EP3784703A1 - Method for producing aqueous polymer dispersions in a tube reactor - Google Patents

Method for producing aqueous polymer dispersions in a tube reactor

Info

Publication number
EP3784703A1
EP3784703A1 EP19721593.2A EP19721593A EP3784703A1 EP 3784703 A1 EP3784703 A1 EP 3784703A1 EP 19721593 A EP19721593 A EP 19721593A EP 3784703 A1 EP3784703 A1 EP 3784703A1
Authority
EP
European Patent Office
Prior art keywords
reactor
tubular reactor
vinyl
tubular
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19721593.2A
Other languages
German (de)
French (fr)
Inventor
Hans-Peter Weitzel
Robert Braunsperger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP3784703A1 publication Critical patent/EP3784703A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2623Polyvinylalcohols; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2682Halogen containing polymers, e.g. PVC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F18/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F18/02Esters of monocarboxylic acids
    • C08F18/04Vinyl esters
    • C08F18/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0057Polymers chosen for their physico-chemical characteristics added as redispersable powders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • C04B2111/00672Pointing or jointing materials

Definitions

  • the invention relates to a process for the preparation of aqueous polymer dispersions by means of free-radically initiated emulsion polymerization of ethylenically unsaturated monomers in the presence of protective colloids and / or emulsifiers in a continuously operated tubular reactor, and the use of the process products obtained therewith.
  • Aqueous polymer dispersions are used as binders in a wide range of applications, for example in adhesives,
  • aqueous dispersions are usually prepared by aqueous emulsion polymerization in stirred batch reactors or also continuous stirred tank cascades, as described in EP 1 323 752 B1.
  • the process efficiency is limited by the dissipation of the released heat via cooling surfaces, for example cooling coils and reactor wall. For this reason, there have been repeated investigations into transferring the process from stirred kettles to tubular reactors without internals in order to benefit from the greater surface to volume ratio and correspondingly better cooling. Unfortunately, this shows that with a correspondingly narrow tube cross-section, these tube reactors quickly become clogged by deposits, known as fouling (polymer fouling), and the system operating time is drastically reduced.
  • tubular reactors with built-in stirrers were used. But even here polymer fouling cannot be avoided and limits the availability of the system. This polymer fouling also occurs in traditional stirred tanks, but the impairment of the system availability is not as serious as with tubular reactors due to the smaller cooling surface and changed reactor geometry. In stirred kettles, one helps to slow down the build-up of deposits by coating the surfaces with antifouling agents, as described in EP 3 256 497 B1. In However, this effect is not sufficient for tubular reactors. In DE-AS 1137216, a tubular reactor is described with a stirrer or scraper that goes through the wall. With this procedure, the wall covering is not avoided, but mechanically removed by a subsequent measure.
  • the object was to provide an improved process for the production of aqueous polymer dispersions that at the same time ensures high plant availability with high space-time performance (process efficiency).
  • the invention relates to a process for the preparation of aqueous polymer dispersions by means of free-radically initiated emulsion polymerization of ethylenically unsaturated monomers in the presence of protective colloids and / or emulsifiers in a continuously operated tubular reactor, characterized in that the flow direction of the reactor contents (polymerization mixture) along the longitudinal axis of the reactor at regular time intervals is reversed.
  • the process according to the invention can in principle be applied to all reactors with a pipe-like geometry.
  • This includes, for example, stirred tubular reactors, unstirred tubular reactors, tubular reactors with internals such as static mixing elements, and also Taylor reactors with a cylindrical stirrer. Stirred tubular reactors are preferred.
  • the tubular reactor preferably has a cylindrical geometry.
  • the tubular reactor is largely characterized by the ratio of length to diameter.
  • the ratio of length to diameter is preferably from 8: 1 to 40: 1, particularly preferably from 10: 1 to 25: 1.
  • With smaller ratios one approaches too closely the Geometry of traditional stirred kettles, with strong back-mixing of the medium to be reacted. With larger values, the reactor becomes very long, which limits the practical implementation, since the tubular reactor is preferably vertical and is limited by the building dimensions.
  • the tubular reactor can - viewed in the longitudinal direction or in the flow direction - be stored vertically, horizontally or in a position between these two directions.
  • the longitudinal direction of the tubular reactor is generally the distance from the reactor bottom to the reactor cover. Vertical storage is preferred. If the tubular reactor is not mounted horizontally, the reaction medium can flow through it with gravity from top to bottom or, preferably, against gravity from bottom to top.
  • a stirred tubular reactor can use any stirrer technology, preferably single-dimensioned paddle stirrers are used as stirring elements.
  • the speed of the stirrer depends on the overall dimensions of the reactor and is between 200 and 2000 revolutions per minute, preferably between 500 and 1500 revolutions per minute.
  • One revolution stands for one revolution of the stirrer around its longitudinal axis or around the axis that is parallel to the direction of flow.
  • the stirrer can be driven in a conventional manner, for example via a mechanical gear, and sealed via a magnetic coupling or a mechanical seal.
  • the mean residence time of the polymerization mixture in the tubular reactor is generally from 10 minutes to 5 hours, preferably from 15 minutes to 2 hours, particularly preferably from 20 minutes to 1 hour and most preferably from 25 minutes to 45 minutes.
  • the mean residence time can be set, for example, via the metering speed or the dimensions of the tubular reactor.
  • the direction of flow of the tubular reactor contents is reversed at a time interval (time interval) of 60 minutes to 48 hours, particularly preferably the direction of flow is reversed at a time interval (time interval) of 6 hours to 12 hours.
  • a tubular reactor for carrying out the process according to the invention is shown in FIG. 1 as a tubular reactor (1).
  • the embodiment in FIG. 1 is purely illustrative for explaining the method and in no way restrictive for the present invention.
  • the tubular reactor (1) in which the polymerization takes place is constructed from a steel tube, preferably a jacketed tube (2), which has an axially arranged agitator shaft (3) inside which is equipped with several agitator elements (4).
  • the tubular reactor (1) is equipped with a metering line (5) which is connected to an upstream mixing unit (6) for mixing the starting materials.
  • the tubular reactor (1) is connected via a withdrawal line (7) to a downstream container (8) in which the polymerization product is collected and, if necessary, after-treated.
  • the starting materials can be introduced into the tubular reactor (1), preferably continuously, via the metering line (5).
  • the polymerization product can be discharged from the tubular reactor (1), preferably continuously, through the withdrawal line (7).
  • additional metering devices (9a) to (9e) further substances, preferably initiators, can be fed to the tubular reactor along the tubular reactor.
  • the procedure can be such that the educt mixture (pre-emulsion) from the mixing unit (6) via the branch (5a) of the metering line (5) and via the open valve (10) to the tubular reactor (1) is supplied.
  • the polymerisation product is fed to the container (8) via the opened valve (11) and the section (7a) of the removal line (7).
  • the valve (12) and the valve (13) are closed in this phase of operation.
  • valves (10) and (11) are closed, and then valve (12) and valve (13) are opened.
  • the educt mixture is discharged from the mixing unit (6) via the branch (5b) of the metering line (5) via the open Valve (12) fed to the tubular reactor (1), and the polymerisation product removed via the now open valve (13) and fed to the container (8) via section (7b) of the removal line (7).
  • valves (12) and (13) are closed and valves (10) and (11) are opened again.
  • the polymerization takes place according to the emulsion polymerization process in an aqueous medium, preferably no organic solvents are used.
  • the polymerization temperature of the polymerization mixture in the tubular reactor is preferably between 40.degree. C. and 120.degree. C. and particularly preferably between 50.degree. C. and 110.degree.
  • the pressure in the tube reactor depends on whether the monomers to be polymerized are liquid or gaseous at the respective polymerization temperature and is preferably 1 to 110 bar abs. In the copolymerization of gaseous comonomers such as ethylene, 1,3-butadiene or vinyl chloride, under Pressure, and particularly preferably at 10 to 80 bar abs . polymerized.
  • the constituents of the reaction mixture can be mixed beforehand in a mixing unit and fed continuously to the tubular reactor.
  • the constituents of the reaction mixture are preferably mixed continuously in a mixing unit to form a pre-emulsion and this is transported into the tubular reactor.
  • the procedure is preferably such that no oxidation catalyst is added to the pre-emulsion.
  • the procedure is preferably such that the reduction initiator is added to the pre-emulsion and the oxidation initiator is preferably added to the tubular reactor.
  • the transport takes place by means of pumps or via the pure mass flow when the mixing unit is completely filled.
  • the mixing unit can be, for example, a stirred tank or a static mixing section.
  • the mixing unit can be provided with a double jacket in order to cool or heat, if necessary, during mixing.
  • the starting materials can be tempered before being introduced into the tubular reactor.
  • the starting materials must be kept at a temperature between 10 ° C. and the polymerization temperature.
  • a mixture pre-emulsion
  • the aforementioned mixtures are preferably heated to a temperature between the polymerization temperature and 20 ° C. below the polymerization temperature, in particular to 10 ° C.
  • Initiators in particular oxidation initiators, are particularly preferably added to a mixture heated in this way directly before entry into the tubular reactor or metered directly into the tubular reactor.
  • the temperature control can take place before, during or after their thorough mixing. Common heat exchangers can be used for this purpose.
  • the tube reactor can be tempered with common cooling and / or heating devices, such as jacket coolers or jacket heaters. Cooling and / or heating devices can, for example, be attached to the tubular reactor on the wall or to built-in cooling coils.
  • the outer reactor wall can be provided with a cooling or heating jacket (double-jacket tube), the intermediate space of which is traversed by a temperature control liquid.
  • a tubular reactor with a jacketed tube is preferably used.
  • the tubular reactor is preferably filled with a polymer dispersion which preferably corresponds to the end product of the polymerization in terms of polymer composition, type and amount of protective colloid, and particle size and solids content.
  • a polymer dispersion which preferably corresponds to the end product of the polymerization in terms of polymer composition, type and amount of protective colloid, and particle size and solids content.
  • the tubular reactor can be filled with a mixture which comprises the starting materials but no initiators, in particular no oxidation initiators.
  • the tubular reactor must be filled with water, preferably exclusively with water, before the start of the process according to the invention.
  • the tubular reactor is generally operated continuously.
  • the starting materials in particular ethylenically unsaturated monomers, protective colloids and / or emulsifiers and / or initiators, are introduced into the tubular reactor during the emulsion polymerization and the polymerization product is removed from the tubular reactor.
  • the entering mass flows should correspond to the exiting mass flows.
  • the polymerization is generally carried out up to a conversion of at least 85% by weight, preferably up to a conversion of 90 to 99% by weight, of the monomers which are liquid under polymerization conditions.
  • the polymerization product is then transferred to a collecting tank (expansion tank).
  • the transport takes place by means of pumps or due to the pressure difference between the tubular reactor and the collecting tank.
  • Post-polymerization can optionally be carried out in the collecting tank using known methods, for example by post-polymerization initiated with a redox catalyst.
  • the volatile residual monomer content is then optionally removed by passing over or preferably passing inert entrainment gases such as air, nitrogen or preferably water vapor over / through the aqueous polymerization mixture in a manner known to the person skilled in the art (stripping).
  • inert entrainment gases such as air, nitrogen or preferably water vapor over / through the aqueous polymerization mixture in a manner known to the person skilled in the art (stripping).
  • the polymerization product is removed from the collecting tank and stored in a silo, for example.
  • the ethylenically unsaturated monomers are preferably selected from the group comprising vinyl esters, (meth) acrylic acid esters, vinyl aromatics, olefins, 1,3-dienes and vinyl halides and optionally other monomers copolymerizable therewith.
  • Suitable vinyl esters are those of carboxylic acids having 1 to 18 carbon atoms.
  • Vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl laurate, 1-methyl vinyl acetate, vinyl pivalate and vinyl esters of alpha-branched monocarboxylic acids with 9 to 11 carbon atoms are preferred Atoms, for example VeoVa9 ® or VeoVa10 ® (trade names of Hexion).
  • Vinyl acetate is particularly preferred.
  • Suitable monomers from the group of acrylic acid esters or methacrylic acid esters are, for example, esters of unbranched or branched alcohols having 1 to 15 carbon atoms.
  • Preferred methacrylic acid esters or acrylic acid esters are methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, n-butyl acrylate, n-butyl methacrylate, t-butyl acrylate, t-butyl methacrylate, 2-ethylhexyl acrylate.
  • Methyl acrylate, methyl methacrylate, n-butyl acrylate, t-butyl acrylate and 2-ethylhexyl acrylate are particularly preferred.
  • Preferred vinyl aromatics are styrene, methyl styrene and vinyl toluene.
  • the preferred vinyl halide is vinyl chloride.
  • the preferred olefins are ethylene, propylene and the preferred dienes are 1,3-butadiene and isoprene.
  • auxiliary monomers can also be copolymerized. It is preferred to use from 0.1 to 5% by weight of auxiliary monomers.
  • auxiliary monomers are ethylenically unsaturated mono- and dicarboxylic acids, preferably acrylic acid, methacrylic acid, fumaric acid and maleic acid; ethylenically unsaturated carboxamides and nitriles, preferably acrylamide and acrylonitrile; Mono- and diesters of fumaric acid and maleic acid such as the diethyl and diisopropyl esters and maleic anhydride; ethylenically unsaturated sulfonic acids or their salts, preferably vinyl sulfonic acid, 2-acrylamido-2-methyl-propane sulfonic acid.
  • pre-crosslinking comonomers such as poly-ethylenically unsaturated comonomers, for example dialyl phthalate, divinyl adipate, diallyl maleate, allyl methacrylate or triallyl cyanurate, or post-crosslinking comonomers, for example acrylamidoglycolic acid (AGA), methyl acrylamido-methyl ester (AGA), methyl acrylamidoglycolate N-methylol methacrylamide, N-methylol allyl carbamate, alkyl ethers such as isobutoxy ether or esters of N-methylol acrylamide, N-methylol methacrylamide and N-methylol allyl carbamate.
  • AGA acrylamidoglycolic acid
  • AGA methyl acrylamido-methyl ester
  • alkyl ethers such as isobutoxy ether or esters of N-methylol acrylamide, N-methylol methacrylamide
  • Epoxy-functional comonomers such as glycidyl methacrylate and glycidyl acrylate are also suitable.
  • Other examples are silicon-functional comonomers such as acryloxypropyltri (alkoxy) and methacryloxypropyltri (alkoxy) silanes, vinyltrialkoxysilanes and vinylmethyldialkoxysilanes, it being possible for example to contain ethoxy and ethoxypropylene glycol ether radicals as alkoxy groups.
  • Monomers with hydroxy or CO groups may also be mentioned, for example methacrylic acid and acrylic acid hydroxyalkyl esters such as hydroxyethyl, hydroxypropyl or hydroxybutyl acrylate or methacrylate, and compounds such as diacetone acrylamide and acetylacetoxyethyl acrylate.
  • One or more monomers are preferably selected from the group comprising vinyl esters; Vinyl ester mixtures containing several monomers from the group comprising vinyl esters, olefins, vinyl aromatics, vinyl halides, acrylic acid esters, methacrylic acid esters, fumaric and / or maleic acid mono- or diesters; (Meth) acrylic acid esters; (Meth) acrylic acid ester mixtures containing one or more monomers from the group comprising methacrylic acid esters, acrylic acid esters, olefins, vinyl aromatics, vinyl halides, fumaric and / or maleic acid mono- or diesters; Monomers or monomer mixtures of dienes such as butadiene or isoprene, and of olefins such as ethene or propene, it being possible for the dienes to be polymerized, for example, with styrene, (meth) acrylic esters or the esters of fumaric or maleic acid; Monomers or monomer mixtures
  • Monomer mixtures of vinyl acetate with 1 to 50% by weight of ethylene are particularly preferred; Monomer mixtures of vinyl acetate with 1 to 50% by weight of ethylene and 1 to 50% by weight of one or more further comonomers from the group of vinyl esters with 3 to 12 carbon atoms in the carboxylic acid radical, such as vinyl propionate, vinyl laurate, vinyl esters of alpha-branched ones Carboxylic acids with 9 to 11 carbon atoms such as VeoVa9 ® , VeoValO ® ; Monomer mixtures of one or more vinyl esters, 1 to 50% by weight of ethylene and preferably 1 to 60% by weight of (meth) acrylic acid esters of unbranched or branched alcohols having 1 to 15 carbon atoms, in particular n-butyl acrylate.
  • (Meth) acrylic acid ester monomer mixtures are particularly preferred, such as monomer mixtures of n-butyl acrylate or 2-ethylhexyl acrylate or copolymers of methyl methacrylate with n-butyl acrylate and / or 2-ethylhexyl acrylate; Styrene-acrylic acid ester monomer mixtures with one or more monomers from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate; Vinyl acetate / acrylic acid ester monomer mixtures with one or more monomers from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate and, if appropriate, ethylene; Styrene-1,3-butadiene monomer mixtures; where the mono
  • Examples of particularly preferred comonomers for vinyl chloride monomer mixtures are ⁇ -olefins such as ethylene and propylene, vinyl esters such as vinyl acetate, acrylic acid esters and methacrylic acid esters of alcohols with 1 to 15 carbon atoms such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, n-butyl acrylate , t-butyl acrylate, n-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl acrylate, fumaric and maleic acid mono- or diesters such as the dimethyl and diethyl esters of maleic acid and fumaric acid.
  • ⁇ -olefins such as ethylene and propylene
  • vinyl esters such as vinyl acetate
  • monomer mixtures with vinyl acetate and 5 to 50% by weight of ethylene Monomer mixtures with vinyl acetate and 1 to 50% by weight of ethylene and 1 to 50% by weight of a vinyl ester of -branched monocarboxylic acids having 9 to 11 carbon atoms; Monomer mixtures with 30 to 75% by weight of vinyl acetate, 1 to 30% by weight of vinyl laurate or a vinyl ester an ⁇ -branched carboxylic acid having 9 to 11 carbon atoms, and 1 to 30% by weight (meth) acrylic acid esters of unbranched or branched alcohols having 1 to 15 carbon atoms, which optionally also contain 1 to 40% by weight ethylene ; Monomer mixtures with vinyl acetate, 5 to 50 wt .-% ethylene and 1 to 60 wt .-% vinyl chloride; as well as monomer mixtures containing 60 to 98% by weight of vinyl chloride and 1 to 40% by weight of ethylene, the monomer mixtures each also being able to contain auxiliary monomers in the
  • the selection of monomers and the selection of the proportions by weight of the comonomers are carried out in such a way that, in general, a glass transition temperature Tg of -50 ° C to + 50 ° C, preferably -20 ° C to + 30 ° C, results.
  • the glass transition temperature Tg of the polymers can be determined in a known manner by means of differential scanning colorimetry (DSC).
  • Tgn the glass transition temperature in Kelvin of the homopolymer of the monomer n. Tg values for homopolymers are given in Polymer Handbook 2nd Edition, JU. Wiley & Sons, New York (1975).
  • the polymerization is initiated with the initiators customary for emulsion polymerization, in particular redox initiator combinations of oxidation initiator and reduction initiator.
  • suitable oxidation initiators are the sodium, potassium and ammonium salts of peroxodisulfuric acid, hydrogen peroxide and azobisisobutyronitrile.
  • the sodium, potassium and ammonium salts of peroxydisulfuric acid and hydrogen peroxide are preferred.
  • the initiators mentioned are generally used in an amount of from 0.01 to 2.0% by weight, based on the total weight of the monomers.
  • Suitable reducing agents are the sulfites and bisulfites of alkali metals and of ammonium, for example sodium sulfite; the derivatives of sulfoxylic acid such as zinc or Alkali formaldehyde sulfoxylates, for example sodium hydroxymethanesulfinate (Bruggolite) and ascorbic acid, isoascorbic acid or its salts, or formaldehyde-free reducing agents such as 2-hydroxy-2-sulfinato-acetic acid disodium salt (Bruggolite FF6).
  • the amount of reducing agent is preferably 0.015 to 3% by weight, based on the total weight of the monomers.
  • regulating substances can be used during the polymerization. If regulators are used, they are usually used in amounts between 0.01 and 5.0% by weight, based on the monomers to be polymerized. Examples of such substances are n-dodecyl mercaptan, tert. -Dodecylmer- captan, mercaptopropionic acid, ethyl mercaptopropionate, isopropanol and acetaldehyde. Preferably no regulating substances are used.
  • Suitable protective colloids are partially saponified polyvinyl alcohols; Polyvinylpyrrolidones; Polyvinyl acetals; Polysaccharides in water-soluble form such as starches (amylose and amylopectin), celluloses and their carboxymethyl, methyl, hydroxyethyl, and hydroxypropyl derivatives; Proteins such as casein or caseinate, soy protein, gelatin, lignosulfonates; synthetic polymers such as poly (meth) acrylic acid, copolymers of (meth) acrylates with carboxyl-functional comonomer units, poly (meth) acrylamide, polyvinylsulfonic acids and their water-soluble copolymers; Melamine formaldehyde sulfonates, naphthalene formaldehyde sulfonates, styrene maleic acid and vinyl ether maleic acid copolymers; cationic polyvinyl alcohols; Polyvinylpyrrolidone
  • Preferred protective colloids are partially saponified or fully saponified polyvinyl alcohols.
  • Partially saponified polyvinyl alcohols with a degree of hydrolysis of 80 to 95 mol% and a Höppler viscosity, in 4% aqueous solution, of 1 to 30 mPas are particularly preferred.
  • Partially saponified, hydrophobically modified polyvinyl alcohols with a degree of hydrolysis of 80 to 95 mol% and a Höppler viscosity of 4% are also particularly preferred iger aqueous solution, from 1 to 30 mPas.
  • Examples of these are partially saponified copolymers of vinyl acetate with hydrophobic comonomers such as isopropenyl acetate, vinyl pivalate, vinyl ethylhexanoate, vinyl esters of saturated alpha-branched monocarboxylic acids with 5 or 9 to 11 carbon atoms, dialkyl maleate and dialkyl fumarates such as diisopropyl, vinyl fumarate ethers such as vinyl fumarate ethers, such as vinyl fumarate and diisopropyl chloride Vinyl butyl ether, olefins such as ethene and decene.
  • the proportion of the hydrophobic units is preferably 0.1 to 10% by weight, based on the total weight of the partially saponified polyvinyl alcohol. Mixtures of the polyvinyl alcohols mentioned can also be used.
  • polyvinyl alcohols with a degree of hydrolysis of 85 to 94 mol% and a Höppler viscosity, in 4% aqueous solution, of 3 to 15 mPas (Höppler method at 20 ° C., DIN 53015).
  • the protective colloids mentioned are accessible or commercially available by means of processes known to the person skilled in the art.
  • the protective colloids are generally added in the course of the polymerization in a total amount of 1 to 20% by weight, based on the total weight of the monomers.
  • emulsifiers for example anionic and / or nonionic emulsifiers
  • anionic emulsifiers are alkyl sulfates with a chain length of 8 to 18 carbon atoms, alkyl or alkylaryl ether sulfates with 8 to 18 carbon atoms in the hydrophobic radical and up to 40 ethylene oxide or propylene oxide units, alkyl or alkylaryl sulfonates with 8 to 18 C atoms, esters and half esters of sulfosuccinic acid with monohydric alcohols.
  • nonionic emulsifiers are C12-C14 fatty alcohol ethoxylates with a degree of ethoxylation of 2 to 20 ethylene oxide units.
  • the aqueous dispersions obtainable with the process according to the invention have a solids content of 30 to 75 wt. -%, preferably from 50 to 60 wt. -%.
  • the aqueous dispersions can be used to produce polymer powders that are redispersible in water.
  • the aqueous dispersions optionally after the addition of protective colloids as an atomizing aid, are dried by means of fluidized bed drying, freeze drying or, preferably, spray drying.
  • aqueous polymer dispersions and the water-redispersible polymer powders can be used in the areas of application typical for them.
  • binders such as cements, gypsum and water glass
  • construction adhesives in particular tile adhesives and thermal insulation adhesives, plasters, leveling compounds, floor leveling compounds, leveling compounds, sealing slurries, grout and paints.
  • binders for coating agents and adhesives or as coating agents or binders for textiles and paper are also as binders for coating agents and adhesives or as coating agents or binders for textiles and paper.
  • the polymerization was carried out in a tubular reactor (1) with a length of 1600 mm and an internal diameter of 100 mm.
  • the reactor volume was approx. 12.5 liters.
  • the reaction mixture was mixed transversely to the longitudinal axis by a stirrer (3) with 8 stirrer blades (4) measuring 50 mm x 50 mm, the distance between the stirrer blades and the reactor wall was 25 mm, thus avoiding contact with the reactor wall.
  • a stirrer (3) with 8 stirrer blades (4) measuring 50 mm x 50 mm, the distance between the stirrer blades and the reactor wall was 25 mm, thus avoiding contact with the reactor wall.
  • 9a) to (9e) for initiator.
  • the tubular reactor (1) was continuously supplied with the mixture of substances to be polymerized from an upstream pressure vessel (6) with a volume of 16 liters.
  • the upstream pressure vessel (6) was continuously filled with the relevant substances via pumps.
  • the product After emerging from the tubular reactor (1), the product was transferred via a pressure-maintaining valve (14) or (15) to a pressureless container (8) with a volume of 1000 liters and collected. At the end of the experiment, the product mixture was aftertreated and bottled.
  • composition to be polymerized is a composition to be polymerized:
  • This mixture was transferred to the tubular reactor (1) at a rate of 20 kg / h.
  • the initiator potassium persulfate was metered in as a 3% strength by weight aqueous solution at the metering points (9a) to (9e).
  • the finished product left the tubular reactor (1) with a conversion of approx. 92% and was collected in a pressureless container (8) in vacuo.
  • the mixture to be polymerized was introduced at the lower end of the tubular reactor (1) and the product removed at the upper end.
  • the valves (10) and (11) were open, the valves (12) and (13) closed.
  • the flow rate was approx. 20 liters / h.
  • the stirrer speed was 800 revolutions / minute.
  • the pressure in the reactor (1) was adjusted to 55 bar via the transfer valve (14).
  • the initiator dosing rates were
  • the polymerization was ended and the free volume of the reactor (1) was determined by filling it up with water and weighing the amount of water. With this procedure, the reactor volume was determined to be 11.2 liters, that is, in "normal operation" according to the prior art, the reactor loses approx. 1.3 liters volume after 24 hours, equivalent to a corresponding build-up of wall covering.
  • the mixture to be polymerized was introduced at the lower end of the reactor (1) and the product was removed at the upper end.
  • the valves (10) and (11) were open, the valves (12) and (13) closed.
  • the flow rate was approx. 20 liters / h.
  • the stirrer speed was 800 revolutions / minute.
  • the pressure in the reactor (1) was adjusted to 55 bar via the transfer valve (14).
  • the initiator dosing rates were
  • Viscosity (Brookfield at 23 ° C and 20 rpm) 1500 mPas

Abstract

The invention relates to a method for producing aqueous polymer dispersions by means of radically initiated emulsion polymerisation of ethylenically unsaturated monomers in the presence of protective colloids and/or emulsifiers in a continuously operated tube reactor, characterised in that the direction of flow of the reactor contents is reversed along the longitudinal axis of the rector at regular time intervals.

Description

Verfahren zur Herstellung von wässrigen Polymerdispersionen in einem Process for the production of aqueous polymer dispersions in one
Rohrreaktor Tubular reactor
Die Erfindung betrifft ein Verfahren zur Herstellung von wässrigen Polymerdispersionen mittels radikalisch initiierter Emulsionspolymerisation von ethylenisch ungesättigten Monomeren in Gegenwart von Schutzkolloiden und/oder Emulgatoren in einem kontinuierlich betriebenen Rohrreaktor, und die Verwendung der damit erhaltenen Verfahrensprodukte . The invention relates to a process for the preparation of aqueous polymer dispersions by means of free-radically initiated emulsion polymerization of ethylenically unsaturated monomers in the presence of protective colloids and / or emulsifiers in a continuously operated tubular reactor, and the use of the process products obtained therewith.
Wässrige Polymerdispersionen werden in vielfältigen Anwendungsgebieten als Bindemittel eingesetzt, beispielsweise in Klebstoffen, Aqueous polymer dispersions are used as binders in a wide range of applications, for example in adhesives,
Coatinganwendungen, als Bindemittel in Teppich-, Textil- und Papieranwendungen sowie in bauchemischen Produkten wie zum Beispiel Fliesenkleber, Putzen und Dichtungsmassen . Die Herstellung dieser wässrigen Dispersionen erfolgt üblicherweise durch wässrige Emulsionspolymerisation in gerührten Batchreaktoren oder auch kontinuierlichen Rührkesselkaskaden, wie in der EP 1 323 752 Bl beschrieben. Die Prozesseffizienz wird dabei durch die Abfuhr der freiwerdenden Wärme über Kühlflächen, zum Beispiel Kühlschlangen und Reaktorwand, limitiert. Aus diesem Grund gab es immer wieder Untersuchungen das Verfahren von Rührkesseln auf Rohrreaktoren ohne Einbauten zu übertragen um hierbei von dem größeren Oberflächen- zu Volumenverhältnis und entsprechend besserer Kühlung zu profitieren. Leider zeigt sich hierbei, dass bei entsprechend engem Rohrquerschnitt diese Rohrreaktoren schnell durch Ablagerungen, dem sogenannten Fouling (Polymerfouling) , verstopfen und die Anlagenlaufzeit drastisch reduziert wird. Coating applications, as a binder in carpet, textile and paper applications as well as in construction chemical products such as tile adhesives, plasters and sealants. These aqueous dispersions are usually prepared by aqueous emulsion polymerization in stirred batch reactors or also continuous stirred tank cascades, as described in EP 1 323 752 B1. The process efficiency is limited by the dissipation of the released heat via cooling surfaces, for example cooling coils and reactor wall. For this reason, there have been repeated investigations into transferring the process from stirred kettles to tubular reactors without internals in order to benefit from the greater surface to volume ratio and correspondingly better cooling. Unfortunately, this shows that with a correspondingly narrow tube cross-section, these tube reactors quickly become clogged by deposits, known as fouling (polymer fouling), and the system operating time is drastically reduced.
Als Ausweg wurden Rohrreaktoren mit eingebautem Rührer eingesetzt. Aber auch hierbei lässt sich das Polymerfouling nicht vermeiden und limitiert die Verfügbarkeit der Anlage. Dieses Polymerfouling tritt auch bei den traditionellen Rührkesseln auf, die Beeinträchtigung der Anlagenverfügbarkeit ist aber bei Rührkesseln, auf Grund der geringeren KühlOberfläche und geänderter Reaktorgeometrie, nicht so gravierend wie bei Rohrreaktoren. In Rührkesseln behilft man sich durch Beschichtung der Oberflächen mit Antifoulingmitteln um den Belagaufbau zu verlangsamen, wie in der EP 3 256 497 Bl beschrieben. In Rohrreaktoren ist dieser Effekt allerdings nicht ausreichend. In der DE-AS 1137216 wird ein Rohrreaktor beschrieben mit wandgängigem Rührer beziehungsweise Abstreifer. Bei diesem Vorgehen wird der Wandbelag nicht vermieden, sondern durch eine nachträgliche Maßnahme mechanisch entfernt . In einem Produktionsmaßstab muss daher mit Problemen gerechnet werden, bedingt durch die engen Abstände des Rührers bzw. Abstreifers zur Wandung, mechanischer Belastung und entsprechenden Verstopfungen durch abgeriebenen Wandbelag. In der EP 0 029 701 Bl werden die, in einem von Flüssigkeit durchströmten Rohrreaktor, sich bildenden Wandbeläge durch pulsierende Strömung wieder aus dem Reaktor entfernt . As a solution, tubular reactors with built-in stirrers were used. But even here polymer fouling cannot be avoided and limits the availability of the system. This polymer fouling also occurs in traditional stirred tanks, but the impairment of the system availability is not as serious as with tubular reactors due to the smaller cooling surface and changed reactor geometry. In stirred kettles, one helps to slow down the build-up of deposits by coating the surfaces with antifouling agents, as described in EP 3 256 497 B1. In However, this effect is not sufficient for tubular reactors. In DE-AS 1137216, a tubular reactor is described with a stirrer or scraper that goes through the wall. With this procedure, the wall covering is not avoided, but mechanically removed by a subsequent measure. Problems must therefore be expected on a production scale, due to the narrow distances between the stirrer or scraper and the wall, mechanical stress and corresponding blockages due to worn wall covering. In EP 0 029 701 B1, the wall coverings which form in a tubular reactor through which liquid flows are removed from the reactor again by pulsating flow.
Es bestand die Aufgabe ein verbessertes Verfahren zur Herstellung von wässrigen Polymerdispersionen zur Verfügung zu stellen, dass bei hoher Raum-Zeit-Leistung (Prozesseffizienz) gleichzeitig eine hohe Anlagenverfügbarkeit gewährleistet . The object was to provide an improved process for the production of aqueous polymer dispersions that at the same time ensures high plant availability with high space-time performance (process efficiency).
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von wässrigen Polymerdispersionen mittels radikalisch initiierter Emulsionspolymerisation von ethylenisch ungesättigten Monomeren in Gegenwart von Schutzkolloiden und/oder Emulgatoren in einem kontinuierlich betriebenen Rohrreaktor, dadurch gekennzeichnet, dass die Strömungsrichtung des Reaktorinhalts (Polymerisationsmischung) entlang der Reaktorlängsachse in regelmäßigen Zeitintervallen umgekehrt wird. The invention relates to a process for the preparation of aqueous polymer dispersions by means of free-radically initiated emulsion polymerization of ethylenically unsaturated monomers in the presence of protective colloids and / or emulsifiers in a continuously operated tubular reactor, characterized in that the flow direction of the reactor contents (polymerization mixture) along the longitudinal axis of the reactor at regular time intervals is reversed.
Das erfindungsgemäße Verfahren kann grundsätzlich auf alle Reaktoren mit rohrähnlicher Geometrie angewandt werden . Dies beinhaltet beispielsweise gerührte Rohrreaktoren, ungerührte Rohrreaktoren, Rohrreaktoren mit Einbauten wie statischen Mischelementen, und auch Taylorreaktoren mit einem zylindrischen Rührer. Bevorzugt werden gerührte Rohrreaktoren. The process according to the invention can in principle be applied to all reactors with a pipe-like geometry. This includes, for example, stirred tubular reactors, unstirred tubular reactors, tubular reactors with internals such as static mixing elements, and also Taylor reactors with a cylindrical stirrer. Stirred tubular reactors are preferred.
Der Rohrreaktor hat bevorzugt eine zylinderförmige Geometrie . Der Rohrreaktor ist maßgeblich durch das Verhältnis von Länge zu Durchmesser charakterisiert. Vorzugsweise beträgt das Verhältnis von Länge zu Durchmesser von 8:1 bis 40:1, besonders bevorzugt von 10:1 bis 25:1. Bei kleineren Verhältnissen nähert man sich zu stark der Geometrie traditioneller Rührkessel an, mit starker Rückvermischung des zu reagierenden Mediums. Bei größeren Werten wird der Reaktor sehr lang, was die praktische Umsetzung limitiert, da der Rohrreaktor vorzugsweise senkrecht steht und durch die Gebäudedimensionen limi- tiert wird. The tubular reactor preferably has a cylindrical geometry. The tubular reactor is largely characterized by the ratio of length to diameter. The ratio of length to diameter is preferably from 8: 1 to 40: 1, particularly preferably from 10: 1 to 25: 1. With smaller ratios one approaches too closely the Geometry of traditional stirred kettles, with strong back-mixing of the medium to be reacted. With larger values, the reactor becomes very long, which limits the practical implementation, since the tubular reactor is preferably vertical and is limited by the building dimensions.
Der Rohrreaktor kann - in Längsrichtung beziehungsweise in Durchflussrichtung gesehen - vertikal, horizontal oder in einer Lage zwischen diesen beiden Richtungen gelagert werden. Die Längsrichtung des Rohrreaktors ist allgemein die Strecke vom Reaktorboden bis zum Reaktordeckel. Die vertikale Lagerung ist bevorzugt. Wenn der Rohrreaktor nicht horizontal gelagert ist, kann ihn das Reaktionsmedium mit der Schwerkraft von oben nach unten durchströmen oder vorzugsweise entgegen der Schwerkraft von unten nach oben. The tubular reactor can - viewed in the longitudinal direction or in the flow direction - be stored vertically, horizontally or in a position between these two directions. The longitudinal direction of the tubular reactor is generally the distance from the reactor bottom to the reactor cover. Vertical storage is preferred. If the tubular reactor is not mounted horizontally, the reaction medium can flow through it with gravity from top to bottom or, preferably, against gravity from bottom to top.
Ein gerührter Rohrreaktor kann beliebige Rührertechnologien nutzen, vorzugsweise werden als Rührorgane einfach dimensionerte Blattrührer verwendet. Die Drehzahl des Rührers ist abhängig von der Gesamtdimensionierung des Reaktors und beträgt zwischen 200 und 2000 Umdrehungen pro Minute, vorzugsweise zwischen 500 und 1500 Umdrehungen pro Minute. Eine Umdrehung steht für eine Umdrehung des Rührers um seine Längsachse beziehungsweise um die Achse, die parallel zur Durchflussrichtung ist. Der Rührer kann in gängiger Weise beispielsweise über ein mechanisches Getriebe angetrieben und über eine Magnetkupplung o- der über eine Gleitringdichtung abgedichtet werden. A stirred tubular reactor can use any stirrer technology, preferably single-dimensioned paddle stirrers are used as stirring elements. The speed of the stirrer depends on the overall dimensions of the reactor and is between 200 and 2000 revolutions per minute, preferably between 500 and 1500 revolutions per minute. One revolution stands for one revolution of the stirrer around its longitudinal axis or around the axis that is parallel to the direction of flow. The stirrer can be driven in a conventional manner, for example via a mechanical gear, and sealed via a magnetic coupling or a mechanical seal.
Die mittlere Verweilzeit der Polymerisationsmischung im Rohrreaktor liegt im Allgemeinen bei 10 Minuten bis 5 Stunden, vorzugsweise 15 Minuten bis 2 Stunden, besonders bevorzugt 20 Minuten bis 1 Stunde und am meisten bevorzugt 25 Minuten bis 45 Minuten. Die mittlere Verweilzeit kann beispielsweise über die Geschwindigkeit der Dosierungen oder die Dimensionierung des Rohreaktors eingestellt werden. The mean residence time of the polymerization mixture in the tubular reactor is generally from 10 minutes to 5 hours, preferably from 15 minutes to 2 hours, particularly preferably from 20 minutes to 1 hour and most preferably from 25 minutes to 45 minutes. The mean residence time can be set, for example, via the metering speed or the dimensions of the tubular reactor.
Vorzugsweise wird die Strömungsrichtung des Rohrreaktorinhalts in einem Zeitabstand (Zeitintervall) von 60 Minuten bis 48 Stunden umgekehrt, besonders bevorzugt wird die Strömungsrichtung in einem Zeitabstand (Zeitintervall) von 6 Stunden bis 12 Stunden umgekehrt. Eine bevorzugte Ausgestaltung eines Rohrreaktors zur Durchführung des erfindungsgemäßen Verfahrens ist in Figur 1 beispielhaft als Rohrreaktor (1) dargestellt. Die Ausführungsform in Figur 1 ist rein illustrativ zur Erläuterung des Verfahrens und in keiner Hinsicht einschränkend für die vorliegende Erfindung. Preferably, the direction of flow of the tubular reactor contents is reversed at a time interval (time interval) of 60 minutes to 48 hours, particularly preferably the direction of flow is reversed at a time interval (time interval) of 6 hours to 12 hours. A preferred embodiment of a tubular reactor for carrying out the process according to the invention is shown in FIG. 1 as a tubular reactor (1). The embodiment in FIG. 1 is purely illustrative for explaining the method and in no way restrictive for the present invention.
Der Rohrreaktor (1), in dem die Polymerisation stattfindet, ist aus einem Stahlrohr, vorzugsweise einem Doppelmantelrohr (2) , aufgebaut, welches im Innern eine axial angeordnete Rührwelle (3) aufweist, welche mit mehreren Rührorganen (4) bestückt ist. Der Rohrreaktor (1) ist mit einer Dosierleitung (5) ausgestattet, welcher mit einer vorgelagerten Mischeinheit (6) zur Mischung der Edukte verbunden ist.The tubular reactor (1) in which the polymerization takes place is constructed from a steel tube, preferably a jacketed tube (2), which has an axially arranged agitator shaft (3) inside which is equipped with several agitator elements (4). The tubular reactor (1) is equipped with a metering line (5) which is connected to an upstream mixing unit (6) for mixing the starting materials.
Der Rohrreaktor (1) ist über eine Entnahmeleitung (7) mit einem nachgeschalteten Behälter (8) verbunden, in dem das Polymerisationsprodukt aufgefangen und gegebenenfalls nachbehandelt wird. The tubular reactor (1) is connected via a withdrawal line (7) to a downstream container (8) in which the polymerization product is collected and, if necessary, after-treated.
Über die Dosierleitung (5) können die Ausgangsstoffe, vorzugsweise kontinuierlich, in den Rohrreaktor (1) eingebracht werden. Durch die Entnahmeleitung (7) kann das Polymerisationsprodukt aus dem Rohrreaktor (1) , vorzugsweise kontinuierlich, abgeführt werden. Über eine o- der mehrere weitere Dosiervorrichtungen (9a) bis (9e) , können entlang des Rohrreaktors weitere Stoffe , vorzugsweise Initiatoren, dem Rohrreaktor zugeführt werden . The starting materials can be introduced into the tubular reactor (1), preferably continuously, via the metering line (5). The polymerization product can be discharged from the tubular reactor (1), preferably continuously, through the withdrawal line (7). Via one or more additional metering devices (9a) to (9e), further substances, preferably initiators, can be fed to the tubular reactor along the tubular reactor.
Zur erfindungsgemäßen Umkehrung der Strömungsrichtung kann in der Ausgestaltung gemäß Figur 1 beispielsweise so vorgegangen werden, dass das Eduktgemisch (Voremulsion) aus der Mischeinheit (6) über den Zweig (5a) der Dosierleitung (5) und über das geöffnete Ventil (10) dem Rohrreaktor (1) zugeführt wird. Das Polymerisationsprodukt wird über das geöffnete Ventil (11) und den Abschnitt (7a) der Entnahmeleitung (7) dem Behälter (8) zugeführt. Das Ventil (12) und das Ventil (13) sind in dieser Phase des Betriebs geschlossen. Zur Umkehrung der Strömungsrichtung werden die Ventile (10) und (11) geschlossen, und danach das Ventil (12) und das Ventil (13) geöffnet . In der folgenden Phase des Betriebs wird das Eduktgemisch aus der Mischeinheit (6) über den Zweig (5b) der Dosierleitung (5) über das geöffnete Ventil (12) dem Rohrreaktor (1) zugeführt, und das Polymerisations- Produkt über das nun offene Ventil (13) entnommen und mittels des Abschnitts (7b) der Entnahmeleitung (7) dem Behälter (8) zugeführt. Zur erneuten Umkehr der Strömungsrichtung werden die Ventile (12) und (13) geschlossen und die Ventile (10) und (11) wieder geöffnet. To reverse the direction of flow according to the invention, in the embodiment according to FIG. 1, for example, the procedure can be such that the educt mixture (pre-emulsion) from the mixing unit (6) via the branch (5a) of the metering line (5) and via the open valve (10) to the tubular reactor (1) is supplied. The polymerisation product is fed to the container (8) via the opened valve (11) and the section (7a) of the removal line (7). The valve (12) and the valve (13) are closed in this phase of operation. To reverse the direction of flow, valves (10) and (11) are closed, and then valve (12) and valve (13) are opened. In the following phase of operation, the educt mixture is discharged from the mixing unit (6) via the branch (5b) of the metering line (5) via the open Valve (12) fed to the tubular reactor (1), and the polymerisation product removed via the now open valve (13) and fed to the container (8) via section (7b) of the removal line (7). To reverse the direction of flow again, valves (12) and (13) are closed and valves (10) and (11) are opened again.
Die Polymerisation erfolgt nach dem Emulsionspolymerisationsverfahren in wässrigem Medium, vorzugsweise werden keine organischen Lösungsmittel eingesetzt. Die Polymerisationstemperatur des Polymerisations- gemischs im Rohrreaktor liegt vorzugsweise zwischen 40°C und 120°C und besonders bevorzugt zwischen 50°C und 110°C. Der Druck im Rohrreaktor hängt davon ab, ob die zu polymerisierenden Monomere bei der - jeweiligen Polymerisationstemperatur flüssig oder gasförmig vorliegen und beträgt vorzugsweise 1 bis 110 barabs.. Bei der Copolymerisation von gasförmigen Comonomeren wie Ethylen, 1,3-Butadien oder Vinylchlorid wird unter Druck, und besonders bevorzugt bei 10 bis 80 barabs. polymerisiert . The polymerization takes place according to the emulsion polymerization process in an aqueous medium, preferably no organic solvents are used. The polymerization temperature of the polymerization mixture in the tubular reactor is preferably between 40.degree. C. and 120.degree. C. and particularly preferably between 50.degree. C. and 110.degree. The pressure in the tube reactor depends on whether the monomers to be polymerized are liquid or gaseous at the respective polymerization temperature and is preferably 1 to 110 bar abs. In the copolymerization of gaseous comonomers such as ethylene, 1,3-butadiene or vinyl chloride, under Pressure, and particularly preferably at 10 to 80 bar abs . polymerized.
Die Bestandteile des Reaktionsgemisches (Ausgangsstoffe) können vorab in einer Mischeinheit abgemischt werden und kontinuierlich dem Rohrreaktor zugeführt werden. Vorzugsweise werden die Bestandteile des Reaktionsgemisches kontinuierlich in einer Mischeinheit zu einer Voremulsion abgemischt und diese in den Rohrreaktor transportiert. Im Falle einer thermischen Initiierung wird vorzugsweise so vorgegangen, dass kein Oxidationskatalysator in die Voremulsion gegeben wird. Im Falle der Initiierung mit einer Redox-Initiator-Kombination wird vorzugsweise so vorgegangen, dass der Reduktionsiniitiator in die Voremulsion gegeben wird und der Oxidationsinitiator vorzugsweise in den Rohrreaktor zugegeben wird. Der Transport erfolgt mittels Pumpen oder über den reinen Massefluss bei vollständig gefüllter Mischeinheit.The constituents of the reaction mixture (starting materials) can be mixed beforehand in a mixing unit and fed continuously to the tubular reactor. The constituents of the reaction mixture are preferably mixed continuously in a mixing unit to form a pre-emulsion and this is transported into the tubular reactor. In the case of thermal initiation, the procedure is preferably such that no oxidation catalyst is added to the pre-emulsion. In the case of initiation with a redox initiator combination, the procedure is preferably such that the reduction initiator is added to the pre-emulsion and the oxidation initiator is preferably added to the tubular reactor. The transport takes place by means of pumps or via the pure mass flow when the mixing unit is completely filled.
Bei der Mischeinheit kann es sich beispielsweise um einen Rührkessel oder eine statische Mischstrecke handeln. Die Mischeinheit kann mit einem Doppelmantel versehen werden, um gegebenenfalls während des Mischens zu kühlen oder zu heizen. The mixing unit can be, for example, a stirred tank or a static mixing section. The mixing unit can be provided with a double jacket in order to cool or heat, if necessary, during mixing.
Die Ausgangsstoffe können vor Einbringen in den Rohrreaktor temperiert werden. So können beispielsweise ein oder mehrere Ausgangsstoffe bei Einbringen in den Rohrreaktor auf eine Temperatur zwischen 10°C und der Polymerisationstemperatur temperiert sein. Vorzugsweise ist eine Mischung (Voremulsion) umfassend ein oder mehrere ethylenisch ungesättigte Monomere, ein oder mehrere Schutzkolloide und/oder ein oder mehrere Emulgatoren, und gegebenenfalls ein oder mehrere Initiatoren, insbesondere Reduktionsinitiatoren, vor oder bei Einbringen in den Rohrreaktor auf eine Temperatur knapp unterhalb der Polymerisationstemperatur oder auf Polymerisationstemperatur temperiert. Vorzugsweise werden die vorgenannten Mischungen auf eine Tem- peratur zwischen der Polymerisationstemperatur und 20°C unterhalb der Polymerisationstemperatur, insbesondere auf 10°C unterhalb der Polymerisationstemperatur temperiert . Besonders bevorzugt werden Initiatoren, insbesondere Oxidationsinitiatoren, unmittelbar vor Eintritt in den Rohrreaktor zu einer so temperierten Mischung gegeben oder di- rekt in den Rohrreaktor dosiert. Die Temperierung kann vor, während oder nach ihrer Durchmischung erfolgen. Hierzu können gängige Wärmeaustauscher Einsatz finden. The starting materials can be tempered before being introduced into the tubular reactor. For example, one or more When introduced into the tubular reactor, the starting materials must be kept at a temperature between 10 ° C. and the polymerization temperature. A mixture (pre-emulsion) comprising one or more ethylenically unsaturated monomers, one or more protective colloids and / or one or more emulsifiers, and optionally one or more initiators, in particular reduction initiators, before or when being introduced into the tubular reactor at a temperature just below the Polymerization temperature or tempered to polymerization temperature. The aforementioned mixtures are preferably heated to a temperature between the polymerization temperature and 20 ° C. below the polymerization temperature, in particular to 10 ° C. below the polymerization temperature. Initiators, in particular oxidation initiators, are particularly preferably added to a mixture heated in this way directly before entry into the tubular reactor or metered directly into the tubular reactor. The temperature control can take place before, during or after their thorough mixing. Common heat exchangers can be used for this purpose.
Der Rohrreaktor kann mit gängigen Kühl- und/oder Heizvorrichtungen temperiert werden, wie beispielsweise mit Mantelkühlern oder Mantel- heizem. Kühl- und/oder HeizVorrichtungen können beispielsweise am Rohrreaktor an der Wandung oder an eingebauten Kühlschlangen angebracht sein. Beispielsweise kann die äußere Reaktorwand mit einem Kühl- oder Heizmantel (Doppelmantelrohr) versehen sein, dessen Zwischenraum von einer Temperierflüssigkeit durchströmt wird. Vorzugsweise wird ein Rohrreaktor mit Doppelmantelrohr eingesetzt. The tube reactor can be tempered with common cooling and / or heating devices, such as jacket coolers or jacket heaters. Cooling and / or heating devices can, for example, be attached to the tubular reactor on the wall or to built-in cooling coils. For example, the outer reactor wall can be provided with a cooling or heating jacket (double-jacket tube), the intermediate space of which is traversed by a temperature control liquid. A tubular reactor with a jacketed tube is preferably used.
Vor Beginn der Polymerisation wird der Rohrreaktor vorzugsweise mit einer Polymerdispersion befüllt, welche vorzugsweise dem Endprodukt der Polymerisation bezüglich Polymerzusammensetzung, Art und Menge des Schutzkolloids sowie Partikelgröße und Festgehalt entspricht. Alternativ kann der Rohrreaktor vor Beginn des erfindungsgemäßen Verfahrens, das heißt vor Beginn der Polymerisation, mit einer Mischung befüllt werden, welche die Ausgangsstoffe, aber keine Initiatoren, insbesondere keine Oxidationsinitiatoren umfasst . Schließlich kann der Rohrreaktor vor Beginn des erfindungsgemäßen Verfahrens mit Wasser, vorzugsweise ausschließlich mit Wasser befällt sein. Before the start of the polymerization, the tubular reactor is preferably filled with a polymer dispersion which preferably corresponds to the end product of the polymerization in terms of polymer composition, type and amount of protective colloid, and particle size and solids content. Alternatively, before the start of the process according to the invention, that is to say before the start of the polymerization, the tubular reactor can be filled with a mixture which comprises the starting materials but no initiators, in particular no oxidation initiators. Finally can the tubular reactor must be filled with water, preferably exclusively with water, before the start of the process according to the invention.
Der Rohrreaktor wird im Allgemeinen kontinuierlich betrieben. Im kontinuierlichen Betrieb werden während der Emulsionspolymerisation die Ausgangsstoffe , insbesondere ethylenisch ungesättigte Monomere, Schutzkolloide und/oder Emulgatoren und/oder Initiatoren, in den Rohrreaktor eingebracht und das Polymerisationsprodukt aus dem Rohrreaktor entnommen. Bei kontinuierlichem Betrieb sollen die eintretenden Massenströme den austretenden Massenströmen entsprechen. The tubular reactor is generally operated continuously. In continuous operation, the starting materials, in particular ethylenically unsaturated monomers, protective colloids and / or emulsifiers and / or initiators, are introduced into the tubular reactor during the emulsion polymerization and the polymerization product is removed from the tubular reactor. In the case of continuous operation, the entering mass flows should correspond to the exiting mass flows.
Die Polymerisation wird im Allgemeinen bis zu einem Umsatz von mindestens 85 Gew. -%, vorzugsweise bis zu einem Umsatz von 90 bis 99 Gew. -%, der unter Polymerisationsbedingungen flüssigen Monomere geführt. Anschließend wird das Polymerisationsprodukt in einen Sammelbehälter (Entspannungsbehälter) überführt. Der Transport erfolgt mittels Pumpen oder aufgrund der Druckdifferenz zwischen Rohrreaktor und Sammelbehälter. Im Sammelbehälter kann gegebenenfalls in Anwendung bekannter Methoden nachpolymerisiert werden, beispielsweise durch mit Redoxkatalysator initiierter Nachpolymerisation. Der flüchtige Restmonomeranteil wird gegebenenfalls anschließend mittels Überleiten o- der vorzugsweise Durchleiten von inerten Schleppgasen wie Luft, Stickstoff oder vorzugsweise Wasserdampf über/durch das wässrige Polymerisationsgemisch in dem Fachmann bekannter Weise entfernt (Strippen) . Das Polymerisationsprodukt wird nach dessen Nachbehandlung dem Sammelbehälter entnommen und beispielsweise in einem Silo gelagert. The polymerization is generally carried out up to a conversion of at least 85% by weight, preferably up to a conversion of 90 to 99% by weight, of the monomers which are liquid under polymerization conditions. The polymerization product is then transferred to a collecting tank (expansion tank). The transport takes place by means of pumps or due to the pressure difference between the tubular reactor and the collecting tank. Post-polymerization can optionally be carried out in the collecting tank using known methods, for example by post-polymerization initiated with a redox catalyst. The volatile residual monomer content is then optionally removed by passing over or preferably passing inert entrainment gases such as air, nitrogen or preferably water vapor over / through the aqueous polymerization mixture in a manner known to the person skilled in the art (stripping). After its aftertreatment, the polymerization product is removed from the collecting tank and stored in a silo, for example.
Die ethylenisch ungesättigten Monomere werden vorzugsweise ausgewählt aus der Gruppe umfassend Vinylester, (Meth) acrylsäureester, Vinylaro- maten, Olefine, 1, 3-Diene und Vinylhalogenide und gegebenenfalls weitere damit copolymerisierbare Monomeren. The ethylenically unsaturated monomers are preferably selected from the group comprising vinyl esters, (meth) acrylic acid esters, vinyl aromatics, olefins, 1,3-dienes and vinyl halides and optionally other monomers copolymerizable therewith.
Geeignete Vinylester sind solche von Carbonsäuren mit 1 bis 18 C-Atomen. Bevorzugt werden Vinylacetat, Vinylpropionat, Vinylbutyrat , Vinyl-2-ethylhexanoat, Vinyllaurat, 1-Methylvinylacetat, Vinylpivalat und Vinylester von alpha-verzweigten Monocarbonsäuren mit 9 bis 11 C- Atomen, beispielsweise VeoVa9® oder VeoVa10® (Handelsnamen der Firma Hexion) . Besonders bevorzugt ist Vinylacetat . Suitable vinyl esters are those of carboxylic acids having 1 to 18 carbon atoms. Vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl laurate, 1-methyl vinyl acetate, vinyl pivalate and vinyl esters of alpha-branched monocarboxylic acids with 9 to 11 carbon atoms are preferred Atoms, for example VeoVa9 ® or VeoVa10 ® (trade names of Hexion). Vinyl acetate is particularly preferred.
Geeignete Monomeren aus der Gruppe der Acrylsäureester oder Methac- rylsäureester sind beispielsweise Ester von unverzweigten oder verzweigten Alkoholen mit 1 bis 15 C-Atomen. Bevorzugte Methacrylsäu- reester oder Acrylsäureester sind Methylacrylat, Methylmethacrylat, Ethylacrylat, Ethylmethacrylat, Propylacrylat, Propylmethacrylat, n- Butylacrylat, n-Butylmethacrylat, t-Butylacrylat, t-Butylmethacrylat, 2-Ethylhexylacrylat. Besonders bevorzugt sind Methylacrylat, Methylmethacrylat, n-Butylacrylat, t-Butylacrylat und 2-Ethylhexylacrylat. Suitable monomers from the group of acrylic acid esters or methacrylic acid esters are, for example, esters of unbranched or branched alcohols having 1 to 15 carbon atoms. Preferred methacrylic acid esters or acrylic acid esters are methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, n-butyl acrylate, n-butyl methacrylate, t-butyl acrylate, t-butyl methacrylate, 2-ethylhexyl acrylate. Methyl acrylate, methyl methacrylate, n-butyl acrylate, t-butyl acrylate and 2-ethylhexyl acrylate are particularly preferred.
Als Vinylaromaten bevorzugt sind Styrol, Methylstyrol und Vinyltoluol. Bevorzugtes Vinylhalogenid ist Vinylchlorid. Die bevorzugten Olefine sind Ethylen, Propylen und die bevorzugten Diene sind 1, 3-Butadien und Isopren. Preferred vinyl aromatics are styrene, methyl styrene and vinyl toluene. The preferred vinyl halide is vinyl chloride. The preferred olefins are ethylene, propylene and the preferred dienes are 1,3-butadiene and isoprene.
Gegebenenfalls können noch 0 bis 10 Gew. -%, bezogen auf das Gesamtgewicht des Monomergemisches, Hilfsmonomere copolymerisiert werden. Bevorzugt werden 0,1 bis 5 Gew. -% Hilfsmonomere eingesetzt. Beispiele für Hilfsmonomere sind ethylenisch ungesättigte Mono- und Dicarbon- säuren, vorzugsweise Acrylsäure, Methacrylsäure , Fumarsäure und Maleinsäure ; ethylenisch ungesättigte Carbonsäureamide und -nitrile, vorzugsweise Acrylamid und Acrylnitril ; Mono- und Diester der Fumarsäure und Maleinsäure wie die Diethyl-, und Diisoprqpylester sowie Maleinsäureanhydrid; ethylenisch ungesättigte Sulfonsäuren bzw. deren Salze, vorzugsweise Vinylsulfonsäure, 2-Acrylamido-2-methyl-propan- Sulfonsäure . Weitere Beispiele sind vorvemetzende Comonomere wie mehrfach ethylenisch ungesättigte Comonomere, beispielsweise Dial- lylphthalat, Divinyladipat, Diallylmaleat, Allylmethacrylat oder Tri- allylcyanurat, oder nachvemetzende Comonomere, beispielsweise Ac- rylamidoglykolsäure (AGA) , Methylacrylamidoglykolsäuremethylester (MAGME) , N-Methylolacrylamid (NMA) , N-Methylolmethacrylamid, N-Methy- lolallylcarbamat, Alkylether wie der Isobutoxyether oder Ester des N- Methylolacrylamids, des N-Methylolmethacrylamids und des N-Methylol- allylcarbamats . Geeignet sind auch epoxidfunktionelle Comonomere wie Glycidylmethacrylat und Glycidylacrylat . Weitere Beispiele sind siliciumfunktionelle Comonomere, wie Acryloxypropyltri (alkoxy) - und Methacryloxypropyltri (alkoxy) -Silane, Vinyltrialkoxysilane und Vinyl- methyldialkoxysilane, wobei als Alkoxygruppen beispielsweise Ethoxy- und Ethoxypropylenglykolether-Reste enthalten sein können. Genannt seien auch Monomere mit Hydroxy- oder CO-Gruppen, beipielsweise Meth- acrylsäure- und Acrylsäurehydroxyalkylester wie Hydroxyethyl-, Hydro- xypropyl- oder Hydroxybutylacrylat oder -methacrylat sowie Verbindun- gen wie Diacetonacrylamid und Acetylacetoxyethylacrylat . Bevorzugt werden ein oder mehrere Monomere ausgewählt aus der Gruppe umfassend Vinylester; Vinylester-Gemische enthaltend mehrere Monomere aus der Gruppe umfassend Vinylester, Olefine, Vinylaromaten, Vinylhalogenide, Acrylsäureester, Methacrylsäureester, Fumar- und/oder Mal- einsäuremono- oder -diester; (Meth) acrylsäureester; (Meth) acrylsäu- reester-Gemische enthaltend eine oder mehrere Monomere aus der Gruppe umfassend Methacrylsäureester, Acrylsäureester, Olefine, Vinylaromaten, Vinylhalogenide, Fumar- und/oder Maleinsäuremono- oder -diester; Monomere oder Monomergemische von Dienen wie Butadien oder Isopren, sowie von Olefinen wie Ethen oder Propen, wobei die Diene beispiels- weise mit Styrol, (Meth) acrylsäureestern oder den Estern der Fumar- oder Maleinsäure cqpolymerisiert sein können; Monomere oder Monomergemische aus Vinylaromaten, wie Styrol, Methylstyrol, Vinyltoluol; Monomere oder Monomergemische aus Vinylhalogenverbindungen wie Vinylchlorid, wobei die Monomergemische noch Hilfsmonomere umfassen können. If necessary, 0 to 10% by weight, based on the total weight of the monomer mixture, of auxiliary monomers can also be copolymerized. It is preferred to use from 0.1 to 5% by weight of auxiliary monomers. Examples of auxiliary monomers are ethylenically unsaturated mono- and dicarboxylic acids, preferably acrylic acid, methacrylic acid, fumaric acid and maleic acid; ethylenically unsaturated carboxamides and nitriles, preferably acrylamide and acrylonitrile; Mono- and diesters of fumaric acid and maleic acid such as the diethyl and diisopropyl esters and maleic anhydride; ethylenically unsaturated sulfonic acids or their salts, preferably vinyl sulfonic acid, 2-acrylamido-2-methyl-propane sulfonic acid. Further examples are pre-crosslinking comonomers such as poly-ethylenically unsaturated comonomers, for example dialyl phthalate, divinyl adipate, diallyl maleate, allyl methacrylate or triallyl cyanurate, or post-crosslinking comonomers, for example acrylamidoglycolic acid (AGA), methyl acrylamido-methyl ester (AGA), methyl acrylamidoglycolate N-methylol methacrylamide, N-methylol allyl carbamate, alkyl ethers such as isobutoxy ether or esters of N-methylol acrylamide, N-methylol methacrylamide and N-methylol allyl carbamate. Epoxy-functional comonomers such as glycidyl methacrylate and glycidyl acrylate are also suitable. Other examples are silicon-functional comonomers such as acryloxypropyltri (alkoxy) and methacryloxypropyltri (alkoxy) silanes, vinyltrialkoxysilanes and vinylmethyldialkoxysilanes, it being possible for example to contain ethoxy and ethoxypropylene glycol ether radicals as alkoxy groups. Monomers with hydroxy or CO groups may also be mentioned, for example methacrylic acid and acrylic acid hydroxyalkyl esters such as hydroxyethyl, hydroxypropyl or hydroxybutyl acrylate or methacrylate, and compounds such as diacetone acrylamide and acetylacetoxyethyl acrylate. One or more monomers are preferably selected from the group comprising vinyl esters; Vinyl ester mixtures containing several monomers from the group comprising vinyl esters, olefins, vinyl aromatics, vinyl halides, acrylic acid esters, methacrylic acid esters, fumaric and / or maleic acid mono- or diesters; (Meth) acrylic acid esters; (Meth) acrylic acid ester mixtures containing one or more monomers from the group comprising methacrylic acid esters, acrylic acid esters, olefins, vinyl aromatics, vinyl halides, fumaric and / or maleic acid mono- or diesters; Monomers or monomer mixtures of dienes such as butadiene or isoprene, and of olefins such as ethene or propene, it being possible for the dienes to be polymerized, for example, with styrene, (meth) acrylic esters or the esters of fumaric or maleic acid; Monomers or monomer mixtures of vinyl aromatics, such as styrene, methyl styrene, vinyl toluene; Monomers or monomer mixtures composed of vinyl halogen compounds such as vinyl chloride, it being possible for the monomer mixtures to include auxiliary monomers.
Besonders bevorzugt werden Monomergemische von Vinylacetat mit 1 bis 50 Gew.-% Ethylen; Monomergemische von Vinylacetat mit 1 bis 50 Gew.- % Ethylen und 1 bis 50 Gew.-% von einem oder mehreren weiteren Como- nomeren aus der Gruppe der Vinylester mit 3 bis 12 C-Atomen im Carbonsäurerest wie Vinylpropionat, Vinyllaurat, Vinylester von alphaverzweigten Carbonsäuren mit 9 bis 11 C-Atomen wie VeoVa9®, VeoValO®; Monomergemische von einem oder mehreren Vinylestern, 1 bis 50 Gew.-% Ethylen und vorzugsweise 1 bis 60 Gew.-% (Meth) Acrylsäureester von unverzweigten oder verzweigten Alkoholen mit 1 bis 15 C-Atomen, insbesondere n-Butylacrylat . oder 2 Ethylhexylacrylat; Monomergemische mit 30 bis 75 Gew.-% Vinylacetat, 1 bis 30 Gew.-% Vinyllaurat oder Vinylester einer alpha-verzweigten Carbonsäure mit 9 bis 11 C-Atomen, sowie 1 bis 30 Gew. -% (Meth) Acrylsäureester von unverzweigten oder verzweigten Alkoholen mit 1 bis 15 C-Atomen, insbesondere n-Butylac- rylat oder 2-Ethylhexylacrylat, welche noch 1 bis 40 Gew. -% Ethylen enthalten; Monomergemische mit einem oder mehreren Vinylestem, 1 bis 50 Gew. % Ethylen und 1 bis 60 Gew. -% Vinylchlorid; wobei die genannten Monomergemische jeweils noch die genannten Hilfsmonomere in den genannten Mengen enthalten können, und sich die Angaben in Gew. -% auf jeweils 100 Gew. -% aufaddieren. Monomer mixtures of vinyl acetate with 1 to 50% by weight of ethylene are particularly preferred; Monomer mixtures of vinyl acetate with 1 to 50% by weight of ethylene and 1 to 50% by weight of one or more further comonomers from the group of vinyl esters with 3 to 12 carbon atoms in the carboxylic acid radical, such as vinyl propionate, vinyl laurate, vinyl esters of alpha-branched ones Carboxylic acids with 9 to 11 carbon atoms such as VeoVa9 ® , VeoValO ® ; Monomer mixtures of one or more vinyl esters, 1 to 50% by weight of ethylene and preferably 1 to 60% by weight of (meth) acrylic acid esters of unbranched or branched alcohols having 1 to 15 carbon atoms, in particular n-butyl acrylate. or 2 ethylhexyl acrylate; Monomer mixtures with 30 to 75 wt .-% vinyl acetate, 1 to 30 wt .-% vinyl laurate or Vinyl esters of an alpha-branched carboxylic acid with 9 to 11 carbon atoms, and 1 to 30% by weight (meth) acrylic acid esters of unbranched or branched alcohols with 1 to 15 carbon atoms, in particular n-butyl acrylate or 2-ethylhexyl acrylate, which still contain 1 to 40% by weight of ethylene; Monomer mixtures with one or more vinyl esters, 1 to 50% by weight of ethylene and 1 to 60% by weight of vinyl chloride; wherein the monomer mixtures mentioned can each also contain the auxiliary monomers mentioned in the amounts mentioned, and the data in% by weight add up to 100% by weight in each case.
Besonders bevorzugt werden auch (Meth) acrylsäureester-Monomergemi- sehe, wie Monomergemische von n-Butylacrylat oder 2-Ethylhexylacrylat oder Copolymerisate von Methylmethacrylat mit n-Butylacrylat und/oder 2-Ethylhexylacrylat; Styrol-Acrylsäureester-Monomergemische mit einem oder mehreren Monomeren aus der Gruppe Methylacrylat, Ethylacrylat, Propylacrylat, n-Butylacrylat, 2-Ethylhexylacrylat ; Vinylacetat-Ac- rylsäureester-Monomergemische mit einem oder mehreren Monomeren aus der Gruppe Methylacrylat, Ethylacrylat, Propylacrylat, n-Butylacrylat, 2-Ethylhexylacrylat und gegebenenfalls Ethylen; Styrol-l, 3-Bu- tadien-Monomergemisehe ; wobei die genannten Monomergemische noch Hilfsmonomere in den genannten Mengen enthalten können, und sich die Angaben in Gew. -% auf jeweils 100 Gew . -% aufaddieren. (Meth) acrylic acid ester monomer mixtures are particularly preferred, such as monomer mixtures of n-butyl acrylate or 2-ethylhexyl acrylate or copolymers of methyl methacrylate with n-butyl acrylate and / or 2-ethylhexyl acrylate; Styrene-acrylic acid ester monomer mixtures with one or more monomers from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate; Vinyl acetate / acrylic acid ester monomer mixtures with one or more monomers from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate and, if appropriate, ethylene; Styrene-1,3-butadiene monomer mixtures; where the monomer mixtures mentioned can also contain auxiliary monomers in the amounts mentioned, and the data in% by weight are based on 100% by weight in each case. - add up%.
Beispiele für besonders bevorzugte Comonomere für Vinylchlorid-Monomergemische sind a-Olefine wie Ethylen und Propylen, Vinylester wie Vinylacetat, Acrylsäureester und Methacrylsäureester von Alkoholen mit 1 bis 15 C-Atomen wie Methylacrylat, Methylmethacrylat, Ethylacrylat, Ethylmethacrylat, Propylacrylat, Propylmethacrylat, n-Butylacrylat, t-Butylacrylat, n-Butylmethacrylat, t-Butylmethacrylat, 2- Ethylhexylacrylat, Fumar- und Maleinsäuremono- oder -diester wie die Dimethyl- und Diethylester der Maleinsäure und Fumarsäure . Examples of particularly preferred comonomers for vinyl chloride monomer mixtures are α-olefins such as ethylene and propylene, vinyl esters such as vinyl acetate, acrylic acid esters and methacrylic acid esters of alcohols with 1 to 15 carbon atoms such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, n-butyl acrylate , t-butyl acrylate, n-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl acrylate, fumaric and maleic acid mono- or diesters such as the dimethyl and diethyl esters of maleic acid and fumaric acid.
Am meisten bevorzugt werden Monomergemische mit Vinylacetat und 5 bis 50 Gew. -% Ethylen; Monomergemische mit Vinylacetat und 1 bis 50 Gew. - % Ethylen und 1 bis 50 Gew. -% von einem Vinylester von «-verzweigten Monocarbonsäuren mit 9 bis 11 C-Atomen; Monomergemische mit 30 bis 75 Gew. -% Vinylacetat, 1 bis 30 Gew. -% Vinyllaurat oder einem Vinylester einer a-verzweigten Carbonsäure mit 9 bis 11 C-Atomen, sowie 1 bis 30 Gew.-% (Meth)Acrylsäureester von unverzweigten oder verzweigten Alkoholen mit 1 bis 15 C-Atomen, welche gegebenenfalls noch 1 bis 40 Gew.-% Ethylen enthalten; Monomergemische mit Vinylacetat, 5 bis 50 Gew.-% Ethylen und 1 bis 60 Gew.-% Vinylchlorid; sowie Monomergemische enthaltend 60 bis 98 Gew.-% Vinylchlorid und 1 bis 40 Gew.-% Ethylen, wobei die Monomergemische jeweils noch Hilfsmonomere in den genannten Mengen enthalten können, und sich die Angaben in Gew.-% auf jeweils 100 Gew.-% aufaddieren. Most preferred are monomer mixtures with vinyl acetate and 5 to 50% by weight of ethylene; Monomer mixtures with vinyl acetate and 1 to 50% by weight of ethylene and 1 to 50% by weight of a vinyl ester of -branched monocarboxylic acids having 9 to 11 carbon atoms; Monomer mixtures with 30 to 75% by weight of vinyl acetate, 1 to 30% by weight of vinyl laurate or a vinyl ester an α-branched carboxylic acid having 9 to 11 carbon atoms, and 1 to 30% by weight (meth) acrylic acid esters of unbranched or branched alcohols having 1 to 15 carbon atoms, which optionally also contain 1 to 40% by weight ethylene ; Monomer mixtures with vinyl acetate, 5 to 50 wt .-% ethylene and 1 to 60 wt .-% vinyl chloride; as well as monomer mixtures containing 60 to 98% by weight of vinyl chloride and 1 to 40% by weight of ethylene, the monomer mixtures each also being able to contain auxiliary monomers in the stated amounts, and the data in% by weight are based on 100% by weight in each case add up.
Die Monomerauswahl und die Auswahl der Gewichtsanteile der Comonomere erfolgt dabei so, dass im Allgemeinen eine Glasübergangstemperatur Tg von -50°C bis +50°C, bevorzugt von -20°C bis +30°C, resultiert. Die Glasübergangstemperatur Tg der Polymerisate kann in bekannter Weise mittels Differential Scanning Colorimetry (DSC) ermittelt werden. Die Tg kann auch mittels der Fox-Gleichung näherungsweise vorausberechnet werden. Nach Fox T. G . / Bull. Am. Physics Soc. 1, 3, page 123 (1956) gilt: 1/Tg = xl/Tgl + x2/Tg2 + ... + xn/Tgn, wobei xn für den Massebruch (Gew.-%/100) des Monomeren n steht und Tgn die Glasübergangs- temperatur in Kelvin des Homopolymeren des Monomeren n ist. Tg-Werte für Homopolymerisate sind in Polymer Handbook 2nd Edition, JU. Wiley & Sons, New York (1975) aufgeführt. The selection of monomers and the selection of the proportions by weight of the comonomers are carried out in such a way that, in general, a glass transition temperature Tg of -50 ° C to + 50 ° C, preferably -20 ° C to + 30 ° C, results. The glass transition temperature Tg of the polymers can be determined in a known manner by means of differential scanning colorimetry (DSC). The Tg can also be approximately calculated in advance using the Fox equation. According to Fox T. G. / Bull. Am. Physics Soc. 1, 3, page 123 (1956), the following applies: 1 / Tg = xl / Tgl + x2 / Tg2 + ... + xn / Tgn, where xn stands for the mass fraction (% by weight / 100) of the monomer n and Tgn is the glass transition temperature in Kelvin of the homopolymer of the monomer n. Tg values for homopolymers are given in Polymer Handbook 2nd Edition, JU. Wiley & Sons, New York (1975).
Die Initiierung der Polymerisation erfolgt mit den für die Emulsionspolymerisation gebräuchlichen Initiatoren, insbesondere Redox-Initia- tor-Kombinationen aus Oxidationsinitiator und Reduktionsinitiator. Beispiele für geeignete Oxidationsinitiatoren sind die Natrium-, Kalium- und Ammoniumsalze der Peroxodischwefesäure, Wasserstoffperoxid und Azobisisobutyronitril . Bevorzugt werden die Natrium-, Kalium- und Ammoniumsalze der Peroxidischwefelsäure und Wasserstoffperoxid. Die genannten Initiatioren werden im allgemeinen in einer Menge von 0,01 bis 2,0 Gew.-% bezogen auf das Gesamtgewicht der Monomere, eingesetzt. The polymerization is initiated with the initiators customary for emulsion polymerization, in particular redox initiator combinations of oxidation initiator and reduction initiator. Examples of suitable oxidation initiators are the sodium, potassium and ammonium salts of peroxodisulfuric acid, hydrogen peroxide and azobisisobutyronitrile. The sodium, potassium and ammonium salts of peroxydisulfuric acid and hydrogen peroxide are preferred. The initiators mentioned are generally used in an amount of from 0.01 to 2.0% by weight, based on the total weight of the monomers.
Geeignete Reduktionsmittel (Reduktionsinitiatoren) sind die Sulfite und Bisulfite der Alkalimetalle und von Ammonium, beispielsweise Natriumsulfit; die Derivate der Sulfoxylsäure wie Zink- oder Alkaliformaldehydsulfoxylate, beispielsweise Natriumhydroxymethan- sulfinat (Brüggolit) und Ascorbinsäure, Isoascorbinsäure oder deren Salze,· oder formaldehydfreie Reduktionsmittel wie 2-Hydroxy-2-sul- finato-essigsäure-di-Natriumsalz (Brüggolith FF6 ) . Die Reduktionsmittelmenge beträgt vorzugsweise 0,015 bis 3 Gew.-%, bezogen auf das Gesamtgewicht der Monomere. Suitable reducing agents (reduction initiators) are the sulfites and bisulfites of alkali metals and of ammonium, for example sodium sulfite; the derivatives of sulfoxylic acid such as zinc or Alkali formaldehyde sulfoxylates, for example sodium hydroxymethanesulfinate (Bruggolite) and ascorbic acid, isoascorbic acid or its salts, or formaldehyde-free reducing agents such as 2-hydroxy-2-sulfinato-acetic acid disodium salt (Bruggolite FF6). The amount of reducing agent is preferably 0.015 to 3% by weight, based on the total weight of the monomers.
Zur Steuerung des Molekulargewichts können während der Polymerisation regelnde Substanzen eingesetzt werden. Falls Regler eingesetzt wer den, werden diese üblicherweise in Mengen zwischen 0,01 bis 5,0 Gew.- %, bezogen auf die zu polymerisierenden Monomeren, eingesetzt. Beispiele solche Substanzen sind n-Dodecylmercaptan, tert . -Dodecylmer- captan, Mercaptopropionsäure, Mercaptopropionsäureethylester , Isopro panol und Acetaldehyd. Vorzugsweise werden keine regelnden Substanzen verwendet . To control the molecular weight, regulating substances can be used during the polymerization. If regulators are used, they are usually used in amounts between 0.01 and 5.0% by weight, based on the monomers to be polymerized. Examples of such substances are n-dodecyl mercaptan, tert. -Dodecylmer- captan, mercaptopropionic acid, ethyl mercaptopropionate, isopropanol and acetaldehyde. Preferably no regulating substances are used.
Vorzugsweise wird in Gegenwart von Schutzkolloiden polymerisiert. Geeignete Schutzkolloide sind teilverseifte Polyvinylalkohole; Polyvi- nylpyrrolidone ; Polyvinylacetale; Polysaccharide in wasserlöslicher Form wie Stärken (Amylose und Amylopectin) , Cellulosen und deren Car- boxymethyl-, Methyl-, Hydroxyethyl- , Hydroxypropyl -Derivate; Proteine wie Casein oder Caseinat, Sojaprotein, Gelatine, Ligninsulfonate ; synthetische Polymere wie Poly (meth) acrylsäure , Copolymerisate von (Meth) acrylaten mit carboxylfunktionellen Comonomereinheiten, Poly- (meth) acrylamid, Polyvinylsulfonsäuren und deren wasserlöslichen Copolymere ; Melaminformaldehydsulfonate, Naphthalinformaldehydsulfo- nate, Styrolmaleinsäure- und Vinylethermaleinsäure-Copolymere; kationische Polymerisate wie Polydiallyldimethylammoniumchlorid (Poly- DADMAC) . Polymerization is preferably carried out in the presence of protective colloids. Suitable protective colloids are partially saponified polyvinyl alcohols; Polyvinylpyrrolidones; Polyvinyl acetals; Polysaccharides in water-soluble form such as starches (amylose and amylopectin), celluloses and their carboxymethyl, methyl, hydroxyethyl, and hydroxypropyl derivatives; Proteins such as casein or caseinate, soy protein, gelatin, lignosulfonates; synthetic polymers such as poly (meth) acrylic acid, copolymers of (meth) acrylates with carboxyl-functional comonomer units, poly (meth) acrylamide, polyvinylsulfonic acids and their water-soluble copolymers; Melamine formaldehyde sulfonates, naphthalene formaldehyde sulfonates, styrene maleic acid and vinyl ether maleic acid copolymers; cationic polymers such as polydiallyldimethylammonium chloride (poly-DADMAC).
Bevorzugte Schutzkolloide sind teilverseifte oder vollverseifte Po lyvinylalkohole. Besonders bevorzugt sind teilverseifte Polyvinylal kohole mit einem Hydrolysegrad von 80 bis 95 Mol-% und einer Höppler- viskosität, in 4%-iger wässriger Lösung, von 1 bis 30 mPas (Methode nach Höppler bei 20°C, DIN 53015) . Besonders bevorzugt sind auch teilverseifte, hydrophob modifizierte Polyvinylalkohole mit einem Hydrolysegrad von 80 bis 95 Mol-% und einer Höpplerviskosität , in 4%- iger wässriger Lösung, von 1 bis 30 mPas . Beispiele hierfür sind teilverseifte Copolymerisate von Vinylacetat mit hydrophoben Comono- meren wie Isopropenylacetat , Vinylpivalat , Vinylethylhexanoat , Vinylester von gesättigten alpha-verzweigten Monocarbonsäuren mit 5 oder 9 bis 11 C-Atomen, Dialkylmaleinate und Dialkylfumarate wie Diisopro- pylmaleinat und Diisopropylfumarat, Vinylchlorid, Vinylalkylether wie Vinylbutylether, Olefine wie Ethen und Decen. Der Anteil der hydrophoben Einheiten beträgt vorzugsweise 0,1 bis 10 Gew. -%, bezogen auf das Gesamtgewicht des teilverseiften Polyvinylalkohols. Es können auch Gemische der genannten Polyvinylalkohole eingesetzt werden. Preferred protective colloids are partially saponified or fully saponified polyvinyl alcohols. Partially saponified polyvinyl alcohols with a degree of hydrolysis of 80 to 95 mol% and a Höppler viscosity, in 4% aqueous solution, of 1 to 30 mPas (Höppler method at 20 ° C., DIN 53015) are particularly preferred. Partially saponified, hydrophobically modified polyvinyl alcohols with a degree of hydrolysis of 80 to 95 mol% and a Höppler viscosity of 4% are also particularly preferred iger aqueous solution, from 1 to 30 mPas. Examples of these are partially saponified copolymers of vinyl acetate with hydrophobic comonomers such as isopropenyl acetate, vinyl pivalate, vinyl ethylhexanoate, vinyl esters of saturated alpha-branched monocarboxylic acids with 5 or 9 to 11 carbon atoms, dialkyl maleate and dialkyl fumarates such as diisopropyl, vinyl fumarate ethers such as vinyl fumarate ethers, such as vinyl fumarate and diisopropyl chloride Vinyl butyl ether, olefins such as ethene and decene. The proportion of the hydrophobic units is preferably 0.1 to 10% by weight, based on the total weight of the partially saponified polyvinyl alcohol. Mixtures of the polyvinyl alcohols mentioned can also be used.
Am meisten bevorzugt werden Polyvinylalkohole mit einem Hydrolysegrad von 85 bis 94 Mol-% und einer Höpplerviskosität , in 4%-iger wässriger Lösung, von 3 bis 15 mPas (Methode nach Höppler bei 20°C, DIN 53015) . Die genannten Schutzkolloide sind mittels dem Fachmann bekannter Verfahren zugänglich oder im Handel erhältlich. Most preferred are polyvinyl alcohols with a degree of hydrolysis of 85 to 94 mol% and a Höppler viscosity, in 4% aqueous solution, of 3 to 15 mPas (Höppler method at 20 ° C., DIN 53015). The protective colloids mentioned are accessible or commercially available by means of processes known to the person skilled in the art.
Die Schutzkolloide werden im Allgemeinen in einer Menge von insgesamt 1 bis 20 Gew. -% bezogen auf das Gesamtgewicht der Monomere, bei der Polymerisation zugesetzt. The protective colloids are generally added in the course of the polymerization in a total amount of 1 to 20% by weight, based on the total weight of the monomers.
Gegebenenfalls können Emulgatoren, beispielsweise anionische und/oder nichtionische Emulgatoren, bei der Polymerisation verwendet werden, beispielsweise 0,1 bis 2,0 Gew . -% , bezogen auf das Gesamtgewicht der Comonomeren. Beispiele für anionische Emulgatoren sind Alkylsulfate mit einer Kettenlänge von 8 bis 18 C-Atomen, Alkyl- oder Alkylarylethersulfate mit 8 bis 18 C-Atomen im hydrophoben Rest und bis zu 40 Ethylenoxid- oder Propylenoxideinheiten, Alkyl- oder Alkylarylsulfo- nate mit 8 bis 18 C-Atomen, Ester und Halbester der Sulfobernstein- säure mit einwertigen Alkoholen. Beispiele für nichtionische Emulgatoren sind C12-C14-Fettalkoholethoxylate mit einem Ethoxylierungsgrad von 2 bis 20 Ethylenoxid-Einheiten. If appropriate, emulsifiers, for example anionic and / or nonionic emulsifiers, can be used in the polymerization, for example 0.1 to 2.0 wt. -%, based on the total weight of the comonomers. Examples of anionic emulsifiers are alkyl sulfates with a chain length of 8 to 18 carbon atoms, alkyl or alkylaryl ether sulfates with 8 to 18 carbon atoms in the hydrophobic radical and up to 40 ethylene oxide or propylene oxide units, alkyl or alkylaryl sulfonates with 8 to 18 C atoms, esters and half esters of sulfosuccinic acid with monohydric alcohols. Examples of nonionic emulsifiers are C12-C14 fatty alcohol ethoxylates with a degree of ethoxylation of 2 to 20 ethylene oxide units.
Die mit dem erfindungsgemäßen Verfahren erhältlichen wässrigen Dispersionen haben einen Feststoffgehalt von 30 bis 75 Gew . -% , vorzugsweise von 50 bis 60 Gew . -% . Die wässrigen Dispersionen können zur Herstellung von in Wasser re- dispergierbaren Polymerpulvern verwendet werden. Dazu werden die wässrigen Dispersionen, gegebenenfalls nach Zusatz von Schutzkolloiden als Verdüsungshilfe, mittels Wirbelschichttrocknung, Gefrier- trocknung oder vorzugsweise Sprühtrocknung getrocknet. The aqueous dispersions obtainable with the process according to the invention have a solids content of 30 to 75 wt. -%, preferably from 50 to 60 wt. -%. The aqueous dispersions can be used to produce polymer powders that are redispersible in water. For this purpose, the aqueous dispersions, optionally after the addition of protective colloids as an atomizing aid, are dried by means of fluidized bed drying, freeze drying or, preferably, spray drying.
Die wässrigen Polymerdispersionen und die in Wasser redispergierbaren Polymerpulver können in den dafür typischen Anwendungsbereichen eingesetzt werden. Beispielsweise in bauchemischen Produkten, gegebenenfalls in Verbindung mit hydraulisch abbindenden Bindemitteln wie Zementen, Gips und Wasserglas, für die Herstellung von Bauklebem, insbesondere Fliesenkleber und Vollwärmeschutzkleber, Putzen, Spachtelmassen, Fußbodenspachtelmassen, Verlaufsmassen, Dichtschlämmen, Fugenmörtel und Farben. Ferner als Bindemittel für Beschichtungsmittel und Klebemittel oder als Beschichtungs- oder Bindemittel für Textilien und Papier. The aqueous polymer dispersions and the water-redispersible polymer powders can be used in the areas of application typical for them. For example in construction chemical products, possibly in connection with hydraulically setting binders such as cements, gypsum and water glass, for the production of construction adhesives, in particular tile adhesives and thermal insulation adhesives, plasters, leveling compounds, floor leveling compounds, leveling compounds, sealing slurries, grout and paints. Also as binders for coating agents and adhesives or as coating agents or binders for textiles and paper.
Die nachfolgenden Beispiele dienen der weiteren Erläuterung der Er- findung: The following examples serve to further explain the invention:
Allgemeine Versuchsbeschreibung: General description of the experiment:
Die Polymerisation wurde in einem Rohrreaktor (1) mit einer Länge von 1600 mm und einem Innendurchmesser von 100 mm durchgeführt. Das Reaktorvolumen betrug ca. 12,5 Liter. Die Reaktionsmischung wurde quer zur Längsachse gemischt durch einen Rührer (3) mit 8 Rührerblättera (4) der Dimension 50 mm X 50 mm, der Abstand der Rührerblätter zur Reaktorwand betrug 25 mm, eine Berührung der Reaktorwand wurde damit vermieden. Entlang der Reaktorachse gab es noch 5 weitere Zugabemöglichkeiten (9a) bis (9e) für Initiator. The polymerization was carried out in a tubular reactor (1) with a length of 1600 mm and an internal diameter of 100 mm. The reactor volume was approx. 12.5 liters. The reaction mixture was mixed transversely to the longitudinal axis by a stirrer (3) with 8 stirrer blades (4) measuring 50 mm x 50 mm, the distance between the stirrer blades and the reactor wall was 25 mm, thus avoiding contact with the reactor wall. Along the axis of the reactor there were 5 further addition options (9a) to (9e) for initiator.
Der Rohrreaktor (1) wurde kontinuierlich aus einem vorgelagerten Druckbehälter (6) mit einem Volumen von 16 Liter mit dem zu polymerisierenden Stoffgemisch versorgt. Der vorgelagerte Druckbehälter (6) wurde über Pumpen kontinuierlich mit den entsprechenden Stoffen be- füllt . The tubular reactor (1) was continuously supplied with the mixture of substances to be polymerized from an upstream pressure vessel (6) with a volume of 16 liters. The upstream pressure vessel (6) was continuously filled with the relevant substances via pumps.
Nach Austritt aus dem Rohrreaktor (1) wurde das Produkt über ein Druckhalteventil (14) oder (15) in einen Drucklosbehälter (8) mit einem Volumen von 1000 Liter transferiert und gesammelt . Am Ende des Versuches wurde das Produktgemisch nachbehandelt und abgefüllt. After emerging from the tubular reactor (1), the product was transferred via a pressure-maintaining valve (14) or (15) to a pressureless container (8) with a volume of 1000 liters and collected. At the end of the experiment, the product mixture was aftertreated and bottled.
Zu polymerisierende Zusammensetzung: Composition to be polymerized:
Folgende Stoffe wurden einem vorgeschalteten Druckbehälter (Rührkessel) (6) kontinuierlich zugeführt und vorgemischt: The following substances were continuously fed into an upstream pressure vessel (stirred tank) (6) and premixed:
4,4 kg/h Wasser, 4,0 kg/h einer 20 Gew. -%igen wässrigen Lösung eines teilverseiften Polyvinylalkohols mit einem Hydrolysegrad von 88 Mol-% und einer Höpplerviskosität von 4 mPas (bestimmt nach DIN 53015 bei 20°C in 4 Gew. -%iger wässriger Lösung), 10,4 kg/h Vinylacetat, 1,15 kg/h Ethylen, 195 g/h 5 Gew. -%ige wässrige Ascorbinsäurelösung, 1,5 g/h Ameisensäure und 4 g/h 1 Gew. -%ige wässrige Eisenammoniumsulfatlösung. 4.4 kg / h water, 4.0 kg / h of a 20% strength by weight aqueous solution of a partially saponified polyvinyl alcohol with a degree of hydrolysis of 88 mol% and a Höppler viscosity of 4 mPas (determined according to DIN 53015 at 20 ° C. in 4 wt.% Aqueous solution), 10.4 kg / h vinyl acetate, 1.15 kg / h ethylene, 195 g / h 5 wt.% Aqueous ascorbic acid solution, 1.5 g / h formic acid and 4 g / h h 1% by weight aqueous iron ammonium sulfate solution.
Diese Mischung wurde mit einer Rate von 20 kg/h in den Rohrreaktor (1) überführt . An den Dosierstellen (9a) bis (9e) wurde der Initiator Kaliumpersulfat als 3 Gew. -%ige wässrige Lösung zudosiert. This mixture was transferred to the tubular reactor (1) at a rate of 20 kg / h. The initiator potassium persulfate was metered in as a 3% strength by weight aqueous solution at the metering points (9a) to (9e).
Das fertige Produkt verließ mit einem Umsatz von ca. 92 % den Rohrreaktor (1) und wurde in einem Drucklosbehälter (8) im Vakuum gesammelt. The finished product left the tubular reactor (1) with a conversion of approx. 92% and was collected in a pressureless container (8) in vacuo.
Die Dispersion wurde anschließend zur Abtrennung von überschüssigem. Ethylen in einen weiteren Drucklosbehälter, in dem ein Druck von 0,7 bar angelegt wurde, transferiert und dort durch Zugabe von 0,4 kg einer 10 Gew. -%igen wässrigen t-Butylhydroperoxidlösung und 0,8 kg einer 5 Gew, -%igen wässrigen Ascorbinsäurelösung bezogen auf 100 kg Dispersion nachpolymerisiert bis zu einem Wert von < 1000 ppm Restvinylacetat . Der pH-Wert wurde durch Zugabe von Natronlauge (10 Gew. - %ige wässrige Lösung) auf 4,5 eingestellt. Zuletzt wurde der Ansatz über ein 250 mm Sieb aus dem Drucklosbehälter abgefüllt. Vergleichabeispiel 1 (Vergleichsversuch) : The dispersion was then used to remove excess. Ethylene is transferred to a further pressureless container, in which a pressure of 0.7 bar was applied, and there by adding 0.4 kg of a 10% by weight aqueous t-butyl hydroperoxide solution and 0.8 kg of a 5% by weight igen aqueous ascorbic acid solution based on 100 kg dispersion post-polymerized to a value of <1000 ppm residual vinyl acetate. The pH was adjusted to 4.5 by adding sodium hydroxide solution (10% strength by weight aqueous solution). Finally, the batch was filled from the pressureless container through a 250 mm sieve. Comparative example 1 (comparative experiment):
Das zu polymerisierende Gemisch wurde am unteren Ende des Rohrreak- tors (1) eingeführt und am oberen Ende das Produkt entnommen. Dabei waren die Ventile (10) und (11) geöffnet, die Ventile (12) und (13) geschlossen. Die Durchflussrate betrug ca. 20 Liter/h. Die Rührerdrehzahl betrug 800 Umdrehungen/Minute. Der Druck im Reaktor (1) wurde über das Transferventil (14) auf 55 bar eingestellt. Die Initi- atordosierraten betrugen The mixture to be polymerized was introduced at the lower end of the tubular reactor (1) and the product removed at the upper end. The valves (10) and (11) were open, the valves (12) and (13) closed. The flow rate was approx. 20 liters / h. The stirrer speed was 800 revolutions / minute. The pressure in the reactor (1) was adjusted to 55 bar via the transfer valve (14). The initiator dosing rates were
(9a) 0,11 kg/h (9a) 0.11 kg / h
(9b) 0,11 kg/h (9b) 0.11 kg / h
(9c) 0,21 kg/h (9c) 0.21 kg / h
(9d) 0,30 kg/h (9d) 0.30 kg / h
(9e) 0,40 kg/h (9e) 0.40 kg / h
Nach 24 h wurde die Polymerisation beendet und das freie Volumen des Reaktors (1) durch Auffüllen mit Wasser und Auswiegen der Wassermenge bestimmt. Das Reaktorvolumen wurde bei diesem Vorgehen mit 11,2 Liter ermittelt, das heißt im „Normalbetrieb" gemäß Stand der Technik verliert der Reaktor nach 24 h ca. 1,3 Liter Volumen gleichbedeutend mit einem entsprechenden Aufbau von Wandbelag. After 24 hours, the polymerization was ended and the free volume of the reactor (1) was determined by filling it up with water and weighing the amount of water. With this procedure, the reactor volume was determined to be 11.2 liters, that is, in "normal operation" according to the prior art, the reactor loses approx. 1.3 liters volume after 24 hours, equivalent to a corresponding build-up of wall covering.
Beispiel 2 (Erfindungsgemäßer Versuch) : Example 2 (experiment according to the invention):
Das zu polymerisierende Gemisch wurde am unteren Ende des Reaktors (1) eingeführt und am oberen Ende das Produkt entnommen. Dabei waren die Ventile (10) und (11) geöffnet, die Ventile (12) und (13) geschlossen. Die Durchflussrate betrug ca. 20 Liter/h. Die Rührerdreh- zahl betrug 800 Umdrehungen/Minute . Der Druck im Reaktor (1) wurde über das Transferventil (14) auf 55 bar eingestellt . Die Initiatordosierraten betrugen The mixture to be polymerized was introduced at the lower end of the reactor (1) and the product was removed at the upper end. The valves (10) and (11) were open, the valves (12) and (13) closed. The flow rate was approx. 20 liters / h. The stirrer speed was 800 revolutions / minute. The pressure in the reactor (1) was adjusted to 55 bar via the transfer valve (14). The initiator dosing rates were
(9a) 0,11 kg/h (9a) 0.11 kg / h
(9b) 0,11 kg/h (9b) 0.11 kg / h
(9c) 0,21 kg/h (9c) 0.21 kg / h
(9d) 0,30 kg/h (9d) 0.30 kg / h
(9e) 0,40 kg/h Nach 12 h wurde die Strömungsrichtung umgekehrt und das zu polymerisierende Gemisch von oben zugegeben und das Produkt am unteren Ende entnommen. Hierbei wurden die Ventile (10) und (11) geschlossen, die Ventile (12) und (13) geöffnet. Der Druck im Reaktor wurde über das Transferventil (15) auf 55 bar eingestellt. Die Initiatordosierraten betragen (9e) 0.40 kg / h After 12 hours, the direction of flow was reversed and the mixture to be polymerized was added from above and the product was removed at the lower end. Here, the valves (10) and (11) were closed, the valves (12) and (13) opened. The pressure in the reactor was adjusted to 55 bar via the transfer valve (15). The initiator dosing rates are
(9a) 0,40 kg/h (9a) 0.40 kg / h
(9b) 0,30 kg/h (9b) 0.30 kg / h
(9c) 0,21 kg/h (9c) 0.21 kg / h
(9d) 0, 11 kg/h (9d) 0.11 kg / h
(9e)0,ll kg/h (9e) 0.1 kg / h
Dieser Wechsel wurde im 12 h Rhythmus durchgeführt und die Anlage insgesamt 72 h betrieben. Das Reaktorvolumen wurde bei diesem Vorgehen am Ende des Versuches mit 12,4 Liter ermittelt, das heißt bei dem erfindungsgemäßen Vorgehen verliert der Reaktor nach 72 h nur 0,1 Liter Volumen gleichbedeutend mit einem vernachlässigbaren Aufbau von Wandbelag. This change was carried out every 12 hours and the system was operated for a total of 72 hours. With this procedure, the reactor volume was determined to be 12.4 liters at the end of the experiment, that is, with the procedure according to the invention, the reactor loses only 0.1 liters volume after 72 hours, which is equivalent to a negligible build-up of wall covering.
In beiden Beispielen wurde ein Endprodukt mit folgenden Eigenschaften erhalten: In both examples an end product with the following properties was obtained:
Feststoffgehalt 58,5 % Solids content 58.5%
pH-Wert 4,5 pH 4.5
Viskosität (Brookfield bei 23°C und 20 Upm) 1500 mPas Viscosity (Brookfield at 23 ° C and 20 rpm) 1500 mPas
Partikelgrößenverteilung Dw (Beckmann Coulter) 1300 nm Particle size distribution Dw (Beckmann Coulter) 1300 nm
Glasübergangstemperatur (DSC nach ISO 11357) 16°C Glass transition temperature (DSC according to ISO 11357) 16 ° C

Claims

Patentansprüche: Patent claims:
1. Verfahren zur Herstellung von wässrigen Polymerdispersionen mittels radikalisch initiierter Emulsionspolymerisation von ethyle- nisch ungesättigten Monomeren in Gegenwart von Schutzkolloiden und/oder Emulgatoren in einem kontinuierlich betriebenen Rohrreaktor, dadurch gekennzeichnet, dass die Strömungsrichtung des Reaktorinhalts entlang der Reaktorlängsachse in regelmäßigen Zeitintervallen umgekehrt wird. 1. A process for the preparation of aqueous polymer dispersions by means of radically initiated emulsion polymerization of ethylenically unsaturated monomers in the presence of protective colloids and / or emulsifiers in a continuously operated tubular reactor, characterized in that the direction of flow of the reactor contents is reversed along the longitudinal axis of the reactor at regular time intervals.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die 2. The method according to claim 1, characterized in that the
Strömungsrichtung des Reaktorinhalts in einem Zeitintervall von 60 Minuten bis 48 Stunden umgekehrt wird. The direction of flow of the reactor contents is reversed in a time interval of 60 minutes to 48 hours.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet , dass die 3. The method according to claim 1, characterized in that the
Strömungsrichtung des Reaktorinhalts in einem Zeitintervall von 6 Stunden bis 12 Stunden umgekehrt wird. The direction of flow of the reactor contents is reversed in a time interval of 6 hours to 12 hours.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass als Rohrreaktor gerührte Rohrreaktoren oder ungerührte Rohrreaktoren oder Rohrreaktoren mit Einbauten wie statischen Mischelementen oder Taylorreaktoren mit einem zylindrischen Rührer eingesetzt werden. 4. The method according to claim 1 to 3, characterized in that stirred tubular reactors or unstirred tubular reactors or tubular reactors with internals such as static mixing elements or Taylor reactors with a cylindrical stirrer are used as the tubular reactor.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet , dass die Bestandteile des Reaktionsgemisches vorab in einer Mischeinheit zu einer Voremulsion abgemischt werden und kontinuierlich dem Rohrreaktor zugeführt werden. 5. The method according to claim 1 to 4, characterized in that the components of the reaction mixture are mixed beforehand in a mixing unit to form a pre-emulsion and are continuously fed to the tubular reactor.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass im Falle einer thermischen Initiierung kein Oxidationskatalysator in die Voremulsion gegeben wird, und der Oxidationsinitiator vorzugsweise in den Rohrreaktor zugegeben wird. 6. The method according to claim 1 to 5, characterized in that in the case of thermal initiation, no oxidation catalyst is added to the pre-emulsion, and the oxidation initiator is preferably added to the tubular reactor.
7. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass im Falle der Initiierung mit einer Redox-Initiator-Kombination der Reduktionsiniitiator in die Voremulsion gegeben wird und der Oxidationsinitiator in den Rohrreaktor zugegeben wird. 7. The method according to claim 1 to 5, characterized in that in the case of initiation with a redox initiator combination, the reduction initiator is added to the pre-emulsion and the oxidation initiator is added to the tubular reactor.
8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass die Zugabe des Reaktionsgemisches so erfolgt, dass die Verweil- zeit der Polymerisationsmischung im Rohrreaktor bei 10 Minuten bis 5 Stunden liegt. 8. The method according to claim 1 to 7, characterized in that the addition of the reaction mixture is carried out so that the residence time of the polymerization mixture in the tubular reactor is 10 minutes to 5 hours.
9. Verfahren nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass ein oder mehrere ethylenisch ungesättigten Monomere aus der Gruppe umfassend Vinylester, (Meth) acrylsäureester, Vinylaroma- ten, Olefine, 1, 3-Diene und Vinylhalogenide polymerisiert wer- den. 9. The method according to claim 1 to 8, characterized in that one or more ethylenically unsaturated monomers from the group comprising vinyl esters, (meth) acrylic acid esters, vinyl aromatics, olefins, 1,3-dienes and vinyl halides are polymerized.
10. Verwendung der Verfahrensprodukte aus Anspruch 1 bis 9 in bauchemischen Produkten, gegebenenfalls in Verbindung mit hydraulisch abbindenden Bindemitteln wie Zementen, Gips und Wasserglas, oder als Bindemittel für Beschichtungsmittel und Klebemittel, oder als Beschichtungs- oder Bindemittel für Textilien und Papier, oder zur Herstellung von in Wasser redispergierbaren Polymerpulvem. 10. Use of the process products from claims 1 to 9 in construction chemical products, optionally in conjunction with hydraulically setting binders such as cements, gypsum and waterglass, or as binders for coating agents and adhesives, or as coating agents or binders for textiles and paper, or for production of polymer powders redispersible in water.
EP19721593.2A 2019-04-30 2019-04-30 Method for producing aqueous polymer dispersions in a tube reactor Pending EP3784703A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2019/061017 WO2020221435A1 (en) 2019-04-30 2019-04-30 Method for producing aqueous polymer dispersions in a tube reactor

Publications (1)

Publication Number Publication Date
EP3784703A1 true EP3784703A1 (en) 2021-03-03

Family

ID=66397230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19721593.2A Pending EP3784703A1 (en) 2019-04-30 2019-04-30 Method for producing aqueous polymer dispersions in a tube reactor

Country Status (4)

Country Link
US (1) US11591423B2 (en)
EP (1) EP3784703A1 (en)
CN (1) CN112513106A (en)
WO (1) WO2020221435A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102462535B1 (en) * 2019-10-17 2022-11-01 주식회사 엘지화학 Apparatus for preparing
US20230406978A1 (en) * 2020-11-23 2023-12-21 Wacker Chemie Ag Process for preparing aqueous polymer dispersions in a tubular reactor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1137216B (en) 1961-06-09 1962-09-27 Consortium Elektrochem Ind Process and device for the continuous production of aqueous polymer dispersions
DE2825679C2 (en) * 1978-06-12 1983-11-10 Walter 8832 Weissenburg Scheffel Device for weft insertion on weaving machines by means of a flowing medium
CA1123578A (en) 1979-11-20 1982-05-18 Frank Souhrada Process and apparatus for the prevention of solids deposits in a tubular reactor
DE10162513A1 (en) 2001-12-19 2003-07-17 Wacker Polymer Systems Gmbh Process for the preparation of protective colloid-stabilized polymers by means of continuous emulsion polymerization
DE10253046A1 (en) * 2002-11-14 2004-06-03 Wacker Polymer Systems Gmbh & Co. Kg Protective colloid-stabilized polymers in the form of their aqueous dispersions and water-redispersible powders
DE102005054904A1 (en) * 2005-11-17 2007-05-24 Wacker Polymer Systems Gmbh & Co. Kg Process for the preparation of polyvinyl alcohol-stabilized latexes
WO2009023515A2 (en) 2007-08-09 2009-02-19 Eli Lilly And Company Reactors and methods for processing reactants therein
DE102011076407A1 (en) * 2011-05-24 2012-11-29 Wacker Chemie Ag Process for the preparation of protective colloid-stabilized polymers
WO2012160579A1 (en) * 2011-05-26 2012-11-29 Conser Spa Improved polymerization reactor for butyl rubber production
EP2719452A1 (en) * 2012-10-12 2014-04-16 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method and apparatus for physical or chemical processes
US9714300B2 (en) * 2012-11-29 2017-07-25 Celanese International Corporation Continuous emulsion polymerization reactor and pigging system
DE102015202580A1 (en) 2015-02-12 2016-08-18 Wacker Chemie Ag Process for the polymerization of ethylenically unsaturated monomers
EP3307792B1 (en) * 2016-06-29 2018-10-24 Wacker Chemie AG Method for producing vinyl acetate-ethylene copolymers by means of emulsion polymerization

Also Published As

Publication number Publication date
US20220041774A1 (en) 2022-02-10
WO2020221435A1 (en) 2020-11-05
US11591423B2 (en) 2023-02-28
CN112513106A (en) 2021-03-16

Similar Documents

Publication Publication Date Title
EP2488557B1 (en) Process for continuous emulsion polymerization
DE102007040850A1 (en) Process for the preparation of protective colloid-stabilized polymers and apparatus for carrying out the process
EP1352915B1 (en) Continuous emulsion polymerisation process for preparing polymers stabilised by protective colloids
DE102005054904A1 (en) Process for the preparation of polyvinyl alcohol-stabilized latexes
EP2178928B1 (en) Continuous polymerization process
DE102005054905A1 (en) Protective colloid-stabilized dispersion powder
DE10162513A1 (en) Process for the preparation of protective colloid-stabilized polymers by means of continuous emulsion polymerization
EP3307792B1 (en) Method for producing vinyl acetate-ethylene copolymers by means of emulsion polymerization
EP2683747B1 (en) Process for producing polymers by means of emulsion or suspension polymerization in a jet loop reactor
EP3784703A1 (en) Method for producing aqueous polymer dispersions in a tube reactor
EP3256497B1 (en) Method for polymerising ethylenically unsaturated monomers
EP1670830A2 (en) Polymeric compositions containing modified polyvinyl alcohols
EP3837289B1 (en) Method for preparing an aqueous polymer dispersion
WO2022106041A1 (en) Process for preparing aqueous polymer dispersions in a tubular reactor
WO2018113955A1 (en) Continuous and modular method for producing polymer powder compositions which are redispersible in water
DE102008043982B4 (en) A method for producing heat-storing material-containing binder, binder containing heat-storing material and use of the binder
EP2920213B1 (en) Process for preparing polyvinyl alcohol-stabilized polymers by means of emulsion polymerization
WO2023098983A1 (en) Process for preparing water-redispersible polymer powders
EP3784702A1 (en) Method for cleaning a polymerisation reactor
DE102011087138A1 (en) Process for the preparation of aqueous polymer dispersions

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522