the deposition means 6 is adapted to the instantaneous speed v1, v2, v3, v4, v5 of the part 2.
  • the frequency of ejection of the drops of substance 13 by the deposition means 6 is advantageously correlated to the instantaneous speed v1, v2, v3, v4, v5 of the part 2.
  • the predetermined trajectory and the kinematics of the displacement means 3 can, moreover, be programmed in advance using software present in the management and control unit 5. This software, as well as the predetermined trajectory and the kinematics e are modifiable according to needs and with great flexibility.
  • this treatment process makes it possible to decorate parts 2 having any type of geometry. Furthermore, this processing method makes it possible to freely position the pattern on the surface 1 of the part 2. This method thus makes it possible to obtain great precision in the patterns deposited and this, in a constant and continuous manner, including in areas in three dimensions of part 2, for example, radii, edges or the like.
  • Part 2 can be a three-dimensional part, for example a vehicle trim part, for example made of plastic material.
  • the deposition step can comprise several passages of surface 1 of part 2, in front of deposition means 6, in particular when large patterns must be deposited on surface 1 of part 2.
  • the step of measurement can be made by successive passages of the surface 1 of the part 2 in front of the measurement sensor 9 to scan the whole of the surface 1 of the part 2 intended to be decorated, for example strip by strip.
  • the management and control unit 5 and the measurement sensor 9 sequentially measure the instantaneous speeds v1, v2, v3, v4, v5, the various successive measurements being separated by a period scanning time Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4 constant or variable, preferably between 1 microsecond and 100 milliseconds ( figures 3A and 3B ).
  • the acquisition of the instantaneous speed v1, v2, v3, v4, v5 of part 2 is performed every 2 milliseconds.
  • this measurement step makes it possible to acquire the instantaneous speed profile v1, v2, v3, v4, v5 over the entire course of the trajectory at a scanning period Tscrut i, Tscrut i+1, Tscrut i+2 , Tscrut i+3, Tscrut i+4.
  • This sampling of the profile of the instantaneous speeds v1, v2, v3, v4, v5 of the trajectory is carried out according to the scanning period Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4 which can be variable according to the desired speed for part 2.
  • the scanning period Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4 can vary during the trajectory to allow more or less accuracy depending on the complexity of the contour of the part 2 to follow.
  • the instantaneous speed profile v1, v2, v3, v4, v5 is converted by the computer 7, preferably a computer, following periods T1, T2, T3, T4, T5 of pulse train respecting the scanning period Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4 .
  • T1 is 166.4 microseconds
  • T2 is 163.2 microseconds
  • T3 is 168.5 microseconds
  • T4 is 170.6 microseconds
  • T5 is 171.2 microseconds.
  • the set of period values T1, T2, T3, T4, T5 can be placed in a table T, shown in figure 4 .
  • the series of pulse train periods T1, T2, T3, T4, T5 is transformed into a pulse train signal S sampled at a sampling period Timp , preferably between 5 microseconds to 100 microseconds, by the microcontroller 8 ( figures 5A and 5B ).
  • the sequence of periods T1, T2, T3, T4, T5 is then converted by the microcontroller 8 into a periodic signal, preferably with a train of square pulses, compatible with the signal of synchronization expected by the deposition means 6.
  • the sampling period Timp can be reduced to around 50 microseconds.
  • each value of the periods T1, T2, T3, T4, T5 is multiplied to create a pulse train signal S of sampling period Timp for the duration of the scanning period Tscrut i.
  • the pulse trains are then placed end to end by the microcontroller 8 to form the pulse train signal S.
  • This pulse train signal S is stored in the storage memory (not shown) of the microcontroller 8.
  • the pulse train signal S can be square-edged ( figure 5B ).
  • the method may include a calibration step, prior to the deposition step, during which a first detection sensor 9', fixed relative to the deposition means 6, can detect the passage of a reference element or marker 10 arranged on the part 2 or on the support 4 of the displacement means 3, during the displacement of the displacement means 3, to determine the data relating to the spatial coordinates of the reference element or marker 10 ( figures 2A and 2B ).
  • the spatial coordinates of the reference element or marker 10 thus determined can be transmitted and stored relative to the relative data of the set of instantaneous speeds v1, v2, v3, v4, v5 in the computer 7, with a view to generating the pulse train signal S using the microcontroller 8.
  • These spatial coordinates of the The reference element or marker 10 corresponds to a time reference of the pulse train signal S.
  • a second detection sensor 9 fixed relative to the deposition means 6, can detect the passage of a reference element or mark 10 placed on the part 2 or on the support 4 of the means of displacement 3, then can transmit a trigger signal SD to the microcontroller 8 to trigger the transmission of the pulse train signal S to the deposition means 6 to trigger the ejection of the substance 13 ( figure 4 and 6 ).
  • the microcontroller 8 restores the pulse train signal S to the deposition means 6, which makes it possible to synchronize the pulse train signal S with the kinematics of the displacement means 3
  • the reference element or marker 10 which can be accurately plotted on the actual trajectory of the displacement means 3, it is possible to give the order to the deposition means 6 to eject the substance 13 at the right moment on piece 2 and not anteriorly or posteriorly. Synchronization can advantageously be made possible by the passage of the part 2 in front of the second detection sensor 9".
  • the detection of the reference element or marker 10 can be carried out at the start of the trajectory.
  • the reference element or marker 10 can be a reflective surface (not shown) affixed to the surface 1 of the part 2 or to the support 4 of the displacement means 3 and the first detection sensor 9' or the second detection sensor 9" can be an optical sensor. In this way, when the optical sensor and the reflective surface face each other, the optical sensor measures a variation in light intensity received.
  • the measurement sensor 9, the first detection sensor 9', the second detection sensor 9" used can consist of a telemetric sensor module 12 which is fixed relative to the deposition means 6.
  • this telemetry sensor module 12 makes it possible in particular to remotely measure the instantaneous speed v1, v2, v3, v4, v5 of part 2.
  • the measurement sensor 9, the first detection sensor 9', the second detection sensor 9′′ can be optical sensors.
  • the measurement sensor 9 is fixed relative to the deposition means 6. More specifically, the measurement sensor 9 is arranged close to the deposition means 6. Preferably, the distance between the measurement sensor 9 and the deposition means 6 can be between 3 millimeters and 200 millimeters. Furthermore, during the measurement step, the measurement sensor 9 is arranged substantially opposite the fraction of the surface 1 of the part 2 for which the instantaneous speeds v1, v2, v3, v4, v5 must be measured.
  • the microcontroller 8 can transmit the pulse train signal S to the deposition means 6 at a period of between 20 and 100 microseconds.
  • the microcontroller 8 used can consist of a microcontroller comprising at least said storage memory (not shown) and a volatile memory (not shown).
  • the displacement means 3 used can consist of a robotic arm (not shown) comprising six axes of rotation.
  • this robotic arm makes it possible to move the part 2 in front of the deposition means 6 and, more particularly, in front of the printing heads (not shown) described below.
  • the axes of rotation, as well as the movement of the robotic arm are not fixed and completely free. This results in a large latitude of movement of the robotic arm with respect to the geometry of part 2.
  • the deposition means 6 and the fraction of the surface 1 of the part 2 for which the instantaneous speeds v1, v2, v3, v4, v5 have been measured and on which the substance 13 is deposited, are substantially opposite each other.
  • the deposition means 6 used can consist of printing means comprising at least one printing head, preferably of the inkjet type, to eject and deposit at least the substance 13 in the form of drops.
  • the printing heads can also be fixed and are easily accessible. This configuration makes it easier to supply ink to the heads printing. In addition, this results in a reduction in disturbances in the precision of the pattern to be deposited.
  • the print head can however be mobile, but in a limited way, that is to say mobile in translation along three axes or in rotation, to adapt to the movement and to the geometry of the part 2.
  • the printhead can be mono-color, bi-color, or a four-color assembly.
  • Substance 13 can be chosen alone or in combination from an ink, a colored ink, an ultraviolet crosslinking ink, a varnish, a primer, an adhesion agent, a bonding agent, a coating agent.
  • the deposition means 6 can generally comprise any type of effector (not shown) making it possible to treat the surface 1 of the part 2 using at least one substance 13.
  • the printheads may comprise a plurality of nozzles (not shown) arranged on ramps (not shown) which are arranged substantially perpendicular to surface 1 of part 2, at least during the deposition step.
  • the deposition means 6 can be associated with drying means 11 and during the deposition step, the drying means 11 can at least partially dry the substance 13 after depositing the substance 13 on said at least a fraction of the area 1 of part 2.
  • the drying means 11 can allow both partial drying of the drops ejected by the deposition means 6 and complete final drying.
  • the drying means 11 can be an ultraviolet complete drying system.
  • the deposition means 6, the measurement sensor 9, the first detection sensor 9', the second detection sensor 9" and, where applicable, the drying means 11 can be mounted on the same base 14.
  • the installation can comprise a first detection sensor 9', fixed relative to the deposition means 6, able and intended to detect the passage of a reference element or mark 10 placed on the part 2 or on the support 4 of the means of displacement 3, to determine the data relating to the spatial coordinates of the reference element or marker 10.
  • the installation may comprise a second detection sensor 9", fixed relative to the deposition means 6, capable of and intended to detect the passage of a reference element or mark 10 placed on the part 2 or on the support 4 of the means of displacement 3, then to transmit a trigger signal SD to the microcontroller 8 to trigger the transmission of the pulse train signal S to the deposition means 6 to trigger the ejection of the substance 13.
  • a second detection sensor 9 fixed relative to the deposition means 6, capable of and intended to detect the passage of a reference element or mark 10 placed on the part 2 or on the support 4 of the means of displacement 3, then to transmit a trigger signal SD to the microcontroller 8 to trigger the transmission of the pulse train signal S to the deposition means 6 to trigger the ejection of the substance 13.
  • the measurement sensor 9, the first detection sensor 9', the second detection sensor 9" can be a telemetric sensor module 12 which is fixed relative to the deposition means 6.
  • the measurement sensor 9, the first detection sensor 9′, the second detection sensor 9′′ can be as described above.
  • the microcontroller 8 is able and intended to transform the series of pulse train periods T1, T2, T3, T4, T5 into a pulse train signal S sampled at a sampling period Timp, preferably comprised between 5 microseconds to 100 microseconds.
  • the microcontroller 8 can include at least one storage memory and one volatile memory.
  • the displacement means 3 may consist of a robotic arm comprising six axes of rotation.
  • This robotic arm may be as described previously.
  • the deposition means 6 can consist of printing means comprising at least one printing head, preferably of the inkjet type, for depositing at least the substance 13 in the form of drops.
  • the installation may comprise drying means 11 associated with the deposition means 6 and the drying means 11 may be able and intended to at least partially dry the substance 13 after depositing the substance 13 on said at least one fraction on the surface. 1 of room 2.
  • the drying means 11 can be as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Spray Control Apparatus (AREA)

Description

La présente invention concerne le domaine du traitement de surface de pièces, et préférentiellement de l'impression de pièces par des moyens d'impression de type jet d'encre.The present invention relates to the field of the surface treatment of parts, and preferably the printing of parts by means of printing of the inkjet type.

Le document US 2016/263920 A1 divulgue un procédé de traitement de surface d'une pièce. Ce procédé comprend une étape de mesure et une étape de dépôt. Dans cette étape de dépôt, des moyens de dépôt éjectent une substance pour la déposer sur la surface de la pièce.The document US 2016/263920 A1 discloses a method of surface treatment of a part. This method comprises a measurement step and a deposition step. In this deposition step, deposition means eject a substance to deposit it on the surface of the part.

De manière connue et comme l'illustrent, par exemple, les publications DE 10 2012 212 469 A1 , US 2009/0167817 A1 , EP 2 873 496 A1 , et EP 0 931 649 A1 , pour imprimer une pièce par des moyens d'impression du type jet d'encre, la tête d'impression qui éjecte une substance, telle que de l'encre, peut être déplacée par un bras robotisé relativement à une pièce qui reste fixe. Toutefois, les moyens d'impression, qui incorporent le plus souvent un ensemble quadri-chromique, sont en général volumineux, et il est alors très peu aisé de les déplacer. Cela est d'autant plus vrai, lorsque ces moyens d'impression sont, en plus, associés à un module de séchage partiel des gouttes de la substance, disposé directement sous la tête d'impression. En outre, les têtes d'impression peuvent être soumises à des perturbations ou à des variations de position du fait du déplacement rapide du bras robotisé. Pour limiter ces perturbations, il est alors nécessaire de limiter la vitesse de déplacement du bras robotisé, ce qui réduit la cadence, ainsi que l'efficacité industrielle. Par ailleurs, des variations brutales de l'orientation de la tête d'impression ont pour conséquence d'impacter la qualité de l'impression. En effet, à l'intérieur de la tête d'impression l'air est en légère dépression pour empêcher que la substance ne s'écoule par gravité. Or, des variations brutales d'orientation, ont pour conséquence de modifier l'équilibre entre la pression atmosphérique et la pression à l'intérieur de la tête d'impression, et donc de perturber l'éjection de la substance. Enfin, il est également délicat d'embarquer l'unité d'alimentation en substance de la tête d'impression sur le bras robotisé.In a known manner and as illustrated, for example, by the publications OF 10 2012 212 469 A1 , US 2009/0167817 A1 , EP 2 873 496 A1 , and EP 0 931 649 A1 , to print a part by printing means of the inkjet type, the print head which ejects a substance, such as ink, can be moved by a robotic arm relative to a part which remains fixed. However, the printing means, which usually incorporate a four-color set, are generally bulky, and it is then very difficult to move them. This is all the more true when these printing means are, in addition, associated with a module for partial drying of the drops of the substance, arranged directly under the print head. In addition, the printheads may be subject to disturbances or position variations due to the rapid movement of the robotic arm. To limit these disturbances, it is then necessary to limit the speed of movement of the robotic arm, which reduces the rate, as well as industrial efficiency. Furthermore, sudden variations in the orientation of the print head have the effect of impacting the quality of the print. Indeed, inside the print head the air is in a slight depression to prevent the substance from flowing out by gravity. However, sudden variations in orientation have the consequence of modifying the balance between the atmospheric pressure and the pressure inside the printhead, and therefore of disturbing the ejection of the substance. Finally, it is also tricky to embed the printhead substance supply unit on the robotic arm.

La présente invention a pour objet de proposer une solution améliorée, flexible en fonction de la géométrie de la pièce, permettant d'obtenir une grande précision quelle que soit la géométrie de la pièce et a pour but de pallier les inconvénients précités.The object of the present invention is to propose an improved solution, flexible as a function of the geometry of the part, making it possible to obtain high precision whatever the geometry of the part and its object is to overcome the aforementioned drawbacks.

A cet effet, l'invention concerne, un procédé de traitement de surface d'au moins une surface d'une pièce,
procédé caractérisé en ce qu'il comprend au moins :

  • une étape de mesure, lors de laquelle des moyens de déplacement, auxquels est fixée la pièce au niveau d'un support faisant partie des moyens de déplacement, sont déplacés à une vitesse de déplacement variant en fonction de la géométrie locale de la pièce, selon une trajectoire prédéterminée et, de manière contrôlée, par une unité de gestion et de commande, relativement à des moyens de dépôt n'éjectant pas de substance, et lors de laquelle un ensemble de vitesses instantanées, sur au moins une fraction de la surface de la pièce, est déterminé au moyen d'un capteur de mesure contrôlé par l'unité de gestion et de commande, puis des données représentatives de cet ensemble de vitesses instantanées sont transmises et enregistrées dans un calculateur,
  • une étape de traitement du signal, ultérieure à l'étape de mesure, lors de laquelle un microcontrôleur détermine, à partir des données représentatives de l'ensemble de vitesses instantanées préalablement transmises par le calculateur au microcontrôleur, un signal de train d'impulsions représentatif d'un ensemble de fréquences d'éjection d'une substance à déposer par les moyens de dépôt sur ladite au moins une fraction de la surface de la pièce, et enregistre le signal de train d'impulsions dans une mémoire de stockage du microcontrôleur,
  • une étape de dépôt, ultérieure à l'étape de traitement du signal, lors de laquelle les moyens de déplacement sont déplacés de manière contrôlée, par l'unité de gestion et de commande relativement aux moyens de dépôt, selon la trajectoire déterminée, et lors de laquelle et, de manière synchronisée, le microcontrôleur transmet le signal de train d'impulsions aux moyens de dépôt, et les moyens de dépôt éjectent au moins une substance en fonction du signal de train d'impulsions reçu pour déposer la substance sur ladite au moins une fraction de la surface de la pièce.
To this end, the invention relates to a method for surface treatment of at least one surface of a part,
method characterized in that it comprises at least:
  • a measuring step, during which displacement means, to which the part is fixed at a support forming part of the displacement means, are moved at a displacement speed varying according to the local geometry of the part, according to a predetermined trajectory and, in a controlled manner, by a management and control unit, relative to deposition means not ejecting any substance, and during which a set of instantaneous speeds, over at least a fraction of the surface of the part, is determined by means of a measurement sensor controlled by the management and control unit, then data representative of this set of instantaneous speeds are transmitted and recorded in a computer,
  • a signal processing step, subsequent to the measurement step, during which a microcontroller determines, on the basis of data representative of the set of instantaneous speeds previously transmitted by the computer to the microcontroller, a representative pulse train signal of a set of ejection frequencies of a substance to be deposited by the deposition means on said at least a fraction of the surface of the part, and records the pulse train signal in a storage memory of the microcontroller,
  • a depositing step, subsequent to the signal processing step, during which the displacement means are moved in a controlled manner, by the management and control unit relative to the depositing means, according to the determined trajectory, and during which and in a synchronized manner, the microcontroller transmits the pulse train signal to the deposition means, and the deposition means ejects at least one substance according to the received pulse train signal to deposit the substance on said at least one least a fraction of the area of the room.

L'invention concerne également une installation de traitement de surface d'au moins une surface d'une pièce, caractérisée en ce qu'elle est apte et destinée à la mise en œuvre du procédé de traitement de surface d'au moins une surface d'une pièce selon l'invention et en ce qu'elle comprend :

  • des moyens de déplacement aptes et destinés à déplacer la pièce relativement à des moyens de dépôt, et les moyens de déplacement comprenant un support apte et destiné à fixer la pièce relativement aux moyens de déplacement,
  • une unité de gestion et de commande apte et destinée à commander le déplacement des moyens de déplacement selon une trajectoire prédéterminée et une vitesse de déplacement prédéterminée, de manière contrôlée,
  • un capteur de mesure apte et destiné à déterminer un ensemble de vitesses instantanées sur au moins une fraction de la surface de la pièce,
  • les moyens de dépôt étant aptes et destinés à éjecter une substance sur la surface de la pièce,
  • un calculateur apte et destiné à recevoir et à enregistrer des données représentatives de l'ensemble de vitesses instantanées,
  • un microcontrôleur apte et destiné à déterminer, à partir des données représentatives de l'ensemble de vitesses instantanées, un signal de train d'impulsions représentatif d'un ensemble de fréquences d'éjection de la substance à déposer par les moyens de dépôt, et à le transmettre aux moyens de dépôt pour éjecter la substance en fonction du signal de train d'impulsions reçu.
The invention also relates to a surface treatment installation for at least one surface of a part, characterized in that it is suitable and intended for the implementation of the method for surface treatment of at least one surface of a part according to the invention and in that it comprises:
  • moving means capable of and intended to move the part relative to depositing means, and the moving means comprising a support capable of and intended to fix the part relative to the moving means,
  • a management and control unit able and intended to control the displacement of the displacement means according to a predetermined trajectory and a predetermined speed of movement, in a controlled manner,
  • a measurement sensor able and intended to determine a set of instantaneous speeds over at least a fraction of the surface of the part,
  • the deposition means being able and intended to eject a substance onto the surface of the part,
  • a computer able and intended to receive and record data representative of the set of instantaneous speeds,
  • a microcontroller able and intended to determine, from the data representative of the set of instantaneous speeds, a pulse train signal representative of a set of ejection frequencies of the substance to be deposited by the deposition means, and transmitting it to the deposition means for ejecting the substance according to the received pulse train signal.

L'invention sera mieux comprise, grâce à la description ci-après, qui se rapporte à plusieurs modes de réalisation préférés, donnés à titre d'exemples non limitatifs, et expliqués avec référence aux dessins schématiques annexés, dans lesquels :

  • la figure 1 est une vue d'une partie de l'installation selon l'invention,
  • les figures 2A et 2B sont des vues de l'installation selon l'invention, lors de l'étape d'étalonnage du procédé selon l'invention,
  • la figure 3A est une vue de l'installation selon l'invention, lors de l'étape de mesure du procédé selon l'invention,
  • la figure 3B est une vue de la pièce sur laquelle sont représentés les vecteurs des vitesses instantanées à la surface de la pièce,
  • la figure 4 est une vue schématique illustrant le procédé selon l'invention,
  • les figures 5A et 5B sont des vues des signaux obtenus lors de l'étape de traitement du signal du procédé selon l'invention
  • la figure 6 est une vue de l'installation, lors de l'étape de dépôt du procédé selon l'invention.
The invention will be better understood, thanks to the description below, which relates to several preferred embodiments, given by way of non-limiting examples, and explained with reference to the appended diagrammatic drawings, in which:
  • the figure 1 is a view of part of the installation according to the invention,
  • them figures 2A and 2B are views of the installation according to the invention, during the calibration step of the method according to the invention,
  • the Figure 3A is a view of the installation according to the invention, during the measurement step of the method according to the invention,
  • the Figure 3B is a view of the part on which the vectors of the instantaneous velocities at the surface of the part are represented,
  • the figure 4 is a schematic view illustrating the method according to the invention,
  • them figures 5A and 5B are views of the signals obtained during the signal processing step of the method according to the invention
  • the figure 6 is a view of the installation, during the deposition step of the method according to the invention.

Conformément à l'invention, le procédé de traitement de surface d'au moins une surface 1 d'une pièce 2, est caractérisé en ce qu'il comprend au moins :

  • une étape de mesure, lors de laquelle des moyens de déplacement 3, auxquels est fixée la pièce 2 au niveau d'un support 4 faisant partie des moyens de déplacement 3, sont déplacés à une vitesse de déplacement variant en fonction de la géométrie locale de la pièce 2, selon une trajectoire prédéterminée et, de manière contrôlée, par une unité de gestion et de commande 5, relativement à des moyens de dépôt 6 n'éjectant pas de substance 13, et lors de laquelle un ensemble de vitesses instantanées v1, v2, v3, v4, v5, sur au moins une fraction de la surface 1 de la pièce 2, est déterminé au moyen d'un capteur de mesure 9 contrôlé par l'unité de gestion et de commande 5, puis des données représentatives de cet ensemble de vitesses instantanées v1, v2, v3, v4, v5 sont transmises et enregistrées dans un calculateur 7 (figures 3A et 3B),
  • une étape de traitement du signal, ultérieure à l'étape de mesure, lors de laquelle un microcontrôleur 8 détermine, à partir des données représentatives de l'ensemble de vitesses instantanées v1, v2, v3, v4, v5 préalablement transmises par le calculateur 7 au microcontrôleur 8, un signal de train d'impulsions S représentatif d'un ensemble de fréquences d'éjection d'une substance 13 à déposer par les moyens de dépôt 6 sur ladite au moins une fraction de la surface 1 de la pièce 2, et enregistre le signal de train d'impulsions S dans une mémoire de stockage (non représenté) du microcontrôleur 8 (figures 4 et 5B),
  • une étape de dépôt, ultérieure à l'étape de traitement du signal, lors de laquelle les moyens de déplacement 3 sont déplacés de manière contrôlée, par l'unité de gestion et de commande 5 relativement aux moyens de dépôt 6, selon la trajectoire déterminée, et lors de laquelle et, de manière synchronisée, le microcontrôleur 8 transmet le signal de train d'impulsions S aux moyens de dépôt 6, et les moyens de dépôt 6 éjectent au moins une substance 13 en fonction du signal de train d'impulsions S reçu pour déposer la substance 13 sur ladite au moins une fraction de la surface 1 de la pièce 2 (figures 4 et 6).
In accordance with the invention, the method for surface treatment of at least one surface 1 of a part 2 is characterized in that it comprises at least:
  • a measurement step, during which displacement means 3, to which part 2 is fixed at the level of a support 4 forming part of the displacement means 3, are displaced at a displacement speed varying according to the local geometry of part 2, along a predetermined trajectory and, in a controlled manner, by a management and control unit 5, relative to deposition means 6 not ejecting substance 13, and during which a set of instantaneous speeds v1, v2, v3, v4, v5, over at least a fraction of the surface 1 of the part 2, is determined by means of a measurement sensor 9 controlled by the management and control unit 5, then data representative of this set of instantaneous speeds v1, v2, v3, v4, v5 are transmitted and recorded in a computer 7 ( figures 3A and 3B ),
  • a signal processing step, subsequent to the measurement step, during which a microcontroller 8 determines, from the data representative of the set of instantaneous speeds v1, v2, v3, v4, v5 previously transmitted by the computer 7 to the microcontroller 8, a pulse train signal S representative of a set of ejection frequencies of a substance 13 to be deposited by the deposition means 6 on said at least a fraction of the surface 1 of the part 2, and records the pulse train signal S in a storage memory (not shown) of the microcontroller 8 ( figure 4 and 5B ),
  • a deposit step, subsequent to the signal processing step, during which the displacement means 3 are moved in a controlled manner, by the management and control unit 5 relative to the deposit means 6, according to the determined trajectory , and during which and, in a synchronized manner, the microcontroller 8 transmits the pulse train signal S to the deposition means 6, and the deposition means 6 eject at least one substance 13 as a function of the pulse train signal S received to deposit the substance 13 on said at least a fraction of the surface 1 of the part 2 ( figure 4 and 6 ).

Ce procédé de traitement permet avantageusement la décoration d'une pièce 2 en créant un motif (non représenté) en déposant au moins une substance 13 à l'aide de moyens de dépôt 6. Du fait, de la géométrie de la pièce 2, il est en général nécessaire de faire varier la vitesse de déplacement de la pièce 2 et donc celle des moyens de déplacement 3, pour éviter des collisions avec les moyens de dépôt 6, au cours du déplacement et pour déposer la substance 13 tout en prenant soin de corriger les variations de vitesse des moyens de déplacement 3. Grâce au procédé de traitement, selon l'invention, cette variabilité de la vitesse de déplacement des moyens de déplacement 3 n'impacte pas la qualité de la décoration obtenue à l'issue du procédé de traitement selon l'invention. Avantageusement, dans le procédé de traitement selon l'invention, les vitesses instantanées v1, v2, v3, v4, v5 de la pièce 2 sont mesurées préalablement à l'étape de dépôt, sur une trajectoire prédéterminée, lors de l'étape de mesure. Puis, ces vitesses instantanées v1, v2, v3, v4, v5, sont stockées dans un calculateur 7. Préférentiellement, les vitesses instantanées v1, v2, v3, v4, v5 peuvent être stockées sous forme de table T de vitesses instantanées v1, v2, v3, v4, v5. Grâce à la répétabilité des moyens de déplacement 3, il est possible de déplacer à nouveau et, par la suite, la pièce 2, selon la même trajectoire prédéterminée et la même cinématique, c'est-à-dire la même vitesse de déplacement, laquelle pouvant être variable ou constante, et ce notamment lors de l'étape de dépôt. À partir de ces vitesses instantanées v1, v2, v3, v4, v5 stockées dans le calculateur 7, puis transmises au microcontrôleur 8, il est par ailleurs, ensuite possible de générer un signal de train d'impulsions S. Lors de l'étape de dépôt, et donc en même temps, que la pièce 2 est déplacée par les moyens de déplacement 3 selon la trajectoire prédéterminée, ce signal de train d'impulsions S est transmis aux moyens de dépôt 6. Ainsi, le traitement de la pièce 2 par les moyens de dépôt 6 est adapté à la vitesse instantanée v1, v2, v3, v4, v5 de la pièce 2. En effet, la fréquence d'éjection des gouttes de substance 13 par les moyens de dépôt 6 est avantageusement corrélée à la vitesse instantanée v1, v2, v3, v4, v5 de la pièce 2. La trajectoire prédéterminée et la cinématique des moyens de déplacement 3 peuvent, par ailleurs, être programmées à l'avance à l'aide d'un logiciel présent dans l'unité de gestion et de commande 5. Ce logiciel, ainsi que la trajectoire prédéterminée et la cinématique sont modifiables en fonction des besoins et avec une grande flexibilité.This treatment process advantageously allows the decoration of a part 2 by creating a pattern (not shown) by depositing at least one substance 13 using deposition means 6. Due to the geometry of the part 2, it is generally necessary to vary the speed of movement of the part 2 and therefore that of the means of movement 3, to avoid collisions with the deposition means 6, during movement and to deposit the substance 13 while taking care of correct the speed variations of the means of displacement 3. Thanks to the processing method, according to the invention, this variability of the speed of movement of the means of displacement 3 does not impact the quality of the decoration obtained at the end of the process treatment according to the invention. Advantageously, in the processing method according to the invention, the instantaneous velocities v1, v2, v3, v4, v5 of the part 2 are measured prior to the deposition step, on a predetermined trajectory, during the measurement step . Then, these instantaneous speeds v1, v2, v3, v4, v5 are stored in a computer 7. Preferably, the instantaneous speeds v1, v2, v3, v4, v5 can be stored in the form of a table T of instantaneous speeds v1, v2 , v3, v4, v5. Thanks to the repeatability of the moving means 3, it is possible to move again and, subsequently, the part 2, according to the same predetermined trajectory and the same kinematics, that is to say the same speed of movement, which can be variable or constant, and this in particular during the deposition step. From these instantaneous speeds v1, v2, v3, v4, v5 stored in the computer 7, then transmitted to the microcontroller 8, it is also then possible to generate a pulse train signal S. During step deposit, and therefore at the same time that the part 2 is moved by the displacement means 3 along the predetermined path, this pulse train signal S is transmitted to the deposit means 6. Thus, the processing of the part 2 by the deposition means 6 is adapted to the instantaneous speed v1, v2, v3, v4, v5 of the part 2. Indeed, the frequency of ejection of the drops of substance 13 by the deposition means 6 is advantageously correlated to the instantaneous speed v1, v2, v3, v4, v5 of the part 2. The predetermined trajectory and the kinematics of the displacement means 3 can, moreover, be programmed in advance using software present in the management and control unit 5. This software, as well as the predetermined trajectory and the kinematics e are modifiable according to needs and with great flexibility.

Il en résulte, avantageusement, que ce procédé de traitement permet de décorer des pièces 2 ayant tout type de géométrie. Par ailleurs, ce procédé de traitement permet de positionner librement le motif à la surface 1 de la pièce 2. Ce procédé permet ainsi d'obtenir une grande précision dans les motifs déposés et ce, de manière constante et continue, y compris dans des zones en trois dimensions de la pièce 2, par exemple, des rayons, des bords ou similaire.It follows, advantageously, that this treatment process makes it possible to decorate parts 2 having any type of geometry. Furthermore, this processing method makes it possible to freely position the pattern on the surface 1 of the part 2. This method thus makes it possible to obtain great precision in the patterns deposited and this, in a constant and continuous manner, including in areas in three dimensions of part 2, for example, radii, edges or the like.

La pièce 2 peut être une pièce tridimensionnelle, par exemple une pièce d'habillage de véhicule, par exemple en matière plastique.Part 2 can be a three-dimensional part, for example a vehicle trim part, for example made of plastic material.

L'étape de dépôt peut comprendre plusieurs passages de la surface 1 de la pièce 2, devant les moyens de dépôt 6, notamment lorsque des motifs larges doivent être déposés à la surface 1 de la pièce 2. Dans ce cas, l'étape de mesure peut se faire par passages successifs de la surface 1 de la pièce 2 devant le capteur de mesure 9 pour balayer l'ensemble de la surface 1 de la pièce 2 destiné à être décoré, par exemple bande par bande.The deposition step can comprise several passages of surface 1 of part 2, in front of deposition means 6, in particular when large patterns must be deposited on surface 1 of part 2. In this case, the step of measurement can be made by successive passages of the surface 1 of the part 2 in front of the measurement sensor 9 to scan the whole of the surface 1 of the part 2 intended to be decorated, for example strip by strip.

De préférence, lors de l'étape de mesure, l'unité de gestion et de commande 5 et le capteur de mesure 9 mesurent séquentiellement les vitesses instantanées v1, v2, v3, v4, v5, les différentes mesures successives étant séparées par une période de scrutation Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4 constante ou variable, préférentiellement comprise entre 1 microseconde et 100 millisecondes (figures 3A et 3B).Preferably, during the measurement step, the management and control unit 5 and the measurement sensor 9 sequentially measure the instantaneous speeds v1, v2, v3, v4, v5, the various successive measurements being separated by a period scanning time Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4 constant or variable, preferably between 1 microsecond and 100 milliseconds ( figures 3A and 3B ).

Préférentiellement, l'acquisition de la vitesse instantanée v1, v2, v3, v4, v5 de la pièce 2 est effectuée toutes les 2 millisecondes.Preferably, the acquisition of the instantaneous speed v1, v2, v3, v4, v5 of part 2 is performed every 2 milliseconds.

Avantageusement, cette étape de mesure permet de faire l'acquisition du profil de vitesses instantanées v1, v2, v3, v4, v5 sur toute la course de la trajectoire à un période de scrutation Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4. Cet échantillonnage du profil des vitesses instantanées v1, v2, v3, v4, v5 de la trajectoire est effectuée suivant la période de scrutation Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4 qui peut être variable selon la vitesse souhaitée pour la pièce 2. La période de scrutation Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4 peut varier au cours de la trajectoire pour permettre plus ou moins de précision en fonction de la complexité du contour de la pièce 2 à suivre.Advantageously, this measurement step makes it possible to acquire the instantaneous speed profile v1, v2, v3, v4, v5 over the entire course of the trajectory at a scanning period Tscrut i, Tscrut i+1, Tscrut i+2 , Tscrut i+3, Tscrut i+4. This sampling of the profile of the instantaneous speeds v1, v2, v3, v4, v5 of the trajectory is carried out according to the scanning period Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4 which can be variable according to the desired speed for part 2. The scanning period Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4 can vary during the trajectory to allow more or less accuracy depending on the complexity of the contour of the part 2 to follow.

Le procédé selon l'invention peut comprendre une étape de conversion, postérieure à l'étape de mesure et préalable à l'étape de traitement du signal, lors de laquelle le calculateur 7 convertit l'ensemble de vitesses instantanées v1, v2, v3, v4, v5 en une suite de périodes T1, T2, T3, T4, T5 de train d'impulsions, à partir de la relation Ti=(R/vi)/K, avec i un nombre entier naturel, R la résolution d'impression en millimètres, préférentiellement comprise entre 0,04 millimètres et 4 millimètres, K le coefficient de suréchantillonnage, préférentiellement compris entre 106 et 107 (figure 4).The method according to the invention may comprise a conversion step, subsequent to the measurement step and prior to the signal processing step, during which the computer 7 converts the set of instantaneous speeds v1, v2, v3, v4, v5 in a sequence of periods T1, T2, T3, T4, T5 of pulse train, from the relation Ti=(R/vi)/K, with i a natural number, R the resolution of printing in millimeters, preferably between 0.04 millimeters and 4 millimeters, K the oversampling coefficient, preferably between 10 6 and 10 7 ( figure 4 ).

Avantageusement, lors de l'étape de conversion, le profil de vitesses instantanées v1, v2, v3, v4, v5 est converti par le calculateur 7, préférentiellement un ordinateur, en suite de périodes T1, T2, T3, T4, T5 de train d'impulsions en respectant la période de scrutation Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4. Par exemple et comme l'illustre la figure 4, T1 vaut 166,4 microsecondes, T2 vaut 163,2 microsecondes, T3 vaut 168,5 microsecondes, T4 vaut 170,6 microsecondes et T5 vaut 171,2 microsecondes. L'ensemble des valeurs de période T1, T2, T3, T4, T5 peut être placé dans une table T, illustrée à la figure 4.Advantageously, during the conversion step, the instantaneous speed profile v1, v2, v3, v4, v5 is converted by the computer 7, preferably a computer, following periods T1, T2, T3, T4, T5 of pulse train respecting the scanning period Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4 . For example, and as illustrated by figure 4 , T1 is 166.4 microseconds, T2 is 163.2 microseconds, T3 is 168.5 microseconds, T4 is 170.6 microseconds, and T5 is 171.2 microseconds. The set of period values T1, T2, T3, T4, T5 can be placed in a table T, shown in figure 4 .

De préférence, lors de l'étape de traitement du signal, la suite de périodes T1, T2, T3, T4, T5 de train d'impulsions est transformée en un signal de train d'impulsions S échantillonné à une période d'échantillonnage Timp, préférentiellement comprise entre 5 microsecondes à 100 microsecondes, par le microcontrôleur 8 (figures 5A et 5B).Preferably, during the signal processing step, the series of pulse train periods T1, T2, T3, T4, T5 is transformed into a pulse train signal S sampled at a sampling period Timp , preferably between 5 microseconds to 100 microseconds, by the microcontroller 8 ( figures 5A and 5B ).

Avantageusement, lors de l'étape de traitement du signal, la suite de périodes T1, T2, T3, T4, T5 est ensuite convertie par le microcontrôleur 8 en un signal périodique, préférentiellement à train d'impulsions carrées, compatible avec le signal de synchronisation attendu par les moyens de dépôt 6. Typiquement, la période d'échantillonnage Timp peut être réduite à environ 50 microsecondes. Il en résulte que chaque valeur des périodes T1, T2, T3, T4, T5 est démultiplié pour créer un signal de train d'impulsions S de période d'échantillonnage Timp pendant la durée de la période de scrutation Tscrut i. Il en va de même pour chaque période Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4 transmises par le calculateur 7. Les trains d'impulsions sont ensuite mis bout à bout par le microcontrôleur 8 pour former le signal de train d'impulsions S. Ce signal de train d'impulsions S est stocké dans la mémoire de stockage (non représenté) du microcontrôleur 8.Advantageously, during the signal processing step, the sequence of periods T1, T2, T3, T4, T5 is then converted by the microcontroller 8 into a periodic signal, preferably with a train of square pulses, compatible with the signal of synchronization expected by the deposition means 6. Typically, the sampling period Timp can be reduced to around 50 microseconds. As a result, each value of the periods T1, T2, T3, T4, T5 is multiplied to create a pulse train signal S of sampling period Timp for the duration of the scanning period Tscrut i. The same applies for each period Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4 transmitted by the computer 7. The pulse trains are then placed end to end by the microcontroller 8 to form the pulse train signal S. This pulse train signal S is stored in the storage memory (not shown) of the microcontroller 8.

Le signal de train d'impulsions S peut être à front carré (figure 5B).The pulse train signal S can be square-edged ( figure 5B ).

Le procédé peut comprendre une étape d'étalonnage, préalable à l'étape de dépôt, lors de laquelle un premier capteur de détection 9', fixe relativement aux moyens de dépôt 6, peut détecter le passage d'un élément de référence ou repère 10 disposé sur la pièce 2 ou sur le support 4 des moyens de déplacement 3, au cours du déplacement des moyens de déplacement 3, pour déterminer les données relatives aux coordonnées spatiales de l'élément de référence ou repère 10 (figures 2A et 2B).The method may include a calibration step, prior to the deposition step, during which a first detection sensor 9', fixed relative to the deposition means 6, can detect the passage of a reference element or marker 10 arranged on the part 2 or on the support 4 of the displacement means 3, during the displacement of the displacement means 3, to determine the data relating to the spatial coordinates of the reference element or marker 10 ( figures 2A and 2B ).

Avantageusement, les coordonnées spatiales de l'élément de référence ou repère 10 ainsi déterminées peuvent être transmises et stockées relativement aux données relatives de l'ensemble de vitesses instantanées v1, v2, v3, v4, v5 dans le calculateur 7, en vue de générer le signal de train d'impulsions S à l'aide du microcontrôleur 8. Ces coordonnées spatiales de l'élément de référence ou repère 10 correspondent à un référence temporelle du signal de train d'impulsions S.Advantageously, the spatial coordinates of the reference element or marker 10 thus determined can be transmitted and stored relative to the relative data of the set of instantaneous speeds v1, v2, v3, v4, v5 in the computer 7, with a view to generating the pulse train signal S using the microcontroller 8. These spatial coordinates of the The reference element or marker 10 corresponds to a time reference of the pulse train signal S.

Lors de l'étape de dépôt, un deuxième capteur de détection 9", fixe relativement aux moyens de dépôt 6, peut détecter le passage d'un élément de référence ou repère 10 disposé sur la pièce 2 ou sur le support 4 des moyens de déplacement 3, puis peut transmettre un signal de déclenchement SD au microcontrôleur 8 pour déclencher la transmission du signal de train d'impulsions S aux moyens de dépôt 6 pour déclencher l'éjection de la substance 13 (figures 4 et 6).During the deposition step, a second detection sensor 9", fixed relative to the deposition means 6, can detect the passage of a reference element or mark 10 placed on the part 2 or on the support 4 of the means of displacement 3, then can transmit a trigger signal SD to the microcontroller 8 to trigger the transmission of the pulse train signal S to the deposition means 6 to trigger the ejection of the substance 13 ( figure 4 and 6 ).

Avantageusement, dès la réception du signal de déclenchement SD, le microcontrôleur 8 restitue le signal de train d'impulsions S aux moyens de dépôt 6, ce qui permet de synchroniser le signal de train d'impulsions S avec la cinématique des moyens de déplacement 3. Ainsi, grâce à l'élément de référence ou repère 10, qui peut être relevé avec précision sur la trajectoire réelle des moyens de déplacement 3, il est possible de donner l'ordre aux moyens de dépôt 6 d'éjecter la substance 13 au bon moment sur la pièce 2 et non antérieurement ou postérieurement. La synchronisation peut avantageusement être rendue possible par le passage de la pièce 2 devant le deuxième capteur de détection 9". Préférentiellement, la détection de l'élément de référence ou repère 10 peut être réalisée au début de la trajectoire.Advantageously, upon receipt of the trigger signal SD, the microcontroller 8 restores the pulse train signal S to the deposition means 6, which makes it possible to synchronize the pulse train signal S with the kinematics of the displacement means 3 Thus, by virtue of the reference element or marker 10, which can be accurately plotted on the actual trajectory of the displacement means 3, it is possible to give the order to the deposition means 6 to eject the substance 13 at the right moment on piece 2 and not anteriorly or posteriorly. Synchronization can advantageously be made possible by the passage of the part 2 in front of the second detection sensor 9". Preferably, the detection of the reference element or marker 10 can be carried out at the start of the trajectory.

Par exemple, l'élément de référence ou repère 10 peut être une surface réfléchissante (non représentée) apposée sur la surface 1 de la pièce 2 ou sur le support 4 des moyens de déplacement 3 et le premier capteur de détection 9' ou le deuxième capteur de détection 9" peut être un capteur optique. De cette façon, lorsque le capteur optique et la surface réfléchissante sont en regard l'un de l'autre, le capteur optique mesure une variation d'intensité lumineuse reçue.For example, the reference element or marker 10 can be a reflective surface (not shown) affixed to the surface 1 of the part 2 or to the support 4 of the displacement means 3 and the first detection sensor 9' or the second detection sensor 9" can be an optical sensor. In this way, when the optical sensor and the reflective surface face each other, the optical sensor measures a variation in light intensity received.

Le capteur de mesure 9, le premier capteur de détection 9', le deuxième capteur de détection 9" utilisés peuvent consister en un module capteur télémétrique 12 qui est fixe relativement aux moyens de dépôt 6.The measurement sensor 9, the first detection sensor 9', the second detection sensor 9" used can consist of a telemetric sensor module 12 which is fixed relative to the deposition means 6.

Avantageusement, ce module capteur télémétrique 12 permet notamment de mesurer à distance la vitesse instantanée v1, v2, v3, v4, v5 de la pièce 2.Advantageously, this telemetry sensor module 12 makes it possible in particular to remotely measure the instantaneous speed v1, v2, v3, v4, v5 of part 2.

Par exemple, le capteur de mesure 9, le premier capteur de détection 9', le deuxième capteur de détection 9" peuvent être des capteurs optiques.For example, the measurement sensor 9, the first detection sensor 9', the second detection sensor 9″ can be optical sensors.

Préférentiellement, le capteur de mesure 9 est fixe relativement aux moyens de dépôt 6. Plus précisément, le capteur de mesure 9 est disposé à proximité des moyens de dépôt 6. Préférentiellement, la distance entre le capteur de mesure 9 et les moyens de dépôt 6 peut être comprise entre 3 millimètres et 200 millimètres. Par ailleurs, lors de l'étape de mesure, le capteur de mesure 9 est disposé sensiblement en regard de la fraction de la surface 1 de la pièce 2 pour laquelle les vitesses instantanées v1, v2, v3, v4, v5 doivent être mesurés.Preferably, the measurement sensor 9 is fixed relative to the deposition means 6. More specifically, the measurement sensor 9 is arranged close to the deposition means 6. Preferably, the distance between the measurement sensor 9 and the deposition means 6 can be between 3 millimeters and 200 millimeters. Furthermore, during the measurement step, the measurement sensor 9 is arranged substantially opposite the fraction of the surface 1 of the part 2 for which the instantaneous speeds v1, v2, v3, v4, v5 must be measured.

Lors de l'étape de dépôt, le microcontrôleur 8 peut transmettre le signal de train d'impulsions S aux moyens de dépôt 6 à une période comprise entre 20 et 100 microsecondes.During the deposition step, the microcontroller 8 can transmit the pulse train signal S to the deposition means 6 at a period of between 20 and 100 microseconds.

Le microcontrôleur 8 utilisé peut consister en un microcontrôleur comprenant au moins ladite mémoire de stockage (non représentée) et une mémoire volatile (non représentée).The microcontroller 8 used can consist of a microcontroller comprising at least said storage memory (not shown) and a volatile memory (not shown).

Les moyens de déplacement 3 utilisés peuvent consister en un bras robotisé (non représenté) comprenant six axes de rotation.The displacement means 3 used can consist of a robotic arm (not shown) comprising six axes of rotation.

Avantageusement, ce bras robotisé permet de déplacer la pièce 2 devant les moyens de dépôt 6 et, plus particulièrement, devant les têtes d'impression (non représentées) décrites ci-après.Advantageously, this robotic arm makes it possible to move the part 2 in front of the deposition means 6 and, more particularly, in front of the printing heads (not shown) described below.

Les axes de rotation, ainsi que le déplacement du bras robotisé sont non figés et totalement libre. Il en résulte une grande latitude de déplacement du bras robotisé par rapport à la géométrie de la pièce 2.The axes of rotation, as well as the movement of the robotic arm are not fixed and completely free. This results in a large latitude of movement of the robotic arm with respect to the geometry of part 2.

Lors de l'étape de dépôt, les moyens de dépôt 6 et la fraction de la surface 1 de la pièce 2 pour laquelle les vitesses instantanées v1, v2, v3, v4, v5 ont été mesurées et sur laquelle la substance 13 est déposée, sont sensiblement en regard l'un de l'autre.During the deposition step, the deposition means 6 and the fraction of the surface 1 of the part 2 for which the instantaneous speeds v1, v2, v3, v4, v5 have been measured and on which the substance 13 is deposited, are substantially opposite each other.

Les moyens de dépôt 6 utilisés peuvent consister en des moyens d'impression comprenant au moins une tête d'impression, préférentiellement, du type jet d'encre, pour éjecter et déposer au moins la substance 13 sous forme de gouttes.The deposition means 6 used can consist of printing means comprising at least one printing head, preferably of the inkjet type, to eject and deposit at least the substance 13 in the form of drops.

En outre, du fait que les moyens de dépôt 6 sont stationnaires, les têtes d'impression peuvent également être fixes et sont facilement accessibles. Cette configuration facilite l'alimentation en encre des têtes d'impression. En outre, il en résulte une diminution des perturbations dans la précision du motif à déposer.Furthermore, since the deposition means 6 are stationary, the printing heads can also be fixed and are easily accessible. This configuration makes it easier to supply ink to the heads printing. In addition, this results in a reduction in disturbances in the precision of the pattern to be deposited.

La tête d'impression peut toutefois être mobile, mais de façon limitée, c'est-à-dire mobile en translation selon trois axes ou en rotation, pour s'adapter au mouvement et à la géométrie de la pièce 2.The print head can however be mobile, but in a limited way, that is to say mobile in translation along three axes or in rotation, to adapt to the movement and to the geometry of the part 2.

La tête d'impression peut être mono-chromique, bi-chromique, ou un ensemble quadri-chromique.The printhead can be mono-color, bi-color, or a four-color assembly.

La substance 13 peut être choisie seule ou en combinaison parmi une encre, une encre colorée, une encre à réticulation ultraviolet, un vernis, un apprêt, un agent d'adhérence, un agent d'accrochage, un agent de revêtement.Substance 13 can be chosen alone or in combination from an ink, a colored ink, an ultraviolet crosslinking ink, a varnish, a primer, an adhesion agent, a bonding agent, a coating agent.

Les moyens de dépôt 6 peuvent comprendre de manière générale, tout type d'effecteur (non représenté) permettant de traiter la surface 1 de la pièce 2 à l'aide d'au moins une substance 13.The deposition means 6 can generally comprise any type of effector (not shown) making it possible to treat the surface 1 of the part 2 using at least one substance 13.

Préférentiellement, les têtes d'impression peuvent comprendre une pluralité de buses (non représentées) disposées sur des rampes (non représentées) qui sont disposées sensiblement perpendiculairement à la surface 1 de la pièce 2, au moins lors de l'étape de dépôt.Preferably, the printheads may comprise a plurality of nozzles (not shown) arranged on ramps (not shown) which are arranged substantially perpendicular to surface 1 of part 2, at least during the deposition step.

Les moyens de dépôt 6 peuvent être associés à des moyens de séchage 11 et lors de l'étape de dépôt, les moyens de séchage 11 peuvent sécher au moins partiellement la substance 13 après dépôt de la substance 13 sur ladite au moins une fraction de la surface 1 de la pièce 2.The deposition means 6 can be associated with drying means 11 and during the deposition step, the drying means 11 can at least partially dry the substance 13 after depositing the substance 13 on said at least a fraction of the area 1 of part 2.

En fait, les moyens de séchage 11 peuvent aussi bien permettre, le séchage partiel des gouttes éjectées par les moyens de dépôt 6, que le séchage final complet.In fact, the drying means 11 can allow both partial drying of the drops ejected by the deposition means 6 and complete final drying.

Par exemple, les moyens de séchage 11 peuvent être un système de séchage complet ultraviolet.For example, the drying means 11 can be an ultraviolet complete drying system.

Les moyens de dépôt 6, le capteur de mesure 9, le premier capteur de détection 9', le deuxième capteur de détection 9" et le cas échéant, les moyens de séchage 11 peuvent être montés sur un même socle 14.The deposition means 6, the measurement sensor 9, the first detection sensor 9', the second detection sensor 9" and, where applicable, the drying means 11 can be mounted on the same base 14.

Conformément à l'invention, l'installation de traitement de surface d'au moins une surface 1 d'une pièce 2, est caractérisée en ce qu'elle est apte et destinée à la mise en œuvre du procédé de traitement de surface d'au moins une surface 1 d'une pièce 2 tel que décrit précédemment et en ce qu'elle comprend :

  • des moyens de déplacement 3 aptes et destinés à déplacer la pièce 2 relativement à des moyens de dépôt 6, et les moyens de déplacement 3 comprenant un support 4 apte et destiné à fixer la pièce 2 relativement aux moyens de déplacement 3,
  • une unité de gestion et de commande 5 apte et destinée à commander le déplacement des moyens de déplacement 3 selon une trajectoire prédéterminée et une vitesse de déplacement prédéterminée, de manière contrôlée,
  • un capteur de mesure 9 apte et destiné à déterminer un ensemble de vitesses instantanées v1, v2, v3, v4, v5 sur au moins une fraction de la surface 1 de la pièce 2,
  • les moyens de dépôt 6 étant aptes et destinés à éjecter une substance 13 sur la surface 1 de la pièce 2,
  • un calculateur 7 apte et destiné à recevoir et à enregistrer des données représentatives de l'ensemble de vitesses instantanées v1, v2, v3, v4, v5,
  • un microcontrôleur 8 apte et destiné à déterminer, à partir des données représentatives de l'ensemble de vitesses instantanées v1, v2, v3, v4, v5, un signal de train d'impulsions S représentatif d'un ensemble de fréquences d'éjection de la substance 13 à déposer par les moyens de dépôt 6, et à le transmettre aux moyens de dépôt 6 pour éjecter la substance 13 en fonction du signal de train d'impulsions S reçu.
According to the invention, the installation for surface treatment of at least one surface 1 of a part 2, is characterized in that it is suitable and intended for the implementation of the surface treatment method of at least one surface 1 of a part 2 as described previously and in that it comprises:
  • moving means 3 suitable and intended for moving the part 2 relative to depositing means 6, and the moving means 3 comprising a support 4 suitable and intended for fixing the part 2 relative to the moving means 3,
  • a management and control unit 5 able and intended to control the displacement of the displacement means 3 according to a predetermined trajectory and a predetermined displacement speed, in a controlled manner,
  • a measurement sensor 9 able and intended to determine a set of instantaneous speeds v1, v2, v3, v4, v5 on at least a fraction of the surface 1 of the part 2,
  • the deposition means 6 being able and intended to eject a substance 13 onto the surface 1 of the part 2,
  • a computer 7 able and intended to receive and record data representative of the set of instantaneous speeds v1, v2, v3, v4, v5,
  • a microcontroller 8 able and intended to determine, from the data representative of the set of instantaneous speeds v1, v2, v3, v4, v5, a pulse train signal S representative of a set of ejection frequencies of the substance 13 to be deposited by the deposition means 6, and to transmit it to the deposition means 6 to eject the substance 13 according to the pulse train signal S received.

L'installation peut comprendre un premier capteur de détection 9', fixe relativement aux moyens de dépôt 6, apte et destiné à détecter le passage d'un élément de référence ou repère 10 disposé sur la pièce 2 ou sur le support 4 des moyens de déplacement 3, pour déterminer les données relatives aux coordonnées spatiales de l'élément de référence ou repère 10.The installation can comprise a first detection sensor 9', fixed relative to the deposition means 6, able and intended to detect the passage of a reference element or mark 10 placed on the part 2 or on the support 4 of the means of displacement 3, to determine the data relating to the spatial coordinates of the reference element or marker 10.

L'installation peut comprendre un deuxième capteur de détection 9", fixe relativement aux moyens de dépôt 6, apte et destiné à détecter le passage d'un élément de référence ou repère 10 disposé sur la pièce 2 ou sur le support 4 des moyens de déplacement 3, puis à transmettre un signal de déclenchement SD au microcontrôleur 8 pour déclencher la transmission du signal de train d'impulsions S aux moyens de dépôt 6 pour déclencher l'éjection de la substance 13.The installation may comprise a second detection sensor 9", fixed relative to the deposition means 6, capable of and intended to detect the passage of a reference element or mark 10 placed on the part 2 or on the support 4 of the means of displacement 3, then to transmit a trigger signal SD to the microcontroller 8 to trigger the transmission of the pulse train signal S to the deposition means 6 to trigger the ejection of the substance 13.

Le capteur de mesure 9, le premier capteur de détection 9', le deuxième capteur de détection 9" peut être un module capteur télémétrique 12 qui est fixe relativement aux moyens de dépôt 6.The measurement sensor 9, the first detection sensor 9', the second detection sensor 9" can be a telemetric sensor module 12 which is fixed relative to the deposition means 6.

Le capteur de mesure 9, le premier capteur de détection 9', le deuxième capteur de détection 9" peuvent être tels que décrits précédemment.The measurement sensor 9, the first detection sensor 9′, the second detection sensor 9″ can be as described above.

De préférence, le calculateur 7 est apte et destiné à convertir l'ensemble de vitesses instantanées v1, v2, v3, v4, v5 en une suite de périodes T1, T2, T3, T4, T5 de train d'impulsions, à partir de la relation Ti=(R/vi)/K, avec i un nombre entier naturel, R la résolution d'impression en millimètres, préférentiellement comprise entre 0,04 millimètres et 4 millimètres, K le coefficient de suréchantillonnage, préférentiellement compris entre 106 et 107.Preferably, the computer 7 is able and intended to convert the set of instantaneous speeds v1, v2, v3, v4, v5 into a sequence of periods T1, T2, T3, T4, T5 of pulse train, from the relationship Ti=(R/vi)/K, with i a natural integer, R the printing resolution in millimeters, preferably between 0.04 millimeters and 4 millimeters, K the oversampling coefficient, preferably between 10 6 and 10 7 .

De préférence, le microcontrôleur 8 est apte et destiné à transformer la suite de périodes T1, T2, T3, T4, T5 de train d'impulsions en un signal de train d'impulsions S échantillonné à une période d'échantillonnage Timp, préférentiellement comprise entre 5 microsecondes à 100 microsecondes.Preferably, the microcontroller 8 is able and intended to transform the series of pulse train periods T1, T2, T3, T4, T5 into a pulse train signal S sampled at a sampling period Timp, preferably comprised between 5 microseconds to 100 microseconds.

Le microcontrôleur 8 peut comprendre au moins une mémoire de stockage et une mémoire volatile.The microcontroller 8 can include at least one storage memory and one volatile memory.

Les moyens de déplacement 3 peuvent consister en un bras robotisé comprenant six axes de rotation.The displacement means 3 may consist of a robotic arm comprising six axes of rotation.

Ce bras robotisé peut être tel que décrit précédemment.This robotic arm may be as described previously.

Les moyens de dépôt 6 peuvent consister en des moyens d'impression comprenant au moins une tête d'impression, préférentiellement du type jet d'encre pour déposer au moins la substance 13 sous forme de gouttes.The deposition means 6 can consist of printing means comprising at least one printing head, preferably of the inkjet type, for depositing at least the substance 13 in the form of drops.

Ces moyens d'impression et la tête d'impression peuvent être tels que décrits précédemment.These printing means and the printing head can be as described previously.

L'installation peut comprendre des moyens de séchage 11 associés aux moyens de dépôt 6 et les moyens de séchage 11 peuvent être aptes et destinés à sécher au moins partiellement la substance 13 après dépôt de la substance 13 sur ladite au moins une fraction à la surface 1 de la pièce 2.The installation may comprise drying means 11 associated with the deposition means 6 and the drying means 11 may be able and intended to at least partially dry the substance 13 after depositing the substance 13 on said at least one fraction on the surface. 1 of room 2.

Les moyens de séchage 11 peuvent être tels que décrits précédemment.The drying means 11 can be as described above.

Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits et représentés aux dessins annexés.Of course, the invention is not limited to the embodiments described and shown in the appended drawings.

Claims (22)

  1. Method for surface-treating at least one surface (1) of a part (2),
    which method is characterized in that it comprises at least:
    - a measurement step, during which movement means (3), to which the part (2) is secured at the level of a support (4) forming part of the movement means (3), are moved at a speed of movement that varies according to the local geometry of the part (2), along a predetermined trajectory and, in a controlled manner, by a management and control unit (5), relative to deposition means (6) which are not ejecting any substance (13), and during which a set of instantaneous velocities (v1, v2, v3, v4, v5), over at least a fraction of the surface (1) of the part (2), is determined by means of a measurement sensor (9) controlled by the management and control unit (5), then data representative of this set of instantaneous velocities (v1, v2, v3, v4, v5) are transmitted and recorded in a computer (7),
    - a signal processing step, subsequent to the measurement step, during which a microcontroller (8) determines, from the data representative of the set of instantaneous velocities (v1, v2, v3, v4, v5) that were previously transmitted by the computer (7) to the microcontroller (8), a pulse train signal (S) representative of a set of frequencies of ejection of a substance (13) to be deposited by the deposition means (6) on said at least a fraction of the surface (1) of the part (2), and records the pulse train signal (S) in a storage memory of the microcontroller (8),
    - a deposition step, subsequent to the signal processing step, during which the movement means (3) are moved in a controlled manner, by the management and control unit (5) relative to the deposition means (6), along the determined trajectory, and during which, in a synchronized manner, the microcontroller (8) transmits the pulse train signal (S) to the deposition means (6), and the deposition means (6) eject at least one substance (13) according to the received pulse train signal (S) in order to deposit the substance (13) on said at least a fraction of the surface (1) of the part (2).
  2. Method according to Claim 1, characterized in that during the measurement step, the management and control unit (5) and the measurement sensor (9) sequentially measure the instantaneous velocities (v1, v2, v3, v4, v5), the various successive measurements being separated by a polling period (Tscrut i, Tscrut i+1, Tscrut i+2, Tscrut i+3, Tscrut i+4) which is constant or variable, preferably between 1 microsecond and 100 milliseconds.
  3. Method according to either of Claims 1 and 2, characterized in that it comprises a conversion step, subsequent to the measurement step and prior to the signal processing step, during which the computer (7) converts the set of instantaneous velocities (v1, v2, v3, v4, v5) into a series of pulse train periods (T1, T2, T3, T4, T5), on the basis of the relationship Ti = (R/vi)/K, with i a natural integer, R the printing resolution in millimeters, preferably between 0.04 millimeters and 4 millimeters, and K the oversampling coefficient, preferably between 106 and 107.
  4. Method according to Claim 3, characterized in that during the signal processing step, the series of pulse train periods (T1, T2, T3, T4, T5) is transformed into a pulse train signal (S) sampled at a sampling period (Timp), preferably between 5 microseconds to 100 microseconds, by the microcontroller (8).
  5. Method according to any one of Claims 1 to 4, characterized in that it comprises a calibration step, prior to the deposition step, during which a first detection sensor (9'), fixed relative to the deposition means (6), detects the passage of a reference or marking element (10) arranged on the part (2) or on the support (4) of the movement means (3), during the movement of the movement means (3), in order to determine the data relating to the spatial coordinates of the reference or marking element (10).
  6. Method according to any one of Claims 1 to 5, characterized in that during the deposition step, a second detection sensor (9"), fixed relative to the deposition means (6), detects the passage of a reference or marking element (10) arranged on the part (2) or on the support (4) of the movement means (3), then transmits a trigger signal (SD) to the microcontroller (8) in order to trigger the transmission of the pulse train signal (S) to the deposition means (6) in order to trigger the ejection of the substance (13).
  7. Method according to Claims 5 and 6, characterized in that the measurement sensor (9), the first detection sensor (9'), and the second detection sensor (9") used consist of a telemetry sensor module (12) which is fixed relative to the deposition means (6).
  8. Method according to any one of Claims 1 to 7, characterized in that during the deposition step, the microcontroller (8) transmits the pulse train signal (S) to the deposition means (6) at a speed of between 20 and 100 microseconds.
  9. Method according to any one of Claims 1 to 8, characterized in that the microcontroller (8) used consists of a microcontroller comprising at least said storage memory and a volatile memory.
  10. Method according to any one of Claims 1 to 9, characterized in that the movement means (3) used consist of a robot arm comprising six axes of rotation.
  11. Method according to any one of Claims 1 to 10, characterized in that the deposition means (6) used consist of printing means comprising at least one printhead, preferably of the inkjet type, for ejecting and depositing at least the substance (13) in the form of drops.
  12. Method according to Claim 11, characterized in that the deposition means (6) are stationary and in that said at least one printhead is fixed or mobile in translation along three axes or in rotation.
  13. Method according to any one of Claims 1 to 12, characterized in that the deposition means (6) are associated with drying means (11) and in that during the deposition step, the drying means (11) at least partially dry the substance (13) after deposition of the substance (13) on said at least a fraction of the surface (1) of the part (2).
  14. Installation for surface-treating at least one surface (1) of a part (2), characterized in that it is capable of and intended for implementing the method for surface-treating at least one surface (1) of a part (2) according to any one of Claims 1 to 13 and in that it comprises:
    - movement means (3) capable of and intended for moving the part (2) relative to deposition means (6), and the movement means (3) comprising a support (4) capable of and intended for fixing the part (2) relative to the movement means (3),
    - a management and control unit (5) capable of and intended for controlling the movement of the movement means (3) along a predetermined trajectory and according to a predetermined speed of movement, in a controlled manner,
    - a measurement sensor (9) capable of and intended for determining a set of instantaneous velocities (v1, v2, v3, v4, v5) over at least a fraction of the surface (1) of the part (2),
    - the deposition means (6) being capable of and intended for ejecting a substance (13) onto the surface (1) of the part (2),
    - a computer (7) capable of and intended for receiving and recording data representative of the set of instantaneous velocities (v1, v2, v3, v4, v5),
    - a microcontroller (8) capable of and intended for determining, from the data representative of the set of instantaneous velocities (v1, v2, v3, v4, v5), a pulse train signal (S) representative of a set of frequencies of ejection of the substance (13) to be deposited by the deposition means (6), and for transmitting it to the deposition means (6) in order to eject the substance (13) according to the received pulse train signal (S).
  15. Installation according to Claim 14, characterized in that it comprises a first detection sensor (9'), fixed relative to the deposition means (6), capable of and intended for detecting the passage of a reference or marking element (10) arranged on the part (2) or on the support (4) of the movement means (3), in order to determine the data relating to the spatial coordinates of the reference or marking element (10).
  16. Installation according to either of Claims 14 and 15, characterized in that it comprises a second detection sensor (9"), fixed relative to the deposition means (6), capable of and intended for detecting the passage of a reference or marking element (10) arranged on the part (2) or on the support (4) of the movement means (3), and then transmitting a trigger signal (SD) to the microcontroller (8) in order to trigger the transmission of the pulse train signal (S) to the deposition means (6) in order to trigger the ejection of the substance (13).
  17. Installation according to Claims 15 and 16, characterized in that the measurement sensor (9), the first detection sensor (9'), and the second detection sensor (9") is a telemetry sensor module (12) which is fixed relative to the deposition means (6).
  18. Installation according to any one of Claims 14 to 17, characterized in that the microcontroller (8) comprises at least one storage memory and a volatile memory.
  19. Installation according to any one of Claims 14 to 18, characterized in that the movement means (3) consist of a robot arm comprising six axes of rotation.
  20. Installation according to any one of Claims 14 to 19, characterized in that the deposition means (6) consist of printing means comprising at least one printhead, preferably of the inkjet type, for depositing at least the substance (13) in the form of drops.
  21. Installation according to Claim 20, characterized in that the deposition means (6) are stationary and in that said at least one printhead is fixed or mobile in translation along three axes or in rotation.
  22. Installation according to any one of Claims 14 to 21, characterized in that it comprises drying means (11) that are associated with the deposition means (6) and in that the drying means (11) are capable of and intended for at least partially drying the substance (13) after deposition of the substance (13) on said at least a fraction on the surface (1) of the part (2).
EP19709074.9A 2018-05-14 2019-03-13 Method for treating the surface of a part and associated facility Active EP3793835B8 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1854024A FR3080998B1 (en) 2018-05-14 2018-05-14 PROCESS FOR SURFACE TREATMENT OF A PART AND ASSOCIATED INSTALLATION
PCT/EP2019/056313 WO2019219273A1 (en) 2018-05-14 2019-03-13 Method for treating the surface of a part and associated facility

Publications (3)

Publication Number Publication Date
EP3793835A1 EP3793835A1 (en) 2021-03-24
EP3793835B1 true EP3793835B1 (en) 2022-07-13
EP3793835B8 EP3793835B8 (en) 2022-11-30

Family

ID=62684965

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19709074.9A Active EP3793835B8 (en) 2018-05-14 2019-03-13 Method for treating the surface of a part and associated facility

Country Status (7)

Country Link
US (1) US11840102B2 (en)
EP (1) EP3793835B8 (en)
JP (1) JP7482856B2 (en)
CN (1) CN112218764B (en)
BR (1) BR112020022910A2 (en)
FR (1) FR3080998B1 (en)
WO (1) WO2019219273A1 (en)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0931649A3 (en) 1998-01-27 2000-04-26 Eastman Kodak Company Apparatus and method for making a contoured surface having complex topology
US7116401B2 (en) * 1999-03-08 2006-10-03 Asml Netherlands B.V. Lithographic projection apparatus using catoptrics in an optical sensor system, optical arrangement, method of measuring, and device manufacturing method
US6360656B2 (en) 2000-02-28 2002-03-26 Minolta Co., Ltd. Apparatus for and method of printing on three-dimensional object
EP1399951A4 (en) * 2001-06-01 2005-08-24 Litrex Corp Interchangeable microdeposition head apparatus and method
GB2379414A (en) * 2001-09-10 2003-03-12 Seiko Epson Corp Method of forming a large flexible electronic display on a substrate using an inkjet head(s) disposed about a vacuum roller holding the substrate
US7769487B2 (en) * 2003-07-24 2010-08-03 Northeastern University Process and architecture of robotic system to mimic animal behavior in the natural environment
US7360853B2 (en) * 2004-03-04 2008-04-22 Fujifilm Dimatix, Inc. Morphology-corrected printing
ES2336987B1 (en) * 2007-12-31 2011-03-22 ON-LASER SYSTEMS & APPLICATIONS, S.L. ROTATING MARKING PROCEDURE AND DEVICE.
JP2011514234A (en) 2007-12-31 2011-05-06 エグザテック・リミテッド・ライアビリティー・カンパニー Apparatus and method for printing on a three-dimensional object
JP2011101838A (en) * 2009-11-10 2011-05-26 Olympus Corp Method and apparatus of forming pattern
JP5800701B2 (en) * 2011-12-16 2015-10-28 株式会社ブリヂストン Tire printing method and tire printing apparatus
DE102012006371A1 (en) 2012-03-29 2012-07-05 Heidelberger Druckmaschinen Aktiengesellschaft Method for printing image on body i.e. tank of e.g. passenger car, involves generating three or higher-dimension raster matrix data to control inkjet printhead, and printing image with inkjet printhead using raster data
DE102012212469B4 (en) 2012-07-17 2022-10-06 Peter Fornoff Method for printing on a surface and device for printing on a surface
DE102013000888A1 (en) * 2013-01-18 2014-07-24 Heidelberger Druckmaschinen Ag Method for producing a printed image on a rotating, three-dimensional body
EP2873496A1 (en) 2013-11-18 2015-05-20 ABB Technology AG Printing system
EP4180230A1 (en) * 2014-05-20 2023-05-17 Velox-Puredigital Ltd. Printing system and method
GB201419463D0 (en) * 2014-10-31 2014-12-17 Videojet Technologies Inc Printer and method
JP2017535455A (en) * 2014-11-13 2017-11-30 ザ プロクター アンド ギャンブル カンパニー Process for decorating articles
DE102015204532A1 (en) * 2015-03-13 2016-09-15 Heidelberger Druckmaschinen Ag Device for printing on a surface of an object
JP6613053B2 (en) * 2015-05-18 2019-11-27 東芝機械株式会社 Decoration device and molding decoration system
JP6512002B2 (en) * 2015-07-13 2019-05-15 横浜ゴム株式会社 Printing device
WO2018053361A1 (en) * 2016-09-16 2018-03-22 Verb Surgical Inc. Multi-degree of freedom sensor
US9981484B1 (en) * 2017-04-06 2018-05-29 Xerox Corporation System and method for flame treatment of print surfaces in inkjet printers

Also Published As

Publication number Publication date
JP7482856B2 (en) 2024-05-14
BR112020022910A2 (en) 2021-02-23
US20210402799A1 (en) 2021-12-30
WO2019219273A1 (en) 2019-11-21
CN112218764B (en) 2022-04-29
FR3080998A1 (en) 2019-11-15
CN112218764A (en) 2021-01-12
EP3793835A1 (en) 2021-03-24
JP2021523007A (en) 2021-09-02
FR3080998B1 (en) 2020-04-24
EP3793835B8 (en) 2022-11-30
US11840102B2 (en) 2023-12-12

Similar Documents

Publication Publication Date Title
EP1769916B1 (en) Device and process for marking cylindrical objects
EP3213823A1 (en) Coating device, mutliaxial robot provided with such a coating device and corresponding coating method
US8608274B2 (en) Recording apparatus and method for controlling the recording apparatus
US9744759B2 (en) Position correction apparatus, liquid ejection apparatus, and method for correcting position
CN100408457C (en) Appts. related to coiled products
JP2009096199A5 (en)
CN1321000C (en) Printer, printing method, program, storage medium and computer system
US10350880B2 (en) Printing system control
CA2221112A1 (en) Continuous-feed multicolour inkjet press, process for synchronizing such a press, and printed product obtained with such a press
EP1452326A3 (en) Method and apparatus for fixing a functional material onto a surface
EP1059172A3 (en) An ink jet printing apparatus and a judgement method of an ink jet ejection state of an ink jet head
EP3995315B1 (en) Method and installation for applying a coating product on a surface
EP3793835B1 (en) Method for treating the surface of a part and associated facility
US7866782B2 (en) System for optically detecting and measuring release agent on a print drum in an ink jet printer
FR2514171A1 (en) METHOD AND DEVICE FOR GENERATING A VERIFIED DRAWING
JP2018158573A (en) Conveyance device, conveyance system, and timing adjustment method
US20100329760A1 (en) Speed detection device, image forming device, and computer readable storage medium storing speed detection program
EP3006218B1 (en) Assembly of at least one revolution object and one ink jet printing machine
EP3204326B1 (en) Method for directing tube components
FR3058916A1 (en) METHOD FOR PROCESSING THE SURFACE OF A WORKPIECE, INSTALLATION FOR IMPLEMENTING SAID METHOD AND PIECE OBTAINED BY SAID PROCESSING METHOD
RU2773796C1 (en) Method for processing the surface of a part and associated unit
FR3087704A1 (en) SURFACE PRINT WITH OVERLAPPING BANDS
EP1983387A3 (en) Holographic printing apparatus and method
CN101349548A (en) Devices relating to rolled product
EP3012109A1 (en) Assembly of one object with a handle and one ink jet machine for printing the object

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220201

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019016973

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1504082

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: RECTIFICATION B8

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220713

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBO

Owner name: SMRC AUTOMOTIVE HOLDINGS NETHERLANDS B.V.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019016973

Country of ref document: DE

Owner name: SMRC AUTOMOTIVE HOLDINGS NETHERLANDS B.V., NL

Free format text: FORMER OWNER: SMRC AUTOMOTIVE HOLDINGS NETHERLANDS B.V., AMSTERDAM, NL

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019016973

Country of ref document: DE

Owner name: ROBO SOCIETE PAR ACTIONS SIMPLIFIEE, FR

Free format text: FORMER OWNER: SMRC AUTOMOTIVE HOLDINGS NETHERLANDS B.V., AMSTERDAM, NL

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBO

Owner name: SMRC AUTOMOTIVE HOLDINGS NETHERLANDS B.V.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221013

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: RECTIFICATIONS

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1504082

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019016973

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 5

26N No opposition filed

Effective date: 20230414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230401

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230313

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240329

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240327

Year of fee payment: 6

Ref country code: FR

Payment date: 20240329

Year of fee payment: 6