EP3781717B1 - Kaltgewalztes stahlflachprodukt sowie verwendung und verfahren zur herstellung eines solchen stahlflachprodukts - Google Patents

Kaltgewalztes stahlflachprodukt sowie verwendung und verfahren zur herstellung eines solchen stahlflachprodukts Download PDF

Info

Publication number
EP3781717B1
EP3781717B1 EP18729562.1A EP18729562A EP3781717B1 EP 3781717 B1 EP3781717 B1 EP 3781717B1 EP 18729562 A EP18729562 A EP 18729562A EP 3781717 B1 EP3781717 B1 EP 3781717B1
Authority
EP
European Patent Office
Prior art keywords
flat steel
steel product
cold
content
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18729562.1A
Other languages
English (en)
French (fr)
Other versions
EP3781717A1 (de
Inventor
Jonas Karl Moritz SCHWABE
Harald Hofmann
Matthias Schirmer
Evgeny BALICHEV
Annette BÄUMER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3781717A1 publication Critical patent/EP3781717A1/de
Application granted granted Critical
Publication of EP3781717B1 publication Critical patent/EP3781717B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the invention relates to a cold-rolled flat steel product which has an optimal combination of its mechanical properties for forming into components, in particular vehicle components and the like.
  • the invention further relates to a method for producing such a cold-rolled flat steel product.
  • the invention also names particularly suitable uses for such flat steel products.
  • contents of a steel or a flat steel product are mentioned in this text, these contents always refer to the weight (in% by weight), unless expressly stated otherwise. If information on the composition of atmospheres or gas mixtures is given in this text, the content information given for the individual components always refers to the volume (in% by volume), unless expressly stated otherwise. If information is given in this text about the content of individual components in the structure of a flat steel product, these always refer to the proportion in area % determined on the microstructure in accordance with DIN EN 13925 (2003.07) (specification in area %), unless expressly stated otherwise is.
  • flat steel product refers to steel strips or steel sheets produced in a rolling process and those obtained from them Blanks, boards and comparable products are understood, the thickness of which is significantly smaller than their width and length.
  • n-value we mean the n-value determined as “n 10-20 ” in tensile tests according to DIN 10275.
  • the tensile test itself is carried out in accordance with DIN EN ISO 6892-1 (sample form 1).
  • a cold-rolled steel sheet which, after annealing, should have TRIP properties and a tensile strength of at least 1000 MPa, in particular at least 1180 MPa, with a total elongation of at least 15%, in particular at least 20%.
  • the steel sheet consists of (in wt.%) C: 0.1 - 0.3%; Mn: 4 - 10%, Al: 0.05 - 5%, Si: 0.05 - 5%; and Nb: 0.008 - 0.1, the balance iron and unavoidable impurities, with Mn contents of 4 - 7%, in particular 6 - 7%, Si contents of 0.1 - 1.1 and Al contents of 0.5 - 1.6% are particularly preferred.
  • the microstructure of the cold-rolled sheet consists of at least 20% retained austenite and more than 50% lath-type ferrite. At the same time, the retained austenite and ferrite have an ultra-fine grain size of less than 5 ⁇ m.
  • an appropriately composed melt melted by vacuum induction melting was cast into slabs on a laboratory scale, which were then pre-rolled into 20 mm thick plates. The plates were held at a temperature of 1230 ° C for 3 hours to effect homogenization and were then hot rolled in three steps into plates with a thickness of 4 mm.
  • the hot-rolled plates leaving the finishing hot rolling mill at a final temperature of 900 °C were then accelerated to cool down to a coiling temperature of 750 °C, at which they were then held for one hour.
  • the plates were then kept at room temperature in the oven. In this way, the processes that occur when a hot strip produced in a corresponding manner is wound into a reel and cools to room temperature in the reel should be simulated.
  • the hot-rolled plates were cold-rolled with a thickness reduction of 40 - 50%.
  • the cold-rolled plates finally passed through a continuous annealing device in which an annealing cycle was simulated in which the plates were heated at a heating rate of 10 ° C / s to 650 - 750 ° C, in particular 680 - 740 ° C, and for 180 seconds Temperature have been maintained in order to then be cooled to room temperature at a cooling rate of 10 ° C / s.
  • a steel sheet with high specific strength and excellent ductility which contains 0.15 to 0.5% by weight of carbon (C), 6.0 to 8.0% by weight of manganese (Mn), 5.0 to 6, 0% by weight aluminum (Al), 0.05 to 0.5% by weight silicon (Si), less than 0.02% by weight (except 0) sulfur (S), the balance being iron (Fe) and unavoidable impurities.
  • the steel can contain 0.005 - 1.0% by weight of Ti, V, Nb or Zr.
  • the yield strength of the steel is greater or equal to 550 MPa.
  • the tensile strength multiplied by the elongation is greater than or equal to 28,000 MPa%.
  • a process for producing manganese steel with a high aluminum content is known.
  • a flat steel product is made from a steel with (in mass%) 0.10 to 0.35% C, 5.0 to 9.0% Mn, 4.0 to 7.5% Al, less than 0.003% P, less than 0.002% S, the rest Fe and unavoidable impurities, cast into a starting material, which is then heated to 1200 ° C over 1.5 hours and then in several stages starting from an initial temperature of 1050 - 1100 ° C and with a Final temperature of 850 - 900 °C is hot rolled.
  • the degree of deformation achieved during hot rolling is 80 to 85%.
  • the hot strip obtained in this way is wound into a coil at a coiling temperature of 600 - 700 °C and then cold rolled with a cold rolling ratio of 65 to 70%. Finally, a final annealing is carried out at 860 - 930 °C for a period of 0.5 hours, which is followed by quenching with water.
  • the cold-rolled steel sheet produced in this way should have high strength and ductility with a high aluminum content.
  • the invention has solved this problem in that such a flat steel product is designed according to claim 1.
  • Flat steel products according to the invention are particularly suitable for the production of vehicle components, in particular for chassis or body parts of motor vehicles, such as cars or trucks. These parts include, for example, steering components, wheel rims, vehicle chassis components and the like.
  • flat steel products according to the invention can also be used particularly well for the production of devices that are intended to offer ballistic protection. Due to their good formability, flat steel products according to the invention are also particularly suitable for internal or external high-pressure forming processes.
  • flat steel products according to the invention can also be used to produce components for internal combustion engines, such as camshafts, piston rods and the like.
  • flat steel products according to the invention can be used successfully in the field of container construction or other applications in which large-volume bodies with complex shapes have to be produced.
  • the flat steel product according to the invention has a composition and a structural state that give it properties optimized for the respective intended use.
  • the invention provides a carbon ("C") content of 0.08 - 0.25% by weight in order to ensure a sufficient amount of austenite in the structure of the flat steel product.
  • the C content is limited to 0.25% by weight in order to avoid the tendency to form brittle kappa carbides at the grain boundaries. Such carbides would impair the hot and cold formability of the flat steel products according to the invention.
  • the carbon has a strengthening effect through the formation of mixed crystals and increases the stacking fault energy, which in turn contributes to increasing the strength. In addition to the negative effects on formability, higher C contents would impair weldability.
  • the upper limit of the C content is limited to 0.25% by weight, with C contents of at most 0.22% by weight, in particular at most 0.19% by weight or very particularly preferably at most 0.17% by weight have proven to be particularly favorable in terms of avoiding negative effects of the C content.
  • the positive effects of the presence of C in the flat steel product according to the invention can be exploited by ensuring that the C content is at least 0.08% by weight, whereby: Contained at least 0.11% by weight of C, in particular at least 0.13% by weight of C, the advantageous effects are particularly reliably adjusted.
  • Aluminum is present in the flat steel product according to the invention in amounts of 3 - 5.4% by weight in order, on the one hand, to reduce the density and thus the weight of the flat steel product and, on the other hand, to increase the tensile strength through solid solution hardening. Al also contributes to the formation of the ferrite content in the structure of the flat steel product according to the invention. These favorable effects occur with Al contents of at least 3% by weight, with levels of at least 4% by weight being particularly favorable in this regard. However, in order to avoid negative influences, the Al content of a flat steel product according to the invention is limited to a maximum of 5.4% by weight. Al contents above this limit would lead to a deterioration in cold formability due to the formation of intermetallic phases. Al contents of at most 5.1% by weight have proven to be particularly suitable for achieving good cold formability. In addition, Al, when present in higher levels, forms embrittling particles with nitrogen and carbon, reduces thermal conductivity and lowers the Young's modulus.
  • Manganese is present in the flat steel product according to the invention in levels of 9 - 14% by weight. Mn contributes to the formation of a sufficient amount of austenite in the structure of the flat steel product and its stability. At the same time, the presence of Mn in the amounts prescribed according to the invention improves the hot formability, weldability and strength of the flat steel product. Mn has a deoxidizing effect during the production of the steel from which the flat steel product according to the invention is made. Excessively high Mn contents are avoided in order not to impair the corrosion resistance of the flat steel product.
  • Mn contents that are too high lead to too high a stability of the austenite, so that the TRIP effect is prevented or limited, which has a negative effect on the formability of the flat steel product.
  • the positive influences of Mn can be used particularly safely in a flat steel product according to the invention at levels of at least 9% by weight.
  • Negatives Influences of the presence of Mn while at the same time optimizing the cost-benefit ratio can be avoided by limiting the Mn content to a maximum of 12% by weight, in particular a maximum of 11.0% by weight.
  • Mn contents of at most 10.7% by weight have proven to be particularly favorable for achieving good formability.
  • B Boron
  • B can optionally be present in the flat steel product according to the invention in order to support the development of a fine structure.
  • B Boron
  • up to 0.1% by weight of B can be provided. This results in a positive contribution of B to the properties of a flat steel product according to the invention even at levels of 0.005% by weight.
  • the positive influence of B can be used particularly effectively with B contents of less than 0.02% by weight.
  • Chromium can optionally be added to the flat steel product according to the invention in amounts of up to 2% by weight in order to improve the corrosion and oxidation resistance. At levels above 2% by weight, Cr carbides can form, which can impair the deformability of the flat steel product.
  • the positive influence of Cr can be used particularly effectively with Cr contents of less than 0.8% by weight.
  • the positive effects of Cr can be used particularly safely in the flat steel product according to the invention if the Cr content is at least 0.05% by weight, in particular at least 0.10% by weight.
  • Si silicon
  • Si silicon
  • Al silicon
  • Si like Al
  • Si reduces the density of the material and contributes to deoxidation.
  • too high Si contents can worsen the ductility and reduce the weldability of the flat steel product according to the invention.
  • These negative influences can be reliably avoided by limiting the Si content to a maximum of 0.3% by weight in a flat steel product according to the invention.
  • the effects of Si in the flat steel product according to the invention already occur when the Si content is at least 0.05% by weight, in particular at least 0.1% by weight.
  • Phosphorus is generally undesirable in the flat steel product of the invention because it causes segregation and impairs cold workability, weldability and oxidation resistance. Therefore, the P content is limited to at most 0.1% by weight, in particular at most 0.05% by weight.
  • S Sulfur
  • S is also an undesirable accompanying element in the flat steel product according to the invention, since if the content is too high, it reduces the hot formability during hot rolling and worsens the corrosion resistance.
  • Tantalum (“Ta”) and tungsten (“W”) can be added to the flat steel product according to the invention to increase strength by forming carbide in amounts of up to 0.5% by weight.
  • An optimal cost-benefit ratio results from contents of up to 0.1% by weight.
  • Nickel optionally present in amounts of up to 2% by weight increases the amount and stability of the austenite present in the structure of a flat steel product according to the invention. At the same time, Ni contributes to the strength and toughness of the flat steel product. Ni also increases corrosion resistance. These advantageous effects can be used in particular when the Ni content of a flat steel product according to the invention is at least 0.05% by weight. The positive influence of Ni can be used particularly effectively with Ni contents of less than 1.0% by weight.
  • Cu copper
  • amounts of up to 2% by weight improves the corrosion resistance of the flat steel product.
  • higher Cu contents worsen hot formability and weldability.
  • the positive influence of Cu can be used particularly effectively with Cu contents of less than 0.1% by weight.
  • Ca can optionally be added to the flat steel product in amounts of up to 0.15% by weight to bind harmful S contents.
  • Ca proves to be particularly effective in concentrations of up to 0.05% by weight, which are therefore preferred if Ca is present at all. Harmful effects of Ca can be reliably avoided by limiting the Ca content to less than 0.01% by weight.
  • N Nitrogen
  • the N content of the flat steel product is limited to a maximum of 0.02% by weight, in particular 0.01% by weight, with practical N contents in the range of 0.001 - 0.008% by weight.
  • Co Co
  • Co can optionally be added to the flat steel product according to the invention in amounts of up to 2% by weight in order to increase the amount and stability of the austenite present in the structure. At the same time, Co increases the recrystallization temperature. Optimal effects of the presence of Co occur when the Co content is limited to a maximum of 1% by weight, with Co contents of less than 0.01% by weight having proven to be sufficient in many cases.
  • Sb Antimony
  • the elements assigned to the groups “Ti, Nb, V, Mo” and “Zr, La, Ce, Y” are of particular importance. According to the invention, at least one element from at least one of these groups is present in the flat steel product according to the invention in order to support edge stability, i.e. the avoidance of the formation of cracks, during hot rolling through the formation of precipitates.
  • the elements from the group “Ti, Nb, V, Mo” can be present alone, i.e. without the presence of an element from the group “Zr, La, Ce, Y”, or in combination with at least one of the elements Group "Zr, La, Ce, Y".
  • the elements of the group "Zr, La, Ce, Y" can be present alone, i.e. without the presence of an element of the group “Ti, Nb, V, Mo", or in combination with at least one of the elements of the group "Ti, Nb, V, Mo".
  • the content of this one element is 0.05 - 1% by weight. If, on the other hand, two or more elements from the group “Ti, Nb, V, Mo” are present, the sum of the contents is also 0.05 - 1% by weight.
  • Particularly favorable influences of the elements of the group “Ti, Nb, V, Mo” arise when their content is individual in the case that only one element of this group is present or in the case that two or more elements of this group are present , in total is at least 0.08% by weight.
  • An optimal cost-benefit ratio can be obtained if, in the case of only one element of this group being present, individually or in the case of two or more elements of this group being present, in the sum of the contents of the elements of the group present in each case at most 0.5% by weight, in particular at most 0.35% by weight.
  • An optimal cost-benefit ratio can be obtained if, in the case where only one element of this group is present, individually or in the case where two or more elements of this group are present, in total, the content of the elements of the group present in each case at most 0.2% by weight, in particular at most 0.15% by weight.
  • Ti In addition to improving edge stability, titanium (“Ti”) increases strength through the formation of Ti carbides and improves the r-value. This has a positive effect on the edge stability and strength of Ti, especially if Nb is also present at the same time. The simultaneous presence of Ti and Nb is therefore preferred.
  • Ti also improves the low-temperature toughness and high-temperature strength of the material.
  • excessive Ti contents should be avoided in order to avoid negative influences on deformability and welding properties.
  • the advantageous effect of Ti can be used in particular when the Ti content is at least 0.06% by weight.
  • Nb niobium
  • edge stability which results in particular when Ti and Nb are present at the same time
  • Nb carbides causes an increase in strength through the formation of Nb carbides and improves the r-value, which also has this effect occurs particularly safely when Ti is present at the same time.
  • the addition of Nb also improves the low-temperature toughness and high-temperature strength of the material.
  • excessive Nb contents should be avoided in order to avoid negative influences on deformability and welding properties.
  • the advantageous effect of Nb can be used in particular when the Nb content is at least 0.03% by weight.
  • V Vanadium
  • the positive influences of V can be used particularly safely at levels of at least 0.03% by weight.
  • Mo Molybdenum
  • Ce cerium
  • La lanthanum
  • Zr zirconium
  • Y yttrium
  • Ce, La, Zr and Y compensate for the negative influences that high Al contents can have on these properties of the flat steel product.
  • the effects of Ce, La, Zr and Y are the same, so that these elements can be exchanged for each other.
  • the aluminum equivalent Al eq formed from the respective Al and Si content must be in the range of 3 - 8% by weight ensures that the contents of the similarly acting alloy elements Al and Si are limited to such an extent that the formation of extremely brittle intermetallic precipitates is prevented.
  • the range specified for Al eq can be limited according to the invention to a maximum of 7.6% by weight, in particular a maximum of 7% by weight or a maximum of 6.5% by weight.
  • the minimum value for Al eq can be set to 4.8% by weight be raised in order to safely utilize the positive effects of the simultaneous presence of AI and Si.
  • the ratio %Mn/%Al of the contents of Mn ("%Mn”) and Al (“%Al”) should be more than 1.2% by weight, so that there is a sufficient amount of austenite despite the high Al content achieved in the structure of the flat steel product.
  • the alloy engineering measures explained above and the procedural measures explained below ensure that the austenite content in the structure of the flat steel product according to the invention is 10 - 60% by area. With such austenite contents, the steel of a flat steel product according to the invention has TRIP properties and the flat steel product has a high n value of at least 0.21.
  • the rest of the structure of the flat steel product according to the invention that is not occupied by austenite consists of ferrite as a result of the high Al content.
  • a flat steel product according to the invention has an n-value of at least 0.21, with flat steel products according to the invention regularly achieving n-values of at least 0.25, in particular at least 0.26.
  • High n-values represent a high formability associated with a high elongation at break A50 and therefore allow the formation of complex components. However, too high n-values should be avoided as this would result in high deformation forces required.
  • Flat steel products have n values that are regularly not higher than 0.5, in particular not higher than 0.4.
  • the austenite grain size in the structure of a flat steel product according to the invention is on average 0.85 - 3 ⁇ m. Grains that are too small would inhibit the TRIP effect. The desired n value would not be achieved. However, grains that are too large would lead to a large decrease in yield strength and tensile strength. Optimally, the average grain size of the austenite is at least 0.9 ⁇ m. It has also proven to be advantageous if the maximum size of the austenite grains in the structure of a flat steel product according to the invention is limited to 1.5 ⁇ m.
  • a high degree of recrystallization in the ferrite grains is sought so that they can support the deformation of the austenite grains.
  • This degree of recrystallization can be quantified using the so-called “ Kernal Average Misorientation ” (“KAM”).
  • KAM Kernal Average Misorientation
  • a low KAM in the ferrite ultimately means a high deformability of the ferrite. Since the structure of a flat steel product according to the invention consists of austenite and ferrite ("duplex structure"), a low KAM of the ferrite can compensate for a low austenite grain size.
  • the preliminary product which is typically a slab, a thin slab or It is a cast strip and needs to be heated through. Incomplete, inhomogeneous heating would result in the risk of cracks forming in the subsequent hot rolling process.
  • the preheating temperatures suitable for thorough heating are 1100 - 1300 °C, although in practice preheating temperatures of at least 1150 °C have proven to be particularly reliable. By limiting the preheating temperature to a maximum of 1250 °C, negative effects of preheating, such as an excessively doughy consistency of the preliminary product and an associated tendency to stick during hot rolling, can be counteracted.
  • the hot rolling of the preliminary product into a hot strip can be carried out in a conventional manner on a hot rolling train that is available for this purpose in practice.
  • the only important thing is that the hot strip still has a final hot rolling temperature of 850 - 1050 °C at the end of hot rolling.
  • Hot rolling end temperatures below 850 °C would require such high hot rolling forces that the desired degrees of forming cannot be achieved on conventional hot rolling stands.
  • Optimal hot rolling end temperatures are therefore in the range of 900 - 1050 °C.
  • the hot strips obtained are, if necessary, cooled in a conventional manner to the coiling temperature of 400 - 900 ° C specified according to the invention, with which they are then coiled into a coil.
  • the minimum coiling temperature of 400 ° C is due to the poor thermal conductivity of the steel of a flat steel product according to the invention necessary because otherwise high temperature gradients in the flat steel product would lead to tensions and the resulting poor flatness of the hot strip. Cooling too quickly in the cooling section could interrupt the recrystallization processes that begin at the end of hot rolling.
  • the hot strip wound into a coil can be cooled using a coil shower in order to shorten the cooling time and have a positive effect on scale formation.
  • the hot strip can optionally undergo an annealing treatment after cooling in the coil, in which it is at a temperature of 700 - 1000 ° C, in particular, for a period of time sufficient for complete recrystallization 700 - 900 °C.
  • the hot strip annealing is preferably carried out as a hood annealing, in which case the annealing time typically lasts 0.5 - 60 hours.
  • the hot strip can be subjected to a pickling treatment before cold rolling.
  • the scale formation on the hot strip surface caused by oxygen-affinous elements during the manufacturing process can be reduced by extending the residence time of the hot strip in the pickling medium.
  • Hot strip pickling can be carried out using different pickling media such as hydrochloric acid.
  • the cold rolling of the hot-rolled strip into a cold-rolled strip takes place with a total degree of deformation of 25 - 90%, in particular at least 40% or at least 50%.
  • the minimum degree of deformation provided according to the invention is necessary in order to initiate the recrystallization, in particular of the ferrite contained in the structure of the flat steel product, during the final annealing.
  • too high a degree of deformation should be avoided, as this would result in too large a degree of deformation Work hardening and the associated risk of belt breaks would result.
  • the mechanical properties of the flat steel product according to the invention are decisively influenced by the final annealing.
  • the final annealing can be carried out in a continuous process through a conventional continuous furnace or as a hood annealing in batch operation.
  • the cold-rolled flat steel product is heated to a final annealing temperature that is at least 950 ° C and at a rate that is typically 1 - 100 K/s, in particular 10 - 80 K/s or 20 - 50 Kls is heated to a maximum of 1070 °C. Heating up too quickly can have an unfavorable effect on the homogeneity of the heating and thus on the homogeneous distribution of properties of the flat steel product.
  • the final annealing temperature is selected so that the necessary austenite grain size is achieved, which is a prerequisite for the TRIP properties and the n value of the flat steel product according to the invention.
  • the necessary austenite grain size can be set particularly reliably if the final annealing temperature is at least 970 °C.
  • Optimally practical final annealing temperatures are in the range of 1000 - 1070 °C.
  • the holding times at the final annealing temperature in the continuous annealing furnace are, depending on the level of the final annealing temperature, not more than 10 minutes, in particular not more than 5 minutes or 3 minutes, with higher continuous final annealing temperatures enabling shorter holding times and minimum holding times of at least 20 seconds each are practical.
  • the cold-rolled strip placed in the coil under the hood is heated to the final annealing temperature at a heating rate of 0.001 - 0.5 Kls, in particular 0.002 - 0.5 Kls or 0.008 - 0.5 Kls heated, which is in each case more than 800 ° C, in particular more than 850 ° C.
  • a final annealing temperature of 950 °C should not be exceeded in order to avoid excessive grain growth.
  • the annealing times after reaching the final annealing temperature are in the range of 0.5 - 60 hours, in particular 1 - 30 hours. In this way, flat steel products according to the invention with an n value of at least 0.21 and austenite grain sizes of 0.85 - 3 ⁇ m can be produced particularly reliably.
  • the flat steel product according to the invention can be provided with a protective coating.
  • a protective coating This can, for example, be applied in a conventional manner using coating systems available in practice as a zinc or aluminum-based coating.
  • the analysis data for the individual elements refer to the determined contents in% by weight. If "-" is entered in the respective table field, this means that the content of the respective element was below the respective detection limit and the element in question was therefore ineffective with regard to the properties.
  • the detection limits for P and Ti are 0.005 each % by weight, for Cr, Co, S and Ca each at 0.001% by weight, for V, Mo and Ni each at 0.01% by weight, for Cu and Nb each at 0.02% by weight , for B at 0.0004% by weight and for Ce, La, Y, Zr, As and Sn each at 0.002% by weight.
  • Elements that were present in such low levels are to be classified as unavoidable impurities, just like the elements not listed. These include, for example, contents of As, Sn, Mg and H.
  • the sum of the microalloying elements Ti, Nb, V, Mo, the sum of the rare earth metals Ce, La, Y, Zr, the ratio of Mn to Al and the Al Equivalent of the individual melts are given in Table 2.
  • melts A and B are not according to the invention since they meet the requirements of the invention for the presence of at least one element from the groups "Ti, Nb, V, Mo” and "Zr, La, Ce, Y" cannot be fulfilled.
  • melts A - H were cast in a conventional manner into blocks, which were then heated through at a preheating temperature VWT for a period of VWD.
  • the blocks were rolled into slabs in an equally conventional manner in a conventional hot rolling stand.
  • the slabs were rolled in a hot rolling mill into hot strip with a thickness of 2.5 - 3.0 mm.
  • the hot rolling was each ended with a hot rolling final temperature WET.
  • the resulting hot strips were cooled in air to a coiling temperature HT, at which they were coiled into a coil.
  • hot strip annealing Some of the hot strips were then subjected to hot strip annealing, which was carried out as a hood annealing with an annealing temperature of 850 ° C and an annealing time of 6 hours.
  • the annealed hot strips like the non-annealed hot strips, were cold-rolled into cold-rolled steel strip in a conventional cold rolling facility with a total cold forming degree of KGW.
  • the cold-rolled steel strips obtained were final annealed in a continuous annealing furnace (“Conti”) or in batches in a hood annealing furnace (“hood”). They were each heated to the respective final annealing temperature Tsg at an average heating rate HR, at which they were each maintained for a period of time tsg.
  • preheating temperature VWT preheating time VWD
  • hot strip thickness WB hot rolling end temperature WET
  • coiling temperature HT the result of the assessment of the edge cracks on the respective hot strip.
  • the information as to whether hot strip annealing was carried out in the manner explained above, the total cold forming degree KGW, the type of final annealing, the heating rate HR of the final annealing, the final annealing temperature Tsg and the final annealing duration tsg are given in Table 3a and Table 3b.
  • the upper and lower yield strengths ReH and ReL, the yield strength Rp0.2, the tensile strength Rm, the elongation at break A50, the n-value n 10-20 are determined on the cold-rolled and finally annealed steel strips obtained , the r value r 10-20 , the austenite grain size KG, the KAM value determined with a step size of 100 nm and a deposition value of 5 °, and the quotient KG/KAM.
  • the yield strengths ReH and ReL, the yield strength Rp0.2, the tensile strength Rm and the elongation at break A50 were determined in accordance with DIN EN ISO 6892-1:2009 on the cold-rolled strip in the transverse direction.
  • the mean circle-equivalent grain diameter was determined using EBSD (Electron Back Scattering Diffraction).
  • EBSD Electro Back Scattering Diffraction
  • a tolerance angle of 5° was chosen with a minimum grain size of five contiguous neighboring measuring points with a step size of 0.15 ⁇ m.
  • the n 10-20 and the r 10-20 values as well as the KAM value were determined in the manner already explained above. Values that were not recorded are marked with “-” in Table 3.
  • Examples 10, 11, 15, 16, 20, 23 were final annealed in a continuous furnace with a final annealing temperature of 830 ° C, which was outside the temperature range of 950 - 1070 ° C specified according to the invention for a final annealing that takes place in a continuous process.
  • the flat steel products produced in Examples 10, 11, 15, 16, 20, 23 accordingly had very low n values, which are below the minimum value of 0.21 provided for in the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

  • Die Erfindung betrifft ein kaltgewalztes Stahlflachprodukt, das eine für die Umformung zu Bauteilen, insbesondere Fahrzeugbauteilen und desgleichen, optimale Kombination seiner mechanischen Eigenschaften besitzt.
  • Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung eines solchen kaltgewalzten Stahlflachprodukts.
  • Ebenso nennt die Erfindung für derartige Stahlflachprodukte besonders geeignete Verwendungen.
  • Wenn im vorliegenden Text Gehalte eines Stahls oder eines Stahlflachprodukts genannt sind, beziehen sich diese Gehaltsangaben immer auf das Gewicht (Angabe in Gew.-%), sofern nichts anderes ausdrücklich angegeben ist. Sind im vorliegenden Text Angaben zur Zusammensetzung von Atmosphären oder Gasgemischen angegeben, so beziehen sich die zu den einzelnen Bestandteilen gemachten Gehaltsangaben immer auf das Volumen (Angabe in Vol.-%), sofern nichts anderes ausdrücklich angegeben ist. Sind im vorliegenden Text Angaben zu Gehalten einzelner Bestandteile am Gefüge eines Stahlflachprodukts gemacht, so beziehen sich diese immer auf den am Gefügeschliff gemäß DIN EN 13925 (2003.07) ermittelten Anteil in Flächen-% (Angabe in Flächen-%), sofern nichts anderes ausdrücklich angegeben ist.
  • Unter dem Begriff "Stahlflachprodukt" werden im vorliegenden Text in einem Walzprozess erzeugte Stahlbänder oder Stahlbleche sowie daraus gewonnene Zuschnitte, Platinen und vergleichbare Produkte verstanden, deren Dicke jeweils wesentlich kleiner ist als ihre Breite und Länge.
  • Wenn hier vom "n-Wert" die Rede ist, dann ist damit der als "n10-20" gemäß DIN 10275 im Zugversuch bestimmte n-Wert gemeint. Der Zugversuch selbst wird dabei nach DIN EN ISO 6892-1 (Probenform 1) durchgeführt.
  • Wenn hier vom "r-Wert" die Rede ist, dann ist damit der als "r10-20" gemäß DIN 10113 im Zugversuch bestimmte r-Wert gemeint. Der Zugversuch selbst wird dabei auch hier nach DIN EN ISO 6892-1 (Probenform 1) durchgeführt.
  • Höherfeste, kaltumformbare Stähle und daraus erzeugte Stahlflachprodukte werden insbesondere für die Herstellung von Karosseriebauteilen für Kraftfahrzeuge benötigt. Gerade dort besteht die Forderung, dass die Bleche, aus denen die Bauteile gefertigt werden, bei einem optimal geringen Gewicht nicht nur gut verformbar sind, sondern auch eine ausreichende Festigkeit besitzen, um bei geringen Blechdicken einen effektiven Beitrag zur Stabilität der Karosserie leisten zu können.
  • Aus der US 2017/0114433 A9 ist ein kaltgewalztes Stahlblech bekannt, das nach einer Glühung TRIP-Eigenschaften und eine Zugfestigkeit von mindestens 1000 MPa, insbesondere mindestens 1180 MPa, bei einer Gesamtdehnung von mindestens 15 %, insbesondere mindestens 20 %, aufweisen soll. Das Stahlblech besteht aus (in Gew.-%) C: 0,1 - 0,3 %; Mn: 4 - 10 %, AI: 0,05 - 5 %, Si: 0,05 - 5 %; und Nb: 0,008 - 0,1, Rest Eisen und unvermeidliche Verunreinigungen, wobei Mn-Gehalte von 4 - 7 %, insbesondere 6 - 7 %, Si-Gehalte von 0,1 - 1,1 und Al-Gehalte von 0,5 - 1,6 % besonders bevorzugt sind. Ebenso werden ein Nb-Gehalt von 0,02 % und C-Gehalte von 0,15 - 0,17 % als besonders günstig angesehen. Dabei besteht die Mikrostruktur des kaltgewalzten Blechs zu mindestens 20 % aus Restaustenit und zu mehr als 50 % aus lanzettenartig geglühtem ("lath type") Ferrit. Gleichzeitig besitzen der Restaustenit und der Ferrit eine ultrafeine Korngröße von weniger als 5 µm. Um die angestrebte Struktur und Festigkeitseigenschaften zu erzielen, ist im Labormaßstab eine entsprechend zusammengesetzte, durch Vakuuminduktionsschmelzen erschmolzene Schmelze zu Brammen vergossen worden, die anschließend zu 20 mm dicken Platten vorgewalzt worden ist. Die Platten sind über 3 Stunden bei einer Temperatur von 1230 °C gehalten worden, um eine Homogenisierung zu bewirken, und darauf folgend in drei Schritten zu Platten mit einer Dicke von 4 mm fertig warmgewalzt worden. Die mit einer Endtemperatur von 900 °C die Fertigwarmwalzstaffel verlassenden warmgewalzten Platten sind dann beschleunigt auf eine Haspeltemperatur von 750 °C abgekühlt worden, bei der sie anschließend für eine Stunde gehalten worden sind. Anschließend sind die Platten im Ofen auf Raumtemperatur gehalten worden. Auf diese Weise sollten die Vorgänge simuliert werden, die ablaufen, wenn ein in entsprechender Weise erzeugtes Warmband zu einem Haspel gewickelt wird und im Haspel auf Raumtemperatur abkühlt. Nach einer Glühung sind die warmgewalzten Platten mit einer Dickenreduktion von 40 - 50 % kaltgewalzt worden. Die kaltgewalzten Platten haben schließlich eine Durchlaufglüheinrichtung durchlaufen, in der ein Glühzyklus simuliert wurde, bei dem die Platten mit einer Aufheizrate von 10 °C/s auf 650 - 750 °C, insbesondere 680 - 740 °C, erwärmt und für 180 Sekunden bei dieser Temperatur gehalten worden sind, um darauf folgend mit einer Abkühlrate von 10 °C/s auf Raumtemperatur abgekühlt zu werden.
  • Neben dem voranstehend erläuterten Stand der Technik ist aus der KR 101 481 069 B1 ein Stahlblech mit hoher spezifischer Festigkeit und ausgezeichneter Duktilität bekannt, das 0,15 bis 0,5 Gew.-% Kohlenstoff (C), 6,0 bis 8,0 Gew.-% Mangan (Mn), 5,0 bis 6,0 Gew.-% Aluminium (Al), 0,05 bis 0,5 Gew.-% Silicium (Si), weniger als 0,02 Gew.-% (außer 0) Schwefel (S) enthält, wobei der Rest aus Eisen (Fe) und unvermeidbaren Verunreinigungen besteht. Optional kann der Stahl jeweils 0,005 - 1,0 Gew.-% Ti, V, Nb oder Zr enthalten. Die Streckgrenze des Stahls ist größer oder gleich 550 MPa. Die Zugfestigkeit multipliziert mit der Dehnung ist größer oder gleich 28.000 MPa%.
  • Des Weiteren ist aus der CN 104 694 816 A ein Verfahren zur Herstellung von hoch-aluminiumhaltigem Manganstahl bekannt. Dazu wird ein Stahlflachprodukt, das aus einem Stahl mit (in Masse-%) 0,10 bis 0,35 % C, 5,0 bis 9,0 % Mn, 4,0 bis 7,5 % Al, weniger als 0,003 % P, weniger als 0,002 % S, Rest Fe und unvermeidlichen Verunreinigungen besteht, zu einem Vormaterial vergossen, das anschließend über 1,5 Stunden auf 1200 °C erwärmt und dann in mehreren Stufen ausgehend von einer 1050 - 1100 °C betragenden Anfangstemperatur und mit einer Endtemperatur von 850 - 900 °C warmgewalzt wird. Der während des Warmwalzens erzielte Umformgrad beträgt 80 bis 85 %. Das so erhaltene Warmband wird bei einer Haspeltemperatur von 600 - 700 °C zu einem Coil gewickelt und anschließend mit einem Kaltwalzgrad von 65 bis 70 % kaltgewalzt. Abschließend wird eine Schlussglühung bei 860 - 930 °C über eine Dauer von 0,5 Stunden durchgeführt, auf die ein Abschrecken mit Wasser folgt. Das so erzeugte kaltgewalzte Stahlblech soll bei einem hohen Aluminiumgehalt eine hohe Festigkeit und Duktilität besitzen.
  • Der Vorteil von Stahlflachprodukten der voranstehend erläuterten Art besteht in ihrer Kombination aus in Folge ihrer vergleichbar geringen Dichte geringem Gewicht, hoher Festigkeit und guten Dehnungseigenschaften. Allerdings erweist sich die Erzeugung solcher Stahlflachprodukte im großindustriellen Maßstab als problematisch. So zeigt sich beispielsweise eine hohe Empfindlichkeit gegen die Entstehung von Kantenrissen beim Warmwalzen. Auch erweist es sich in der Praxis häufig als schwierig, komplex geformte Bauteile, wie sie insbesondere im Bereich des Fahrzeugbaus benötigt werden, durch Tiefziehen oder vergleichbare Umformoperationen zu formen, bei denen hohe Verformungsgrade erzielt werden können.
  • Vor dem Hintergrund des Standes der Technik hat sich die Aufgabe ergeben, ein den praktischen Anforderungen an seine Verwendbarkeit mit hoher Sicherheit genügendes kaltgewalztes Stahlflachprodukt zu schaffen, das sich auch im großindustriellen Maßstab betriebssicher erzeugen lässt.
  • Darüber hinaus sollten ein praxisgerechtes Verfahren zur Herstellung und mindestens eine vorteilhafte Verwendung eines solchen Stahlflachprodukts angegeben werden.
  • In Bezug auf das Stahlflachprodukt hat die Erfindung diese Aufgabe dadurch gelöst, dass ein solches Stahlflachprodukt gemäß Anspruch 1 ausgebildet ist.
  • Ein die voranstehend genannte Aufgabe erfindungsgemäß lösendes Verfahren ist in Anspruch 12 angegeben.
  • Dabei sind erfindungsgemäße Stahlflachprodukte in besonderer Weise für die Herstellung von Fahrzeugbauteilen, insbesondere für Fahrwerks- oder Karosserieteile von Kraftfahrzeugen, wie Personen- oder Lastkraftwagen, geeignet. Zu diesen Teilen zählen beispielsweise Komponenten für die Lenkung, Radfelgen, Komponenten für das Fahrgestell von Fahrzeugen und desgleichen. Jedoch können erfindungsgemäße Stahlflachprodukte auch besonders gut zur Herstellung von Einrichtungen verwendet werden, die einen ballistischen Schutz bieten sollen. Auf Grund ihrer guten Umformbarkeit sind erfindungsgemäße Stahlflachprodukte darüber hinaus in besonderer Weise für Innen- oder Außenhochdruckumformverfahren geeignet. So lassen sich aus erfindungsgemäßen Stahlflachprodukten beispielsweise auch Bauteile für Verbrennungsmotoren, wie Nockenwellen, Kolbenstangen und desgleichen, herstellen. Des Weiteren können erfindungsgemäße Stahlflachprodukte im Bereich des Behälterbaus oder anderer Anwendungen, bei denen großvolumige Körper mit komplexer Formgebung erzeugt werden müssen, mit Erfolg eingesetzt werden.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.
  • Ein erfindungsgemäßes Stahlflachprodukt zeichnet sich demnach dadurch aus, dass es im kaltgewalzten Zustand einen mindestens 0,21 betragenden n-Wert aufweist, wobei das Stahlflachprodukt aus einem Stahl hergestellt ist, der aus (in Gew.-%)
    C: 0,08 - 0,25 %,
    Al: 3 - 5,4%,
    Mn: 9 - 14%,
    B: 0 - 0,1 %,
    Cr: 0 - 2%,
    Si: 0 - 0,4%,
    P: 0 - 0,1 %,
    S: 0 - 0,3%,
    Ta: 0 - 0,5 %,
    W: 0 - 0,5 %,
    Ni: 0 - 2 %,
    Cu: 0 - 2%,
    Ca: 0 - 0,15 %,
    N: 0 - 0,02 %
    Co: 0 - 2 %
    sowie einem Element oder mehreren Elementen aus der Gruppe "Ti, Nb, V, Mo" mit der Maßgabe, dass die Summe der Gehalte an diesen Elementen mindestens 0,05 % und höchstens 1 % beträgt, und/oder einem Element oder mehreren Elementen aus der Gruppe "Zr, La, Ce, Y" mit der Maßgabe, dass die Summe der Gehalte an diesen Elementen mindestens 0,05 % und höchstens 0,3 % beträgt, sowie Rest Eisen und unvermeidbaren Verunreinigungen
    besteht,
    • wobei für das Verhältnis %Mn/%AI gilt %Mn/%AI > 1,2
    • und für Al eq = % Al + 0,4 × % Si 3 3 × % Si 2 + 8,3 × % Si gilt 3 Al eq 8
      Figure imgb0001
    • mit %Mn: jeweiliger Mn-Gehalt des Stahls
      • %AI: jeweiliger Al-Gehalt des Stahls
      • %Si: jeweiliger Si-Gehalt des Stahls
    • wobei das Gefüge des Stahlflachprodukts zu 10 - 60 Flächen-% aus Austenit und zu 40 - 90 Flächen-% aus Ferrit bei einer mittleren Korngröße des Austenits von 0,85 - 3 µm besteht.
  • Das erfindungsgemäße Stahlflachprodukt weist dabei eine Zusammensetzung und einen Gefügezustand auf, die ihm für die jeweiligen Verwendungszwecke optimierte Eigenschaften verleihen.
  • So sieht die Erfindung einen Gehalt an Kohlenstoff ("C") von 0,08 - 0,25 Gew.-% vor, um eine ausreichende Menge Austenit im Gefüge des Stahlflachprodukts zu gewährleisten. Dabei ist der C-Gehalt auf 0,25 Gew.-% beschränkt, um die Neigung zur Bildung von spröden Kappa-Karbiden an den Korngrenzen zu vermeiden. Solche Karbide würden die Warm- und Kaltumformbarkeit der erfindungsgemäßen Stahlflachprodukte beeinträchtigen. Im erfindungsgemäß vorgegebenen Gehaltsbereich wirkt der Kohlenstoff verfestigend durch Mischkristallbildung und erhöht die Stapelfehlerenergie, was wiederum zur Steigerung der Festigkeit beiträgt. Neben den negativen Auswirkungen auf die Verformbarkeit würden höhere C-Gehalte die Schweißbarkeit beeinträchtigen. Daher ist die Obergrenze des C-Gehalts erfindungsgemäß auf 0,25 Gew.-% beschränkt, wobei sich C-Gehalte von höchstens 0,22 Gew.-%, insbesondere von höchstens 0,19 Gew.-% oder ganz besonders bevorzugt von höchstens 0,17 Gew.-% als besonders günstig in Bezug auf die Vermeidung negativer Wirkungen des C-Gehalts herausgestellt haben. Die positiven Wirkungen der Anwesenheit von C im erfindungsgemäßen Stahlflachprodukt lassen sich dagegen dadurch nutzen, dass der C-Gehalt mindestens 0,08 Gew.-% beträgt, wobei sich bei Gehalten von mindestens 0,11 Gew.-% C, insbesondere mindestens 0,13 Gew.-% C, die vorteilhaften Wirkungen besonders sicher einstellen.
  • Aluminium ("Al") ist im erfindungsgemäßen Stahlflachprodukt in Gehalten von 3 - 5,4 Gew.-% vorhanden, um einerseits die Dichte und damit einhergehend das Gewicht des Stahlflachprodukts zu vermindern und um andererseits die Zugfestigkeit durch Mischkristallhärtung zu erhöhen. AI trägt zudem zur Bildung des Ferritanteils im Gefüge des erfindungsgemäßen Stahlflachprodukts bei. Diese günstigen Effekte stellen sich bei Al-Gehalten von mindestens 3 Gew.-% ein, wobei Gehalte von mindestens 4 Gew.-% in dieser Hinsicht besonders günstig sind. Um jedoch negative Einflüsse zu vermeiden, ist der Al-Gehalt eines erfindungsgemäßen Stahlflachprodukts auf höchstens 5,4 Gew.-% beschränkt. Oberhalb dieser Grenze liegende Al-Gehalte würden zu einer Verschlechterung der Kaltumformbarkeit durch Bildung intermetallischer Phasen führen. Als besonders geeignet zum Erreichen einer guten Kaltumformbarkeit haben sich Al-Gehalte von höchstens 5,1 Gew.-% erwiesen. Darüber hinaus bildet Al, wenn es in höheren Gehalten vorhanden ist, mit Stickstoff und Kohlenstoff versprödende Partikel, vermindert die Wärmeleitfähigkeit und senkt das E-Modul.
  • Mangan ("Mn") ist im erfindungsgemäßen Stahlflachprodukt in Gehalten von 9 - 14 Gew.-% vorhanden. Mn trägt zur Bildung einer ausreichenden Menge an Austenit im Gefüge des Stahlflachprodukts und ihrer Stabilität bei. Gleichzeitig verbessert die Anwesenheit von Mn in den erfindungsgemäß vorgeschriebenen Mengen die Warmformbarkeit, die Schweißbarkeit und die Festigkeit des Stahlflachprodukts. Dabei wirkt Mn bei der Erzeugung des Stahls, aus dem das erfindungsgemäße Stahlflachprodukt besteht, desoxidierend. Zu hohe Mn-Gehalte werden vermieden, um die Korrosionsbeständigkeit des Stahlflachprodukts nicht zu beeinträchtigen. Zudem führen zu hohe Mn-Gehalte zu einer zu hohen Stabilität des Austenits, sodass der TRIP-Effekt verhindert oder eingeschränkt wird, was sich negativ auf die Umformbarkeit des Stahlflachprodukts auswirkt. Besonders sicher lassen sich die positiven Einflüsse von Mn in einem erfindungsgemäßen Stahlflachprodukt bei Gehalten von mindestens 9 Gew.-%, nutzen. Negative Einflüsse der Anwesenheit von Mn bei gleichzeitig optimiertem Kosten-Nutzen-Verhältnis lassen sich dadurch vermeiden, dass der Mn-Gehalt auf höchstens 12 Gew.-%, insbesondere höchstens 11,0 Gew.-%, beschränkt wird. Als besonders günstig zum Erreichen einer guten Umformbarkeit haben sich Mn-Gehalte von höchstens 10,7 Gew.-% erwiesen.
  • Bor ("B") kann im erfindungsgemäßen Stahlflachprodukt optional vorhanden sein, um die Ausprägung eines feinen Gefüges zu unterstützen. Hierzu können bis zu 0,1 Gew.-% B vorgesehen sein. Dabei ergibt sich ein positiver Beitrag von B zu den Eigenschaften eines erfindungsgemäßen Stahlflachprodukts bereits bei Gehalten von 0,005 Gew.-%. Besonders effektiv lässt sich der positive Einfluss von B bei B-Gehalten von weniger als 0,02 Gew.-% nutzen.
  • Chrom ("Cr") kann dem erfindungsgemäßen Stahlflachprodukt optional in Gehalten von bis zu 2 Gew.-% zugegeben werden, um die Korrosions- und Oxidationsbeständigkeit zu verbessern. Bei oberhalb von 2 Gew.-% liegenden Gehalten können sich Cr-Karbide bilden, die die Verformbarkeit des Stahlflachprodukts beeinträchtigen können. Besonders effektiv lässt sich der positive Einfluss von Cr bei Cr-Gehalten von weniger als 0,8 Gew.-% nutzen. Die positiven Wirkungen von Cr lassen sich im erfindungsgemäßen Stahlflachprodukt dann besonders sicher nutzen, wenn der Cr-Gehalt mindestens 0,05 Gew.-%, insbesondere mindestens 0,10 Gew.-% beträgt.
  • Optional vorhandene Gehalte von bis zu 0,4 Gew.-% an Silizium ("Si") können dem erfindungsgemäßen Stahlflachprodukt zugegeben werden, um die Festigkeit und Korrosionsbeständigkeit zu erhöhen. Gleichzeitig verringert Si wie AI die Dichte des Werkstoffs und trägt zur Desoxidation bei. Zu hohe Si-Gehalte können jedoch die Duktilität verschlechtern und die Schweißeignung des erfindungsgemäßen Stahlflachprodukts herabsetzen. Diese negativen Einflüsse können dadurch sicher vermieden werden, dass bei einem erfindungsgemäßen Stahlflachprodukt der Si-Gehalt auf höchstens 0,3 Gew.-% beschränkt wird. Gleichzeitig treten die Wirkungen von Si im erfindungsgemäßen Stahlflachprodukt schon dann ein, wenn der Si-Gehalt mindestens 0,05 Gew.-%, insbesondere mindestens 0,1 Gew.-%, beträgt.
  • Phosphor ("P") ist grundsätzlich unerwünscht im erfindungsgemäßen Stahlflachprodukt, weil es Seigerung verursacht und die Kaltumformbarkeit, Schweißbarkeit und Oxidationsbeständigkeit beeinträchtigt. Daher ist der P-Gehalt auf höchstens 0,1 Gew.-%, insbesondere höchstens 0,05 Gew.-%, beschränkt.
  • Schwefel ("S") ist ebenfalls im erfindungsgemäßen Stahlflachprodukt ein unerwünschtes Begleitelement, da es bei zu hohen Gehalten die Warmumformbarkeit beim Warmwalzen mindert und die Korrosionsbeständigkeit verschlechtert.
  • Tantal ("Ta") und Wolfram ("W") können dem erfindungsgemäßen Stahlflachprodukt zur Festigkeitssteigerung durch Karbidbildung in Gehalten von bis zu 0,5 Gew.-% beigegeben werden. Ein optimales Kosten-Nutzen-Verhältnis ergibt sich dabei bei Gehalten von bis zu 0,1 Gew.-%.
  • Optional in Gehalten von bis zu 2 Gew.-% vorhandenes Nickel ("Ni") erhöht die Menge und die Stabilität des im Gefüge eines erfindungsgemäßen Stahlflachprodukts vorhandenen Austenits. Gleichzeitig trägt Ni zur Festigkeit und Zähigkeit des Stahlflachprodukts bei. Ebenso erhöht Ni die Korrosionsbeständigkeit. Diese vorteilhaften Wirkungen lassen sich insbesondere dann nutzen, wenn der Ni-Gehalt eines erfindungsgemäßen Stahlflachprodukts mindestens 0,05 Gew.-% beträgt. Besonders effektiv lässt sich der positive Einfluss von Ni bei Ni-Gehalten von weniger als 1,0 Gew.-% nutzen.
  • Die Zugabe von Kupfer ("Cu") in Gehalten von bis zu 2 Gew.-% verbessert die Korrosionsbeständigkeit des Stahlflachprodukts. Höhere Cu-Gehalte verschlechtern jedoch die Warmumformbarkeit und Schweißbarkeit. Besonders effektiv lässt sich der positive Einfluss von Cu bei Cu-Gehalten von weniger als 0,1 Gew.-% nutzen.
  • Kalzium ("Ca") kann dem Stahlflachprodukt optional in Gehalten von bis zu 0,15 Gew.-% zur Abbindung schädlicher S-Gehalte zugegeben werden. Besonders wirksam erweist sich Ca dabei in Gehalten von bis zu 0,05 Gew.-%, die, soweit Ca überhaupt vorhanden ist, daher bevorzugt sind. Schädliche Einflüsse von Ca können dabei dadurch sicher vermieden werden, dass der Ca-Gehalt auf weniger als 0,01 Gew.-% beschränkt wird.
  • Stickstoff ("N") ist im erfindungsgemäßen Stahlflachprodukt in möglichst geringen Gehalten vorhanden, um die Bildung unerwünschter Al-Nitride zu vermeiden, welche die mechanischen Eigenschaften und Verformbarkeit des Stahlflachprodukts im besonderen Maße beeinträchtigen würden. Daher ist der N-Gehalt des Stahlflachprodukts erfindungsgemäß auf höchstens 0,02 Gew.-%, insbesondere 0,01 Gew.-%, beschränkt, wobei praxisgerechte N-Gehalte im Bereich von 0,001 - 0,008 Gew.-% zu finden sind.
  • Kobalt ("Co") kann dem erfindungsgemäßen Stahlflachprodukt optional in Gehalten von bis zu 2 Gew.-% zugegeben werden, um die Menge und die Stabilität des im Gefüge vorhandenen Austenits zu erhöhen. Gleichzeitig erhöht Co die Rekristallisationstemperatur. Optimale Wirkungen der Anwesenheit von Co ergeben sich, wenn der Co-Gehalt auf höchstens 1 Gew.-% beschränkt ist, wobei sich Co-Gehalte von weniger als 0,01 Gew.-% als in vielen Fällen ausreichend erwiesen haben.
  • Antimon ("Sb") beeinflusst die Eigenschaften des erfindungsgemäßen Stahlflachprodukts negativ und zählt daher zu den unerwünschten, jedoch herstellungsbedingt unvermeidbaren Verunreinigungen. Sein Gehalt sollte so gering wie möglich sein, jedenfalls aber wie der aller anderen hier nicht aufgeführten und deshalb den unvermeidbaren Verunreinigungen zuzurechnenden Elementen im technisch unwirksamen Bereich liegen. Als praxisgerechte Obergrenze, unterhalb der der Sb-Gehalt liegen sollte, hat sich hier 0,002 Gew.-% bewährt.
  • Eine besondere Bedeutung kommt den Elementen zu, die den Gruppen "Ti, Nb, V, Mo" und "Zr, La, Ce, Y" zugeordnet sind. Erfindungsgemäß ist mindestens ein Element aus mindestens einer dieser Gruppen im erfindungsgemäßen Stahlflachprodukt vorhanden, um durch die Bildung von Ausscheidungen die Kantenstabilität, d.h. die Vermeidung der Bildung von Rissen, während des Warmwalzens zu unterstützen. Dabei können, wie gesagt, die Elemente der Gruppe "Ti, Nb, V, Mo" alleine, d.h. ohne die Anwesenheit eines Elements der Gruppe "Zr, La, Ce, Y" vorhanden sein, oder in Kombination mit mindestens einem der Elemente der Gruppe "Zr, La, Ce, Y". Entsprechend können die Elemente der Gruppe "Zr, La, Ce, Y" alleine, d.h. ohne die Anwesenheit eines Elements der Gruppe "Ti, Nb, V, Mo" vorhanden sein, oder in Kombination mit mindestens einem der Elemente der Gruppe "Ti, Nb, V, Mo".
  • Im Fall, dass nur ein Element der Gruppe "Ti, Nb, V, Mo" im erfindungsgemäßen Stahlflachprodukt vorhanden ist, beträgt der Gehalt an diesem einen Element 0,05 - 1 Gew.-%. Sind dagegen zwei oder mehr Elemente der Gruppe "Ti, Nb, V, Mo" vorhanden, beträgt die Summe der Gehalte ebenfalls 0,05 - 1 Gew.-%. Besonders günstige Einflüsse der Elemente der Gruppe "Ti, Nb, V, Mo" ergeben sich dabei dann, wenn deren Gehalt im Fall, dass nur ein Element dieser Gruppe vorhanden ist, einzeln oder im Fall, dass zwei oder mehr Elemente dieser Gruppe vorhanden sind, in Summe mindestens 0,08 Gew.-% beträgt. Eine optimale Kosten-Nutzen-Relation kann erhalten werden, wenn im Fall, dass nur ein Element dieser Gruppe vorhanden ist, einzeln oder im Fall, dass zwei oder mehr Elemente dieser Gruppe vorhanden sind, in Summe der Gehalte an den jeweils anwesenden Elementen der Gruppe höchstens 0,5 Gew.-%, insbesondere höchstens 0,35 Gew.-%, beträgt.
  • Genauso beträgt im Fall, dass nur ein Element der Gruppe "Zr, La, Ce, Y" im erfindungsgemäßen Stahlflachprodukt anwesend ist, dessen Gehalt 0,05 - 0,3 Gew.-%. Sind dagegen zwei oder mehr Elemente der Gruppe "Zr, La, Ce, Y" vorhanden, beträgt die Summe der Gehalte dieser Elemente ebenfalls 0,05 - 0,3 Gew.-%. Besonders günstige Einflüsse der Elemente der Gruppe "Zr, La, Ce, Y" ergeben sich dabei dann, wenn deren Gehalt im Fall, dass nur ein Element dieser Gruppe vorhanden ist, einzeln oder im Fall, dass zwei oder mehr Elemente dieser Gruppe vorhanden sind, in Summe mindestens 0,08 Gew.-% beträgt. Eine optimale Kosten-Nutzen-Relation kann erhalten werden, wenn im Fall, dass nur ein Element dieser Gruppe vorhanden ist, einzeln oder im Fall, dass zwei oder mehr Elemente dieser Gruppe vorhanden sind, in Summe der Gehalt an den jeweils anwesenden Elementen der Gruppe höchstens 0,2 Gew.-%, insbesondere höchstens 0,15 Gew.-%, beträgt.
  • Neben der Verbesserung der Kantenstabilität bewirkt Titan ("Ti") eine Steigerung der Festigkeit durch die Bildung von Ti-Karbiden und verbessert den r-Wert. Dabei ergibt sich die positive Wirkung auf die Kantenstabilität und die Festigkeit von Ti insbesondere dann, wenn gleichzeitig auch Nb vorhanden ist. Die gleichzeitige Anwesenheit von Ti und Nb ist daher bevorzugt. Die Zugabe von Ti verbessert zudem die Tieftemperaturzähigkeit und die Warmfestigkeit des Werkstoffs. Zu hohe Gehalte an Ti sollten allerdings vermieden werden, um negative Einflüsse auf die Verformbarkeit und die Schweißeigenschaften zu vermeiden. Die vorteilhafte Wirkung von Ti lässt sich insbesondere dann nutzen, wenn der Ti-Gehalt mindestens 0,06 Gew.-% beträgt.
  • Wie Ti bewirkt Niob ("Nb") neben der Verbesserung der Kantenstabilität, die sich insbesondere ergibt, wenn Ti und Nb gleichzeitig vorhanden sind, eine Steigerung der Festigkeit durch die Bildung von Nb-Karbiden und verbessert den r-Wert, wobei auch diese Wirkung dann besonders sicher eintritt, wenn gleichzeitig Ti anwesend ist. Die Zugabe von Nb verbessert zudem die Tieftemperaturzähigkeit und die Warmfestigkeit des Werkstoffs. Zu hohe Gehalte an Nb sollten allerdings vermieden werden, um negative Einflüsse auf die Verformbarkeit und die Schweißeigenschaften zu vermeiden. Die vorteilhafte Wirkung von Nb lässt sich insbesondere dann nutzen, wenn der Nb-Gehalt mindestens 0,03 Gew.-% beträgt.
  • Vanadium ("V") bildet Karbide und trägt so, neben seinem positiven Einfluss auf die Kantenstabilität, zur Festigkeit des erfindungsgemäßen Stahlflachprodukts bei. Gleichzeitig verbessert die Zugabe von V den r-Wert des Stahlflachprodukts. Besonders sicher lassen sich die positiven Einflüsse von V bei Gehalten von mindestens 0,03 Gew.-% nutzen.
  • Molybdän ("Mo") verbessert ebenfalls nicht nur die Kantenstabilität, sondern trägt zusätzlich zur Zugfestigkeit bei und bildet mit C feine Karbide, die die Ausprägung eines feinen Gefüges unterstützen. Bei zu hohen Gehalten verschlechtert Mo jedoch die Warm- und Kaltformbarkeit des erfindungsgemäßen Stahlflachprodukts. Die positiven Wirkungen von Mo lassen sich insbesondere dann nutzen, wenn der Mo-Gehalt mindestens 0,05 Gew.-% beträgt.
  • Cer ("Ce"), Lanthan ("La"), Zirkonium ("Zr") und Yttrium ("Y") verbessern einerseits die Kantenstabilität. Andererseits wirken sie auch entschwefelnd und desoxidierend. Dabei erhöhen sie zusätzlich den r-Wert und verbessern die Tiefziehfähigkeit. Ce, La, Zr und Y kompensieren auf diese Weise die negativen Einflüsse, die hohe Al-Gehalte auf diese Eigenschaften des Stahlflachprodukts haben können. Dabei sind die Wirkungen von Ce, La, Zr und Y jeweils gleich, so dass diese Elemente gegeneinander ausgetauscht werden können.
  • Durch die ergänzende Maßgabe, gemäß der das aus dem jeweiligen Al- und Si-Gehalt gebildete Aluminium-Äquivalent Aleq im Bereich von 3 - 8 Gew.-% liegen muss, ist sichergestellt, dass die Gehalte an den ähnlich wirkenden Legierungselementen AI und Si so weit begrenzt sind, dass die Bildung von extrem versprödend wirkenden intermetallischen Ausscheidungen verhindert wird. Um dieser Gefahr besonders sicher entgegenzuwirken, kann der für Aleq vorgegebene Bereich erfindungsgemäß auf höchstens 7,6 Gew.-%, insbesondere höchstens 7 Gew.-% oder höchstens 6,5 Gew.-%, beschränkt werden. Gleichzeitig kann der Mindestwert für Aleq auf 4,8 Gew.-% angehoben werden, um die positiven Auswirkungen der gleichzeitigen Anwesenheit von AI und Si sicher nutzen zu können.
  • Das Verhältnis %Mn/%AI der Gehalte an Mn ("%Mn") und AI ("%Al") soll erfindungsgemäß mehr als 1,2 Gew.-% betragen, damit trotz des hohen Al-Gehalts eine ausreichende Menge an Austenit im Gefüge des Stahlflachprodukts erzielt wird.
  • Durch die voranstehend erläuterten legierungstechnischen und die nachfolgend erläuterten verfahrensmäßigen Maßnahmen ist sichergestellt, dass der Austenitgehalt im Gefüge des erfindungsgemäßen Stahlflachprodukts 10 - 60 Flächen-% beträgt. Bei derartigen Gehalten an Austenit weist der Stahl eines erfindungsgemäßen Stahlflachprodukts TRIP-Eigenschaften und das Stahlflachprodukt einen hohen n-Wert von mindestens 0,21 auf.
  • Neben den technisch unvermeidbaren anderen Gefügebestandteilen, die jedoch in so geringen Mengen vorhanden sind, dass sie keinen Einfluss auf die Eigenschaften haben, besteht der nicht von Austenit eingenommene Rest des Gefüges des erfindungsgemäßen Stahlflachprodukts als Folge des hohen Al-Gehalts aus Ferrit.
  • Ebenfalls in Folge der legierungstechnischen Maßnahmen und der erfindungsgemäßen Herstellweise weist ein erfindungsgemäßes Stahlflachprodukt einen n-Wert von mindestens 0,21 auf, wobei erfindungsgemäße Stahlflachprodukte regelmäßig n-Werte von mindestens 0,25, insbesondere mindestens 0,26, erreichen. Hohe n-Werte stehen für eine mit einer hohen Bruchdehnung A50 einhergehende hohe Umformbarkeit underlauben daher die Formung komplexer Bauteile Zu hohe n-Werte sollten allerdings vermieden werden, da dies hohe erforderliche Verformungskräfte nach sich ziehen würde. In Folge ihrer Zusammensetzung und Herstellung weisen erfindungsgemäße Stahlflachprodukte n-Werte auf, die regelmäßig nicht höher als 0,5, insbesondere nicht höher als 0,4, sind.
  • Die Austenit-Korngröße im Gefüge eines erfindungsgemäßen Stahlflachprodukts beträgt im Mittel 0,85 - 3 µm. Zu kleine Körner würden den TRIP-Effekt hemmen. Der angestrebte n-Wert würde nicht erreicht. Zu große Körner würden jedoch zu einer starken Abnahme der Streckgrenze und der Zugfestigkeit führen. Optimalerweise beträgt die mittlere Korngröße des Austenits mindestens 0,9 µm. Ebenso hat es sich als günstig erwiesen, wenn die maximale Größe der Austenitkörner im Gefüge eines erfindungsgemäßen Stahlflachprodukts auf 1,5 µm beschränkt wird.
  • Gemäß einer ersten Ausgestaltung der Erfindung, die zu einer weiter verbesserten Verformbarkeit beiträgt, wird bei einem erfindungsgemäßen Stahlflachprodukt neben einer hohen Austenitkorngröße ein hoher Rekristallisationsgrad in den Ferritkörnern angestrebt, damit diese die Verformung der Austenitkörner mittragen können. Dieser Rekristallisationsgrad kann mit der sogenannten "Kernal Average Misorientation" ("KAM") quantifiziert werden. Die KAM ist ein Maß für die Versetzungsdichte. Eine niedrige KAM im Ferrit bedeutet damit letztlich eine hohe Verformungsfähigkeit des Ferrits. Da das Gefüge eines erfindungsgemäßen Stahlflachprodukts aus Austenit und Ferrit besteht ("Duplexgefüge"), kann ein niedriger KAM des Ferrits eine niedrige Austenitkorngröße kompensieren. Für den aus der jeweiligen mittleren Korngröße KG des Austenits und dem am Ferrit bestimmten "KAM 1 5°-Wert" gebildete Quotient KG/(KAM 1 5°) gilt daher erfindungsgemäß KG/(KAM 1 5°) > 2,7 µm/°. Die KAM des Ferrits wird hierbei im Längsschliff als "KAM 1 5°" gemessen. Dabei wurde die Probe per EBSD mit einer Auflösung von 100 nm abgerastert und anschließend mit einer Schrittweite von 1 (nur 1. Nachbarn) und einem Abschneidewert von 5° ausgewertet, wie in Nafisi S., Szpunar J., Vali H., Ghomashchi R., 2009, Grain misorientation in thixo-billets prepared by melt stirring. Mater Char 60:938-945).
  • Das Verfahren zur Herstellung eines erfindungsgemäß beschaffenen kaltgewalzten Stahlflachprodukts ist so angelegt, dass basierend auf der erfindungsgemäßen Legierungsvorschrift das angestrebte Eigenschaftsprofil des Stahlflachprodukts erzielt wird. Zu diesem Zweck umfasst das erfindungsgemäße Verfahren folgende Arbeitsschritte:
    1. a) Erschmelzen einer Stahlschmelze, die aus (in Gew.-%) C: 0,08 - 0,25 %, AI: 3 - 5,4 %, Mn: 9 - 14 %, B: 0 - 0,1 %, Cr: 0 - 2 %, Si: 0 - 0,4 %, P: 0 - 0,1 %, S: 0 - 0,3 %, Ta: 0 - 0,5 %, W: 0 - 0,5 %, Ni: 0 - 2 %, Cu: 0 - 2 %, Ca: 0 - 0,15 %, N: 0 - 0,02 %, Co: 0 - 2 %, sowie einem Element oder mehreren Elementen aus der Gruppe "Ti, Nb, V, Mo" mit der Maßgabe, dass die Summe der Gehalte an diesen Elementen mindestens 0,05 % und höchstens 1 % beträgt, undloder einem Element oder mehreren Elementen aus der Gruppe "Zr, La, Ce, Y" mit der Maßgabe, dass die Summe der Gehalte an diesen Elementen mindestens 0,05 % und höchstens 0,3 % beträgt, sowie Rest Eisen und unvermeidbaren Verunreinigungen besteht, wobei für das Verhältnis %Mn/%AI gilt %Mn/%AI > 1,2 und für Aleq = %AI + 0,4 × (%Si)3 - 3 × (%Si)2 + 8,3 × %Si gilt 3 ≤ Aleq ≤ 8 mit %Mn: jeweiliger Mn-Gehalt des Stahls, %Al: jeweiliger Al-Gehalt des Stahls, %Si: jeweiliger Si-Gehalt des Stahls;
    2. b) Vergießen der Stahlschmelze zu einem Vorprodukt, wie einem Gussblock, einer Bramme, einer Dünnbramme oder einem gegossenen Band;
    3. c) Halten oder Erwärmen des Vorprodukts bei einer Vorwärmtemperatur von 1100 - 1350 °C;
    4. d) Warmwalzen des Vorprodukts zu einem Warmband mit einer Warmwalzendtemperatur, die 850 - 1050 °C beträgt;
    5. e) Abkühlen des Warmbands auf eine Haspeltemperatur, die 400 - 900 °C beträgt;
    6. f) Haspeln des auf die Haspeltemperatur abgekühlten Warmbands zu einem Coil;
    7. g) optional: Glühen des Warmbands bei einer Warmbandglühtemperatur von 700 - 1000 °C;
    8. h) optional: Beizen des Warmbands;
    9. i) Kaltwalzen des Warmbands zu einem kaltgewalzten Stahlband mit einem Gesamtumformgrad von 25 - 90 %;
    10. j) Schlussglühen des kaltgewalzten Stahlbands, wobei das Stahlband auf eine Schlussglühtemperatur aufgeheizt wird und das Schlussglühen
      • entweder als Durchlaufglühung im kontinuierlichen Durchlauf durch einen Durchlaufglühofen absolviert wird, bei dem das kaltgewalzte Stahlband über eine Dauer von mindestens 20 sec und weniger als 10 min auf eine Schlussglühtemperatur, die mindestens 950 °C und höchstens 1070 °C beträgt, gehalten wird, wobei die Aufheizrate, mit der das kaltgewalzte Stahlflachprodukt auf die Schlussglühtemperatur erwärmt wird, von 1 - 100 Kls beträgt,
      • oder als Haubenglühung über eine Dauer von 0,5 - 60 h bei einer Schlussglühtemperatur durchgeführt wird, die mehr als 800 °C und bis zu 950 °C beträgt, wobei die Aufheizrate, mit der das kaltgewalzte Stahlflachprodukt auf die Schlussglühtemperatur erwärmt wird, von 0,001 - 0,5 Kls beträgt.
  • Die hier aufgeführten und nachfolgend erläuterten Arbeitsschritte sind diejenigen, die einen Einfluss auf die Eigenschaften des erfindungsgemäß erzeugten Stahlflachprodukts haben. Es versteht sich dabei von selbst, dass bei der Durchführung des erfindungsgemäßen Verfahrens weitere Arbeitsschritte zur Anwendung kommen. Diese können jedoch auf die bei der Herstellung von Stahlflachprodukten vom Fachmann übliche Weise durchgeführt werden, so dass es hierzu keiner weiteren Erläuterung bedarf.
  • Vor dem Warmwalzen muss das zuvor in an sich bekannter Weise (z.B. über einen konventionellen Strangguss, über eine Gießwalzanlage, über eine Zwei-Rollen-Bandgießanlage) aus der erfindungsgemäß zusammengesetzten Stahlschmelze erzeugte Vorprodukt, bei dem es sich typischerweise um eine Bramme, eine Dünnbramme oder ein gegossenes Band handelt, durcherwärmt werden. Eine unvollkommene, inhomogene Durcherwärmung würde die Gefahr von Rissbildung im nachfolgend durchlaufenen Warmwalzprozess mit sich bringen. Die für die Durcherwärmung geeigneten Vorwärmtemperaturen liegen bei 1100 - 1300 °C, wobei sich in der Praxis Vorwärmtemperaturen von mindestens 1150 °C als besonders betriebssicher erwiesen haben. Indem die Vorwärmtemperatur auf höchstens 1250 °C beschränkt wird, kann negativen Auswirkungen der Vorwärmung, wie eine zu teigige Konsistenz des Vorprodukts und einer damit einhergehenden Neigung zum Kleben während des Warmwalzens, entgegengewirkt werden.
  • Das Warmwalzen des Vorprodukts zu einem Warmband kann in konventioneller Weise auf einer hierzu in der Praxis zur Verfügung stehenden Warmwalzstraße erfolgen. Wesentlich ist lediglich, dass das Warmband am Ende des Warmwalzens noch eine Warmwalzendtemperatur aufweist, die 850 - 1050 °C beträgt. Unter 850 °C liegende Warmwalzendtemperaturen würden so hohe Warmwalzkräfte erfordern, dass auf konventionellen Warmwalzgerüsten die angestrebten Umformgrade nicht erreicht werden können. Optimale Warmwalzendtemperaturen liegen dementsprechend im Bereich von 900 - 1050 °C.
  • Ausgehend von der Warmwalzendtemperatur werden die erhaltenen Warmbänder erforderlichenfalls auf konventionelle Weise auf die erfindungsgemäß vorgegebene Haspeltemperatur von 400 - 900 °C abgekühlt, mit der sie dann zu einem Coil gehaspelt werden. Die Mindest-Haspeltemperatur von 400 °C ist wegen der schlechten thermischen Leitfähigkeit des Stahls eines erfindungsgemäßen Stahlflachprodukts erforderlich, weil es andernfalls in Folge hoher Temperaturgradienten im Stahlflachprodukt zu Spannungen und einer damit einhergehend schlechten Planlage des Warmbands kommen würde. Eine zu schnelle Abkühlung in der Kühlstrecke könnte die Rekristallisationsvorgänge abbrechen, die mit dem Ende des Warmwalzens einsetzen. Optional kann aber das zum Coil gewickelte Warmband mittels einer Coildusche gekühlt werden, um die Kühlzeit zu verkürzen und die Zunderbildung positiv zu beeinflussen.
  • Um die Rekristallisation zu vervollständigen und einen für das anschließende Kaltwalzen optimalen Zustand herzustellen, kann das Warmband nach der Abkühlung im Coil optional eine Glühbehandlung durchlaufen, bei der es über einen für die vollständige Rekristallisation ausreichenden Zeitraum bei einer Temperatur von 700 - 1000 °C, insbesondere 700 - 900 °C, gehalten wird. Bevorzugt wird optional die Warmbandglühung als Haubenglühung durchgeführt, wobei dann die Glühdauer typischerweise 0,5 - 60 Stunden dauert.
  • Zur Reinigung seiner Oberfläche kann das Warmband vor dem Kaltwalzen einer Beizbehandlung unterzogen werden. Die im Verlauf des Herstellungsprozesses durch sauerstoffaffine Elemente hervorgerufene Zunderbildung an der Warmbandoberfläche kann durch eine verlängerte Verweildauer des Warmbands im Beizmedium verringert werden. Die Warmbandbeizung kann dabei mit unterschiedlichen Beizmedien wie beispielsweise Salzsäure durchgeführt werden.
  • Das Kaltwalzen des warmgewalzten Bands zu einem kaltgewalzten Band erfolgt mit einem Gesamtumformgrad von 25 - 90 %, insbesondere mindestens 40 % oder mindestens 50 %. Der erfindungsgemäß vorgesehene Mindestumformgrad ist erforderlich, um die Rekristallisation insbesondere des im Gefüge des Stahlflachprodukts enthaltenen Ferrits bei der abschließenden Schlussglühung zu initiieren. Zu hohe Umformgrade sollten jedoch vermieden werden, da diese zu einer zu großen Kaltverfestigung und damit einhergehend zur Gefahr von Bandabrissen führen würden.
  • Über die abschließende Schlussglühung werden die mechanischen Eigenschaften des erfindungsgemäßen Stahlflachprodukts entscheidend beeinflusst. Dabei kann die Schlussglühung im Durchlauf durch einen konventionellen Durchlaufofen oder als Haubenglühung im Batch-Betrieb absolviert werden.
  • Im Fall, dass die Schlussglühung im Durchlauf absolviert wird, wird das kaltgewalzte Stahlflachprodukt mit einer typischerweise 1 - 100 K/s, insbesondere 10 - 80 K/s oder 20 - 50 Kls, betragenden Aufheizrate auf eine Schlussglühtemperatur, die mindestens 950 °C und höchstens 1070 °C beträgt, aufgeheizt. Eine zu schnelle Aufheizung kann sich ungünstig auf die Homogenität der Erwärmung und damit einhergehend auf die homogene Eigenschaftsverteilung des Stahlflachprodukts auswirken.
  • Die Schlussglühtemperatur ist so gewählt, dass sich die notwendige Austenitkorngröße einstellt, welche Voraussetzung für die TRIP-Eigenschaften und den n-Wert des erfindungsgemäßen Stahlflachprodukts ist. Die notwendige Austenitkorngröße kann besonders sicher eingestellt werden, wenn die Schlussglühtemperatur mindestens 970 °C beträgt. Optimal praxisgerechte Schlussglühtemperaturen liegen dabei im Bereich von 1000 - 1070 °C. Durch Einstellung derart hoher Schlussglühtemperaturen lassen sich erfindungsgemäße Stahlflachprodukte mit Austenitkorngrößen von 0,9 - 1,5 µm und einem regelmäßig über 0,25, beispielsweise über 0,26, liegenden n-Wert erzeugen.
  • Die Haltezeiten bei der Schlussglühtemperatur im Durchlaufglühofen betragen dabei, abhängig von der Höhe der Schlussglühtemperatur, nicht mehr als 10 Minuten, insbesondere nicht mehr als 5 min oder 3 min, wobei höhere Durchlauf-Schlussglühtemperaturen kürzere Haltezeiten ermöglichen und Mindesthaltezeiten von jeweils mindestens 20 Sekunden praxisgerecht sind.
  • Im Fall, dass die Schlussglühung als Haubenglühung durchgeführt wird, wird das im Coil unter die Haube gesetzte kaltgewalzte Band mit einer Aufheizrate von 0,001 - 0,5 Kls, insbesondere 0,002 - 0,5 Kls oder 0,008 - 0,5 Kls, auf die Schlussglühtemperatur erwärmt, die jeweils mehr als 800 °C, insbesondere mehr als 850 °C, beträgt. Dabei sollte eine Schlussglühtemperatur von 950 °C nicht überschritten werden, um übermäßiges Kornwachstum zu vermeiden. Die Glühzeiten nach Erreichen der Schlussglühtemperatur liegen hier im Bereich von 0,5 - 60 h, insbesondere 1 - 30 h. Auf diesem Wege können erfindungsgemäße Stahlflachprodukte mit einem n-Wert von mindestens 0,21 und Austenitkorngrößen von 0,85 - 3 µm besonders betriebssicher erzeugt werden.
  • Zum Schutz gegen Korrosion und äußere Einflüsse kann das erfindungsgemäße Stahlflachprodukt mit einer Schutzbeschichtung versehen werden. Diese kann beispielsweise in konventioneller Weise mittels in der Praxis zur Verfügung stehender Beschichtungsanlagen als zink- oder aluminiumbasierte Beschichtung aufgebracht werden.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
  • Zur Überprüfung der Wirkungen der Erfindung sind acht Schmelzen A - H erzeugt worden, deren nasschemisch ermittelte Analysen in Tabelle 1 angegeben sind. Die Analysenangaben der einzelnen Elemente beziehen sich dabei jeweils auf die ermittelten Gehalte in Gew.-%. Ist im jeweiligen Tabellenfeld "-" eingetragen, bedeutet dies, dass der Gehalt des jeweiligen Elements unterhalb der jeweiligen Nachweisgrenze lag und das betreffende Element folglich im Hinblick auf die Eigenschaften unwirksam war. (Anmerkung: Die Nachweisgrenzen liegen für P und Ti jeweils bei 0,005 Gew.-%, für Cr, Co, S und Ca jeweils bei 0,001 Gew.-%, für V, Mo und Ni jeweils bei 0,01 Gew.-%, für Cu und Nb jeweils bei 0,02 Gew.-%, für B bei 0,0004 Gew.-% sowie für Ce, La, Y, Zr, As und Sn jeweils bei 0,002 Gew.-%). Elemente, die in derart niedrigen Gehalten vorhanden waren, sind genauso wie die nicht aufgeführten Elemente den unvermeidbaren Verunreinigungen zuzuordnen. Hierzu zählen beispielsweise Gehalte an As, Sn, Mg und H. Die Summen der Mikrolegierungselemente Ti, Nb, V, Mo, die Summe der Metalle der Seltenen Erden Ce, La, Y, Zr, das Verhältnis von Mn zu Al sowie das AI-Äquivalent der einzelnen Schmelzen sind in Tabelle 2 angegeben.
  • Von den Schmelzen A - H sind die Schmelzen A und B nicht erfindungsgemäß, da sie die nach Maßgabe der Erfindung gestellten Anforderungen an die Anwesenheit mindestens eines Elements aus den Gruppen "Ti, Nb, V, Mo" und "Zr, La, Ce, Y" nicht erfüllen.
  • Für 27 Versuche 1 - 27 sind die Schmelzen A - H in konventioneller Weise zu Blöcken vergossen worden, die anschließend bei einer Vorwärmtemperatur VWT über eine Dauer VWD durcherwärmt worden sind.
  • Nach der Durcherwärmung sind die Blöcke in ebenso konventioneller Weise in einem konventionellen Warmwalzgerüst zu Brammen gewalzt worden. Die Brammen wurden in einer Warmwalzstraße zu Warmband mit einer Dicke von 2,5 - 3,0 mm gewalzt worden. Das Warmwalzen wurde jeweils mit einer Warmwalzendtemperatur WET beendet.
  • Nach dem Warmwalzen sind die dabei erhaltenen Warmbänder an Luft jeweils auf eine Haspeltemperatur HT abgekühlt worden, bei der sie zu einem Coil gehaspelt worden sind.
  • Nach der Abkühlung im Coil würde an jedem der bei den Versuchen 1 - 27 erhaltenen Warmbändern eine Begutachtung der Bandkanten hinsichtlich der Bildung von Rissen durchgeführt. Dabei sind als "stark" von Kantenrissen befallen solche Warmbänder eingestuft worden, bei denen regelmäßige Einkerbungen mit einer Größe von mehr als 15 mm festgestellt wurden. Als "leicht" von Kantenrissen befallene Warmbänder sind solche eingestuft worden, bei denen regelmäßige Einkerbungen mit einer Größe von 2 - 15 mm festgestellt wurden. Die Bewertung "keine" ist bei den Warmbändern vorgenommen worden, bei denen maximal Einkerbungen mit einer Größe von weniger als 2 mm vorhanden waren.
  • Einige der Warmbänder sind anschließend einer Warmbandglühung unterzogen worden, die jeweils als Haubenglühung mit einer Glühtemperatur von 850 °C und einer Glühdauer von 6 Stunden durchgeführt worden ist.
  • Die geglühten sind genauso wie die nicht geglühten Warmbänder in einer konventionellen Kaltwalzeinrichtung mit einem Gesamtkaltumformgrad KGW zu kaltgewalztem Stahlband kaltgewalzt worden.
  • Abschließend sind die erhaltenen kaltgewalzten Stahlbänder im Durchlauf ("Konti") in einem Durchlaufglühofen oder batchweise in einem Haubenglühofen ("Haube") schlussgeglüht worden. Dabei sind sie jeweils mit einer durchschnittlichen Aufheizrate HR auf die jeweilige Schlussglühtemperatur Tsg erwärmt worden, bei der sie jeweils über eine Dauer tsg gehalten worden sind.
  • Die Schmelzenzusammensetzung "Stahl" der bei den Versuchen 1 - 27 jeweils verarbeiteten Stahlbänder, die bei den Versuchen 1 - 27 angewendeten Parameter Vorwärmtemperatur VWT, Vorwärmdauer VWD, Warmbanddicke WB, Warmwalzendtemperatur WET, Haspeltemperatur HT, das Ergebnis der Beurteilung der Kantenrisse am jeweiligen Warmband, die Angabe, ob eine in der voranstehend erläuterten Weise absolvierte Warmbandglühung durchgeführt worden ist, der Gesamtkaltumformgrad KGW, die Art der Schlussglühung, die Aufheizrate HR der Schlussglühung, die Schlussglühtemperatur Tsg und die Schlussglühdauer tsg sind in Tabelle 3a und Tabelle 3b angegeben.
  • In Tabelle 4a und Tabelle 4b sind, soweit erfasst, die an den erhaltenen kaltgewalzten und schlussgeglühten Stahlbändern ermittelten oberen und unteren Streckgrenzen ReH und ReL, die Dehngrenze Rp0,2, die Zugfestigkeit Rm, die Bruchdehnung A50, der n-Wert n10-20, der r-Wert r10-20, die Austenitkorngröße KG, der bei einer Schrittweite von 100 nm und einem Abscheidewert von 5° ermittelte KAM-Wert, und der Quotient KG/KAM angegeben. Die Streckgrenzen ReH und ReL, die Dehngrenze Rp0,2, die Zugfestigkeit Rm und die Bruchdehnung A50 sind dabei gemäß DIN EN ISO 6892-1:2009 am kaltgewalzten Band in Querrichtung bestimmt worden. Zur Ermittlung der Austenitkorngröße KG wurde mittels EBSD (Electron Back Scattering Diffraction) der mittlere kreisäquivalente Korndurchmesser bestimmt. Für die Berechnung der Körner in der EBSD-Darstellung wurde dabei ein Toleranzwinkel von 5° bei einer Mindestkorngröße von fünf zusammenhängenden benachbarten Messpunkten bei einer Schrittweite von 0,15 µm gewählt. Der n10-20- und der r10-20-Wert sowie der KAM-Wert sind in der voranstehend bereits erläuterten Weise bestimmt worden. Nicht erfasste Werte sind in der Tabelle 3 jeweils durch "-" gekennzeichnet.
  • Die Beispiele 10,11,15,16, 20, 23 wurden in einem Durchlaufofen mit einer Schlussglühtemperatur von jeweils 830 °C schlussgeglüht, welche außerhalb des für eine im Durchlauf erfolgende Schlussglühung erfindungsgemäß vorgegebenen Temperaturbereichs von 950 - 1070°C lag. Die in den Beispielen 10,11,15,16, 20, 23 so erzeugten Stahlflachprodukte wiesen dementsprechend sehr geringe n-Werte auf, die unterhalb des erfindungsgemäß vorgesehen Mindestwerts von 0,21 liegen.
  • Die Versuche belegen, dass sich bei erfindungsgemäßer Legierung und erfindungsgemäßer Herstellweise zuverlässig kaltgewalzte Stahlflachprodukte herstellen lassen, die allenfalls leichte Kantenrissigkeit zeigen und dabei eine Kombination von mechanischen Eigenschaften besitzen, die sie optimal für Verwendungen geeignet machen, bei denen aus den Stahlflachprodukten Bauteile bei hohen Umformgraden geformt werden. Tabelle 1
    Stahl C Si Mn P S AI N Cu Cr V Mo Ni Ti Nb B Ce La Co Ca
    A*) 0,148 0,18 10,0 0,009 - 5,0 0,0032 0,05 0,7 - 0,04 0,17 - - 0,001 - - 0,007 0,002
    B*) 0,152 0,06 10,2 - 0,004 5,0 0,0019 0,06 0,44 - - 0,06 - - - - - 0,003 -
    C 0,151 0,08 10,1 - 0,004 5,1 0,0017 0,05 0,44 - - 0,06 0,07 0,03 - - - 0,002 -
    D 0,155 0,08 10,1 - 0,004 5,1 0,0016 0,06 0,44 - - 0,07 0,21 0,10 - - - - -
    E 0,159 0,07 10,7 - - 4,7 0,0015 0,05 0,21 0,18 0,12 0,06 - - - - - 0,002 -
    F 0,147 0,09 9,6 - 0,005 4,5 0,0019 - - - - 0,06 - - - 0,08 0,04 0,003 -
    G 0,223 0,04 10,1 0,005 0,004 5,0 0,0012 - 0,02 - - 0,02 0,20 0,10 - - - - -
    H 0,145 0,06 11,1 - 0,004 5,1 0,0012 0,05 0,41 - - - 0,19 0,09 - - - 0,002 -
    Rest Eisen und unvermeidbare Verunreinigungen
    Angaben zu Legierungsgehalten in Gew.-%
    *) nicht erfindungsgemäß
    Tabelle 2
    Stahl Ti+Nb+V+Mo Ce+La+Y+Zr %Mn/%Al Aleq
    A*) 0,04 - 2 6,4
    B*) - - 2,04 5,49
    C 0,1 - 1,98 5,75
    D 0,31 - 1,98 5,75
    E 0,3 - 2,28 5,27
    F - 0,12 2,13 5,22
    G 0,30 - 2,02 5,33
    H 0,28 - 2,18 5,59
    Aleq = %Al + 0,4 × (%Si)3 - 3 × (%Si)2 + 8,3 × %Si
    %Mn = jeweiliger Mn-Gehalt,
    %AI = jeweiliger Al-Gehalt,
    %Si = jeweiliger Si-Gehalt
    *) nicht erfindungsgemäß
    Tabelle 3a
    Versuch Stahl VWT [°C] VWD [min] WET [°C] HT [°C] Kantenrisse? Warmbandglühung KWG Schlussglühung HR [K/s] Tsg [°C] tsg
    1 A 1240 90 1020 550 stark ohne 64% Konti Nicht erfasst 1000 3min
    2 ohne 64% 6min
    3 ohne 82% 3min
    4 B 1200 950 800 ohne 66% 1min
    5 ohne 80% 830 3min
    mit
    6 7 ohne Haube 0,04 850 24h
    8 mit
    9 C leicht ohne 66% Konti 10 1000 1min
    10 ohne 80% 830 3min
    11 mit
    12 ohne Haube 0,04 850 24h
    13 mit
    14 D keine ohne 66% Konti 10 1000 1min
    15 ohne 80% 830 3min
    16 mit
    17 ohne Haube 0,04 850 24h
    18 mit
    Tabelle 3b
    Versuch Stahl VWT [°C] VWD [min] WET [°C] HT [°C] Kantenrisse? Warmbandglühung KWG Schlussglühung HR [Kls] Tsg [°C] tsg
    19 E 1200 90 950 800 keine ohne 66% Konti 10 1000 1min
    20 80% 830 3min
    21 Haube 0,04 850 24h
    22 F ohne 66% Konti 10 1000 1min
    23 80% 830 3min
    24 Haube 0,04 850 24h
    25 G ohne 66% Konti 10 1000 1min
    26 Haube 0,04 850 24h
    27 H ohne 66% Konti 10 970 1min
    Tabelle 4a "-" bedeutet, dass der entsprechende Wert nicht bestimmt wurde.
    Versuch Stahl Kantenrisse? ReH ReL 1 Rp0,2 Rm A50 n10-20 r10-20 KG [µm] KAM [Ferrit/°] KG/KAM [µm/°]
    [MPa] [%]
    1 A stark - - 484 658 34,3 0,214 0,20 - - -
    2 - - 501 662 32,0 0,203 0,18 - - -
    3 - - 498 707 40,0 0,230 0,36 - - -
    4 B - - 430 743 38,2 0,326 0,66 1,14 0,37 3,08
    5 624 611 - 733 30,2 0,199 0,61 0,92 0,35 2,63
    6 - - 543 692 29,8 0,206 0,62 - - -
    7 - - 395 649 36,9 0,235 0,73 2,78 0,39 7,13
    8 - - 393 631 32,9 0,235 0,75 2,94 0,39 7,54
    9 C leicht - - 431 738 37,5 0,327 0,82 0,90 0,32 2,81
    10 623 616 - 738 29,9 0,190 0,59 0,85 0,36 2,36
    11 - - 539 695 30,9 0,202 0,59 - - -
    12 - - 407 653 36,0 0,230 0,73 2,58 0,35 7,37
    13 - - 396 638 35,2 0,230 0,76 2,71 0,35 7,74
    14 D keine - - 434 705 34,5 0,295 0,95 0,87 0,30 2,90
    15 - - 580 714 29,8 0,181 0,68 0,83 0,35 2,37
    16 - - 521 678 27,7 0,191 0,70 - - -
    17 - - 412 638 35,8 0,213 0,79 2,33 0,36 6,47
    18 - - 405 632 31,8 0,217 0,84 2,55 0,35 7,29
    Tabelle 4b "-" bedeutet, dass der entsprechende Wert nicht bestimmt wurde.
    Versuch Stahl Kantenrisse? ReH ReL Rp0,2 Rm A50 n 10-20 r10-20 KG [µm] KAM [Ferrit/°] KG/KAM [µm/°]
    [MPa] [%]
    19 E keine - - 475 755 33,7 0,279 0,83 1,10 0,31 3,55
    20 - - 601 739 28,5 0,180 0,51 0,90 0,37 2,43
    21 - - 433 688 34,5 0,212 0,81 2,62 0,36 7,28
    22 F - - 413 701 39,1 0,305 0,89 0,98 0,31 3,16
    23 - - 551 699 32,8 0,195 0,52 0,92 0,37 2,49
    24 - - 392 628 36,8 0,233 0,75 2,76 0,36 7,67
    25 G - - 451 803 34,1 0,400 0,70 0,89 0,32 2,78
    26 - - 398 652 31,3 0,239 0,73 2,48 0,36 6,89
    27 H - - 466 612 20,8 0,214 0,69 0,88 0,32 2,75

Claims (15)

  1. Kaltgewalztes Stahlflachprodukt, das einen mindestens 0,21 betragenden n-Wert, gemessen wie in der Beschreibung beschrieben, aufweist und das aus einem Stahl hergestellt ist, der aus (in Gew.-%) C: 0,08 - 0,25 %, Al: 3 - 5,4 %, Mn: 9 - 14 %, B: 0 - 0,1 %, Cr: 0 - 2 %, Si: 0 - 0,4 %, P: 0 - 0,1 %, S: 0 - 0,3 %, Ta: 0 - 0,5 %, W: 0 - 0,5 %, Ni: 0 - 2 %, Cu: 0 - 2 %, Ca: 0 - 0,15 %, N: 0 - 0,02 % Co: 0 - 2 %
    sowie einem Element oder mehreren Elementen aus der Gruppe "Ti, Nb, V, Mo" mit der Maßgabe, dass die Summe der Gehalte an diesen Elementen mindestens 0,05 % und höchstens 1 % beträgt, und/oder einem Element oder mehreren Elementen aus der Gruppe "Zr, La, Ce, Y" mit der Maßgabe, dass die Summe der Gehalte an diesen Elementen mindestens 0,05 % und höchstens 0,3 % beträgt, sowie Rest Eisen und unvermeidbaren Verunreinigungen
    besteht,
    wobei für das Verhältnis %Mn/%AI gilt % Mn / % Al > 1,2
    Figure imgb0002
    und für Al eq = % Al + 0,4 × % Si 3 3 × % Si 2 + 8,3 × % Si
    Figure imgb0003
    gilt 3 Al eq 8
    Figure imgb0004
    mit %Mn: jeweiliger Mn-Gehalt des Stahls
    %AI: jeweiliger Al-Gehalt des Stahls
    %Si: jeweiliger Si-Gehalt des Stahls
    wobei das Gefüge des Stahlflachprodukts zu 10 - 60 Flächen-% aus Austenit und zu 40 - 90 Flächen-% aus Ferrit bei einer mittleren Korngröße des Austenits von 0,85 - 3 µm besteht.
  2. Stahlflachprodukt nach Anspruch 1, dadurch gekennzeichnet, dass für den Quotienten KG/(KAM 1 5°) aus der jeweiligen mittleren Korngröße KG des Austenits und dem am Ferrit bestimmten KAM 1 5°-Wert gilt KG/(KAM 1 5°) > 2,7 µm/°.
  3. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sein n-Wert mindestens 0,25 beträgt.
  4. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die mittlere Korngröße des Austenits 0,9 - 1,5 µm beträgt.
  5. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sein Al-Gehalt 4 - 5,4 Gew.-% beträgt.
  6. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sein C-Gehalt 0,11 - 0,19 Gew.-% beträgt.
  7. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sein Mn-Gehalt 9-12 Gew.-% beträgt.
  8. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sein Si-Gehalt mindestens 0,01 Gew.-% beträgt.
  9. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass für Aleq gilt Aleq ≤ 7.
  10. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass seine Zugfestigkeit Rm höchstens 1050 MPa, insbesondere höchstens 950 MPa, beträgt.
  11. Verwendung eines gemäß einem der voranstehenden Ansprüche beschaffenen kaltgewalzten Stahlflachprodukts für die Herstellung von Fahrzeugteilen.
  12. Verfahren zur Herstellung eines gemäß einem der Ansprüche 1 - 10 beschaffenen kaltgewalzten Stahlflachprodukts, umfassend folgende Arbeitsschritte:
    a) Erschmelzen einer Stahlschmelze, die aus (in Gew.-%) C: 0,08 - 0,25 %, AI: 3 - 5,4 %, Mn: 9 - 14 %, B: 0 - 0,1 %, Cr: 0 - 2 %, Si: 0 - 0,4 %, P: 0 - 0,1 %, S: 0 - 0,3 %, Ta: 0 - 0,5 %, W: 0 - 0,5 %, Ni: 0 - 2 %, Cu: 0 - 2 %, Ca: 0 - 0,15 %, N: 0 - 0,02 %, Co: 0 - 2 % sowie einem Element oder mehreren Elementen aus der Gruppe "Ti, Nb, V, Mo" mit der Maßgabe, dass die Summe der Gehalte an diesen Elementen mindestens 0,05 % und höchstens 1 % beträgt, oder einem Element oder mehreren Elementen aus der Gruppe "Zr, La, Ce, Y" mit der Maßgabe, dass die Summe der Gehalte an diesen Elementen mindestens 0,05 % und höchstens 0,3 % beträgt, sowie Rest Eisen und unvermeidbaren Verunreinigungen besteht, wobei für das Verhältnis %Mn/%AI gilt %Mn/%AI > 1,2 und für Aleq = %AI + 0,4 × (%Si)3 - 3 × (%Si)2 + 8,3 × %Si gilt 3 ≤ Aleq ≤ 8 mit %Mn: jeweiliger Mn-Gehalt des Stahls, %Al: jeweiliger Al-Gehalt des Stahls, %Si: jeweiliger Si-Gehalt des Stahls;
    b) Vergießen der Stahlschmelze zu einem Vorprodukt, wie einem Gussblock, einer Bramme, einer Dünnbramme oder einem gegossenen Band;
    c) Halten oder Erwärmen des Vorprodukts bei einer Vorwärmtemperatur von 1100 -1350 °C;
    d) Warmwalzen des Vorprodukts zu einem Warmband mit einer Warmwalzendtemperatur, die 850 - 1050 °C beträgt;
    e) Abkühlen des Warmbands auf eine Haspeltemperatur, die 400 - 900 °C beträgt;
    f) Haspeln des auf die Haspeltemperatur abgekühlten Warmbands zu einem Coil;
    g) optional: Glühen des Warmbands bei einer Warmbandglühtemperatur von 700 -1000 °C;
    h) optional: Beizen des Warmbands;
    i) Kaltwalzen des Warmbands zu einem kaltgewalzten Stahlband mit einem Gesamtumformgrad von 25 - 90 %;
    j) Schlussglühen des kaltgewalzten Stahlbands, wobei das Schlussglühen
    - entweder als Durchlaufglühung im kontinuierlichen Durchlauf durch einen Durchlaufglühofen absolviert wird, bei dem das kaltgewalzte Stahlband über eine Dauer von mindestens 20 sec und weniger als 10 min auf eine Schlussglühtemperatur, die mindestens 950 °C und höchstens 1070 °C beträgt, gehalten wird, wobei die Aufheizrate, mit der das kaltgewalzte Stahlflachprodukt auf die Schlussglühtemperatur erwärmt wird, 1 - 100 Kls beträgt,
    - oder als Haubenglühung über eine Dauer von 0,5 - 60 h bei einer Schlussglühtemperatur durchgeführt wird, die mehr als 800 °C und bis zu 950 °C beträgt, wobei die Aufheizrate, mit der das kaltgewalzte Stahlflachprodukt auf die Schlussglühtemperatur erwärmt wird, 0,001 - 0,5 Kls beträgt.
  13. Verfahren nach Anspruch 12,dadurch gekennzeichnet, dass die Warmwalzendtemperatur mindestens 900 °C beträgt.
  14. Verfahren nach einem der Ansprüche 12 bis 13, dadurch
    gekennzeichnet, dass im Fall, dass die Schlussglühung als Durchlaufglühung durchgeführt wird, die Schlussglühtemperatur mindestens 1000 °C beträgt, oder im Fall, dass die Schlussglühung als Haubenglühung durchgeführt wird, mehr als 850 °C beträgt.
  15. Verfahren nach einem der Ansprüche 12 bis 14, dadurch
    gekennzeichnet, dass die Haspeltemperatur 600 - 850 °C beträgt.
EP18729562.1A 2018-03-26 2018-03-26 Kaltgewalztes stahlflachprodukt sowie verwendung und verfahren zur herstellung eines solchen stahlflachprodukts Active EP3781717B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/057631 WO2019185108A1 (de) 2018-03-26 2018-03-26 Kaltgewalztes stahlflachprodukt sowie verwendung und verfahren zur herstellung eines solchen stahlflachprodukts

Publications (2)

Publication Number Publication Date
EP3781717A1 EP3781717A1 (de) 2021-02-24
EP3781717B1 true EP3781717B1 (de) 2024-03-06

Family

ID=62555010

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18729562.1A Active EP3781717B1 (de) 2018-03-26 2018-03-26 Kaltgewalztes stahlflachprodukt sowie verwendung und verfahren zur herstellung eines solchen stahlflachprodukts

Country Status (2)

Country Link
EP (1) EP3781717B1 (de)
WO (1) WO2019185108A1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481069B1 (ko) * 2012-12-27 2015-01-13 한국기계연구원 연성이 우수한 고비강도 강판 및 이의 제조방법
WO2015001367A1 (en) * 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Cold rolled steel sheet, method of manufacturing and vehicle
CN104694816A (zh) * 2015-03-13 2015-06-10 北京科技大学 强塑积大于30GPa·%的高Al中锰钢的制备方法
CN104928568B (zh) * 2015-06-30 2017-07-28 宝山钢铁股份有限公司 一种铁素体低密度高强钢及其制造方法

Also Published As

Publication number Publication date
EP3781717A1 (de) 2021-02-24
WO2019185108A1 (de) 2019-10-03

Similar Documents

Publication Publication Date Title
EP2924140B1 (de) Verfahren zur Erzeugung eines hochfesten Stahlflachprodukts
EP2855717B1 (de) Stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts
EP3655560B1 (de) Stahlflachprodukt mit guter alterungsbeständigkeit und verfahren zu seiner herstellung
EP2690183B1 (de) Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP2905348B1 (de) Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts
DE69117870T2 (de) Durch Sintern von Pulver hergestellter Schnellarbeitsstahl und Verfahren zu seiner Herstellung
EP2924141B1 (de) Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP2840159B1 (de) Verfahren zum Herstellen eines Stahlbauteils
EP2690184B1 (de) Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP0352597A1 (de) Verfahren zur Erzeugung von Warmband oder Grobblechen
DE2438328A1 (de) Verfahren zur waermebehandlung und streckbarkeit von kaltblech
DE69521021T2 (de) Verfahren zur Herstellung hochfester Drähte aus einer Legierung mit niedrigem Ausdehnungskoeffizienten
DE3024303C2 (de)
EP3658307B9 (de) Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung
WO2020064127A1 (de) Formgedächtnislegierung, daraus hergestelltes stahlflachprodukt mit pseudoelastischen eigenschaften und verfahren zur herstellung eines solchen stahlflachprodukts
DE4329305C2 (de) Hochfestes und hochzähes rostfreies Stahlblech und Verfahren zur Herstellung desselben
EP3847284B1 (de) Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
DE112020006043T5 (de) Kaltgewalztes stahlblech mit ultrahoher festigkeit und verfahren zu dessen herstellung
EP1352982A2 (de) Nichtrostender Stahl, Verfahren zum Herstellen von spannungsrissfreien Formteilen und Formteil
EP3771746A1 (de) Stahl, stahlflachprodukt, verfahren zur herstellung eines stahlflachprodukts und verwendung
DE102016115618A1 (de) Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband
WO2020038883A1 (de) Warmgewalztes unvergütetes und warmgewalztes vergütetes stahlflachprodukt sowie verfahren zu deren herstellung
EP3781717B1 (de) Kaltgewalztes stahlflachprodukt sowie verwendung und verfahren zur herstellung eines solchen stahlflachprodukts
WO2017162450A1 (de) Verfahren zum temperaturbehandeln eines mangan-stahlzwischenprodukts und stahlzwischenprodukt, das entsprechend temperaturbehandelt wurde
EP3872206A1 (de) Verfahren zur herstellung eines nachbehandelten, kaltgewalzten stahlflachprodukts und nachbehandeltes, kaltgewalztes stahlflachprodukt

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

Owner name: THYSSENKRUPP STEEL EUROPE AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018014224

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0008020000

Ipc: C21D0006000000

Ref country code: DE

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/50 20060101ALN20230808BHEP

Ipc: C22C 38/48 20060101ALN20230808BHEP

Ipc: C22C 38/46 20060101ALN20230808BHEP

Ipc: C22C 38/44 20060101ALN20230808BHEP

Ipc: C22C 38/18 20060101ALN20230808BHEP

Ipc: C22C 38/16 20060101ALN20230808BHEP

Ipc: C22C 38/14 20060101ALN20230808BHEP

Ipc: C22C 38/12 20060101ALN20230808BHEP

Ipc: C22C 38/10 20060101ALN20230808BHEP

Ipc: C22C 38/02 20060101ALN20230808BHEP

Ipc: C23C 2/40 20060101ALI20230808BHEP

Ipc: C23C 2/12 20060101ALI20230808BHEP

Ipc: C23C 2/06 20060101ALI20230808BHEP

Ipc: C22C 38/52 20060101ALI20230808BHEP

Ipc: C22C 38/42 20060101ALI20230808BHEP

Ipc: C22C 38/40 20060101ALI20230808BHEP

Ipc: C22C 38/38 20060101ALI20230808BHEP

Ipc: C22C 38/20 20060101ALI20230808BHEP

Ipc: C22C 38/06 20060101ALI20230808BHEP

Ipc: C22C 38/04 20060101ALI20230808BHEP

Ipc: C21D 9/48 20060101ALI20230808BHEP

Ipc: C21D 9/46 20060101ALI20230808BHEP

Ipc: C21D 8/04 20060101ALI20230808BHEP

Ipc: C21D 8/02 20060101ALI20230808BHEP

Ipc: C22C 38/00 20060101ALI20230808BHEP

Ipc: C21D 6/00 20060101AFI20230808BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/50 20060101ALN20230830BHEP

Ipc: C22C 38/48 20060101ALN20230830BHEP

Ipc: C22C 38/46 20060101ALN20230830BHEP

Ipc: C22C 38/44 20060101ALN20230830BHEP

Ipc: C22C 38/18 20060101ALN20230830BHEP

Ipc: C22C 38/16 20060101ALN20230830BHEP

Ipc: C22C 38/14 20060101ALN20230830BHEP

Ipc: C22C 38/12 20060101ALN20230830BHEP

Ipc: C22C 38/10 20060101ALN20230830BHEP

Ipc: C22C 38/02 20060101ALN20230830BHEP

Ipc: C23C 2/40 20060101ALI20230830BHEP

Ipc: C23C 2/12 20060101ALI20230830BHEP

Ipc: C23C 2/06 20060101ALI20230830BHEP

Ipc: C22C 38/52 20060101ALI20230830BHEP

Ipc: C22C 38/42 20060101ALI20230830BHEP

Ipc: C22C 38/40 20060101ALI20230830BHEP

Ipc: C22C 38/38 20060101ALI20230830BHEP

Ipc: C22C 38/20 20060101ALI20230830BHEP

Ipc: C22C 38/06 20060101ALI20230830BHEP

Ipc: C22C 38/04 20060101ALI20230830BHEP

Ipc: C21D 9/48 20060101ALI20230830BHEP

Ipc: C21D 9/46 20060101ALI20230830BHEP

Ipc: C21D 8/04 20060101ALI20230830BHEP

Ipc: C21D 8/02 20060101ALI20230830BHEP

Ipc: C22C 38/00 20060101ALI20230830BHEP

Ipc: C21D 6/00 20060101AFI20230830BHEP

INTG Intention to grant announced

Effective date: 20230915

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502018014224

Country of ref document: DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018014224

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240321

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 7

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240606

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240606

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240606

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240607

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240430

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240708