EP3785821A1 - Casting tool for cast electrotechnical coils - Google Patents

Casting tool for cast electrotechnical coils Download PDF

Info

Publication number
EP3785821A1
EP3785821A1 EP20192518.7A EP20192518A EP3785821A1 EP 3785821 A1 EP3785821 A1 EP 3785821A1 EP 20192518 A EP20192518 A EP 20192518A EP 3785821 A1 EP3785821 A1 EP 3785821A1
Authority
EP
European Patent Office
Prior art keywords
mold
casting
coil
cast
casting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20192518.7A
Other languages
German (de)
French (fr)
Inventor
Jürgen Preis
Sebastian Findeisen
Andreas Trittel
Maik Unverzagt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3785821A1 publication Critical patent/EP3785821A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/101Permanent cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/02Coils wound on non-magnetic supports, e.g. formers

Definitions

  • the present invention relates to a casting tool for casting electrotechnical coils.
  • the coils are cast from an electrically conductive material and used in an electrical machine.
  • the invention also relates to a method for producing the casting tool, a method for producing the electrotechnical coils and the cast electrotechnical coil.
  • the disclosure document DE 10 2016 202 657 A1 shows a previously known method for casting electrotechnical coils.
  • the object is achieved by a casting tool for producing cast electrotechnical coils.
  • the casting tool is preferably designed to cast the coil from a metal, in particular aluminum or an aluminum alloy.
  • the casting tool is preferably a permanent mold.
  • the "permanent mold” can be used for several casting processes and does not require any lost mold parts or cores.
  • the cast coil is designed for use in an electrical machine.
  • the electric machine can be operated with an electric motor and / or generator.
  • the electric machine is a slowly rotating electric motor that can be used in vehicles as a servomotor or servomotor.
  • the coil to be produced with the casting tool has several windings that are spaced apart from one another.
  • the turns extend around a hollow core area of the coil.
  • the hollow core area extends along a coil axis through the coil center point.
  • the individual turns can be made with an electrical insulating material are coated, or it is otherwise introduced an insulating material between the turns.
  • the casting tool comprises at least two mold inserts.
  • the two mold inserts can be moved relative to one another in a demolding direction. It is also possible that one of the two mold inserts is stationary when the casting tool is opened and closed and the other mold insert is moved.
  • the two mold inserts form at least one mold cavity, which is shaping for exactly one coil. In particular, the mold cavity forms a negative shape of the coil.
  • At least one of the mold inserts is preferably formed from a plurality of individually assembled mold segments.
  • the shape segments are each placed against one another at a segment dividing plane.
  • the segment dividing plane is non-parallel, preferably perpendicular, to the coil axis. That is, the mold insert is segmented and can be divided accordingly into the individual mold segments.
  • the individual mold segments can be manufactured separately in this way.
  • the segmented mold insert can in particular be manufactured in a single setting.
  • the mold cavity can preferably be produced by die sinking, particularly preferably by means of a single countersink electrode, which results in a very time-efficient and cost-effective production of the mold insert with high precision of the geometry of the mold cavity.
  • This is particularly advantageous in order to be able to produce the very filigree structure of the mold cavity by means of precisely one countersink electrode. Without positioning the individual mold segments at a distance, for example by means of spacer plates, a time-consuming and therefore cost-intensive production of each individual turn would be necessary due to the filigree structure.
  • the mold segments can preferably be arranged directly adjacent to one another after they have been produced.
  • the shaped segments are preferably braced with one another in the direction of the coil axis.
  • the segmented mold insert preferably has exactly one mold segment per turn of the coil. This makes it possible to use the filigree structure of the cavity in a particularly advantageous manner to rectify during the manufacture of the mold insert, for example by using spacer plates between the mold segments. As a result, each mold segment of the mold insert also has a particularly easily accessible geometry, which on the one hand enables simpler manufacture, and also allows, for example, possible reworking of the geometry giving the mold cavity.
  • the mold inserts are particularly preferably designed to be separable from one another in a mold parting plane which is perpendicular to the demolding direction.
  • the mold parting plane is arranged eccentrically to the mold cavity, and in particular at a predetermined distance from the coil axis.
  • the mold parting plane is preferably arranged on an outer edge of the mold cavity which is radially outer with respect to the coil axis and which is shaping for the coil. That is to say, the mold inserts are designed asymmetrically to one another with respect to the mold parting plane. This in particular further simplifies the manufacture of the mold inserts and optimizes the precise geometry of the mold cavity.
  • the casting tool preferably further comprises a central point of the casting runner.
  • a central point of the casting runner Starting from the central point of the casting runner, several, in particular at least 2, preferably a maximum of 6, and particularly preferably 4, mold cavities are arranged one behind the other in order to form a common casting runner cavity.
  • the mold cavities lie one behind the other in a casting direction.
  • a main flow direction within the casting runner cavity is regarded as the casting direction, that is to say, for example, parallel to a connecting line between two coil centers located one behind the other.
  • the casting cavity is defined in that the mold cavities arranged one behind the other form a coherent cavity.
  • casting runner cavities are particularly preferably arranged parallel to one another in the casting direction.
  • the tool preferably comprises a total of 24 mold cavities, which are arranged in a 6x4 matrix, that is, starting from the central point of the casting runner, 6 parallel casting runner cavities, each with 4 mold cavities arranged one behind the other.
  • all casting cavities extend parallel to the casting direction in order to obtain a casting tool with a particularly low space requirement. More preferably, all mold cavities are aligned in the same way, in particular in such a way that the coil axis is perpendicular to the casting direction.
  • Such a design of the casting tool offers a multiple tool with very little space requirement and a high output of coils per casting cycle.
  • a particularly small amount of circulating material is required to produce the coils, since in particular a ratio of the total mass of a casting system to the mass of the useful part, namely the coil, can be significantly reduced compared to a simple tool in which only one single coil is made.
  • the entire casting system also includes a sprue material and an overflow material, which is removed after the casting process in order to preserve the coil.
  • a sprue material and an overflow material, which is removed after the casting process in order to preserve the coil.
  • the ratio of the mass of the entire casting system to the mass of the useful part can be halved, in particular reduced from 16 to 8, by the multiple tool.
  • the casting tool particularly preferably comprises at least two casting runner cavities and a sprue which connects the casting runner central point with each of the casting runner cavities.
  • the sprue comprises at least two sprue strands which extend from the central point of the pouring runner to the pouring runner cavities in order to be able to fill the pouring runner cavities with the melt at a constant filling speed. This ensures that all casting cavities are filled with the same speed, in particular to enable the melt to cool and solidify evenly.
  • the sprue can have different geometries in order to reliably and evenly fill the casting cavity:
  • the two sprue strands are preferably arranged in a V-shape, the central point of the pouring runner being arranged at the point of intersection of the two legs of the V, and the V being open in the direction of the pouring runner cavities.
  • An opening angle between the V-shaped sprue strands is preferably at least 120 °, in particular at least 150 °.
  • a sprue arm preferably extends to each casting runner cavity, in particular to each mold cavity of each casting runner cavity, which is first in relation to the casting direction.
  • the two sprue strands preferably extend, starting from the central point of the casting run, in exactly the opposite direction to one another, that is to say pointing in particular an angle of 180 ° between them.
  • the sprue strands particularly preferably extend perpendicular to the casting direction.
  • sprue arms that are parallel and in particular of the same length each extend to the casting runner cavities.
  • Each of the sprue strands is particularly preferably designed in a stepped manner. That is to say, a section of the runner is offset parallel to the casting direction, in particular in the direction of the casting runner cavity, or away from the casting runner cavity.
  • each of the sprue strands can preferably have a reversal section which, starting from the central point of the pouring runner to the pouring runner cavity, effects a complete deflection, in particular by 360 °, of a flow of the melt.
  • a reversal section which, starting from the central point of the pouring runner to the pouring runner cavity, effects a complete deflection, in particular by 360 °, of a flow of the melt.
  • each of the sprue strands can each have one or more sub-sprue strands, which in particular each extend perpendicular to the casting direction.
  • the sub-sprue can for example be connected to the corresponding sprue by means of one or more sub-sprue arms, which in particular extend parallel to the casting direction.
  • the sprue arms, which each guide the melt into the casting runner cavities, can be provided on the sub-sprue strands.
  • flow guide elements which can for example be designed like wings, are arranged within the sprue strands in order to further positively influence a uniform speed of the melt as it flows through the sprue strands.
  • coils with any geometry can be cast with the casting tool described.
  • the casting tool is designed in a shaping manner for the following coil: Coil with several turns spaced apart from one another around a hollow core area which extends along a coil axis. When viewed parallel to the coil axis, the coil has two opposing first sides and two opposing second sides. The turns thus wind, in particular in a spiral, around the coil axis.
  • the first sides are preferably perpendicular to the second sides when viewed along the coil axis, which results in a rectangular shape of the coil.
  • a trapezoidal shape, diamond shape, round shape, or oval shape is also possible.
  • the two first sides are designed in particular in the form of a plate or sheet metal, and extend essentially in the demolding direction.
  • the two first sides are each inclined at a predetermined angle of inclination with respect to a plane perpendicular to the coil axis, which is in particular parallel to the plane of the segment division. That is, the first sides are arranged obliquely with respect to the coil axis.
  • the two first sides of a turn are preferably each inclined at the angle of inclination symmetrically to the plane perpendicular to the coil axis.
  • the two second sides are preferably designed in the form of twisted, in particular helical, metal sheets, and thus each connect the two first sides to one another.
  • the two second sides preferably extend essentially perpendicular to the demolding direction.
  • the coils can in particular be reshaped into a finished electrotechnical coil in that they are compressed along the coil axis, the reshaping taking place essentially through torsion of the two second sides.
  • the two first sides are preferably shorter than the two second sides.
  • a torsion of the two second sides is distributed in particular over a greater length compared to the shorter length of the first sides, as a result of which a lower mechanical load acts on the finished electrotechnical coil.
  • the first two sides determine the width of the coil.
  • the two second sides also determine the length of the coil.
  • a height of the coil runs perpendicular to the width and length, parallel to the coil axis.
  • the demolding direction is preferably arranged essentially parallel to the width of the coil, and in particular perpendicular to the length of the coil.
  • the special geometry of the coil with the inclined arrangement of the first two sides of the coil thus makes it possible to avoid undercuts on the coil to be cast in relation to the demolding direction.
  • This enables the coil to be cast in its final shape with just the two mold inserts alone.
  • a slide-free die-casting is hereby possible, with the coil nevertheless can be cast completely exactly with the hollow core area.
  • the two mold inserts are preferably designed in such a way that they touch in the joined cast configuration in the area of the hollow core area.
  • a normally required slide also: core pull
  • can thus be dispensed with which means that the casting process is kept particularly simple and inexpensive, and as a result of which a particularly space-saving casting tool can also be provided.
  • the angle of inclination is particularly preferably at least 5 °, preferably at least 10 °, particularly preferably a maximum of 25 °, for an optimal geometry of the coil with regard to avoiding undercuts and thus good demoldability.
  • the invention leads to a method for producing a casting tool, in particular the casting tool described above.
  • the method includes the step of producing a mold cavity in at least two mold inserts.
  • the mold cavity is produced by means of die sinking, in particular a single die sinking electrode being used per mold insert. That is to say, each mold insert is produced in that a part of the mold cavity is produced by means of die sinking in order to enable a particularly simple, inexpensive and precise production of the casting tool.
  • a spacer plate is preferably arranged between two adjacent segments of a segmented mold insert during die sinking in order to enable the mold inserts to be manufactured in a particularly simple and cost-effective manner.
  • the shaped segments and spacer plates are preferably braced together in the direction of a coil axis, in particular by the assembly of shaped segments and spacer plates being screwed parallel to the coil axis by means of at least one screw.
  • the mold segments can preferably be precisely aligned relative to one another by means of at least one dowel pin.
  • a spacer plate follows each mold segment. All spacer plates preferably have the same thickness in the direction of the coil axis.
  • the invention also leads to a method for producing electrotechnical coils.
  • the coils are preferably cast from aluminum or an aluminum alloy.
  • Aluminum is particularly favorable as a material for the coils in order to obtain a high degree of flexibility and thus a high degree of freedom in terms of the geometry of the coils.
  • the casting tool described is preferably used in the method.
  • a die-casting process preferably a cold chamber process, is particularly preferably used in the production process for the coils. Furthermore, it is preferably provided that the demolding direction is aligned vertically at +/- 20 ° during casting.
  • the invention further comprises a cast electrotechnical coil, which is preferably produced by means of the casting tool described or according to the method described.
  • the coil comprises a plurality of spaced-apart turns around a hollow core region that extends along a coil axis. When viewed parallel to the coil axis, the coil has two opposing first sides and two opposing second sides. The turns thus wind, in particular in a spiral, around the coil axis.
  • the first sides are preferably perpendicular to the second sides when viewed along the coil axis, which results in a rectangular shape of the coil. Alternatively, for example, a trapezoidal shape, diamond shape, round shape, or oval shape are also possible.
  • the two first sides are designed in particular plate-like or sheet-like, and each inclined at a predetermined angle of inclination with respect to a plane perpendicular to the coil axis. That is, the first sides are arranged obliquely with respect to the coil axis.
  • the angle of inclination is preferably at least 5 °, preferably at least 10 °, particularly preferably a maximum of 25 ° for an optimal geometry of the coil with regard to avoiding undercuts and thus in particular slide-free geometry of the casting tool and good demoldability of the coils.
  • the two first sides are preferably each inclined at the angle of inclination symmetrically to the plane perpendicular to the coil axis.
  • the two sides in particular cause the coil to rise.
  • the two second sides are preferably designed in the form of twisted, in particular helical, metal sheets, and in particular each connect the two first sides to one another.
  • the coils can preferably be reshaped into the finished electrotechnical coil in that they are compressed along the coil axis, the reshaping taking place essentially through torsion of the two second sides.
  • the two first sides are shorter than the two second sides.
  • a torsion of the two second sides is distributed in particular over a greater length, whereby a low mechanical load acts on the finished electrotechnical coil.
  • the casting tool 1 comprises a fixed casting mold side 25 and a movable casting mold side, the movable casting mold side not being shown.
  • the fixed mold side 25 is also referred to as the ejection side, while the movable mold side is also referred to as the sprue side.
  • the two mold sides 25 each have a plurality of mold inserts 2, 3.
  • the two mold sides 25 and thus also the mold inserts 2, 3 can be moved relative to one another along a demolding direction 4.
  • the casting tool 1 is a permanent mold for a die casting.
  • the material cast and solidified with the casting tool 1 is in Figure 2 shown.
  • Figure 2 thus shows a positive representation of the negative form formed by the casting tool 1.
  • Figure 3 shows a detail from Figure 2 , namely a cast electrotechnical coil 30.
  • FIG. 1 shows how in particular Figure 1 shows, a total of 24 mold cavities 5 are formed in the two mold sides 25. Exactly one electrotechnical coil 30 is cast in each mold cavity 5. The mold cavities 5 are thus shaping for the respective coil 30.
  • a mold cavity 5 is defined by a pair of opposing mold inserts 2, 3.
  • a single first mold insert 2 of the ejection side is shown enlarged in the figure, with the additional means of illustration Casting tool 1 cast electrotechnical coil 30 is shown.
  • the mold inserts 2, 3 are each formed from a plurality of individually assembled mold segments 20, as exemplified in FIG Figure 6 is shown for the mold insert 2 of the ejection side.
  • the shaped segments 20 are each divisible from one another in a segment division plane 21 which is perpendicular to the coil axis 33.
  • the mold insert 2 has exactly one mold segment 20 per turn 31 of the coil 30, so that each mold segment 20 is shaping for a part of one turn 31.
  • a spacer plate 22 is arranged between each two mold segments 20.
  • the mold segments 20 and the spacer plates 22 are precisely aligned relative to one another by means of two dowel pins 28 and are braced together by means of a screw 29 in the direction of the coil axis 33.
  • the spacer plates 22 By inserting the spacer plates 22 between the mold segments 20, the mold segments 20 are rectified in the direction of the coil axis, that is to say positioned at a distance so that they are more accessible.
  • the filigree structure of the negative shape giving the coil 30 can be produced precisely and simply. Due to the spaced-apart arrangement by means of the spacer plates, it is possible to produce this negative shape in each of the mold inserts 2, 3 by means of a single sinker electrode by sinker EDM.
  • the mold inserts 2, 3 and the geometry of the coils 30 to be cast are specially designed to enable the coils 30 to be die-cast without a slide. That is to say, the coil 30 has in each case a plurality of turns 31 spaced apart from one another and which extend around a hollow core region 32, the hollow core region 32 extending along a coil axis 33 (cf. Figures 3 to 5 ), can be produced by the two mold inserts 2, 3 alone, without the need for a slide, for example. Such a slide is otherwise pushed in in the direction of the coil axis 33 in order to depict the hollow core area 32. This is made possible particularly advantageously by the undercut-free geometry of the coil 30 described below.
  • the turns 31 of the coil 30 each have two opposite first sides 36 and two opposite second sides 37 when viewed parallel to the coil axis 33.
  • the first sides 36 are each inclined at a predetermined angle of inclination ⁇ of 12.5 ° with respect to a plane 21 perpendicular to the coil axis 33.
  • First sides 36 which are opposite in each case with respect to the coil axis 33 are inclined in opposite directions by the angle 2 ⁇ and symmetrically to the plane 21, as in particular in FIG Figure 3b to recognize.
  • the second sides 37 are each designed in the form of twisted, helical metal sheets and each connect two first sides 36 to one another. Connections 34 in the form of extensions are formed at the two ends of the coil 30.
  • This special geometry of the coil 30 to be cast avoids undercuts, so that the mold cavity 5 which forms the coil 30 can be formed entirely and exclusively by the two mold inserts 2, 3.
  • the two mold inserts 2, 3 each touch in this area.
  • the slide-free design of the casting tool 1 is further promoted by an eccentric arrangement of a casting mold dividing plane 6 in relation to the mold cavity 5, such as in particular the Figures 4 and 5 recognizable.
  • the mold parting plane 6 is arranged on an outer edge of the mold cavity 5 that is radially outer in the demolding direction 4 and with respect to the coil axis 33, which also promotes the demoldability of the coil 30 after casting.
  • the design of the casting tool 1 without a slide allows, in particular, a particularly space-saving arrangement of the mold cavities 5 around a very compact multiple casting tool 1, like the Figure 1 to see, get.
  • the 24 mold cavities 5 are arranged in a 6 ⁇ 4 matrix, with 4 mold cavities 5 each being arranged one behind the other in a casting direction 80. All mold cavities 5 are aligned in such a way that the coil axes 33 are each arranged perpendicular to the casting direction 80.
  • the 4 mold cavities 5 arranged one behind the other each form a casting runner cavity in that these mold cavities 5 arranged one behind the other each form a cavity that is contiguous in the casting direction 80. There are no cross connections between the individual casting cavities.
  • Each of these cast run cavities can be filled with the melt starting from a common cast run central point 8 in order to reduce the temperature in the Figure 2 pictured positive to receive.
  • the melt flows from the central point 8 of the pouring runner into a sprue 9 with two sprue strands 90. Via the sprue strands 90, the melt continues to flow uniformly in the casting direction 80 into each of the casting runner cavities, and up to the overflow 10.
  • a geometry of the sprue 9 is included specially designed in order to obtain a uniform filling of all mold cavities 5 of the casting tool 1, so that a uniform solidification of the melt can take place.
  • Particularly favorable variants of a sprue design are here Figure 7 which shows six variants of a positive cast by the casting tool 1 with different sprue geometries.
  • each geometries of a sprue 9 with two sprue strands 90 which extend from the central point 8 of the pouring runner in the direction of the pouring runner cavities.
  • a casting runner arm 92 is provided for each casting runner cavity, which arm connects the corresponding casting runner cavity to one of the sprue bars 90.
  • sprue strands 90 arranged in a V-shape are shown, which are arranged at an angle ⁇ of 130 ° to one another.
  • the sprue arms 92 can be oriented either pointing away from a central axis 95 parallel to the casting direction 80 (variant a) or pointing to the central axis (variant d).
  • Variants b, c, e and f also show sprue strands 90 which, starting from the central point 8 of the casting run, extend at least partially in exactly the opposite direction to one another and perpendicular to the casting direction 80.
  • Variant b shows simple straight sprue strands 90, from which parallel sprue arms 92 of the same length extend to the casting runner cavities.
  • Variant c shows stepped sprue strands 90, each of which has a partial section 93 which is arranged offset in the casting direction 80 towards the casting runner cavities.
  • a sprue 9 with a flow reversal is also shown.
  • the melt first flows away from the central point 8 of the casting run in opposite directions into first sections 94 of the sprue strands 90.
  • the melt is then deflected by 360 ° and flows in the opposite direction back into second sections 96.
  • the sprue arms 92 branch off at right angles from the second sections 96 .
  • each of the sprue strands 90 can be formed from two sub-sprue strands 97, 98, which each extend perpendicular to the casting direction 80 and are arranged next to one another in the casting direction 80.
  • the sub-sprue strands 97, 98 are each connected to one another by means of two sub-sprue arms 99, which extend parallel to the casting direction 80.
  • the sprue arms 92, which each guide the melt into the casting runner cavities, are provided on the sub-runner strands 92 arranged closer to the casting runner cavities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

Gusswerkzeug (1) zur Herstellung gegossener elektrotechnischer Spulen (30), wobei die gegossene Spule (30) mehrere, voneinander beabstandete Windungen (31) um einen hohlen Kernbereich (32), der sich entlang einer Spulenachse (33) erstreckt, aufweist, wobei das Gusswerkzeug (1) zumindest zwei relativ zueinander in einer Entformungsrichtung (4) bewegbare Formeinsätze (2, 3) zur Ausbildung von zumindest einem Formnest (5), welches für genau eine Spule formgebend ist, umfasst.Casting tool (1) for the production of cast electrotechnical coils (30), the cast coil (30) having a plurality of spaced-apart turns (31) around a hollow core region (32) which extends along a coil axis (33), wherein the Casting tool (1) comprises at least two mold inserts (2, 3) movable relative to one another in a demolding direction (4) for forming at least one mold cavity (5) which is shaping for exactly one coil.

Description

Die vorliegende Erfindung betrifft ein Gusswerkzeug zum Gießen elektrotechnischer Spulen. Die Spulen werden aus einem elektrisch leitfähigen Material gegossen und in einer elektrischen Maschine verwendet. Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung des Gusswerkzeugs, ein Verfahren zur Herstellung der elektrotechnischen Spulen sowie die gegossene elektrotechnische Spule.The present invention relates to a casting tool for casting electrotechnical coils. The coils are cast from an electrically conductive material and used in an electrical machine. The invention also relates to a method for producing the casting tool, a method for producing the electrotechnical coils and the cast electrotechnical coil.

Die Offenlegungsschrift DE 10 2016 202 657 A1 zeigt ein vorbekanntes Verfahren zum Gießen elektrotechnischer Spulen.The disclosure document DE 10 2016 202 657 A1 shows a previously known method for casting electrotechnical coils.

Es ist eine Aufgabe vorliegender Erfindung, ein Gusswerkzeug anzugeben, mit dem möglichst effizient elektrotechnische Spulen gegossen werden können. Insbesondere sollen die Spulen möglichst schnell, mit ausreichender Qualität und möglichst geringem Materialeinsatz hergestellt werden können.It is an object of the present invention to provide a casting tool with which electrotechnical coils can be cast as efficiently as possible. In particular, it should be possible to manufacture the coils as quickly as possible, with sufficient quality and as little material as possible.

Die Aufgabe wird gelöst durch ein Gusswerkzeug zum Herstellen gegossener elektrotechnischer Spulen. Das Gusswerkzeug ist dabei vorzugsweise dazu ausgebildet, die Spule aus einem Metall, insbesondere Aluminium oder einer Aluminiumlegierung, zu gießen. Vorzugsweise handelt es sich bei dem Gusswerkzeug um eine Dauerform. Die "Dauerform" kann für mehrere Gussvorgänge verwendet werden und benötigt keine verlorenen Formteile oder Kerne. Die gegossene Spule ist zur Verwendung in einer elektrischen Maschine ausgebildet. Die elektrische Maschine kann elektromotorisch und/oder generatorisch betrieben werden. Insbesondere handelt es sich bei der elektrischen Maschine um einen langsam drehenden Elektromotor, der in Fahrzeugen als Servomotor oder Stellmotor verwendet werden kann.The object is achieved by a casting tool for producing cast electrotechnical coils. The casting tool is preferably designed to cast the coil from a metal, in particular aluminum or an aluminum alloy. The casting tool is preferably a permanent mold. The "permanent mold" can be used for several casting processes and does not require any lost mold parts or cores. The cast coil is designed for use in an electrical machine. The electric machine can be operated with an electric motor and / or generator. In particular, the electric machine is a slowly rotating electric motor that can be used in vehicles as a servomotor or servomotor.

Die mit dem Gusswerkzeug herzustellende Spule weist mehrere, voneinander beabstandete Windungen auf. Die Windungen erstrecken sich um einen hohlen Kernbereich der Spule. Der hohle Kernbereich erstreckt sich dabei entlang einer Spulenachse durch den Spulenmittelpunkt. Nach dem Gießen der Spule können die einzelnen Windungen mit einem elektrisch isolierenden Material beschichtet werden, oder es wird anderweitig ein isolierendes Material zwischen die Windungen eingebracht.The coil to be produced with the casting tool has several windings that are spaced apart from one another. The turns extend around a hollow core area of the coil. The hollow core area extends along a coil axis through the coil center point. After casting the coil, the individual turns can be made with an electrical insulating material are coated, or it is otherwise introduced an insulating material between the turns.

Das Gusswerkzeug umfasst zumindest zwei Formeinsätze. Die beiden Formeinsätze sind in einer Entformungsrichtung zueinander relativ bewegbar. Dabei ist es auch möglich, dass einer der beiden Formeinsätze beim Öffnen und Schließen des Gusswerkzeugs feststeht und der andere Formeinsatz bewegt wird. Die beiden Formeinsätze bilden zumindest ein Formnest, welches formgebend für genau eine Spule ist. Insbesondere bildet das Formnest dabei eine Negativform der Spule.The casting tool comprises at least two mold inserts. The two mold inserts can be moved relative to one another in a demolding direction. It is also possible that one of the two mold inserts is stationary when the casting tool is opened and closed and the other mold insert is moved. The two mold inserts form at least one mold cavity, which is shaping for exactly one coil. In particular, the mold cavity forms a negative shape of the coil.

Vorzugsweise ist zumindest einer der Formeinsätze aus mehreren einzeln zusammengesetzten Formsegmenten gebildet. Die Formsegmente sind jeweils an einer Segmentteilungsebene aneinandergesetzt. Die Segmentteilungsebene ist dabei nicht-parallel, vorzugsweise senkrecht, zur Spulenachse. Das heißt, der Formeinsatz ist segmentiert ausgebildet und kann entsprechend in die einzelnen Formsegmente geteilt werden. Dies wirkt sich besonders vorteilhaft auf eine schnelle und kostengünstige Herstellung des Formeinsatzes aus. Beispielsweise können hierdurch die einzelnen Formsegmente separat gefertigt werden. Alternativ ist es vorzugsweise auch möglich, die Formsegmente gleichzeitig zu fertigen und während der Herstellung in einem Abstand zueinander anzuordnen, beispielsweise durch Verspannen von Distanzplatten zwischen den Formsegmenten. Dadurch kann der segmentierte Formeinsatz insbesondere in einer einzigen Aufspannung gefertigt werden. Durch die Anordnung mit Abständen kann das Formnest vorzugsweise durch Senkerodieren, besonders bevorzugt mittels einer einzigen Senkelektrode, erzeugt werden, wodurch sich eine sehr zeiteffiziente und kostengünstige Herstellung des Formeinsatzes bei gleichzeitig hoher Präzision der Geometrie des Formnests ergibt. Dies ist besonders vorteilhaft, um die sehr filigrane Struktur des Formnests mittels der genau einen Senkelektrode herstellen zu können. Ohne die einzelnen Formsegmente, beispielsweise mittels Distanzplatten, beabstandet zu positionieren, wäre eine zeitaufwendige und damit kostenintensive Fertigung jeder einzelnen Windung aufgrund der filigranen Struktur erforderlich.At least one of the mold inserts is preferably formed from a plurality of individually assembled mold segments. The shape segments are each placed against one another at a segment dividing plane. The segment dividing plane is non-parallel, preferably perpendicular, to the coil axis. That is, the mold insert is segmented and can be divided accordingly into the individual mold segments. This has a particularly advantageous effect on rapid and inexpensive manufacture of the mold insert. For example, the individual mold segments can be manufactured separately in this way. Alternatively, it is preferably also possible to manufacture the mold segments at the same time and to arrange them at a distance from one another during production, for example by bracing spacer plates between the mold segments. As a result, the segmented mold insert can in particular be manufactured in a single setting. Due to the spaced arrangement, the mold cavity can preferably be produced by die sinking, particularly preferably by means of a single countersink electrode, which results in a very time-efficient and cost-effective production of the mold insert with high precision of the geometry of the mold cavity. This is particularly advantageous in order to be able to produce the very filigree structure of the mold cavity by means of precisely one countersink electrode. Without positioning the individual mold segments at a distance, for example by means of spacer plates, a time-consuming and therefore cost-intensive production of each individual turn would be necessary due to the filigree structure.

Für den Gussprozess der Spule können die Formsegmente nach deren Herstellung vorzugsweise unmittelbar aneinander angrenzend angeordnet werden. Bevorzugt werden die Formsegmente dabei in Richtung der Spulenachse miteinander verspannt.For the casting process of the coil, the mold segments can preferably be arranged directly adjacent to one another after they have been produced. The shaped segments are preferably braced with one another in the direction of the coil axis.

Bevorzugt weist der segmentierte Formeinsatz jeweils genau ein Formsegment pro Windung der Spule auf. Dadurch ist es besonders vorteilhaft möglich, die filigrane Struktur des Formnests bei der Fertigung des Formeinsatzes zu entzerren, beispielsweise durch Distanzplatten zwischen den Formsegmenten. Jedes Formsegment des Formeinsatzes weist dadurch zudem eine besonders gut zugängliche Geometrie auf, was einerseits eine einfachere Fertigung ermöglicht, und zudem beispielsweise eine mögliche Nachbearbeitung der das Formnest formgebenden Geometrie erlaubt.The segmented mold insert preferably has exactly one mold segment per turn of the coil. This makes it possible to use the filigree structure of the cavity in a particularly advantageous manner to rectify during the manufacture of the mold insert, for example by using spacer plates between the mold segments. As a result, each mold segment of the mold insert also has a particularly easily accessible geometry, which on the one hand enables simpler manufacture, and also allows, for example, possible reworking of the geometry giving the mold cavity.

Besonders bevorzugt sind die Formeinsätze in einer Gussformteilungsebene, welche senkrecht zur Entformungsrichtung ist, voneinander trennbar ausgebildet. Die Gussformteilungsebene ist dabei außermittig zum Formnest, und insbesondere in einem vorbestimmten Abstand zur Spulenachse angeordnet. Vorzugsweise ist die Gussformteilungsebene an einem bezüglich der Spulenachse radial äußeren Außenrand des Formnests, welches formgebend für die Spule ist, angeordnet. Das heißt, die Formeinsätze sind bezüglich der Gussformteilungsebene asymmetrisch zueinander ausgebildet. Dadurch wird insbesondere die Herstellung der Formeinsätze weiter vereinfacht und hinsichtlich einer präzisen Geometrie des Formnests optimiert.The mold inserts are particularly preferably designed to be separable from one another in a mold parting plane which is perpendicular to the demolding direction. The mold parting plane is arranged eccentrically to the mold cavity, and in particular at a predetermined distance from the coil axis. The mold parting plane is preferably arranged on an outer edge of the mold cavity which is radially outer with respect to the coil axis and which is shaping for the coil. That is to say, the mold inserts are designed asymmetrically to one another with respect to the mold parting plane. This in particular further simplifies the manufacture of the mold inserts and optimizes the precise geometry of the mold cavity.

Vorzugsweise umfasst das Gusswerkzeug ferner einen Gusslaufzentralpunkt. Von dem Gusslaufzentralpunkt ausgehend sind mehrere, insbesondere mindestens 2, bevorzugt maximal 6, und besonders bevorzugt 4, Formnester hintereinander angeordnet, um eine gemeinsame Gusslaufkavität auszubilden. Insbesondere liegen die Formnester ausgehend von dem Gusslaufzentralpunkt in einer Gussrichtung hintereinander. Als Gussrichtung wird dabei eine Haupt-Strömungsrichtung innerhalb der Gusslaufkavität angesehen, das heißt beispielsweise parallel zu einer Verbindungslinie zweier hintereinanderliegender Spulen-Mittelpunkte. Die Gusslaufkavität ist dabei dadurch definiert, dass die hintereinander angeordneten Formnester einen zusammenhängenden Hohlraum bilden. In die Gusslaufkavität wird somit bei einem Gussvorgang zur Herstellung der Spulen ausgehend von dem, insbesondere einzigen, Gusslaufzentralpunkt die Schmelze eingefüllt, wobei jedes der hintereinander angeordneten Formnester mit der Schmelze befüllt wird.The casting tool preferably further comprises a central point of the casting runner. Starting from the central point of the casting runner, several, in particular at least 2, preferably a maximum of 6, and particularly preferably 4, mold cavities are arranged one behind the other in order to form a common casting runner cavity. In particular, starting from the central point of the casting run, the mold cavities lie one behind the other in a casting direction. A main flow direction within the casting runner cavity is regarded as the casting direction, that is to say, for example, parallel to a connecting line between two coil centers located one behind the other. The casting cavity is defined in that the mold cavities arranged one behind the other form a coherent cavity. During a casting process for the production of the coils, the melt is poured into the casting barrel starting from the, in particular single, casting barrel central point, with each of the mold cavities arranged one behind the other being filled with the melt.

Besonders bevorzugt sind ausgehend von dem Gusslaufzentralpunkt mehrere, vorzugsweise mindestens 2, bevorzugt maximal 10, besonders bevorzugt 6, Gusslaufkavitäten in Gussrichtung parallel zueinander angeordnet.Starting from the central point of the casting runner, several, preferably at least 2, preferably a maximum of 10, particularly preferably 6, casting runner cavities are particularly preferably arranged parallel to one another in the casting direction.

Vorzugsweise umfasst das Werkzeug insgesamt 24 Formnester, welche in einer 6x4-Matrix angeordnet sind, das heißt ausgehend vom Gusslaufzentralpunkt 6 parallele Gusslaufkavitäten mit jeweils 4 hintereinander angeordneten Formnestern.The tool preferably comprises a total of 24 mold cavities, which are arranged in a 6x4 matrix, that is, starting from the central point of the casting runner, 6 parallel casting runner cavities, each with 4 mold cavities arranged one behind the other.

Besonders bevorzugt erstrecken sich dabei alle Gusslaufkavitäten parallel zur Gussrichtung, um ein Gusswerkzeug mit besonders geringem Raumbedarf zu erhalten. Weiter bevorzugt sind sämtliche Formnester gleich ausgerichtet, insbesondere derart, dass die Spulenachse senkrecht zur Gussrichtung liegt. Eine solche Gestaltung des Gusswerkzeugs bietet ein Mehrfachwerkzeug mit sehr geringem Platzbedarf und hoher Ausbringung an Spulen pro Guss-Zyklus. Zudem ist eine besonders geringe Menge an Umlaufmaterial zur Erzeugung der Spulen erforderlich, da insbesondere ein Verhältnis einer gesamten Masse eines Guss-Systems zur Masse des Nutzteils, nämlich der Spule, signifikant reduziert werden kann im Vergleich zu einem Einfach-Werkzeug, in welchem nur eine einzige Spule hergestellt wird. Das gesamte Guss-System umfasst dabei neben dem Nutzteil auch ein Angussmaterial und ein Überlaufmaterial, welches nach dem Gussvorgang entfernt wird, um die Spule zu erhalten. Beispielsweise kann durch das Mehrfachwerkzeug das Verhältnis der Masse des gesamten Guss-Systems zur Masse des Nutzteils halbiert, insbesondere von 16 auf 8 reduziert werden.Particularly preferably, all casting cavities extend parallel to the casting direction in order to obtain a casting tool with a particularly low space requirement. More preferably, all mold cavities are aligned in the same way, in particular in such a way that the coil axis is perpendicular to the casting direction. Such a design of the casting tool offers a multiple tool with very little space requirement and a high output of coils per casting cycle. In addition, a particularly small amount of circulating material is required to produce the coils, since in particular a ratio of the total mass of a casting system to the mass of the useful part, namely the coil, can be significantly reduced compared to a simple tool in which only one single coil is made. In addition to the useful part, the entire casting system also includes a sprue material and an overflow material, which is removed after the casting process in order to preserve the coil. For example, the ratio of the mass of the entire casting system to the mass of the useful part can be halved, in particular reduced from 16 to 8, by the multiple tool.

Besonders bevorzugt umfasst das Gusswerkzeug zumindest zwei Gusslaufkavitäten und einen Anguss, welcher den Gusslaufzentralpunkt mit jeder der Gusslaufkavitäten verbindet. Dabei umfasst der Anguss zumindest zwei Angussstränge, welche sich von dem Gusslaufzentralpunkt zu den Gusslaufkavitäten erstrecken, um die Gusslaufkavitäten jeweils mit gleichmäßiger Füllgeschwindigkeit mit der Schmelze befüllen zu können. Dadurch wird sichergestellt, dass sämtliche Gusslaufkavitäten gleich schnell befüllt werden, um insbesondere ein gleichmäßiges Abkühlen und Erstarren der Schmelze zu ermöglichen.The casting tool particularly preferably comprises at least two casting runner cavities and a sprue which connects the casting runner central point with each of the casting runner cavities. The sprue comprises at least two sprue strands which extend from the central point of the pouring runner to the pouring runner cavities in order to be able to fill the pouring runner cavities with the melt at a constant filling speed. This ensures that all casting cavities are filled with the same speed, in particular to enable the melt to cool and solidify evenly.

Der Anguss kann dabei verschiedene Geometrien aufweisen, um zuverlässig eine gleichmäßige Befüllung der Gusslaufkavität zu ermöglichen:
Bevorzugt sind die beiden Angussstränge V-förmig angeordnet, wobei der Gusslaufzentralpunkt in dem Schnittpunkt der beiden Schenkel des V angeordnet ist, und wobei das V in Richtung der Gusslaufkavitäten geöffnet ist. Vorzugsweise beträgt ein Öffnungswinkel zwischen den V-förmig angeordneten Angusssträngen mindestens 120°, insbesondere mindestens 150°. Ausgehend von den Schenkeln des V erstreckt sich vorzugsweise jeweils ein Angussarm zu jeder Gusslaufkavität, insbesondere zu jedem in Bezug auf die Gussrichtung ersten Formnest jeder Gusslaufkavität.
The sprue can have different geometries in order to reliably and evenly fill the casting cavity:
The two sprue strands are preferably arranged in a V-shape, the central point of the pouring runner being arranged at the point of intersection of the two legs of the V, and the V being open in the direction of the pouring runner cavities. An opening angle between the V-shaped sprue strands is preferably at least 120 °, in particular at least 150 °. Starting from the legs of the V, a sprue arm preferably extends to each casting runner cavity, in particular to each mold cavity of each casting runner cavity, which is first in relation to the casting direction.

Vorzugsweise erstrecken sich die beiden Angussstränge alternativ dazu ausgehend von dem Gusslaufzentralpunkt in genau entgegengesetzter Richtung zueinander, also weisen insbesondere einen Winkel von 180° zwischen sich auf. Besonders bevorzugt erstrecken sich die Angussstränge in diesem Fall senkrecht zur Gussrichtung. Vorzugsweise erstrecken sich dabei von den Angusssträngen ausgehend jeweils parallele und insbesondere gleich lange Angussarme jeweils zu den Gusslaufkavitäten. Besonders bevorzugt ist dabei jeder der Angussstränge gestuft ausgebildet. Das heißt, ein Teilabschnitt des Angussstrangs ist parallel zur Gussrichtung, insbesondere in Richtung der Gusslaufkavität, oder von der Gusslaufkavität weg, versetzt.As an alternative to this, the two sprue strands preferably extend, starting from the central point of the casting run, in exactly the opposite direction to one another, that is to say pointing in particular an angle of 180 ° between them. In this case, the sprue strands particularly preferably extend perpendicular to the casting direction. Preferably, starting from the sprue strands, sprue arms that are parallel and in particular of the same length each extend to the casting runner cavities. Each of the sprue strands is particularly preferably designed in a stepped manner. That is to say, a section of the runner is offset parallel to the casting direction, in particular in the direction of the casting runner cavity, or away from the casting runner cavity.

Bevorzugt kann jeder der Angussstränge für eine besonders gleichmäßige Geschwindigkeit einen Umkehrabschnitt aufweisen, welcher ausgehend vom Gusslaufzentralpunkt zur Gusslaufkavität eine vollständige Umlenkung, insbesondere um 360°, einer Strömung der Schmelze bewirkt. Das heißt, beim Befüllen der Gusslaufkavitäten strömt die Schmelze zuerst vom Gusslaufzentralpunkt in entgegengesetzte Richtungen, und insbesondere senkrecht zur Gussrichtung, und wird anschließend um 360° umgelenkt, bevor die Schmelze durch die einzelnen Angussarme und daraufhin in die Gusslaufkavität strömt.For a particularly uniform speed, each of the sprue strands can preferably have a reversal section which, starting from the central point of the pouring runner to the pouring runner cavity, effects a complete deflection, in particular by 360 °, of a flow of the melt. This means that when the casting runner cavities are being filled, the melt first flows from the casting runner center point in opposite directions, and in particular perpendicular to the casting direction, and is then deflected by 360 ° before the melt flows through the individual sprue arms and then into the casting runner cavity.

Weiter bevorzugt kann jeder der Angussstränge jeweils einen oder mehrere Sub-Angussstränge aufweisen, welche sich insbesondere jeweils senkrecht zur Gussrichtung erstrecken. Der Sub-Angussstrang kann beispielsweise mittels eines oder mehreren Sub-Angussarmen, welche sich insbesondere parallel zur Gussrichtung erstrecken, mit dem entsprechenden Angussstrang verbunden sein. Die Angussarme, welche die Schmelze jeweils in die Gusslaufkavitäten leiten, können dabei an den Sub-Angusssträngen vorgesehen sein.More preferably, each of the sprue strands can each have one or more sub-sprue strands, which in particular each extend perpendicular to the casting direction. The sub-sprue can for example be connected to the corresponding sprue by means of one or more sub-sprue arms, which in particular extend parallel to the casting direction. The sprue arms, which each guide the melt into the casting runner cavities, can be provided on the sub-sprue strands.

Besonders bevorzugt sind innerhalb der Angussstränge Strömungsleitelemente, welche beispielsweise flügelartig ausgebildet sein können, angeordnet, um eine gleichmäßige Geschwindigkeit der Schmelze beim Durchströmen der Angussstränge weiter positiv zu beeinflussen.Particularly preferably, flow guide elements, which can for example be designed like wings, are arranged within the sprue strands in order to further positively influence a uniform speed of the melt as it flows through the sprue strands.

Mit dem beschriebenen Gusswerkzeug können grundsätzlich Spulen mit beliebiger Geometrie gegossen werden.In principle, coils with any geometry can be cast with the casting tool described.

Bevorzugt ist vorgesehen, dass das Gusswerkzeug formgebend für folgende Spule ausgebildet ist: Spule mit mehreren voneinander beanstandeten Windungen um einen hohlen Kernbereich, der sich entlang einer Spulenachse erstreckt. Die Spule weist bei Betrachtung parallel zur Spulenachse zwei gegenüberliegende erste Seiten und zwei gegenüberliegende zweite Seiten auf. Die Windungen winden sich somit, insbesondere spiralförmig, um die Spulenachse.It is preferably provided that the casting tool is designed in a shaping manner for the following coil: Coil with several turns spaced apart from one another around a hollow core area which extends along a coil axis. When viewed parallel to the coil axis, the coil has two opposing first sides and two opposing second sides. The turns thus wind, in particular in a spiral, around the coil axis.

Vorzugsweise stehen die ersten Seiten bei Betrachtung entlang der Spulenachse senkrecht zu den zweiten Seiten, wodurch sich eine rechteckige Form der Spule ergibt. Alternativ ist beispielsweise auch eine Trapezform, Rautenform, runde Form, oder ovale Form möglich.The first sides are preferably perpendicular to the second sides when viewed along the coil axis, which results in a rectangular shape of the coil. Alternatively, for example, a trapezoidal shape, diamond shape, round shape, or oval shape is also possible.

Die beiden ersten Seiten sind insbesondere plattenförmig oder blechartig ausgestaltet, und erstrecken sich im Wesentlichen in Entformungsrichtung. Die beiden ersten Seiten sind jeweils in einem vorbestimmten Neigungswinkel gegenüber einer zur Spulenachse senkrechten Ebene, welche insbesondere parallel zur Segmentteilungsebene ist, geneigt. Das heißt, die ersten Seiten sind schräg gegenüber der Spulenachse angeordnet. Bevorzugt sind die beiden ersten Seiten einer Windung jeweils in dem Neigungswinkel symmetrisch zu der zur Spulenachse senkrechten Ebene geneigt. Somit bewirken die beiden Seiten insbesondere eine Steigung der Spule. Die beiden zweiten Seiten sind vorzugsweise in Form von in sich verwundenen, insbesondere schraubenförmigen Blechen ausgebildet, und verbinden somit jeweils die beiden ersten Seiten miteinander. Dabei erstrecken sich die beiden zweiten Seiten vorzugsweise im Wesentlichen senkrecht zur Entformungsrichtung. Nach dem Gießen können die Spulen insbesondere derart zu einer fertigen elektrotechnischen Spule umgeformt werden, indem diese entlang der Spulenachse zusammengestaucht werden, wobei die Umformung im Wesentlichen durch Torsion der beiden zweiten Seiten geschieht.The two first sides are designed in particular in the form of a plate or sheet metal, and extend essentially in the demolding direction. The two first sides are each inclined at a predetermined angle of inclination with respect to a plane perpendicular to the coil axis, which is in particular parallel to the plane of the segment division. That is, the first sides are arranged obliquely with respect to the coil axis. The two first sides of a turn are preferably each inclined at the angle of inclination symmetrically to the plane perpendicular to the coil axis. Thus, the two sides in particular cause the coil to rise. The two second sides are preferably designed in the form of twisted, in particular helical, metal sheets, and thus each connect the two first sides to one another. In this case, the two second sides preferably extend essentially perpendicular to the demolding direction. After casting, the coils can in particular be reshaped into a finished electrotechnical coil in that they are compressed along the coil axis, the reshaping taking place essentially through torsion of the two second sides.

Vorzugsweise sind, bei Betrachtung auf die zur Spulenachse senkrechte Ebene, die beiden ersten Seiten kürzer als die beiden zweiten Seiten. Somit verteilt sich eine Torsion der beiden zweiten Seiten beim Zusammenstauchen der Spule nach dem Gießen insbesondere auf eine größere Länge, im Vergleich zur kleineren Länge der ersten Seiten, wodurch eine geringere mechanische Belastung auf die fertiggestellte elektrotechnische Spule wirkt.When looking at the plane perpendicular to the coil axis, the two first sides are preferably shorter than the two second sides. Thus, when the coil is compressed after casting, a torsion of the two second sides is distributed in particular over a greater length compared to the shorter length of the first sides, as a result of which a lower mechanical load acts on the finished electrotechnical coil.

Die beiden ersten Seiten bestimmen eine Breite der Spule. Die beiden zweiten Seiten bestimmen zudem eine Länge der Spule. Senkrecht zur Breite und zur Länge verläuft eine Höhe der Spule, parallel zur Spulenachse. Vorzugsweise ist die Entformungsrichtung im Wesentlichen parallel zur Breite der Spule, und insbesondere senkrecht zur Länge der Spule, angeordnet.The first two sides determine the width of the coil. The two second sides also determine the length of the coil. A height of the coil runs perpendicular to the width and length, parallel to the coil axis. The demolding direction is preferably arranged essentially parallel to the width of the coil, and in particular perpendicular to the length of the coil.

Die spezielle Geometrie der Spule mit der schrägen Anordnung der beiden ersten Seiten der Spule ermöglicht somit eine Vermeidung von Hinterschneidungen an der zu gießenden Spule in Bezug auf die Entformungsrichtung. Hierdurch wird ermöglicht, dass die Spule in ihrer endgültigen Gestalt lediglich mit den beiden Formeinsätzen alleine gegossen werden kann. Insbesondere ist hierdurch ein schieberloses Druckgießen möglich, wobei dennoch die Spule mit dem hohlen Kernbereich vollständig exakt gegossen werden kann. Hierfür sind die beiden Formeinsätze vorzugsweise so ausgebildet, dass diese sich in der zusammengefügten Guss-Konfiguration im Bereich des hohlen Kernbereichs berühren. Auf einen üblicherweise erforderlichen Schieber (auch: Kernzug) kann somit verzichtet werden, wodurch der GussProzess besonders einfach und kostengünstig gehalten wird, und wodurch zudem ein besonders platzsparendes Gusswerkzeug bereitgestellt werden kann.The special geometry of the coil with the inclined arrangement of the first two sides of the coil thus makes it possible to avoid undercuts on the coil to be cast in relation to the demolding direction. This enables the coil to be cast in its final shape with just the two mold inserts alone. In particular, a slide-free die-casting is hereby possible, with the coil nevertheless can be cast completely exactly with the hollow core area. For this purpose, the two mold inserts are preferably designed in such a way that they touch in the joined cast configuration in the area of the hollow core area. A normally required slide (also: core pull) can thus be dispensed with, which means that the casting process is kept particularly simple and inexpensive, and as a result of which a particularly space-saving casting tool can also be provided.

Besonders bevorzugt beträgt der Neigungswinkel mindestens 5°, vorzugsweise mindestens 10°, besonders vorzugsweise maximal 25°, für eine optimale Geometrie der Spule hinsichtlich einer Vermeidung von Hinterschneidungen, und damit guter Entformbarkeit.The angle of inclination is particularly preferably at least 5 °, preferably at least 10 °, particularly preferably a maximum of 25 °, for an optimal geometry of the coil with regard to avoiding undercuts and thus good demoldability.

Weiterhin führt die Erfindung zu einem Verfahren zur Herstellung eines Gusswerkzeugs, insbesondere des vorab beschriebenen Gusswerkzeugs. Das Verfahren umfasst dabei den Schritt eines Herstellens eines Formnests in zumindest zwei Formeinsätzen. Das Herstellen des Formnests erfolgt dabei mittels Senkerodieren, wobei insbesondere eine einzige Senkelektrode pro Formeinsatz verwendet wird. Das heißt, jeder Formeinsatz wird dadurch hergestellt, dass jeweils ein Teil des Formnests mittels Senkerodieren erzeugt wird, um eine besonders einfache, kostengünstige und präzise Fertigung des Gusswerkzeugs zu ermöglichen.Furthermore, the invention leads to a method for producing a casting tool, in particular the casting tool described above. The method includes the step of producing a mold cavity in at least two mold inserts. The mold cavity is produced by means of die sinking, in particular a single die sinking electrode being used per mold insert. That is to say, each mold insert is produced in that a part of the mold cavity is produced by means of die sinking in order to enable a particularly simple, inexpensive and precise production of the casting tool.

Bevorzugt ist während des Senkerodierens jeweils eine Distanzplatte zwischen zwei benachbarten Segmenten eines segmentierten Formeinsatzes angeordnet, um eine besonders einfache und kostengünstige Fertigung der Formeinsätze zu ermöglichen. Dabei sind die Formsegmente und Distanzplatten in Richtung einer Spulenachse vorzugsweise miteinander verspannt, insbesondere indem der Zusammenbau aus Formsegmenten und Distanzplatten parallel zur Spulenachse mittels zumindest einer Schraube verschraubt ist. Zusätzlich können die Formsegmente bevorzugt mittels zumindest einem Passstift präzise relativ zueinander ausgerichtet werden. Insbesondere folgt bei der zusammengebauten Anordnung jeweils eine Distanzplatte auf ein Formsegment. Vorzugsweise weisen sämtliche Distanzplatten eine gleiche Dicke in Richtung der Spulenachse auf.A spacer plate is preferably arranged between two adjacent segments of a segmented mold insert during die sinking in order to enable the mold inserts to be manufactured in a particularly simple and cost-effective manner. The shaped segments and spacer plates are preferably braced together in the direction of a coil axis, in particular by the assembly of shaped segments and spacer plates being screwed parallel to the coil axis by means of at least one screw. In addition, the mold segments can preferably be precisely aligned relative to one another by means of at least one dowel pin. In particular, in the assembled arrangement, a spacer plate follows each mold segment. All spacer plates preferably have the same thickness in the direction of the coil axis.

Ferner führt die Erfindung zu einem Verfahren zur Herstellung elektrotechnischer Spulen. Die Spulen werden vorzugsweise aus Aluminium oder einer Aluminiumlegierung gegossen. Besonders günstig ist dabei Aluminium als Werkstoff für die Spulen, um eine hohe Flexibilität und damit hohe Gestaltungsfreiheit bei der Geometrie der Spulen zu erhalten. Bei dem Verfahren wird vorzugsweise das beschriebene Gusswerkzeug verwendet.The invention also leads to a method for producing electrotechnical coils. The coils are preferably cast from aluminum or an aluminum alloy. Aluminum is particularly favorable as a material for the coils in order to obtain a high degree of flexibility and thus a high degree of freedom in terms of the geometry of the coils. The casting tool described is preferably used in the method.

Besonders bevorzugt wird bei dem Herstellungsverfahren der Spulen ein Druckguss-Verfahren, vorzugsweise ein Kaltkammerverfahren, angewendet. Des Weiteren ist vorzugsweise vorgesehen, dass beim Gießen die Entformungsrichtung mit +/- 20° vertikal ausgerichtet ist.A die-casting process, preferably a cold chamber process, is particularly preferably used in the production process for the coils. Furthermore, it is preferably provided that the demolding direction is aligned vertically at +/- 20 ° during casting.

Die Erfindung umfasst ferner eine gegossene elektrotechnische Spule, welche vorzugsweise mittels des beschriebenen Gusswerkzeugs bzw. nach dem beschriebenen Verfahren hergestellt ist. Die Spule umfasst mehrere voneinander beanstandete Windungen um einen hohlen Kernbereich, der sich entlang einer Spulenachse erstreckt. Die Spule weist bei Betrachtung parallel zur Spulenachse zwei gegenüberliegende erste Seiten und zwei gegenüberliegende zweite Seiten auf. Die Windungen winden sich somit, insbesondere spiralförmig, um die Spulenachse. Vorzugsweise stehen die ersten Seiten bei Betrachtung entlang der Spulenachse senkrecht zu den zweiten Seiten, wodurch sich eine rechteckige Form der Spule ergibt. Alternativ sind beispielsweise auch eine Trapezform, Rautenform, runde Form, oder ovale Form möglich. Die beiden ersten Seiten sind insbesondere plattenförmig oder blechartig ausgestaltet, und jeweils in einem vorbestimmten Neigungswinkel gegenüber einer zur Spulenachse senkrechten Ebene, geneigt. Das heißt, die ersten Seiten sind schräg gegenüber der Spulenachse angeordnet.The invention further comprises a cast electrotechnical coil, which is preferably produced by means of the casting tool described or according to the method described. The coil comprises a plurality of spaced-apart turns around a hollow core region that extends along a coil axis. When viewed parallel to the coil axis, the coil has two opposing first sides and two opposing second sides. The turns thus wind, in particular in a spiral, around the coil axis. The first sides are preferably perpendicular to the second sides when viewed along the coil axis, which results in a rectangular shape of the coil. Alternatively, for example, a trapezoidal shape, diamond shape, round shape, or oval shape are also possible. The two first sides are designed in particular plate-like or sheet-like, and each inclined at a predetermined angle of inclination with respect to a plane perpendicular to the coil axis. That is, the first sides are arranged obliquely with respect to the coil axis.

Vorzugsweise beträgt der Neigungswinkel mindestens 5°, vorzugsweise mindestens 10° besonders vorzugsweise maximal 25° für eine optimale Geometrie der Spule hinsichtlich einer Vermeidung von Hinterschneidungen und damit insbesondere schieberloser Geometrie des Gusswerkzeugs sowie guter Entformbarkeit der Spulen.The angle of inclination is preferably at least 5 °, preferably at least 10 °, particularly preferably a maximum of 25 ° for an optimal geometry of the coil with regard to avoiding undercuts and thus in particular slide-free geometry of the casting tool and good demoldability of the coils.

Bevorzugt sind die beiden ersten Seiten jeweils in dem Neigungswinkel symmetrisch zu der zur Spulenachse senkrechten Ebene geneigt. Somit bewirken die beiden Seiten insbesondere eine Steigung der Spule.The two first sides are preferably each inclined at the angle of inclination symmetrically to the plane perpendicular to the coil axis. Thus, the two sides in particular cause the coil to rise.

Die beiden zweiten Seiten sind vorzugsweise in Form von in sich verwundenen, insbesondere schraubenförmigen Blechen ausgebildet, und verbinden insbesondere jeweils die beiden ersten Seiten miteinander. Nach dem Gießen können die Spulen bevorzugt derart zur fertigen elektrotechnischen Spule umgeformt werden, indem diese entlang der Spulenachse zusammengestaucht werden, wobei die Umformung im Wesentlichen durch Torsion der beiden zweiten Seiten geschieht. Besonders vorzugsweise sind, bei Betrachtung auf die zur Spulenachse senkrechte Ebene, die beiden ersten Seiten kürzer als die beiden zweiten Seiten. Somit verteilt sich eine Torsion der beiden zweiten Seite insbesondere auf eine größere Länge, wodurch eine geringe mechanische Belastung auf die fertiggestellte elektrotechnische Spule wirkt.The two second sides are preferably designed in the form of twisted, in particular helical, metal sheets, and in particular each connect the two first sides to one another. After casting, the coils can preferably be reshaped into the finished electrotechnical coil in that they are compressed along the coil axis, the reshaping taking place essentially through torsion of the two second sides. Particularly preferably, when looking at the plane perpendicular to the coil axis, the two first sides are shorter than the two second sides. Thus, a torsion of the two second sides is distributed in particular over a greater length, whereby a low mechanical load acts on the finished electrotechnical coil.

Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels genauer erläutert. Hierzu zeigen:

Figur 1
eine perspektivische Ansicht einer Auswurfseite des erfindungsgemäßen Gusswerkzeugs,
Figur 2
eine perspektivische Ansicht eines durch das Gusswerkzeug der Figur 1 gegossenen Positivs,
Figur 3
Detailansichten einer mittels des Gusswerkzeugs der Figur 1 gegossenen elektrotechnischen Spule,
Figur 4
eine vergrößerte perspektivische Ansicht eines einzelnen Formeinsatzes einer Auswurfseite des Gusswerkzeugs der Figur 1,
Figur 5
eine vergrößerte perspektivische Ansicht eines einzelnen Formeinsatzes einer Eingussseite des erfindungsgemäßen Gusswerkzeugs,
Figur 6
eine perspektivische Detailansicht des Formeinsatzes der Figur 4 nach dessen Fertigung, und
Figur 7
Ansichten eines durch ein Gusswerkzeug gegossenen Positivs mit mehreren Varianten einer Angussgestaltung.
The invention is explained in more detail below using an exemplary embodiment. To do this, show:
Figure 1
a perspective view of an ejection side of the casting tool according to the invention,
Figure 2
FIG. 3 is a perspective view of a through the casting tool of FIG Figure 1 cast positives,
Figure 3
Detailed views of a means of the casting tool of Figure 1 cast electrotechnical coil,
Figure 4
FIG. 8 is an enlarged perspective view of a single mold insert of an ejection side of the casting tool of FIG Figure 1 ,
Figure 5
an enlarged perspective view of a single mold insert of a sprue side of the casting tool according to the invention,
Figure 6
a perspective detailed view of the mold insert of Figure 4 after its manufacture, and
Figure 7
Views of a positive cast by a casting tool with several variants of a sprue design.

Im Folgenden wird ein Ausführungsbeispiel eines Gusswerkzeugs 1 im Detail erläutert. Dabei wird auf die Figuren 1 bis 6 Bezug genommen. Anhand Figur 7 werden mehrere Varianten einer Angussgestaltung eines solchen Gusswerkzeugs 1 beschrieben. Gleiche bzw. funktional gleiche Bauteile sind stets mit denselben Bezugszeichen versehen.An exemplary embodiment of a casting tool 1 is explained in detail below. The Figures 1 to 6 Referenced. Based Figure 7 Several variants of a sprue configuration of such a casting tool 1 are described. Identical or functionally identical components are always provided with the same reference symbols.

Das Gusswerkzeug 1 umfasst eine feste Gussformseite 25 und eine bewegliche Gussformseite, wobei die bewegliche Gussformseite nicht dargestellt ist. Die feste Gussformseite 25 wird auch als Auswurfseite bezeichnet, während die bewegliche Gussformseite auch als Eingussseite bezeichnet wird. Die beiden Gussformseiten 25 weisen jeweils mehrere Formeinsätze 2, 3 auf.The casting tool 1 comprises a fixed casting mold side 25 and a movable casting mold side, the movable casting mold side not being shown. The fixed mold side 25 is also referred to as the ejection side, while the movable mold side is also referred to as the sprue side. The two mold sides 25 each have a plurality of mold inserts 2, 3.

Die beiden Gussformseiten 25 und damit auch die Formeinsätze 2, 3 sind relativ zueinander entlang einer Entformungsrichtung 4 bewegbar.The two mold sides 25 and thus also the mold inserts 2, 3 can be moved relative to one another along a demolding direction 4.

Bei dem Gusswerkzeug 1 handelt es sich um eine Dauerform für einen Druckguss. Das mit dem Gusswerkzeug 1 gegossene und erstarrte Material ist in Figur 2 dargestellt. Figur 2 zeigt somit eine Positiv-Darstellung der durch das Gusswerkzeug 1 gebildeten Negativform. Figur 3 zeigt ein Detail aus Figur 2, nämlich eine gegossene elektrotechnische Spule 30.The casting tool 1 is a permanent mold for a die casting. The material cast and solidified with the casting tool 1 is in Figure 2 shown. Figure 2 thus shows a positive representation of the negative form formed by the casting tool 1. Figure 3 shows a detail from Figure 2 , namely a cast electrotechnical coil 30.

Wie insbesondere Figur 1 zeigt, sind in den beiden Gussformseiten 25 insgesamt 24 Formnester 5 ausgebildet. In jedem Formnest 5 wird genau eine elektrotechnische Spule 30 gegossen. Die Formnester 5 sind somit formgebend für die jeweilige Spule 30. Ein Formnest 5 wird dabei definiert durch jeweils ein paar von gegenüberliegenden Formeinsätzen 2, 3 Ein einzelner erster Formeinsatz 2 der Auswurfseite ist dabei vergrößert in der Figur dargestellt, wobei zur Veranschaulichung zusätzlich die mittels des Gusswerkzeugs 1 gegossene elektrotechnische Spule 30 dargestellt ist. Analog zeigt die Figur 3 einen einzelnen Formeinsatz 3 der Eingussseite.How in particular Figure 1 shows, a total of 24 mold cavities 5 are formed in the two mold sides 25. Exactly one electrotechnical coil 30 is cast in each mold cavity 5. The mold cavities 5 are thus shaping for the respective coil 30. A mold cavity 5 is defined by a pair of opposing mold inserts 2, 3. A single first mold insert 2 of the ejection side is shown enlarged in the figure, with the additional means of illustration Casting tool 1 cast electrotechnical coil 30 is shown. Analogously shows the Figure 3 a single mold insert 3 of the sprue side.

Um eine besonders einfache Fertigung der Formeinsätze 2, 3 zu ermöglichen, sind die Formeinsätze 2, 3 jeweils aus mehreren einzeln zusammengesetzten Formsegmenten 20 gebildet, wie dies beispielhaft in Figur 6 für den Formeinsatz 2 der Auswurfseite dargestellt ist. Die Formsegmente 20 sind dabei jeweils in einer Segmentteilungsebene 21, welche senkrecht zur Spulenachse 33 ist, voneinander teilbar. Der Formeinsatz 2 weist dabei pro Windung 31 der Spule 30 jeweils genau ein Formsegment 20 auf, sodass jedes Formsegment 20 formgebend für einen Teil jeweils einer Windung 31 ist.In order to enable a particularly simple production of the mold inserts 2, 3, the mold inserts 2, 3 are each formed from a plurality of individually assembled mold segments 20, as exemplified in FIG Figure 6 is shown for the mold insert 2 of the ejection side. The shaped segments 20 are each divisible from one another in a segment division plane 21 which is perpendicular to the coil axis 33. The mold insert 2 has exactly one mold segment 20 per turn 31 of the coil 30, so that each mold segment 20 is shaping for a part of one turn 31.

Während der Herstellung der Formeinsätze 2, 3 ist jeweils zwischen zwei Formsegmenten 20 eine Distanzplatte 22 angeordnet. Hierbei sind die Formsegmente 20 und die Distanzplatten 22 mittels zwei Passstiften 28 präzise relativ zueinander ausgerichtet und mittels einer Schraube 29 in Richtung der Spulenachse 33 miteinander verspannt. Durch das Einfügen der Distanzplatten 22 zwischen die Formsegmente 20 werden der Formsegmente 20 in Richtung der Spulenachse entzerrt, also beabstandet positioniert, sodass diese besser zugänglich sind. Dadurch kann die filigrane Struktur der die Spule 30 formgebenden Negativform präzise und einfach hergestellt werden. Durch die beabstandete Anordnung mittels der Distanzplatten ist es möglich, diese Negativform in jedem der Formeinsätze 2, 3 jeweils mittels einer einzigen Senkelektrode durch Senkerodieren herzustellen.During the manufacture of the mold inserts 2, 3, a spacer plate 22 is arranged between each two mold segments 20. Here, the mold segments 20 and the spacer plates 22 are precisely aligned relative to one another by means of two dowel pins 28 and are braced together by means of a screw 29 in the direction of the coil axis 33. By inserting the spacer plates 22 between the mold segments 20, the mold segments 20 are rectified in the direction of the coil axis, that is to say positioned at a distance so that they are more accessible. As a result, the filigree structure of the negative shape giving the coil 30 can be produced precisely and simply. Due to the spaced-apart arrangement by means of the spacer plates, it is possible to produce this negative shape in each of the mold inserts 2, 3 by means of a single sinker electrode by sinker EDM.

Weiterhin sind die Formeinsätze 2, 3 sowie die Geometrie der zu gießenden Spulen 30 speziell so ausgebildet, um ein schieberloses Druckgießen der Spulen 30 zu ermöglichen. Das heißt, die Spule 30 mit jeweils mehreren, voneinander beabstandeten Windungen 31, die sich um einen hohlen Kernbereich 32 erstrecken, wobei sich der hohle Kernbereich 32 entlang einer Spulenachse 33 erstreckt (vgl. Figuren 3 bis 5), kann alleine durch die beiden Formeinsätze 2, 3 gefertigt werden, ohne dass beispielsweise ein Schieber notwendig ist. Ein solcher Schieber wird ansonsten in Richtung der Spulenachse 33 eingeschoben, um den hohlen Kernbereich 32 abzubilden. Dies wird besonders vorteilhaft durch die nachfolgend beschriebene hinterschneidungsfreie Geometrie der Spule 30 ermöglicht.Furthermore, the mold inserts 2, 3 and the geometry of the coils 30 to be cast are specially designed to enable the coils 30 to be die-cast without a slide. That is to say, the coil 30 has in each case a plurality of turns 31 spaced apart from one another and which extend around a hollow core region 32, the hollow core region 32 extending along a coil axis 33 (cf. Figures 3 to 5 ), can be produced by the two mold inserts 2, 3 alone, without the need for a slide, for example. Such a slide is otherwise pushed in in the direction of the coil axis 33 in order to depict the hollow core area 32. This is made possible particularly advantageously by the undercut-free geometry of the coil 30 described below.

Wie in der Figur 3 zu erkennen, weisen die Windungen 31 der Spule 30 bei Betrachtung parallel zur Spulenachse 33 jeweils zwei gegenüberliegende erste Seiten 36 und zwei gegenüberliegende zweite Seiten 37 auf. Die ersten Seiten 36 sind dabei jeweils in einem vorbestimmten Neigungswinkel α von 12,5° gegenüber einer zur Spulenachse 33 senkrechten Ebene 21 geneigt. Jeweils bezüglich der Spulenachse 33 gegenüberliegende erste Seiten 36 sind dabei entgegengesetzt um den Winkel 2α und symmetrisch zu der Ebene 21 geneigt, wie insbesondere in der Figur 3b zu erkennen. Die zweiten Seiten 37 sind jeweils in Form von in sich verwundenen, schraubenförmigen Blechen ausgebildet und verbinden jeweils zwei erste Seiten 36 miteinander. An den beiden Enden der Spule 30 sind jeweils Anschlüsse 34 in Form von Fortsätzen ausgebildet.Like in the Figure 3 As can be seen, the turns 31 of the coil 30 each have two opposite first sides 36 and two opposite second sides 37 when viewed parallel to the coil axis 33. The first sides 36 are each inclined at a predetermined angle of inclination α of 12.5 ° with respect to a plane 21 perpendicular to the coil axis 33. First sides 36 which are opposite in each case with respect to the coil axis 33 are inclined in opposite directions by the angle 2α and symmetrically to the plane 21, as in particular in FIG Figure 3b to recognize. The second sides 37 are each designed in the form of twisted, helical metal sheets and each connect two first sides 36 to one another. Connections 34 in the form of extensions are formed at the two ends of the coil 30.

Durch diese spezielle Geometrie der zu gießenden Spule 30 werden Hinterschneidungen vermieden, sodass das die Spule 30 formgebende Formnest 5 vollständig und ausschließlich durch die beiden Formeinsätze 2, 3 ausgebildet werden kann. Um den hohlen Kernbereich 32 der Spule 30 zu bilden, berühren sich dabei die beiden Formeinsätze 2, 3 jeweils in diesem Bereich.This special geometry of the coil 30 to be cast avoids undercuts, so that the mold cavity 5 which forms the coil 30 can be formed entirely and exclusively by the two mold inserts 2, 3. In order to form the hollow core area 32 of the coil 30, the two mold inserts 2, 3 each touch in this area.

Weiter begünstigt wird die schieberlose Gestaltung des Gusswerkzeugs 1 durch eine außermittige Anordnung einer Gussformteilungsebene 6 in Bezug auf das Formnest 5, wie insbesondere den Figuren 4 und 5 erkennbar. Die Gussformteilungsebene 6 ist dabei an einem in Entformungsrichtung 4 und bezüglich der Spulenachse 33 radial außenliegendem Außenrand des Formnests 5 angeordnet, wodurch zudem eine Entformbarkeit der Spule 30 nach dem Gießen begünstigt wird.The slide-free design of the casting tool 1 is further promoted by an eccentric arrangement of a casting mold dividing plane 6 in relation to the mold cavity 5, such as in particular the Figures 4 and 5 recognizable. The mold parting plane 6 is arranged on an outer edge of the mold cavity 5 that is radially outer in the demolding direction 4 and with respect to the coil axis 33, which also promotes the demoldability of the coil 30 after casting.

Die schieberlose Gestaltung des Gusswerkzeugs 1 erlaubt insbesondere eine besonders platzsparende Anordnung der Formnester 5, um ein sehr kompaktes Mehrfach-Gusswerkzeug 1, wie der Figur 1 zu sehen, zu erhalten. Die 24 Formnester 5 sind dabei in einer 6x4-Matrix angeordnet, wobei jeweils 4 Formnester 5 in einer Gussrichtung 80 hintereinander angeordnet sind. Sämtliche Formnester 5 sind dabei so ausgerichtet, dass die Spulenachsen 33 jeweils senkrecht zur Gussrichtung 80 angeordnet sind. Die jeweils 4 hintereinander angeordneten Formnester 5 bilden jeweils eine Gusslaufkavität aus, indem diese hintereinander angeordneten Formnester 5 jeweils einen in Gussrichtung 80 zusammenhängenden Hohlraum bilden. Querverbindungen zwischen den einzelnen Gusslaufkavitäten sind dabei nicht vorhanden.The design of the casting tool 1 without a slide allows, in particular, a particularly space-saving arrangement of the mold cavities 5 around a very compact multiple casting tool 1, like the Figure 1 to see, get. The 24 mold cavities 5 are arranged in a 6 × 4 matrix, with 4 mold cavities 5 each being arranged one behind the other in a casting direction 80. All mold cavities 5 are aligned in such a way that the coil axes 33 are each arranged perpendicular to the casting direction 80. The 4 mold cavities 5 arranged one behind the other each form a casting runner cavity in that these mold cavities 5 arranged one behind the other each form a cavity that is contiguous in the casting direction 80. There are no cross connections between the individual casting cavities.

Jede dieser Gusslaufkavitäten kann ausgehend von einem gemeinsamen Gusslaufzentralpunkt 8 mit der Schmelze befüllt werden, um das in der Figur 2 abgebildet Positiv zu erhalten. Hierbei strömt die Schmelze ausgehend von dem Gusslaufzentralpunkt 8 in einen Anguss 9 mit zwei Angusssträngen 90. Über die Angussstränge 90 strömt die Schmelze weiter in der Gussrichtung 80 gleichmäßig in jede der Gusslaufkavitäten, und bis hin zum Überlauf 10. Eine Geometrie des Angusses 9 ist dabei speziell so ausgebildet, um eine gleichmäßige Befüllung sämtlicher Formnester 5 des Gusswerkzeugs 1 zu erhalten, sodass eine gleichmäßige Erstarrung der Schmelze erfolgen kann. Besonders günstige Varianten einer Angussgestaltung sind dabei ist der Figur 7 dargestellt, welche sechs Varianten eines durch das Gusswerkzeug 1 gegossenen Positivs mit verschiedenen Angussgeometrien zeigt.Each of these cast run cavities can be filled with the melt starting from a common cast run central point 8 in order to reduce the temperature in the Figure 2 pictured positive to receive. Here, the melt flows from the central point 8 of the pouring runner into a sprue 9 with two sprue strands 90. Via the sprue strands 90, the melt continues to flow uniformly in the casting direction 80 into each of the casting runner cavities, and up to the overflow 10. A geometry of the sprue 9 is included specially designed in order to obtain a uniform filling of all mold cavities 5 of the casting tool 1, so that a uniform solidification of the melt can take place. Particularly favorable variants of a sprue design are here Figure 7 which shows six variants of a positive cast by the casting tool 1 with different sprue geometries.

Gezeigt sind in der Figur 7 jeweils Geometrien eines Angusses 9 mit zwei Angusssträngen 90, welche sich von dem Gusslaufzentralpunkt 8 in Richtung der Gusslaufkavitäten erstrecken. Ausgehend von den Angusssträngen 90 ist pro Gusslaufkavität jeweils ein Gusslaufarm 92 vorgesehen, welcher die entsprechende Gusslaufkavität mit einem der Angussstränge 90 verbindet.Are shown in the Figure 7 each geometries of a sprue 9 with two sprue strands 90 which extend from the central point 8 of the pouring runner in the direction of the pouring runner cavities. Starting from the sprue bars 90, a casting runner arm 92 is provided for each casting runner cavity, which arm connects the corresponding casting runner cavity to one of the sprue bars 90.

In den Varianten a und d sind dabei V-förmig angeordnete Angussstränge 90 gezeigt, welche in einem Winkel β von 130° zueinander angeordnet sind. Die Angussarme 92 können entweder von einer zur Gussrichtung 80 parallelen Zentralachse 95 wegweisend (Variante a) oder zur Zentralachse hinweisend (Variante d) ausgerichtet sein.In the variants a and d, sprue strands 90 arranged in a V-shape are shown, which are arranged at an angle β of 130 ° to one another. The sprue arms 92 can be oriented either pointing away from a central axis 95 parallel to the casting direction 80 (variant a) or pointing to the central axis (variant d).

Die Varianten b, c, e und f zeigen weiterhin Angussstränge 90, welche sich ausgehend von dem Gusslaufzentralpunkt 8 zumindest teilweise in genau entgegengesetzter Richtung zueinander und senkrecht zur Gussrichtung 80 erstrecken.Variants b, c, e and f also show sprue strands 90 which, starting from the central point 8 of the casting run, extend at least partially in exactly the opposite direction to one another and perpendicular to the casting direction 80.

Variante b zeigt dabei einfache gerade Angussstränge 90, von denen sich jeweils parallele und gleich lange Angussarme 92 zu den Gusslaufkavitäten erstrecken.Variant b shows simple straight sprue strands 90, from which parallel sprue arms 92 of the same length extend to the casting runner cavities.

Variante c zeigt gestufte Angussstränge 90, welche jeweils einen Teilabschnitt 93 aufweisen, der in Gussrichtung 80 hin zu den Gusslaufkavitäten versetzt angeordnet ist.Variant c shows stepped sprue strands 90, each of which has a partial section 93 which is arranged offset in the casting direction 80 towards the casting runner cavities.

In Variante e ist zudem ein Anguss 9 mit einer Strömungsumkehr gezeigt. Dabei strömt die Schmelze zuerst vom Gusslaufzentralpunkt 8 weg in entgegengesetzte Richtungen in erste Abschnitte 94 der Angussstränge 90. Anschließend wird die Schmelze um 360° umgelenkt und strömt in umgekehrter Richtung zurück in zweiten Abschnitten 96. Von den zweiten Abschnitten 96 zweigen die Angussarme 92 rechtwinklig ab.In variant e, a sprue 9 with a flow reversal is also shown. The melt first flows away from the central point 8 of the casting run in opposite directions into first sections 94 of the sprue strands 90. The melt is then deflected by 360 ° and flows in the opposite direction back into second sections 96. The sprue arms 92 branch off at right angles from the second sections 96 .

Weiterhin kann jeder der Angussstränge 90, wie in Variante f, aus jeweils zwei Sub-Angusssträngen 97, 98 gebildet sein, welche sich jeweils senkrecht zur Gussrichtung 80 erstrecken und in Gussrichtung 80 nebeneinander angeordnet sein. Die Sub-Angussstränge 97, 98 sind jeweils mittels zweier Sub-Angussarme 99, welche sich parallel zur Gussrichtung 80 erstrecken, miteinander verbunden. Die Angussarme 92, welche die Schmelze jeweils in die Gusslaufkavitäten leiten, sind dabei an den näher an den Gusslaufkavitäten angeordneten Sub-Angusssträngen 92 vorgesehen.Furthermore, as in variant f, each of the sprue strands 90 can be formed from two sub-sprue strands 97, 98, which each extend perpendicular to the casting direction 80 and are arranged next to one another in the casting direction 80. The sub-sprue strands 97, 98 are each connected to one another by means of two sub-sprue arms 99, which extend parallel to the casting direction 80. The sprue arms 92, which each guide the melt into the casting runner cavities, are provided on the sub-runner strands 92 arranged closer to the casting runner cavities.

BezugszeichenlisteList of reference symbols

11
GusswerkzeugCasting tool
22
AuswurfseiteDischarge side
33
EingussseiteSprue side
44th
EntformugsrichtungDemolding direction
55
FormnesterMold cavities
66th
GussformteilungsebeneMold parting plane
88th
GusslaufzentralpunktCasting center point
99
AngussSprue
1010
ÜberlaufOverflow
2020th
FormsegmenteShape segments
2121
SegmentteilungsebeneSegment division level
2222nd
DistanzplattenSpacer plates
2525th
GussformseiteMold side
2828
PassstiftDowel pin
2929
Schraubescrew
3030th
SpuleKitchen sink
3131
WindungenTurns
3232
KernbereichCore area
3333
SpulenachseCoil axis
3434
Anschlüsseconnections
3636
erste Seitenfirst pages
3737
zweite Seitensecond pages
8080
GussrichtungCasting direction
9090
AngussstrangSprue
9292
AngussstrangSprue
9494
erste Abschnittefirst sections
9595
ZentralachseCentral axis
9696
zweite Abschnittesecond sections
9797
Sub-AngussstrangSub sprue
9898
Sub-AngussstrangSub sprue
9999
Sub-AngussarmSub sprue arm

Claims (14)

Gusswerkzeug (1) zur Herstellung gegossener elektrotechnischer Spulen (30), wobei die gegossene Spule (30) mehrere, voneinander beabstandete Windungen (31) um einen hohlen Kernbereich (32), der sich entlang einer Spulenachse (33) erstreckt, aufweist, wobei das Gusswerkzeug (1) zumindest zwei relativ zueinander in einer Entformungsrichtung (4) bewegbare Formeinsätze (2, 3) zur Ausbildung von zumindest einem Formnest (5), welches für genau eine Spule formgebend ist, umfasst, und wobei das Gusswerkzeug (1) ferner einen Gusslaufzentralpunkt (8) umfasst, wobei mehrere Formnester (5) ausgehend von dem Gusslaufzentralpunkt (8) in Gussrichtung (80) hintereinander angeordnet sind, zur Ausbildung von zumindest einer Gusslaufkavität.Casting tool (1) for the production of cast electrotechnical coils (30), the cast coil (30) having a plurality of spaced-apart turns (31) around a hollow core region (32) which extends along a coil axis (33), wherein the Casting tool (1) comprises at least two mold inserts (2, 3) movable relative to one another in a demolding direction (4) for forming at least one mold cavity (5) which is shaping for exactly one coil, and wherein the casting tool (1) further comprises one Cast run central point (8), wherein several mold cavities (5) are arranged one behind the other in the casting direction (80) starting from the cast run central point (8), in order to form at least one cast run cavity. Gusswerkzeug nach Anspruch 1, - wobei zumindest einer der Formeinsätze (2, 3) aus mehreren einzeln zusammengesetzten Formsegmenten (20) gebildet ist, - wobei die Formsegmente (20) jeweils an einer Segmentteilungsebene (21) aneinander gesetzt sind, und - wobei die Segmentteilungsebene (21) nicht-parallel, insbesondere senkrecht, zur Spulenachse (33) ist. Casting tool according to claim 1, - wherein at least one of the mold inserts (2, 3) is formed from a plurality of individually assembled mold segments (20), - wherein the shape segments (20) are each set against one another at a segment dividing plane (21), and - The segment division plane (21) being non-parallel, in particular perpendicular, to the coil axis (33). Gusswerkzeug nach einem der vorhergehenden Ansprüche, wobei der segmentierte Formeinsatz (2) jeweils genau ein Formsegment (20) pro Windung (31) der Spule (30) aufweist.Casting tool according to one of the preceding claims, wherein the segmented mold insert (2) has exactly one mold segment (20) per turn (31) of the coil (30). Gusswerkzeug nach einem der vorhergehenden Ansprüche, - wobei die Formeinsätze (2, 3) in einer zur Entformungsrichtung (4) senkrechten Gussformteilungsebene (6) voneinander trennbar sind, - wobei die Gussformteilungsebene (6) außermittig zum Formnest (5) angeordnet ist, und - wobei die Gussformteilungsebene (6) insbesondere an einem bezüglich der Spulenachse (33) radial außenliegenden Außenrand des Formnests (5) angeordnet ist. Casting tool according to one of the preceding claims, - the mold inserts (2, 3) being separable from one another in a mold dividing plane (6) perpendicular to the demolding direction (4), - wherein the mold parting plane (6) is arranged eccentrically to the mold cavity (5), and - wherein the mold parting plane (6) is arranged in particular on an outer edge of the mold cavity (5) which is radially outer with respect to the coil axis (33). Gusswerkzeug nach einem der vorhergehenden Ansprüche, umfassend zumindest zwei Gusslaufkavitäten und einen Anguss (9), welcher den Gusslaufzentralpunkt mit jeder der Gusslaufkavitäten verbindet, wobei der Anguss (9) zumindest zwei Angussstränge (90) aufweist, welche sich von dem Gusslaufzentralpunkt (8) zu jeweils zumindest einer Gusslaufkavität erstrecken, zum Befüllen der Gusslaufkavitäten mit gleichmäßiger Füllgeschwindigkeit.Casting tool according to one of the preceding claims, comprising at least two casting runner cavities and a sprue (9) which connects the casting runner center point with each of the Connects casting runner cavities, the sprue (9) having at least two sprue strands (90), which each extend from the casting runner central point (8) to at least one casting runner cavity, for filling the casting runner cavities at a uniform filling speed. Gusswerkzeug nach einem der vorhergehenden Ansprüche, wobei die Formnester (5) formgebend für folgende Spule (30) ausgebildet sind:
Spule (30) mit mehreren, voneinander beabstandeten Windungen (31) um einen hohlen Kernbereich (32), der sich entlang einer Spulenachse (33) erstreckt, - wobei die Windungen (31), bei Betrachtung parallel zur Spulenachse (33), zwei gegenüberliegende erste Seiten (36) und zwei gegenüberliegende zweite Seiten (37) aufweisen, und - wobei die beiden ersten Seiten (36) jeweils in einem vorbestimmten Neigungswinkel (α) gegenüber einer zur Spulenachse (33) senkrechten Ebene (21) geneigt sind.
Casting tool according to one of the preceding claims, wherein the mold cavities (5) are designed to give shape to the following coil (30):
Coil (30) with several, spaced-apart turns (31) around a hollow core area (32) which extends along a coil axis (33), - wherein the turns (31), when viewed parallel to the coil axis (33), have two opposite first sides (36) and two opposite second sides (37), and - wherein the two first sides (36) are each inclined at a predetermined angle of inclination (α) with respect to a plane (21) perpendicular to the coil axis (33).
Gusswerkzeug nach Anspruch 6, wobei der Neigungswinkel (α) mindestens 5°, bevorzugt mindestens 10°, besonders bevorzugt maximal 25° beträgt.Casting tool according to claim 6, wherein the angle of inclination (α) is at least 5 °, preferably at least 10 °, particularly preferably a maximum of 25 °. Verfahren zur Herstellung eines Gusswerkzeugs (1) nach einem der vorhergehenden Ansprüche, umfassend den Schritt: - Herstellen eines Formnests (5) in zumindest zwei Formeinsätzen (2, 3), - wobei das Herstellen des Formnests (5) mittels Senkerodieren erfolgt. Method for producing a casting tool (1) according to one of the preceding claims, comprising the step: - Production of a mold cavity (5) in at least two mold inserts (2, 3), - The mold cavity (5) is produced by means of die sinking. Verfahren nach Anspruch 8, wobei während des Senkerodierens jeweils eine Distanzplatte (22) zwischen zwei benachbarten Formsegmenten (20) eines segmentierten Formeinsatzes (2) angeordnet ist.Method according to claim 8, wherein a spacer plate (22) is arranged between two adjacent mold segments (20) of a segmented mold insert (2) during die sinking. Verfahren zur Herstellung elektrotechnischer Spulen (30), vorzugsweise aus Aluminium oder einer Aluminiumlegierung, mit einem Gusswerkzeug (1) nach einem der Ansprüche 1 bis 7, oder mit einem Gusswerkzeug (1), welches mittels eines Verfahrens nach einem der Ansprüche 8 oder 9 hergestellt ist.Method for producing electrotechnical coils (30), preferably made of aluminum or an aluminum alloy, with a casting tool (1) according to one of Claims 1 to 7, or with a casting tool (1) which is produced by means of a method according to one of Claims 8 or 9 is. Gegossene elektrotechnische Spule (30), vorzugsweise hergestellt mit einem Gusswerkzeug (1) nach einem der Ansprüche 1 bis 7 oder dem Verfahren nach Anspruch 10, mit mehreren, voneinander beabstandeten Windungen (31) um einen hohlen Kernbereich (32), der sich entlang einer Spulenachse (33) erstreckt, - wobei die Windungen (31), bei Betrachtung auf eine zur Spulenachse (33) senkrechte Ebene, zwei gegenüberliegende erste Seiten (36) und zwei gegenüberliegende zweite Seiten (37) aufweisen, und - wobei die beiden ersten Seiten (36) jeweils in einem vorbestimmten Neigungswinkel (α) gegenüber einer zur Spulenachse senkrechten Ebene (21) geneigt sind. Cast electrotechnical coil (30), preferably produced with a casting tool (1) according to one of Claims 1 to 7 or the method according to Claim 10, with several, spaced-apart turns (31) around a hollow core area (32) which extends along a Spool axis (33) extends, - wherein the turns (31), when viewed on a plane perpendicular to the coil axis (33), have two opposite first sides (36) and two opposite second sides (37), and - The two first sides (36) each being inclined at a predetermined angle of inclination (α) with respect to a plane (21) perpendicular to the coil axis. Gegossene elektrotechnische Spule (30) nach Anspruch 11, wobei der Neigungswinkel (α) mindestens 5°, bevorzugt mindestens 10°, besonders bevorzugt maximal 25° beträgt.Cast electrotechnical coil (30) according to claim 11, wherein the angle of inclination (α) is at least 5 °, preferably at least 10 °, particularly preferably a maximum of 25 °. Gegossene elektrotechnische Spule (30) nach Anspruch 11 oder 12, - wobei die beiden ersten Seiten jeweils (36) in dem Neigungswinkel (α) symmetrisch zu der zur Spulenachse senkrechten Ebene (21) geneigt sind. Cast electrotechnical coil (30) according to claim 11 or 12, - The two first sides (36) each being inclined at the angle of inclination (α) symmetrically to the plane (21) perpendicular to the coil axis. Gegossene elektrotechnische Spule (30) nach einem der Ansprüche 11 bis 13, wobei die beiden zweiten Seiten (37) in Form von schraubenförmigen Blechen ausgebildet sind.Cast electrotechnical coil (30) according to one of Claims 11 to 13, the two second sides (37) being designed in the form of helical metal sheets.
EP20192518.7A 2019-08-27 2020-08-25 Casting tool for cast electrotechnical coils Pending EP3785821A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019212850.5A DE102019212850A1 (en) 2019-08-27 2019-08-27 Casting tool for cast electrotechnical coils

Publications (1)

Publication Number Publication Date
EP3785821A1 true EP3785821A1 (en) 2021-03-03

Family

ID=72240288

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20192518.7A Pending EP3785821A1 (en) 2019-08-27 2020-08-25 Casting tool for cast electrotechnical coils

Country Status (2)

Country Link
EP (1) EP3785821A1 (en)
DE (1) DE102019212850A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002614A (en) * 2013-06-14 2015-01-05 アイシン・エィ・ダブリュ株式会社 Coil casting device and coil casting method
JP2015009259A (en) * 2013-06-28 2015-01-19 アイシン・エィ・ダブリュ株式会社 Coil casting device, coil casting method, and metal mold
DE102016202657A1 (en) 2016-02-22 2017-08-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for casting a component of complex geometry with a segmented casting mold
WO2018135086A1 (en) * 2017-01-18 2018-07-26 パナソニックIpマネジメント株式会社 Molded coil body, method for producing same, motor, and method for assembling stator
DE102017211034A1 (en) * 2017-06-29 2019-01-03 Volkswagen Aktiengesellschaft Casting tool for cast electro-technical coils

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010020897A1 (en) * 2010-05-10 2011-11-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electrotechnical coil in casting technique, manufacturing method for such a coil and electric machines using such coils
DE202012100640U1 (en) * 2012-02-24 2012-05-08 Gerd Engel Arrangement for the production of contour-related temperature control channels in tools or tool inserts, cores and slides
DE102012212637A1 (en) * 2012-07-18 2014-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Casting electrical coil
DE102013000899A1 (en) * 2013-01-18 2014-08-07 Volkswagen Aktiengesellschaft Electrotechnical coil and / or coil winding, process for their preparation and electrical device
DE102014106851A1 (en) * 2014-05-15 2015-11-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Electric machine, coil package for an electric machine and method of manufacturing the same
DE102018215987B4 (en) * 2018-09-19 2020-07-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Production of a helix, permanent shape for a helix and helix
DE102018215986A1 (en) * 2018-09-19 2020-03-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Production of a helix, permanent shape for a helix and helix

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002614A (en) * 2013-06-14 2015-01-05 アイシン・エィ・ダブリュ株式会社 Coil casting device and coil casting method
JP2015009259A (en) * 2013-06-28 2015-01-19 アイシン・エィ・ダブリュ株式会社 Coil casting device, coil casting method, and metal mold
DE102016202657A1 (en) 2016-02-22 2017-08-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for casting a component of complex geometry with a segmented casting mold
WO2018135086A1 (en) * 2017-01-18 2018-07-26 パナソニックIpマネジメント株式会社 Molded coil body, method for producing same, motor, and method for assembling stator
DE102017211034A1 (en) * 2017-06-29 2019-01-03 Volkswagen Aktiengesellschaft Casting tool for cast electro-technical coils

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AZHAR EQUBAL ET AL: "Electrical Discharge Machining: An Overview on Various Areas of Research", MANUFACTURING AND INDUSTRIAL ENGINEERING, vol. 13, no. 1-2, 26 September 2014 (2014-09-26), XP055740548, ISSN: 1335-7972, DOI: 10.12776/mie.v13i1-2.339 *
J JEEVAMALAR ET AL: "A Review on Die Sinking EDM Process Parameters", INTERNATIONAL CONFERENCE ON INNOVATIVE REASEARCH IN ENGINEERING AND TECHNOLOGY-(ICIRET 2014), 30 December 2014 (2014-12-30), XP055740545 *

Also Published As

Publication number Publication date
DE102019212850A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
EP3208013B1 (en) Method for casting a component, having a complex geometry having a mould with a segmented design
EP2946462B1 (en) Electrotechnical coil and/or coil winding, method for the production thereof and electrical appliance
EP2819276B1 (en) Method for manufacturing a coil and said coil
DE69307094T2 (en) Extrusion die and die insert therefor
EP2625430B1 (en) Method of manufacturing a turbocharger casing
DE102023102021A1 (en) Method for producing a stator and stator
DE102004046532A1 (en) Method for producing a spacer for a water jacket
DE102018215987B4 (en) Production of a helix, permanent shape for a helix and helix
EP1757385B1 (en) Broad side wall of a funnel-shaped mould
DE69403565T2 (en) Pipe electrode for spark erosion machining and method for producing the same
EP3785821A1 (en) Casting tool for cast electrotechnical coils
DE2804067A1 (en) METHOD OF MANUFACTURING ASSEMBLED PARTS
DE10218732B4 (en) Method and device for producing a compressor rotor
DE69605237T2 (en) Improvements in the electrochemical processing of turbine blades
DE102017220410B4 (en) Casting tool and method for producing a housing for an electric machine
DE19647326A1 (en) Quenching plate and stacking mold
DE102004028426B4 (en) Insert core and method of manufacturing a cylinder for an internal combustion engine with the insert core
DE102017211034A1 (en) Casting tool for cast electro-technical coils
DE3943146C2 (en) Injection molding, punching or drawing tools with interchangeable molds
DE102022208673A1 (en) Method for producing a rotor of an electrical machine
DE20022711U1 (en) Device for casting a molded part
DE102020005846A1 (en) Device for the production of die-cast components
DE102018215972A1 (en) Method and tool for producing a coil and coil produced therewith
DE2846280B2 (en) Squirrel cage for an induction motor with an axial air gap
EP3546049A1 (en) Pouring filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210903

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220411