EP3776529B1 - Device for the production of high-amplitude pressure waves - Google Patents
Device for the production of high-amplitude pressure waves Download PDFInfo
- Publication number
- EP3776529B1 EP3776529B1 EP19712237.7A EP19712237A EP3776529B1 EP 3776529 B1 EP3776529 B1 EP 3776529B1 EP 19712237 A EP19712237 A EP 19712237A EP 3776529 B1 EP3776529 B1 EP 3776529B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- piston
- gas spring
- pressure
- gas
- discharge opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 claims description 97
- 230000007704 transition Effects 0.000 claims description 17
- 238000004140 cleaning Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 15
- 238000005192 partition Methods 0.000 claims description 10
- 238000007789 sealing Methods 0.000 claims description 9
- 230000003068 static effect Effects 0.000 claims description 8
- 230000009969 flowable effect Effects 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 189
- 238000004880 explosion Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229910000906 Bronze Inorganic materials 0.000 description 7
- 239000010974 bronze Substances 0.000 description 7
- 230000009471 action Effects 0.000 description 5
- 239000002360 explosive Substances 0.000 description 5
- 239000000446 fuel Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005474 detonation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000418 atomic force spectrum Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011538 cleaning material Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004200 deflagration Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K15/00—Acoustics not otherwise provided for
- G10K15/04—Sound-producing devices
- G10K15/043—Sound-producing devices producing shock waves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C15/00—Apparatus in which combustion takes place in pulses influenced by acoustic resonance in a gas mass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J3/00—Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
- F23J3/02—Cleaning furnace tubes; Cleaning flues or chimneys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28G—CLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
- F28G7/00—Cleaning by vibration or pressure waves
- F28G7/005—Cleaning by vibration or pressure waves by explosions or detonations; by pressure waves generated by combustion processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J3/00—Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
- F23J3/02—Cleaning furnace tubes; Cleaning flues or chimneys
- F23J3/023—Cleaning furnace tubes; Cleaning flues or chimneys cleaning the fireside of watertubes in boilers
Definitions
- the present invention relates to a device and a method for generating high-amplitude pressure waves, in particular for cleaning boilers.
- Such a device for generating high-amplitude pressure waves is from U.S. 5,864,517 known.
- acoustic vibrations are generated that are significantly stronger than those that can be generated by loudspeakers. They can be used in particular for cleaning boilers, since these pressure waves cause particles to detach.
- two different pulsed burns are discussed.
- Detonative combustion has extremely fast flame velocities of 2,000 to 4,000 m/s, while deflagrative combustion has much slower flame velocities, such as less than 200 m/s, and the pressure waves are of significantly lower amplitude.
- the EP 2 319 036 relates to a method and a device for generating explosions, in particular high-intensity pressure pulses.
- a pressure-resistant container with a main explosion chamber as in the above-mentioned US patent, with an outlet opening for the pressure pulses and a piston closing the outlet opening.
- the position of the piston is shifted by an auxiliary explosion in an auxiliary explosion chamber in such a way that it releases the outlet opening.
- This procedure requires precise time coordination between the triggering of the main explosion and the preceding auxiliary explosion.
- the device then also has a gas spring chamber which brakes the pushed-back piston and, after the gases have been blown out of the main explosion chamber, pushes said piston back to its original position.
- FIG. 1 shows another method and apparatus for generating explosions in which the gas spring mechanism includes a relief mechanism disclosed as an over-centre spring mechanism.
- the FR 2,938,623 an explosion cylinder having a piston movable between an open and a closed position for cyclically generating explosions of pressurized gas or air for cleaning purposes.
- the invention is based on the object of specifying an improved device which can be ignited more simply and reliably.
- an object of the invention is to provide the device with a longer maintenance interval, since the wear and tear of the moving parts in the pressure-resistant container due to the explosions is considerable and, in the prior art, only allows a limited number of repetitions of the cleaning ignitions before the plant needs maintenance. Since the processes in power plant technology, the basic industry and in technical chemistry are usually carried out in complex chemical plants, a number of such devices for generating high-amplitude pressure waves are usually provided for cleaning the various containers, which then have to be serviced accordingly.
- the device is preferred for cleaning boilers in large technical Plants such as waste incinerators, coal-fired power plants, silos, etc. used to remove slag or deposits.
- the main advantage there is that the individual cleaning cycles can be repeated very quickly and several times.
- the use of gases as cleaning material for generating the sequence of pressure waves and associated pressure pulses is relatively cheap and high pressures can be generated.
- the delivery of two chemical fluids, which do not inherently burn up or explode, at a time just before the blast is triggered increases safety. It also enables cleaning of systems that are still warm and possibly in operation, since the reacting substances are exposed to the hot environment for a long time.
- the pressure wave generated can be conducted via a pipe over long distances into a boiler at the point to be cleaned.
- the tube can be permanently installed on the system to be cleaned, but can also be inserted from the outside, for example pushed telescopically into a system or a boiler. Due to the pressure pulse generated during the burn-up, deposits and dirt are blown away from the inner pipes in the boiler and its walls and at the same time the pipes and walls vibrate. Both actions result in efficient cleaning of the systems to be cleaned.
- a device for generating high-amplitude pressure waves has a pressure-resistant container.
- This can be in several parts. It has at least one combustion chamber incorporated therein. Several combustion chambers can be connected to each other. At least one ignition device reaching into the combustion chamber(s) is provided. There is at least one feed line for feeding a flowable combustible material into the combustion chamber, preferably separately a fuel and an oxidant, such as natural gas and air or methane and oxygen. Various other liquid or gaseous fuels can also be used.
- the pressure-resistant container has a discharge opening for the directed release of gas pressure generated by the ignition of the combustible material in the combustion chamber.
- closure means that closes the discharge opening, which is designed to release the discharge opening for the directed discharge, and which can then be pushed into the starting position by a spring device after the burnout.
- the closure means is a piston that can be displaced in its longitudinal direction and has a rear section that is oriented in the direction of the spring device and a front section that is oriented in the direction of the discharge opening.
- the seat of the piston has a piston surface that is inclined obliquely to the discharge opening, which is arranged opposite a housing surface that is also inclined obliquely to the discharge opening, with the housing surface being oriented relative to the piston surface at an angle towards the discharge opening from one perpendicular to the piston direction Closing line opens starting.
- the angle can be between 0.5 and 5 degrees, preferably between 1 and 3 degrees, in particular 2 degrees.
- the seal line perpendicular to the direction of the piston may be located within the piston wall of the lower portion such that there is a rounded static pressure opening area between the seal line and the piston wall.
- a flange surface perpendicular to the piston axis, which is connected to the combustion chamber or belongs to it, can have a surface area that is between 50 and 200 percent of a surface area that is given by the surface area of the piston surface.
- a transition area can be provided between these two sections.
- the front section is arranged in the area of the combustion chamber when the piston is in a position that closes the discharge opening.
- the front section In relation to the longitudinal direction of the piston the front section is tapered compared to the rear section, so that the transition region forms an effective surface aligned transversely to the longitudinal direction of the piston, on which a pressure driving the piston back is exerted when the combustible material is ignited, so that the front section of the piston uncovers the discharge opening . This makes cleaning easier, since the pressure build-up can also be achieved by burning off and is then itself responsible for opening the path to the discharge funnel.
- the transition area can be an area that tapers continuously in the longitudinal direction of the piston of the gas spring from a larger piston diameter to a smaller piston diameter, which is arranged in the area of the combustion chambers.
- the transition area can also be formed by a flange-like tapering of the piston.
- a hollow central guide line can be provided in the pressure-tight container, which guides the piston in the front area in its interior. This has advantages when the piston guide wears out, since it allows for guidance over sections of the piston that are further apart. At least one connecting gap is then provided between the combustion chambers and an auxiliary pressure chamber in the area of the flange-like taper of the piston.
- the combustion chamber can be arranged in a ring around the piston around its longitudinal axis.
- the ring-shaped walls of the combustion chamber can then be stacked and sealed ring segments which are advantageously closed off at the top and bottom by a cover plate and a base plate.
- the height and the volume of the cylindrical combustion chamber can thus be scaled in a simple manner, since no special chambers of different sizes have to be provided.
- the only thing that belongs to such a scaled combustion chamber is the piston, which is adjusted accordingly in terms of length, as the closure unit.
- At least two combustion chambers can be arranged in one plane at an angular distance from one another radially to a central axis.
- two combustion chambers can be diametrically opposed. Then either the longitudinal axis of the gas spring together with the central axis; three combustion chambers could then be 120 degrees apart in the common plane. Or the longitudinal axis of the gas spring also lies in the said plane of the at least two combustion chambers, so that with three combustion chambers an angular distance of 90 degrees between the individual elements is possible.
- the discharge opening has a tube with a tube longitudinal direction.
- the longitudinal direction of the discharge opening can then either coincide with the central axis, i.e. the discharge opening can lie in the extension of the piston, or the longitudinal axis of the gas spring can lie in said plane of the at least two combustion chambers. Then, for example with two combustion chambers, an angular distance of less than 120 degrees can be provided between the two combustion chambers, so that they are more aligned with the discharge opening.
- the gas spring can have a front gas spring chamber space opposite the piston and a rear gas spring chamber space separated from this by a partition wall, with a first connection as a return flow connection and a second connection with a check valve being provided between the front gas spring chamber space and the rear gas spring chamber space, the check valve being so is arranged to permit unrestricted flow of media from the front to the rear gas spring chamber but substantially block the reverse flow out of the rear gas spring chamber.
- the first and the second connection can be provided in the partition wall.
- the second connection can have at least two partial connections which, on the one hand, open out laterally one above the other in the longitudinal direction of the piston movement in the wall of the gas spring in the front gas spring chamber space and, on the other hand, end in the rear gas spring chamber space, so that the openings occur one after the other when the piston penetrates into the front gas spring chamber space are covered, said sub-connections each having their own check valve.
- the individual non-return valves are switched off successively, so that the media flow from the front to the rear gas spring chamber slows down, i.e. the braking effect due to the gas pressure build-up in the front gas spring chamber decreases.
- the second connection can have a controllable check valve, which can optionally have a control valve connected in series and a check valve, which controllable check valve is connected to a control unit, with which the ignition can be triggered, the control unit being designed to switch the controllable check valve in a first predetermined time interval after ignition of the flowable combustible material. This can ensure that the burnup in the burnup chamber is complete before the piston is allowed to retreat any further.
- the first connection can have a controllable backflow valve, which can optionally have a control valve connected in series and a backflow guide, which controllable backflow valve is connected to the control unit, with which the ignition can be triggered, the control unit being designed to combine the controllable backflow valve in one to open second predetermined time interval after the opening of the controllable check valve.
- Two separate gas spring gas connections can also be provided for the front and rear gas spring chambers, with the control unit having a gas filling control unit with which the gas filling pressure in the front and rear gas spring chambers can be set to a predetermined value before ignition, the Gas filling pressure in the front gas spring chamber can be set higher than in the rear gas spring chamber.
- the gas filling pressure in the front gas spring chamber can be set at least 2 times, preferably at least 3 times or 5 times higher than in the rear gas spring chamber, so that on the one hand the front gas spring pressure chamber does not recede or only recedes insignificantly during ignition , since the pressure prevailing in it upon ignition opposes the pressure building up in the combustion chamber, and the retreat only occurs completely and quickly when the check valve is opened, since a gas pressure difference was set.
- the rear chamber can be at atmospheric pressure while only the front gas spring pressure chamber has been pressurized with the inert gas.
- a device for generating pressure waves of high amplitude, in particular for cleaning boilers, with a pressure-resistant container with a combustion chamber installed therein and at least an ignition device reaching into the combustion chamber, with at least one supply line for supplying a free-flowing combustible material into the combustion chamber, the pressure-resistant container having a discharge opening for the directed release of gas pressure generated in the combustion chamber by the ignition of the combustible material and a closure means closing the discharge opening, which is designed to release the discharge opening for directed discharge, and which can be displaced into the starting position by a spring device, the closure means being a piston which can be displaced in its longitudinal direction and which has a rear section oriented in the direction of the spring device and a front section in the direction of the The front section is arranged in the region of the combustion chamber when the piston is in a position that closes the discharge opening, the seat of the piston
- this angle is advantageously between 0.5 and 3, in particular 1 degree.
- the closure line oriented perpendicular to the direction of the piston is advantageously arranged within the piston wall of the lower section, so that there is a rounded static pressure opening area between the closure line and the piston wall.
- the front section is tapered in relation to the rear section.
- the taper relates to the inner piston seat wall and then preferably has an opposite outer housing valve seat wall which opens inwards towards the outlet at a small angle.
- the figure 1 shows a perspective view of a device for generating high-amplitude pressure waves according to an embodiment of the invention.
- a first pressure-resistant container 21 and a second pressure-resistant container 22 are arranged to the left and right of a central body 30 .
- these containers 21 and 22 run essentially parallel to the boiler wall 5, a detail of which is shown.
- a drain funnel 61 with a downstream drain pipe 62 is also flanged to the central body 30 , which protrudes through the boiler wall 5 and ends in a drain opening 63 in the boiler interior 15 .
- the discharge opening 63 can also be arranged directly on the boiler wall and the discharge pipe 62 can be made shorter than the discharge funnel 61 or can be omitted entirely.
- the gas spring pressure body 40 is flanged to the central body 30 opposite the discharge funnel 61 .
- a first gas reservoir 51 and opposite a second gas reservoir 52 are provided on the left and right.
- the construction of the containers 21 and 22 may be longer, i.e. an aspect ratio for the internal volume 121 and 122 of between 5:1 and 20:1.
- the functioning of the device for generating pressure waves will now be explained in conjunction with the schematic representation of the device 1 with the 2 described.
- the two left and right pressure-resistant containers 21 and 22 are arranged on the central body 30 and have a first combustion chamber 121 and a second combustion chamber 122, respectively.
- the pressure-resistant containers 21 and 22 are cylindrical with an interior space that is larger in diameter in the rear area, ie the passage tapers towards the central body 30 .
- a piston 70 is arranged in the central body 30, which will be shown in more detail in the further drawings, which in the closed state shown separates the chambers 121 and 122 from one another and closes the outlet in the direction of the discharge funnel 61 with its front end 72 of the piston 70.
- the piston 70 protrudes with its upper part 71 in the gas spring pressure body 40 as shown in FIG 3 is shown in more detail.
- the valve seat itself is identified by reference number 300 . This can in particular after the 14 and the detailed views of the Figures 15A, 15B, 15C be designed in order to then unfold the effect as shown in 16 is shown.
- the object of the high-amplitude pressure wave generating device is to generate the same in the first and second pressure chambers 121 and 122 by burning a fluid fuel or explosive.
- This fuel is preferably formed by the mixing of components that are not combustible or explosive per se and that are stored in the first and second gas storage tanks 51 and 52 .
- These gas reservoirs 51 and 52 are fed via external gas supply lines 53 and 54 from corresponding gas connections 57 and 58 which are regulated via external gas supply line valves 55 and 56 .
- the first gas reservoir 51 is connected to the combustion chambers 121 and 122 via a first gas filling line 151 and an interposed first gas filling valve 153 .
- the representation of 2 with the connection to only one combustion chamber 121 is also possible if corresponding compensating lines are provided between the first and second combustion chambers 121 and 122.
- the second gas connection 58 that the second Gas reservoir 52 is directly or indirectly connected to the combustion chambers 121 and 122 via the second gas filling line 152 and the second gas filling valve 154 .
- the embodiment shown corresponds to filling of the combustion chambers 121 and 122 via two dosing tanks with subsequent inflow into the device. Otherwise it is also possible to fill the device directly via panels.
- a gas spring gas connection 47 is provided, with a gas spring supply valve 48 and a gas spring supply line 49, the gas for the gas spring 40 in the gas spring interior 41 and 42, as in FIG 3 to see is initiated.
- first and a second gas in the present exemplary embodiment, reference is made to a first and a second gas.
- the first gas can be methane or natural gas, for example, while the second gas can be oxygen or air or an oxygen-containing air mixture.
- the flowable combustible material may be an explosive mixture; in addition to gaseous material, it may also be liquid, powdery material or a mixture of such materials.
- the combustion chambers 121 and 122 are additionally connected to an ignition device which triggers an ignition of the combustible material in the combustion chambers 121 and 122 at the same time. If, as in the embodiment of 6 an annular gap is provided, in short a volumetric connection of the two combustion chambers 121 and 122, then only one ignition device is necessary. Glow plugs or spark plugs, among others, can be used as the ignition device. An intensified ignition by means of a spark plug, which has a higher ignition energy than a glow plug, the speed of the reaction can be increased. A more rapid pressure build-up in the combustion chambers 121 and 122 thus takes place.
- the outlet opening of the pressure-tight container is kept closed beforehand by the piston 70 as the closing means.
- the gas spring allows the closure to be kept closed even against the filling pressure of the combustible elements in the combustion chambers 121 and 122. Only through the pressure increase when the flowable mixture is ignited is the pressure on the intermediate area 75 increased so that the piston 70 is pushed back accordingly. Then, as in connection with the 3 will be described, the gas spring element then also brings about a return of the piston 70 as a closing means after burning off and allows the process to be directly repeated by refilling the chambers 121 and 122. At the same time, substances in the boiler are reliably prevented from flowing back into the device.
- the piston 70 is opened so quickly that the pressurized mixture in the combustion chambers 121 and 122 is still not completely burned when escaping, so that the gas mixture in the discharge funnel continues to burn, so that a pressure pulse with a high pressure peak is generated. If air is used as one of the two media in addition to CH 4 or natural gas, the chemical reaction will take place within the combustion chambers 121 and 122 and all of the energy will be converted in the device. The gas is then released to the outside by a subsequent, ie time-delayed, rapid opening of the piston 70 after the initial pressure build-up.
- the 3 shows a lateral sectional view in a schematic representation of a device for generating pressure waves with its components essential to the invention.
- the first and second pressure-resistant containers 21 and 22 border on the discharge funnel 61 inserted in them, which has a rounded valve seat contact 65 at its inner end.
- the front end 72 of the piston 70 adjoins this valve seat contact 65, which is designed as a horizontal, essentially circular contact line running perpendicularly and concentrically to the longitudinal axis 90 of the piston, to which the tapered piston region 73 is connected.
- a piston transition area 75 follows, in which the diameter of the piston is increased in order to have a larger diameter at the rear end of the piston 71 .
- the rear piston diameter 171 is thus designed to be larger than the front piston diameter 172; in particular, the piston 70 has a surface 91 as seen in its longitudinal direction (as in 4 designated) with a size that is sufficient to move the piston in the direction of the gas spring 40 upon ignition.
- the diameter and height of the cavities of the gas spring 40 can be selected to be larger in relation to the combustion chambers 121 and 122.
- the piston 70 is sealed between the walls of the left and right pressure-resistant vessels 21 and 22 by a series of seals 81 and 82 in its longitudinal direction, the three seals 81 being bronze seals, while the seal 82 sandwiched between them is an O ring is. These seals 81 and 82 are embedded in grooves in the piston 70; they could also be provided in the opposite walls.
- the piston 70 which is thus passed through the central body 30 with the pressure-tight containers 21 and 22 in a sealing manner, then protrudes in a sealing manner against the front gas spring chamber space 41 in the gas spring pressure body 40, which is separated from the rear gas spring chamber space 42 by a gas spring partition 43.
- a check valve 44 and a gas return flow opening 45 are provided in the gas spring partition.
- the function of the gas spring is as follows.
- the two components of the combustible gas mixtures are fed into the chambers 121 and 122 through the gas filling lines 151 and 152 .
- these gases are ignited.
- pressure is exerted on the transition area 75 , which overcomes the gas spring pressure holding against it and moves the piston 70 into the area of the front gas spring chamber space 41 .
- the non-return valve 44 is provided in the intermediate wall 43, which opens immediately and quickly equalizes the gas pressure between the front gas spring chamber space 41 and the rear gas spring space 42, so that after an initially strong movement of the piston 70, this then increased resistance from the combined gas spring chamber 41 and 42 is braked.
- the combustible gases escape from the discharge funnel 61 in burnt or still burning form and reduce the pressure in the combustion chambers 121 and 122. Since the valve in the gas spring partition 43 is a non-return valve 44, the combination of the gas spring chambers 41, 42 is then only connected through the gas return flow opening 45, which is much smaller in diameter, with the then pushes back the gas of the gas spring from the rear gas spring chamber 42 into the front gas spring chamber 41 and pushes the piston 70 into its initial position, as shown in FIG figure 3 is shown pushes. Any gas losses are compensated for by the gas spring feed line 49 .
- the gas of the gas spring 40 can be air or an inert gas such as N 2 .
- the 4 shows in three superimposed cross sections Figures 4a, 4b and 4c three cross sections through the device 3 along the intersection lines IVa, IVb and IVc.
- the piston 70 advantageously has a round cross-section.
- FIG. 8 shows a cross-section along the line IVa through the top wall 21, 22 of the pressure-tight containers, showing a bronze seal 81 surrounding the rear portion 71 of the piston 70.
- FIG. 4b a parallel sectional plane in the combustion chamber 121, 122 and through the combustion chamber 121, 122 is shown, which is a section along the line IVb in the upper area of the space of the combustion chambers 121 and 122, in which the piston 70 has the diameter of the rear area 71 has.
- the Figure 4c shows another section along the line IVc, parallel to the section of the Figure 4b in the lower area of the cavity, where it can be seen directly that the width of the piston 70 in the central chamber area 30 butts against the walls of the pressure-resistant container 21, 22 and thus has a width that remains constant over the length of the piston; on the other hand, the depth in the direction of longitudinal alignment of the inner spaces 121, 122 is made smaller. It can thus be seen directly here that there is a difference between the front piston diameter 172 and the rear piston diameter 171, the term piston diameter here corresponding to the width in the longitudinal direction of the combustion chambers 121, 122 lying opposite one another.
- the vent opening 61 is here in all three drawings Figures 4a, 4b and 4c below the Character level shown. It is just as possible as it is in the 3 of the state of the art WO 2010/025574 It is shown that the discharge funnel 61 is connected to a combustion chamber 121 in the longitudinal direction of the extension on the other side of the central body 30 and the closure element as a piston 70 is perpendicular to it, so that the gas mixture escapes straight ahead in the longitudinal direction of the entire device when the piston 70 is pushed back can.
- combustion chambers which are in the plane of the combustion chambers 121 and 122 of FIG 1 , 2 or 6 are arranged corresponding to the cutting plane 92 in 7 , since in all cases here the piston 70 is perpendicular to said plane of arrangement of the combustion chambers and the discharge funnel 61.
- the discharge funnel 61 would be in the same plane as all the combustion chambers and could then, for example, be equiangularly spaced from all of them. With three combustion chambers then 90 degrees to each other.
- the combustion chambers opposite the discharge funnel 61 can also be arranged closer together, so that the outflow direction does not have to be changed as much.
- the figure 5 shows an enlarged section of the transition area 75 of the piston 70.
- first diameter 121 from the longitudinal axis 90 of the piston which is designed to be smaller than the rear piston diameter 171 .
- the transition region 75 thus forms two rectangular strips 91 in a section in the projection of the longitudinal axis 90, which serve as pressure transmission strips.
- the combustible chambers have a volume of between one and two liters, with the gas filling pressure being between 10 and 30, for example between 15 and 25 bar.
- the diameter of the annular opening closed by the piston is between 40 and 15 mm, in particular between 60 and 100 mm, in particular 80 mm.
- Ignition can be performed in a manner similar to the prior art WO 2010/025574 be configured and thus happen, for example, electrically or by light ignition.
- the 6 12 shows a schematic perspective view of another device for generating high-amplitude pressure waves according to an embodiment of the invention.
- Two pressure-resistant containers 21 and 22 are also arranged here on the central body 30 and the gas spring pressure body 40 is provided perpendicular to these.
- the gas filling lines 151 and 152 lead into the central body 30 and the supply line of the ignition device 50 is shown in the middle of the central body 30 .
- FIG. 12 now shows a schematic cross-sectional view of the device 6 with a vertical cutting axis.
- the longitudinal axis 90 of the piston which corresponds to the longitudinal axis of the gas spring pressure body 40, crosses the horizontal central section plane 92 of the pressure bodies 21 and 22. Elements of the central body 30 are shown in FIG 7 been omitted from the drawing for the sake of simplicity.
- the pressure-resistant containers 21 and 22 reach the discharge funnel 61 , the inner end of which forms the valve seat contact 65 for the piston 70 .
- the sealing line is a circular ring on the valve seat 300.
- the piston 70 has a tapered lower area 73, which is adjoined by the transition area 75, which increases in diameter and leads into the rear piston area 71.
- the piston 70 is hollow here. It may be in two parts, the lower end being insertable into the hollow piston 70 for contact with the valve seat 65 .
- the valve seat 300 can again as in FIG 14 shown, be executed.
- the rear area of the piston 70 has a sufficient height from the transition area 75 to its upper flat end surface, which delimits the lower gas spring chamber space 41, so that even if the piston is pushed back into this front gas spring chamber space 41, the piston 70 still rests against the inner walls of the Gas spring 40 rests essentially sealingly through the following sealing elements.
- the bronze guides 81 which are arranged with a greater distance from one another, also have a sealing function and they, like the O-ring 82, are in corresponding circumferential grooves stored in the piston 70.
- the check valve 44 and the gas return flow opening 45 are provided in the gas spring partition 43, which runs essentially perpendicular to the longitudinal axis 90 of the piston.
- the gas return flow opening 45 can also be referred to as an orifice.
- the gas spring supply line 47 is led to the rear end of the gas spring chamber space 42 , with which an inert gas such as nitrogen, CO2 or argon can be refilled externally via the gas spring gas connection 49 . If the spring chamber spaces 41 and 42 are sufficiently sealed, the gas can also be air.
- the 8 shows the embodiment of 6 in section plane 92. It can be seen that the piston 70 is arranged at a constant distance in this central area from the inner wall of the central body 30 and that there is an annular gap 123 that extends in the piston longitudinal axis direction 90, which is used to equalize the pressure between the two combustion chambers 121 and 122 are designed. Thus, in the present exemplary embodiment, a gas supply line 151 and 152 arranged next to one another is sufficient for the two gases or fluids to be mixed for combustion. Centrally in the annular gap 123 between the combustion chambers 121 and 122, preferably also in the middle of the central body, the glow plug or spark plug 59 is arranged reaching into the annular gap 123, which is connected to the line 50 of the ignition device. Screens or metering valves 153 and 154 are provided here, so that the combustion chambers 121 and 122 are filled directly.
- Such an annular gap 123 can also be guided on one side, ie only on the side of the spark plug 59, and it can also be used in other exemplary embodiments with two or more other combustion chambers.
- the 9 shows a schematic perspective view of a further device for generating pressure waves of high amplitude according to an embodiment of the invention.
- An arrangement that is symmetrical about the longitudinal axis 90 of the piston has been provided here.
- an annular pressure-resistant container 25 is provided in which the gas supply lines 151 and 152 lead.
- This pressure-resistant container 25 is arranged below the gas spring pressure body 40 in its extension, and the ignition device supply line 50 is guided into the interior of the device through the section of the pressure-resistant container 25 that protrudes beyond the gas spring body.
- the pressure-resistant container 25 is made up of a cover plate, a base plate and here a ring, which are placed against one another in a sealing manner. Several rings can also be arranged one above the other.
- FIG. 12 shows a schematic cross-sectional view with a vertical section axis of the device 9 .
- the gas spring 40 is formed analogously to the other exemplary embodiments. There are two significant structural differences from these other embodiments which have been used together here. In other exemplary embodiments not shown in the figures, however, it is also possible to combine only one of the two differences described below with the other exemplary embodiments.
- the first difference from the other embodiments is that there is an annular combustion chamber 125 that completely surrounds the piston 70 .
- annular combustion chamber 125 that completely surrounds the piston 70 .
- the spark plug 59 of the igniter 50 is sealed into the annular combustion chamber 125 through the top wall plate.
- the two gas supply lines 151 and 152 are introduced directly. In other words, there are no gas reservoirs 51 and 52 as dosing elements. This is controlled by the orifices 153 and 154 during filling.
- the second difference between the other embodiments and the embodiment of figs 9 and 10 lies in the design of the piston 70.
- the projection of the pressure surface 91 of the other exemplary embodiments is formed here by an underside 191 of the piston 70, which underside and inside of the piston delimit an auxiliary pressure chamber 95. On its underside, this borders on a down tapering deflection profile strand 96.
- the strand 96 which is hollow here, has a uniform inner diameter, into which the lower section with the tapered piston region 173 runs, which is guided opposite the strand 96 via two bronze seals 81 here.
- the pressure in the annular combustion chamber 125 increases as in the previous examples, with the pressure having the opportunity here to expand via a connecting gap 126 into the auxiliary pressure chamber 95 .
- gaps 126 can also be provided, preferably at regular angular distances from one another, so that the deflection profile strand 96 is fastened to the plate or the gas spring pressure body through the connecting gaps 126, except for these interruptions.
- the internal pressure of the annular combustion chamber 125 acts on the underside of the rear end 71 of the piston 70 with its surface 191 projecting beyond the core in the auxiliary pressure chamber 95.
- the pressure exerted on this surface 191 which corresponds to the pressure on the projection corresponds to the pressure surface 91 from the other exemplary embodiment
- the piston 70 in its line 96 is pushed backwards into the front gas spring chamber space 41 by the enlarging auxiliary pressure space 95, with a bronze seal 81 and an O-ring 82 are provided.
- FIG. 9 shows a schematic cross-sectional view with vertical section axis 90 of a device with features which partially correspond to the device 6 correspond and in part to those of 9 or 10.
- the walls surrounding the rear section of the piston 70 have extensions 196 which protrude into the interior of the combustion chamber 125 .
- These extensions 196 which are ring-shaped here, correspond to the strand 96 from the 10 and are used for further guidance of the piston 70. They can also correspond to bronze rings 81 opposite, which are embedded in the piston 70. In other words, it is advantageous to guide the piston 70 over a greater length, and this can be realized by a line guided in the middle or by extensions 96 in the form of rings or ring segments.
- the piston 70 itself can be designed hollow to save weight, whereby it can be open to the front in the longitudinal direction 90 on the inside, or it can also be made of a solid material, in particular steel, or it can be hollow and have a front-inserted, in particular have screwed-in plugs. This can also form the sealing surface for the valve seat 65 .
- the 12 shows a schematic cross-sectional view with vertical section axis 90 of another embodiment of a gas spring 140, wherein the further area of the device with the piston 70 and the spark plug 59 and the combustion chambers and discharge funnels, not shown here, can be configured similarly or identically.
- the essential difference to the gas spring 40 consists in an external bypass of the check valve 44 outside the pressure body as well as the external bypass of the gas return flow opening 45 outside of the pressure body. So both will not be inside of the gas spring partition 43 between the two spaces 41 and 42 but have external valves 144 and 145. These diaphragms or control valves 144 and 145 are connected to the control line labeled 150, which is also connected to the ignition device.
- the line 150 does not indicate a direct electrical or otherwise directly electrically activating line, but symbolizes that a control unit, not shown in the drawings, transmits control signals to the spark plug 59 and to the valves 144 and 145, so that they switch with a corresponding time delay .
- the non-return valve 44 is first switched continuously by the valve 144, optionally with a slight delay, in order to initially brake the movement of the piston by means of a rapid pressure build-up in the front gas spring chamber 41 and, after opening, to quickly equalize the pressure with the rear gas spring chamber 42 to reach.
- the valve 145 for the return flow opening 45 is closed. It can also open in advance, as it only lets a small amount of gas through in the opposite direction.
- FIG. 13 a further schematic cross-sectional view with a vertical section axis 90 shows another exemplary embodiment of a gas spring 240, which can also be used in a device, for example according to FIG 1 , 6 , 10 or 11 can be used.
- the non-return valve 244 is fourfold, while the gas return flow opening 45 is arranged in the gas spring intermediate wall 43 as in the other exemplary embodiments.
- the individual openings 246 of the four check valves 244 are arranged one above the other at intervals along the Piston longitudinal axis 90 is provided (not necessarily directly above one another, but also possible laterally offset at an angular distance from one another), so that the receding piston 70, gradually moving from below, breaks the orifices 246 one after the other and thus the connection to the check valves 244 from the connection between the front gas spring chamber 41 and the rear gas spring space 42 interrupts.
- the gas pressure equalization between the front and rear spring chambers 41 and 42 via the check valves 244 is gradually reduced, which leads to a softer braking of the piston 70 in the front gas spring chamber 41. without the need for more complicated controls of valves.
- the check valves 244 are closed purely mechanically.
- the 14 shows a sectional view of an outer wall 172 of a piston 70 of an exemplary embodiment of a valve seat 300 with further features.
- the outer wall is in the 14 on the opposite wall of the gas spring pressure body 40; however, it can also be in contact with the guide strand 96 .
- the valve seat 300 is supported downward by mating surfaces of the exhaust gas funnel 61 . Between the exhaust gas funnel 61 and the gas spring pressure body 40 there is an opening which leads into the first combustion chamber 121 . Instead of the upper section of the exhaust gas funnel 61, a defined opposing surface can also be present, which is assigned to the pressure-resistant containers 21, 22, for example.
- the view of 14 is closed off at the upper piston end by the piston surface 170, which is perpendicular to the side wall of the front piston diameter 172 and above which the (front) gas spring chamber space 41 is provided.
- This configuration is in the embodiments of 2 , 3 , 7 , 10 , 11 usable.
- an auxiliary pressure chamber 95 is provided, in which a flange surface 191 is a pressure surface for moving the piston 70.
- a line 301 is drawn on the valve seat 300 which indicates a distance from the side wall of the piston diameter 172 .
- This is a distance from a bend R2 belongs, which belongs to the inner piston seat wall 302 from the side wall 172, which is better seen in the detailed views of FIGS Figures 15A to 15C can be seen.
- This inner piston seat wall 302 is opposite the outer or housing-side valve seat wall 303.
- the two walls 203 and 303 which essentially form an angle of about 45 degrees, in other exemplary embodiments that are not shown, between 30 and 60 degrees, relative to the axis of piston movement 305 have, are not parallel to each other, but have an angle 304, which in the embodiment of FIG 14 is specified as 1 degree, but can also be formed between 0.5 and 5 degrees, in particular between 1 and 3 degrees.
- the peak of the opening angle 304 is located at the intersection of the line 301, which indicates the end of the curvature of the piston 70, with the opposite outer housing-side wall 303 and closes there in a circular ring the outer discharge funnel space 306 of the (here shown) first combustion chamber 121, but naturally also in relation to the second combustion chamber 122 .
- valve seat 300 is in the course of time in the explosive opening of the piston path in the Figure 15A (beginning 0.5 mm), Figure 15B (opening 1mm), Figure 15C (Clear passage 2mm) shown, with reference to the power relationships will be pointed out in the 16 are shown.
- arrows 311, 312, 313, 314 and 315 are drawn. These stand for the entire surfaces on which they stand. If present, these are the optional antechamber surface 311, the static auxiliary surface 312, the dynamic auxiliary surface 313, the piston inner surface 314 and the gas spring surface 315 diametrically opposed to all of these.
- the optional antechamber surface 311 is the flange widening in the auxiliary chamber pressure space 95.
- the static auxiliary surface 312 is the curved surface that is defined by the distance 301 and the radius R2 corresponding to it at the front end of the piston in 14 results, which then, in the mathematical sense, continuously merges into the inner piston seat wall 302.
- the dynamic auxiliary surface 313 is so called because the angle 304 causes the two walls 302 and 303 to diverge in the direction of the discharge funnel space 306 and the surface thus develops dynamically.
- the arrows would be 313 in a sequence from the inside edge to near the arrow 312.
- the piston inner surface 314 is shown here in the depression of the hollow piston, but it could also exist at the lower end of the piston.
- the gas spring surface 315 is provided diametrically opposite.
- the 16 shows the force on the piston 70 on the Y-axis versus time on the X-axis.
- the basic effect of the auxiliary pressure chamber 95 and its area 311 is characterized by the line 411.
- the area 511 between the 0 line and the line 411 is therefore a key figure for the antechamber effective area.
- Line 412 shows the additional force resulting from the rounded area at arrow 312 and identified by area 512 between line 411 and line 412 .
- boost ends at a point in time with a reversal of the boost curve 413 at a somewhat later point in time 521, at which the diverging gap after Figures 15A to 15C to a culvert as in Figure 15C has widened.
- This does not mean that there is a slot with a width of 2 millimeters, it depends on the depth of the valve seat, i.e. the distance from the curve R2 (described by the line / arrow 301) to the start of the discharge funnel space 306
- line 414 separates from line 413 in the downswing area.
- the geometry of the valve seat has a positive effect on the opening behavior of the piston.
- the narrowest shifts Cross-section radially from the outside to the inside, resulting in the advantages of small projected areas when closed, which prevents unwanted opening.
- the antechamber 95 ensures the initial opening at the desired time.
- it is possible to use this auxiliary chamber by arranging the surfaces 191 in the main chamber space 121 (i.e. without separate ignition, similar to the exemplary embodiment in figure 10 ) so that area 511 corresponds to incipient ignition of the main chamber.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- Portable Nailing Machines And Staplers (AREA)
- Incineration Of Waste (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Description
Die vorliegende Erfindung betrifft eine Vorrichtung und ein Verfahren zur Erzeugung von Druckwellen hoher Amplitude, insbesondere zur Kesselreinigung.The present invention relates to a device and a method for generating high-amplitude pressure waves, in particular for cleaning boilers.
Eine solche Vorrichtung zur Erzeugung von Druckwellen hoher Amplitude ist aus der
Die
Die
Der Artikel von Tibor Horst Füle "Cleaning technologies with sonic horns and gas explosions at the waste-fired power plant in Offenbach (Germany),
Ferner zeigt die
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde eine verbesserte Vorrichtung anzugeben, welche einfacher und sicherer zündbar ist.Proceeding from this state of the art, the invention is based on the object of specifying an improved device which can be ignited more simply and reliably.
Darüber hinaus ist ein Ziel der Erfindung, der Vorrichtung ein längeres Wartungsintervall zu verschaffen, da die Abnützung der beweglichen Teile in dem druckfesten Behälter durch die Explosionen erheblich ist und beim Stand der Technik nur eine beschränkte Anzahl von Wiederholungen der reinigenden Zündungen gestattet, bevor die Anlage gewartet werden muss. Da in der Kraftwerkstechnik, der Grundstoffindustrie und in der Technischen Chemie die Vorgänge üblicherweise in komplexen chemischen Anlagen ausgeführt werden, werden zumeist eine Reihe von solchen Vorrichtungen zur Erzeugung von Druckwellen hoher Amplitude für die Reinigung der verschiedenen Behälter vorgesehen, die dann entsprechend gewartet werden müssen.In addition, an object of the invention is to provide the device with a longer maintenance interval, since the wear and tear of the moving parts in the pressure-resistant container due to the explosions is considerable and, in the prior art, only allows a limited number of repetitions of the cleaning ignitions before the plant needs maintenance. Since the processes in power plant technology, the basic industry and in technical chemistry are usually carried out in complex chemical plants, a number of such devices for generating high-amplitude pressure waves are usually provided for cleaning the various containers, which then have to be serviced accordingly.
Die Vorrichtung wird bevorzugt zum Reinigen von Kesseln in grossen technischen Anlagen, wie Müllverbrennungsanlagen, Kohlekraftwerken, Silos, zum Beseitigen von Schlacken oder Ablagerungen etc. verwendet. Dort besteht der wesentliche Vorteil darin, dass die einzelnen Reinigungszyklen sehr schnell und mehrfach wiederholt werden können. Auch ist die Verwendung von Gasen als Reinigungsmaterial zur Erzeugung der Sequenz von Druckwellen und damit verbundene Druckimpulse relativ günstig und es können hohe Drücke erzeugt werden. Das Zuführen von zwei chemischen Fluiden, die an sich nicht abbrennen oder explodieren, zu einem Zeitpunkt kurz vor dem Auslösen der Druckwelle, erhöht zudem die Sicherheit. Auch ermöglicht es ein Reinigen bei noch warmen und ggf. in Betrieb befindlichen Anlagen, da die reagierenden Stoffe über längere Zeit der heissen Umgebung ausgesetzt sind.The device is preferred for cleaning boilers in large technical Plants such as waste incinerators, coal-fired power plants, silos, etc. used to remove slag or deposits. The main advantage there is that the individual cleaning cycles can be repeated very quickly and several times. Also, the use of gases as cleaning material for generating the sequence of pressure waves and associated pressure pulses is relatively cheap and high pressures can be generated. In addition, the delivery of two chemical fluids, which do not inherently burn up or explode, at a time just before the blast is triggered increases safety. It also enables cleaning of systems that are still warm and possibly in operation, since the reacting substances are exposed to the hot environment for a long time.
Die erzeugte Druckwelle kann dabei über ein Rohr über längere Distanzen in einen Kessel an die zu reinigende Stelle geleitet werden. Das Rohr kann fest an der zu reinigenden Anlage installiert sein, aber auch von aussen eingeführt werden, beispielsweise teleskopisch verschiebbar in eine Anlage oder einen Kessel geschoben werden. Durch den bei dem Abbrand erzeugten Druckimpuls werden Beläge und Verschmutzungen von inneren Rohren im Kessel und dessen Wänden weggeblasen und gleichzeitig die Rohre bzw. Wände in Schwingung versetzt. Beide Aktionen bewirken ein effizientes Reinigen der zu reinigenden Anlagen.The pressure wave generated can be conducted via a pipe over long distances into a boiler at the point to be cleaned. The tube can be permanently installed on the system to be cleaned, but can also be inserted from the outside, for example pushed telescopically into a system or a boiler. Due to the pressure pulse generated during the burn-up, deposits and dirt are blown away from the inner pipes in the boiler and its walls and at the same time the pipes and walls vibrate. Both actions result in efficient cleaning of the systems to be cleaned.
Verschiedene weitere Verwendungsmöglichkeiten sind denkbar, bei denen ein hoher, schneller Kraftstoss, Druckimpuls oder eine Druckwelle hoher Intensität und/oder (schnelle) Wiederholbarkeit benötigt wird. Beispiele sind Druckerzeuger für Blechumformung oder als Antrieb für Schusswaffen, bei denen der Druckimpuls zum Beschleunigen eines Projektils verwendet wird. Auch ist es möglich, solche Anlagen im Bereich der gesteuerten Lawinenauslösung einzusetzen.Various other possible uses are conceivable in which a high, rapid force impulse, pressure pulse or pressure wave of high intensity and/or (rapid) repeatability is required. Examples are pressure generators for sheet metal forming or as propulsion systems for firearms, where the pressure pulse is used to accelerate a projectile. It is also possible to use such systems in the field of controlled avalanche release.
Eine Vorrichtung zur Erzeugung von Druckwellen hoher Amplitude, insbesondere zur Kesselreinigung hat einen druckfesten Behälter. Dieser kann mehrteilig sein. Er hat mindestens eine darin eingebrachte Abbrennkammer. Mehrere Abbrennkammern können miteinander verbunden sein. Es ist mindestens einer in die Abbrennkammer(n) reichende Zündvorrichtung vorgesehen. Es bestehen mindestens eine Zufuhrleitung zum Zuführen eines fliessfähigen abbrennbaren Materials in die Abbrennkammer, vorzugsweise getrennt ein Brennstoff und ein Oxidationsmittel, beispielsweise Erdgas und Luft oder Methan und Sauerstoff. Es sind dabei auch verschiedene andere flüssige oder gasförmige Brennstoffe einsetzbar. Dabei weist der druckfeste Behälter eine Ablassöffnung zum gerichteten Ablassen von durch die Zündung des abbrennbaren Materials in der Abbrennkammer erzeugten Gasdrucks auf. Vor und bei der Zündung ist ein die Ablassöffnung verschliessendes Verschlussmittel vorhanden ist, welches ausgestaltet ist, die Ablassöffnung für das gerichtete Ablassen freizugeben, und welches anschliessend nach dem Abbrennen durch eine Federeinrichtung in die Ausgangslage verschiebbar ist. Dabei ist das Verschlussmittel ein in seiner Längsrichtung verschiebbarer Kolben, der über einen hinteren in Richtung der Federeinrichtung ausgerichteten Abschnitt und einen vorderen in Richtung der Ablassöffnung ausgerichteten Abschnitt verfügt.A device for generating high-amplitude pressure waves, in particular for cleaning boilers, has a pressure-resistant container. This can be in several parts. It has at least one combustion chamber incorporated therein. Several combustion chambers can be connected to each other. At least one ignition device reaching into the combustion chamber(s) is provided. There is at least one feed line for feeding a flowable combustible material into the combustion chamber, preferably separately a fuel and an oxidant, such as natural gas and air or methane and oxygen. Various other liquid or gaseous fuels can also be used. In this case, the pressure-resistant container has a discharge opening for the directed release of gas pressure generated by the ignition of the combustible material in the combustion chamber. Before and during the ignition, there is a closure means that closes the discharge opening, which is designed to release the discharge opening for the directed discharge, and which can then be pushed into the starting position by a spring device after the burnout. The closure means is a piston that can be displaced in its longitudinal direction and has a rear section that is oriented in the direction of the spring device and a front section that is oriented in the direction of the discharge opening.
Der Sitz des Kolbens verfügt in Bezug auf seine Längsrichtung über eine schräg zur Ablassöffnung geneigte Kolbenfläche, welche gegenüber einer ebenfalls schräg zur Ablassöffnung geneigten Gehäusefläche angeordnet ist, wobei sich die Gehäusefläche gegenüber der Kolbenfläche mit einem zur Ablassöffnung hin ausgerichteten Winkel von einer senkrecht zur Kolbenrichtung ausgerichteten Verschlusslinie ausgehend öffnet.In relation to its longitudinal direction, the seat of the piston has a piston surface that is inclined obliquely to the discharge opening, which is arranged opposite a housing surface that is also inclined obliquely to the discharge opening, with the housing surface being oriented relative to the piston surface at an angle towards the discharge opening from one perpendicular to the piston direction Closing line opens starting.
Der Winkel kann zwischen 0.5 und 5 Grad, vorzugsweise zwischen 1 und 3 Grad, insbesondere 2 Grad betragen.The angle can be between 0.5 and 5 degrees, preferably between 1 and 3 degrees, in particular 2 degrees.
Die senkrecht zur Kolbenrichtung ausgerichtete Verschlusslinie kann innerhalb der Kolbenwand des unteren Abschnitts angeordnet sein, so dass eine gerundete statische Drucköffnungsfläche zwischen der Verschlusslinie und der Kolbenwand besteht.The seal line perpendicular to the direction of the piston may be located within the piston wall of the lower portion such that there is a rounded static pressure opening area between the seal line and the piston wall.
Eine senkrecht zur Kolbenachse bestehende Flanschfläche, die mit der Abbrennkammer verbunden ist oder zu ihr gehört, kann dabei eine Flächengrösse aufweisen, die zwischen 50 und 200 Prozent einer Flächengrösse aufweist, die durch die Flächengrösse der Kolbenfläche gegeben ist.A flange surface perpendicular to the piston axis, which is connected to the combustion chamber or belongs to it, can have a surface area that is between 50 and 200 percent of a surface area that is given by the surface area of the piston surface.
Zwischen diesen beiden Abschnitten kann ein Übergangsbereich vorgesehen sein. Der vordere Abschnitt ist bei einer die Ablassöffnung verschliessenden Position des Kolbens im Bereich der Abbrennkammer angeordnet. In Bezug auf die Längsrichtung des Kolbens ist der vordere Abschnitt gegenüber dem hinteren Abschnitt verjüngt ausgeführt, so dass der Übergangsbereich eine quer zur Längsrichtung des Kolbens ausgerichtete Wirkfläche bildet, auf die bei Zündung des abbrennbaren Materials ein den Kolben zurücktreibender Druck ausgeübt wird, so dass der vordere Abschnitt des Kolbens die Ablassöffnung freigibt. Dadurch ist eine einfachere Reinigung möglich, da der Druckaufbau auch durch Abbrennen erreichbar ist und dann selbst für die Öffnung des Weges zum Ablasstrichter verantwortlich zeichnet.A transition area can be provided between these two sections. The front section is arranged in the area of the combustion chamber when the piston is in a position that closes the discharge opening. In relation to the longitudinal direction of the piston the front section is tapered compared to the rear section, so that the transition region forms an effective surface aligned transversely to the longitudinal direction of the piston, on which a pressure driving the piston back is exerted when the combustible material is ignited, so that the front section of the piston uncovers the discharge opening . This makes cleaning easier, since the pressure build-up can also be achieved by burning off and is then itself responsible for opening the path to the discharge funnel.
Der Übergangsbereich kann ein sich in Längsrichtung des Kolbens der Gasfeder stetig verjüngender Bereich von einem grösseren Kolbendurchmesser zu einem geringeren Kolbendurchmesser sein, der im Bereich der Abbrennkammern angeordnet ist. Andererseits kann der Übergangsbereich auch durch eine flanschartige Verjüngung des Kolbens gebildet sein.The transition area can be an area that tapers continuously in the longitudinal direction of the piston of the gas spring from a larger piston diameter to a smaller piston diameter, which is arranged in the area of the combustion chambers. On the other hand, the transition area can also be formed by a flange-like tapering of the piston.
Insbesondere kann ein hohler zentraler Führungsstrang in dem druckfesten Behälter vorgesehen sein, der in seinem Inneren den Kolben im vorderen Bereich führt. Dies hat Vorteile beim Verschleiss der Kolbenführung, da so eine Führung über weiter auseinander liegende Abschnitte des Kolbens möglich sind. Dann ist mindestens ein Verbindungsspalt zwischen den Abbrennkammern und einem Hilfsdruckraum in dem Bereich der flanschartigen Verjüngung des Kolbens vorgesehen.In particular, a hollow central guide line can be provided in the pressure-tight container, which guides the piston in the front area in its interior. This has advantages when the piston guide wears out, since it allows for guidance over sections of the piston that are further apart. At least one connecting gap is then provided between the combustion chambers and an auxiliary pressure chamber in the area of the flange-like taper of the piston.
Die Abbrennkammer kann ringförmig um den Kolben um dessen Längsachse angeordnet sein. Insbesondere können dann die ringförmigen Wände der Abbrennkammer gestapelt dichtend verbundene Ringsegmente sein, die vorteilhafterweise von einer Deckelplatte und einer Bodenplatte oben beziehungsweise unten abgeschlossen sind. Damit ist die Höhe und das Volumen der zylindrischen Abbrennkammer in einfacher Weise skalierbar, da keine besonderen unterschiedlich grossen Kammern vorgesehen sein müssen. Zu einer solchen skalierten Abbrennkammer gehört dann einzig der entsprechend in der Länge angepasste Kolben als Verschlusseinheit.The combustion chamber can be arranged in a ring around the piston around its longitudinal axis. In particular, the ring-shaped walls of the combustion chamber can then be stacked and sealed ring segments which are advantageously closed off at the top and bottom by a cover plate and a base plate. The height and the volume of the cylindrical combustion chamber can thus be scaled in a simple manner, since no special chambers of different sizes have to be provided. The only thing that belongs to such a scaled combustion chamber is the piston, which is adjusted accordingly in terms of length, as the closure unit.
Es können mindestens zwei Abbrennkammern in einer Ebene in einem Winkelabstand zueinander radial zu einer Zentralachse angeordnet sein. Dabei können insbesondere zwei Abbrennkammern diametral gegenüberlegenden. Dann fällt entweder die Längsachse der Gasfeder mit der Zentralachse zusammen; drei Abbrennkammern könnten dann einen Winkelabstand von 120 Grad in der gemeinsamen Ebene haben. Oder die Längsachse der Gasfeder liegt ebenfalls in der besagten Ebene der mindestens zwei Abbrennkammern liegt, so dass bei drei Abbrennkammern ein Winkelabstand von 90 Grad der einzelnen Elemente zueinander möglich ist.At least two combustion chambers can be arranged in one plane at an angular distance from one another radially to a central axis. In particular, two combustion chambers can be diametrically opposed. Then either the longitudinal axis of the gas spring together with the central axis; three combustion chambers could then be 120 degrees apart in the common plane. Or the longitudinal axis of the gas spring also lies in the said plane of the at least two combustion chambers, so that with three combustion chambers an angular distance of 90 degrees between the individual elements is possible.
Die Ablassöffnung verfügt in der Regel über ein Rohr mit einer Rohrlängsrichtung. Dabei kann dann entweder die Rohrlängsrichtung der Ablassöffnung mit der Zentralachse zusammenfallen, also die Ablassöffnung in der Verlängerung des Kolbens liegen, oder die Längsachse der Gasfeder liegt in der besagten Ebene der mindestens zwei Abbrennkammern. Dann kann auch, beispielsweise bei zwei Abbrennkammern, ein Winkelabstand von weniger als 120 Grad zwischen den beiden Abbrennkammern vorgesehen werden, so dass diese mehr auf die Ablassöffnung ausgerichtet sind.As a rule, the discharge opening has a tube with a tube longitudinal direction. The longitudinal direction of the discharge opening can then either coincide with the central axis, i.e. the discharge opening can lie in the extension of the piston, or the longitudinal axis of the gas spring can lie in said plane of the at least two combustion chambers. Then, for example with two combustion chambers, an angular distance of less than 120 degrees can be provided between the two combustion chambers, so that they are more aligned with the discharge opening.
Die Gasfeder kann über einen gegenüber dem Kolben liegenden vorderen Gasfederkammerraum und einen durch eine Trennwand von diesem getrennten hinteren Gasfederkammerraum verfügen, wobei zwischen dem vorderen Gasfederkammerraum und dem hinteren Gasfederkammerraum eine erste Verbindung als Rückstromverbindung und eine zweite Verbindung mit einem Rückschlagventil besteht, wobei das Rückschlagventil so angeordnet ist, dass es einen ungehinderten Medienfluss von der vorderen in die hintere Gasfederkammer gestattet, aber die Gegenrichtung aus der hinteren Gasfederkammer hinaus im wesentlichen blockiert.The gas spring can have a front gas spring chamber space opposite the piston and a rear gas spring chamber space separated from this by a partition wall, with a first connection as a return flow connection and a second connection with a check valve being provided between the front gas spring chamber space and the rear gas spring chamber space, the check valve being so is arranged to permit unrestricted flow of media from the front to the rear gas spring chamber but substantially block the reverse flow out of the rear gas spring chamber.
Die erste und die zweite Verbindung können in der Trennwand vorgesehen sein. Andererseits kann die zweite Verbindung über mindestens zwei Teilverbindungen verfügen, die einerseits seitlich in Längsrichtung der Kolbenbewegung übereinander in der Wand der Gasfeder im vorderen Gasfederkammerraum münden und andererseits im hinteren Gasfederkammerraum enden, so dass die Mündungen bei einem Eindringen des Kolbens in den vorderen Gasfederkammerraum zeitlich nacheinander abgedeckt werden, wobei die besagten Teilverbindungen jeweils über ein eigenes Rückschlagventil verfügen. Dadurch werden sukzessive die einzelnen Rückschlagventile abgeschaltet, so dass sich der Medienfluss von der vorderen in die hintere Gasfederkammer verlangsamt, also die Bremswirkung durch den Gasdruckaufbau in der vorderen Gasfederkammer nachlässt.The first and the second connection can be provided in the partition wall. On the other hand, the second connection can have at least two partial connections which, on the one hand, open out laterally one above the other in the longitudinal direction of the piston movement in the wall of the gas spring in the front gas spring chamber space and, on the other hand, end in the rear gas spring chamber space, so that the openings occur one after the other when the piston penetrates into the front gas spring chamber space are covered, said sub-connections each having their own check valve. As a result, the individual non-return valves are switched off successively, so that the media flow from the front to the rear gas spring chamber slows down, i.e. the braking effect due to the gas pressure build-up in the front gas spring chamber decreases.
Dabei kann die zweite Verbindung ein steuerbares Rückschlagventil aufweisen, welches optional ein in Reihe geschaltetes Steuerventil und ein Rückschlagventil aufweisen kann, welches steuerbare Rückschlagventil mit einer Kontrolleinheit verbunden ist, mit der die Zündung auslösbar ist, wobei die Kontrolleinheit ausgestaltet ist, um das steuerbare Rückschlagventil in einem ersten vorbestimmten zeitlichen Abstand nach der Zündung des fliessfähigen abbrennbaren Materials zu öffnen. Damit kann sichergestellt werden, dass das Abbrennen in der Abbrennkammer vollständig erfolgt, bevor es dem Kolben gestattet wird, weiter zurückzuweichen.The second connection can have a controllable check valve, which can optionally have a control valve connected in series and a check valve, which controllable check valve is connected to a control unit, with which the ignition can be triggered, the control unit being designed to switch the controllable check valve in a first predetermined time interval after ignition of the flowable combustible material. This can ensure that the burnup in the burnup chamber is complete before the piston is allowed to retreat any further.
Die erste Verbindung kann ein steuerbares Rückstromventil aufweisen, welches optional ein in Reihe geschaltetes Steuerventil und ein Rückstromführung aufweisen kann, welches steuerbare Rückstromventil mit der Kontrolleinheit verbunden ist, mit der die Zündung auslösbar ist, wobei die Kontrolleinheit ausgestaltet ist, um das steuerbare Rückstromventil in einem zweiten vorbestimmten zeitlichen Abstand nach der Öffnung des steuerbaren Rückschlagventils zu öffnen. Damit ist es möglich zeitlich später nach dem Öffnen des steuerbaren Rückschlagventils und damit des Druckausgleichs zwischen vorderer und hinterer Gasfederdruckkammer die Rückströmung verzögert zu aktivieren, also die Schliessbewegung des Kolbens zeitlich später auszulösen, so dass die noch unter Druck stehenden Verbrennungsgase vollständig die Abbrennkammer verlassen.The first connection can have a controllable backflow valve, which can optionally have a control valve connected in series and a backflow guide, which controllable backflow valve is connected to the control unit, with which the ignition can be triggered, the control unit being designed to combine the controllable backflow valve in one to open second predetermined time interval after the opening of the controllable check valve. This makes it possible to activate the return flow later after the opening of the controllable non-return valve and thus the pressure equalization between the front and rear gas spring pressure chamber, i.e. to trigger the closing movement of the piston later in time, so that the combustion gases that are still under pressure completely leave the combustion chamber.
Es können dabei auch zwei Gasfedergasanschlüsse für die vordere und für die hintere Gasfederkammer getrennt vorgesehen sind, wobei die Kontrolleinheit eine Gasfüllsteuereinheit aufweist, mit der vor einer Zündung der Gasfülldruck in der vorderen und in der hinteren Gasfederkammer auf jeweils einen vorbestimmten Wert einstellbar ist, wobei der Gasfülldruck in der vorderen Gasfederkammer höher als in der hinteren Gasfederkammer einstellbar ist. Insbesondere kann der Gasfülldruck in der vorderen Gasfederkammer um das mindestens 2-fache, vorzugsweise das mindestens 3-fache oder das 5-fache übersteigend, höher als in der hinteren Gasfederkammer einstellbar sein, so dass einerseits die vordere Gasfederdruckkammer bei Zündung nicht oder nur unwesentlich zurückweicht, da der in ihr vorherrschende Druck bei Zündung dem sich aufbauenden Druck in der Abbrennkammer entgegensteht, und das Zurückweichen erst bei Öffnen des Rückschlagventils dann vollständig und rasch eintritt, da bereits ein Gasdruckunterschied eingestellt war. Insbesondere kann in der hintern Kammer Atmosphärendruck herrschen, während nur die vordere Gasfederdruckkammer mit dem Inertgas unter Druck gesetzt worden ist.Two separate gas spring gas connections can also be provided for the front and rear gas spring chambers, with the control unit having a gas filling control unit with which the gas filling pressure in the front and rear gas spring chambers can be set to a predetermined value before ignition, the Gas filling pressure in the front gas spring chamber can be set higher than in the rear gas spring chamber. In particular, the gas filling pressure in the front gas spring chamber can be set at least 2 times, preferably at least 3 times or 5 times higher than in the rear gas spring chamber, so that on the one hand the front gas spring pressure chamber does not recede or only recedes insignificantly during ignition , since the pressure prevailing in it upon ignition opposes the pressure building up in the combustion chamber, and the retreat only occurs completely and quickly when the check valve is opened, since a gas pressure difference was set. In particular, the rear chamber can be at atmospheric pressure while only the front gas spring pressure chamber has been pressurized with the inert gas.
Zur Lösung der Aufgabe, eine verbesserte Vorrichtung anzugeben, welche einfacher und sicherer zündbar ist, ist eine Vorrichtung gemäß Anspruch 1 vorgeschlagen, nämlich eine Vorrichtung zur Erzeugung von Druckwellen hoher Amplitude, insbesondere zur Kesselreinigung, mit einem druckfesten Behälter mit einer darin eingebrachten Abbrennkammer und mindestens einer in die Abbrennkammer reichenden Zündvorrichtung, mit mindestens einer Zufuhrleitung zum Zuführen eines fliessfähigen abbrennbaren Materials in die Abbrennkammer, wobei der druckfeste Behälter eine Ablassöffnung zum gerichteten Ablassen von durch die Zündung des abbrennbaren Materials in der Abbrennkammer erzeugten Gasdrucks und ein die Ablassöffnung verschliessendes Verschlussmittel aufweist, welches ausgestaltet ist, die Ablassöffnung für das gerichtete Ablassen freizugeben, und welches durch eine Federeinrichtung in die Ausgangslage verschiebbar ist, wobei das Verschlussmittel ein in seiner Längsrichtung verschiebbarer Kolben ist, der über einen hinteren in Richtung der Federeinrichtung ausgerichteten Abschnitt und einen vorderen in Richtung der Ablassöffnung ausgerichteten Abschnitt verfügt, wobei der vordere Abschnitt bei einer die Ablassöffnung verschliessenden Position des Kolbens im Bereich der Abbrennkammer angeordnet ist, wobei in Bezug auf die Längsrichtung des Kolbens der Sitz des Kolbens über eine schräg zur Ablassöffnung geneigte Kolbenfläche verfügt, der gegenüber eine ebenfalls schräg zur Ablassöffnung geneigte Gehäusefläche angeordnet ist, und wobei sich die Gehäusefläche gegenüber der Kolbenfläche mit einem zur Ablassöffnung hin sich ausgerichteten Winkel von einer senkrecht zur Kolbenrichtung ausgerichteten Verschlusslinie öffnet. Dabei ist dieser Winkel vorteilhafterweise zwischen 0.5 und 3, insbesondere 1 Grad. Die senkrecht zur Kolbenrichtung ausgerichtete Verschlusslinie ist vorteilhafterweise innerhalb der Kolbenwand des unteren Abschnitts angeordnet, so dass eine gerundete statische Drucköffnungsfläche zwischen der Verschlusslinie und der Kolbenwand besteht. Auch bei dieser Vorrichtung kann das Merkmal erfüllt sein, dass in Bezug auf die Längsrichtung des Kolbens der vordere Abschnitt verjüngt gegenüber dem hinteren Abschnitt ausgeführt ist. Die Verjüngung betrifft die innere Kolbensitzwand und weisst dann vorzugsweise eine gegenüberliegende äussere Gehäuseventilsitzwand auf, die sich nach Innen zum Auslass hin mit einem kleinen Winkel öffnet.In order to solve the problem of specifying an improved device which can be ignited more easily and reliably, a device according to claim 1 is proposed, namely a device for generating pressure waves of high amplitude, in particular for cleaning boilers, with a pressure-resistant container with a combustion chamber installed therein and at least an ignition device reaching into the combustion chamber, with at least one supply line for supplying a free-flowing combustible material into the combustion chamber, the pressure-resistant container having a discharge opening for the directed release of gas pressure generated in the combustion chamber by the ignition of the combustible material and a closure means closing the discharge opening, which is designed to release the discharge opening for directed discharge, and which can be displaced into the starting position by a spring device, the closure means being a piston which can be displaced in its longitudinal direction and which has a rear section oriented in the direction of the spring device and a front section in the direction of the The front section is arranged in the region of the combustion chamber when the piston is in a position that closes the discharge opening, the seat of the piston having a piston surface inclined obliquely to the discharge opening in relation to the longitudinal direction of the piston, and the piston surface opposite the piston surface, which is also inclined the housing surface is arranged inclined toward the discharge opening, and wherein the housing surface opens relative to the piston surface at an angle oriented toward the discharge opening from a closure line oriented perpendicularly to the direction of the piston. In this case, this angle is advantageously between 0.5 and 3, in particular 1 degree. The closure line oriented perpendicular to the direction of the piston is advantageously arranged within the piston wall of the lower section, so that there is a rounded static pressure opening area between the closure line and the piston wall. Even with this device, the feature can be met that in relation in the longitudinal direction of the piston, the front section is tapered in relation to the rear section. The taper relates to the inner piston seat wall and then preferably has an opposite outer housing valve seat wall which opens inwards towards the outlet at a small angle.
Weitere Ausführungsformen sind in den abhängigen Ansprüchen angegeben.Further embodiments are given in the dependent claims.
Bevorzugte Ausführungsformen der Erfindung werden im Folgenden anhand der Zeichnungen beschrieben, die lediglich zur Erläuterung dienen und nicht einschränkend auszulegen sind. In den Zeichnungen zeigen:
- Fig. 1
- eine schematische perspektivische Ansicht einer Vorrichtung zur Erzeugung von Druckwellen hoher Amplitude gemäss einem Ausführungsbeispiel der Erfindung;
- Fig. 2
- eine schematische Ansicht der Vorrichtung nach
Fig. 1 ; - Fig. 3
- eine seitliche nicht massstabsmässige Schnittansicht einer Vorrichtung zur Erzeugung von Druckwellen mit ihren erfindungswesentlichen Komponenten;
- Fig. 4A, 4B & 4C
- in drei übereinanderliegenden Querschnitten drei horizontale Schnitte durch die Vorrichtung nach
Fig. 3 ; - Fig. 5
- eine schematische Detailansicht des Kolbens aus
Fig. 3 zwischen den Linien IVb und IVc; - Fig. 6
- eine schematische perspektivische Ansicht einer anderen Vorrichtung zur Erzeugung von Druckwellen hoher Amplitude gemäss einem Ausführungsbeispiel der Erfindung;
- Fig. 7
- eine schematische Querschnittsansicht mit vertikaler Schnittachse der Vorrichtung nach
Fig. 6 ; - Fig. 8
- eine schematische Querschnittsansicht mit horizontaler Schnittachse der Vorrichtung nach
Fig. 6 ; - Fig. 9
- eine schematische perspektivische Ansicht einer weiteren Vorrichtung zur Erzeugung von Druckwellen hoher Amplitude gemäss einem Ausführungsbeispiel der Erfindung;
- Fig. 10
- eine schematische Querschnittsansicht mit vertikaler Schnittachse der Vorrichtung nach
Fig. 9 ; - Fig. 11
- eine schematische Querschnittsansicht mit vertikaler Schnittachse einer Vorrichtung mit Merkmalen teilweise nach der Vorrichtung nach
Fig. 6 und nach derFig. 9 ; - Fig. 12
- eine schematische Querschnittsansicht mit vertikaler Schnittachse eines Ausführungsbeispiels einer Gasfeder einsetzbar in einer Vorrichtung beispielsweise nach den
Fig. 1 ,6 ,10 oder11 ; - Fig. 13
- eine schematische Querschnittsansicht mit vertikaler Schnittachse eines anderen Ausführungsbeispiels einer Gasfeder einsetzbar in einer Vorrichtung beispielsweise nach den
Fig. 1 ,6 ,10 oder11 ; - Fig. 14
- eine schematische Teilansicht eines Mittelstücks einer Vorrichtung nach einem weiteren Ausführungsbeispiel der Erfindung, die auch in
Fig. 2 ,3 ,7 ,10 und11 einsetzbar ist: - Fig. 15A, 15B und 15C
- sind Detailansichten der
Fig. 14 zu verschiedenen Zeitpunkten eines Öffnungszyklus; und - Fig. 16
- ein Kraftverlaufs-Diagramm über die Zeit für das Ausführungsbeispiel des Ventilsitzes für eine Vorrichtung zur Erzeugung von Druckwellen hoher Amplitude.
- 1
- a schematic perspective view of a device for generating high-amplitude pressure waves according to an embodiment of the invention;
- 2
- a schematic view of the device
1 ; - 3
- a lateral sectional view, not to scale, of a device for generating pressure waves with its components essential to the invention;
- Figures 4A, 4B & 4C
- three horizontal sections through the device in three superimposed cross sections
3 ; - figure 5
- a schematic detailed view of the piston
3 between lines IVb and IVc; - 6
- a schematic perspective view of another device for generating high-amplitude pressure waves according to an embodiment of the invention;
- 7
- a schematic cross-sectional view with a vertical section axis of the device
6 ; - 8
- a schematic cross-sectional view with a horizontal cutting axis of the device
6 ; - 9
- a schematic perspective view of a further device for generating pressure waves of high amplitude according to an embodiment of the invention;
- 10
- a schematic cross-sectional view with a vertical section axis of the device
9 ; - 11
- a schematic cross-sectional view with vertical section axis of a device with features partially after the device
6 and after9 ; - 12
- a schematic cross-sectional view with a vertical section axis of an embodiment of a gas spring can be used in a device, for example according to
1 ,6 ,10 or11 ; - 13
- a schematic cross-sectional view with a vertical section axis of another embodiment of a gas spring can be used in a device, for example according to
1 ,6 ,10 or11 ; - 14
- a schematic partial view of a center piece of a device according to a further embodiment of the invention, which is also in
2 ,3 ,7 ,10 and11 can be used: - Figures 15A, 15B and 15C
- are detailed views of
14 at different times of an opening cycle; and - 16
- a force curve diagram over time for the embodiment of the valve seat for a device for generating pressure waves of high amplitude.
Die
Die Funktionsweise der Vorrichtung zur Erzeugung von Druckwellen wird nun im Zusammenspiel mit der schematischen Darstellung der Vorrichtung nach
Im Zentralkörper 30 ist ein Kolben 70 angeordnet, der wie in den weiteren Zeichnungen genauer dargestellt sein wird, der im dargestellten geschlossenen Zustand die Kammern 121 und 122 voreinander trennt und verschliesst mit seinem vorderen Ende 72 des Kolbens 70 den Auslass in Richtung des Ablasstrichters 61. Der Kolben 70 ragt mit seinem oberen Teil 71 in den Gasfederdruckkörper 40 hinein wie es in der
Das Ziel der Vorrichtung zur Erzeugung von Druckwellen hoher Amplitude ist die Erzeugen derselben in den ersten und zweiten Druckkammern 121 und 122 durch Abbrennen von einem fluiden Brennmittel oder Explosionsstoff. Dieses Brennmittel wird vorzugsweise durch die Vermischung von an sich nicht brennbaren oder explosionsfähigen Komponenten gebildet, die in den ersten und zweiten Gasvorratsbehälter 51 und 52 gespeichert sind. Diese Gasvorratsbehälter 51 und 52 werden über externe Gaszuleitungen 53 und 54 von entsprechenden Gasanschlüssen 57 und 58 gespeist, welche über externe Gaszuleitungsventile 55 und 56 geregelt werden. Der erste Gasvorratsbehälter 51 ist über eine erste Gasfüllleitung 151 und ein zwischengeschaltetes erstes Gasfüllventil 153 mit den Abbrennkammern 121 und 122 verbunden. Die Darstellung der
Weiterhin ist ein Gasfedergasanschluss 47 vorgesehen, wobei über ein Gasfederzuführungsventil 48 und eine Gasfederzuleitung 49 das Gas für die Gasfeder 40 in den Gasfederinnenraum 41 bzw. 42, wie in der
Bei dem vorliegenden Ausführungsbeispiel wird von einem ersten und einem zweiten Gas gesprochen. Das erste Gas kann beispielsweise Methan oder Erdgas sein, wobei das zweite Gas Sauerstoff oder Luft oder ein sauerstoffenthaltendes Luftgemisch sein kann. In anderen Ausführungsbeispielen ist das fliessfähige abbrennbare Material unter Umständen ein explosionsfähiges Gemisch, es kann neben gasförmigen auch flüssige, pulverförmige oder eine Mischung von solchen Stoffen sein.In the present exemplary embodiment, reference is made to a first and a second gas. The first gas can be methane or natural gas, for example, while the second gas can be oxygen or air or an oxygen-containing air mixture. In other exemplary embodiments, the flowable combustible material may be an explosive mixture; in addition to gaseous material, it may also be liquid, powdery material or a mixture of such materials.
Die Abbrennkammern 121 und 122 sind zusätzlich mit einer Zündvorrichtung verbunden, die zeitgleich eine Zündung des abbrennbaren Materials in den Abbrennkammern 121 und 122 auslöst. Sofern, wie in der Ausführungsform der
Beim Auslösen der Zündung erfolgt ein kontrolliertes Abbrennen oder eine kontrollierte Explosion der abbrennbaren bzw. explosionsfähigen gemischten Komponenten in den Abbrennkammern 121 und 122, welche einen Druck auf den Kolben 70 ausüben und dort insbesondere auf den Zwischenbereich 75, wie er im Zusammenhang mit der
Zuvor wird die Austrittsöffnung des druckfesten Behälters durch den Kolben 70 als Verschlussmittel verschlossen gehalten. Die Gasfeder erlaubt, dass Geschlossenhalten des Verschlusses auch gegen den Einfülldruck der abbrennbaren Elemente in den Abbrennkammern 121 und 122. Erst durch die Druckerhöhung bei der Zündung der fliessfähigen Mischung wird der Druck auf den Zwischenbereich 75 so erhöht, dass der Kolben 70 entsprechend zurückgeschoben wird. Anschliessend, wie im Zusammenhang mit der
Der Kolben 70 wird dabei so rasch geöffnet, dass das unter Druck stehende Gemisch in den Abbrennkammern 121 und 122 beim Entweichen immer noch nicht vollständig abgebrannt ist, so dass das Gasgemisch in dem Ablasstrichter weiterhin abbrennt, so dass ein Druckimpuls mit hoher Druckspitze erzeugt wird. Bei der Verwendung von Luft als eines der beiden Medien neben CH4 oder Erdgas wird die chemische Reaktion innerhalb der Abbrennkammern 121 und 122 ablaufen und die komplette Energie wird in der Vorrichtung umgesetzt. Durch ein anschliessendes, also zeitverzögertes schnelles Öffnen des Kolbens 70 nach dem initialen Druckaufbau wird das Gas dann ins Freie entlassen.The
Die
Der erste und der zweite druckfeste Behälter 21 und 22 grenzen an den in sie eingesetzten Ablasstrichter 61, welcher an seinem inneren Ende über einen abgerundeten Ventilsitzkontakt 65 verfügt. An diesem Ventilsitzkontakt 65, der als eine horizontale im wesentlichen kreisförmige Kontaktlinie ausgestaltet ist, die senkrecht und konzentrisch zur Kolbenlängsachse 90 verläuft, grenzt das vordere Ende 72 des Kolbens 70 an, an den sich der verjüngte Kolbenbereich 73 anschliesst. An diesen verjüngten Kolbenbereich 73 schliesst sich ein Kolbenübergangsbereich 75 an, bei dem der Durchmesser des Kolbens vergrössert wird, um beim hinteren Ende des Kolbens 71 einen grösseren Durchmesser aufzuweisen. Der hintere Kolbendurchmesser 171 ist somit gegenüber dem vorderen Kolbendurchmesser 172 grösser ausgestaltet, insbesondere weist der Kolben 70 in seiner Längsrichtung gesehen eine Fläche 91 (wie in
Der somit dichtend durch den Zentralkörper 30 mit den druckfesten Behältern 21 und 22 durchgeführte Kolben 70 ragt dann dichtend gegen den vorderen Gasfederkammerraum 41 im Gasfederdruckkörper 40, welcher vom hinteren Gasfederkammerraum 42 durch eine Gasfedertrennwand 43 getrennt ist. In der Gasfedertrennwand sind ein Rückschlagventil 44 und eine Gasrückströmöffnung 45 vorgesehen.The
Die Funktion der Gasfeder ist wie folgt. Durch die Gasfüllleitungen 151 und 152 werden die zwei Komponenten der abbrennbaren Gasgemische in die Kammern 121 und 122 geleitet. Durch eine in der Zeichnung der
Die
In der
Die
Die Ablassöffnung 61 ist hier in allen drei Zeichnungen
Dabei ist es auch möglich, zwei, drei, vier oder mehr Abbrennkammern vorzusehen, die in der Ebene der Abbrennkammern 121 und 122 der
Die
Dabei ist zu erkennen, dass von der Längsachse 90 des Kolbens ein erster Durchmesser 121 besteht, welcher kleiner als der hintere Kolbendurchmesser 171 ausgelegt ist. Damit bildet der Übergangsbereich 75 in einem Schnitt in der Projektion der Längsachse 90 zwei rechteckige Streifen 91, die als Druckübertragungsstreifen dienen. Bei der Füllung der Abbrennkammern 121 und 122 ist der auf diesen Streifen 91 ausgeübte Druck nicht ausreichend, um den Kolben 70 gegen den Gasfederdruck zurückzuschieben. Dies ändert sich dann schlagartig nach Zündung des Gasgemisches, da dabei ein Druckunterschied von bis zu einem 25- bis 30-fachen des Fülldrucks auftreten kann, welcher dann ausreichend ist, um bei entsprechend eingestellter Gasfederspannung den Kolben 70 zurückzutreiben. Bei den beispielhaften Ausführungsbeispielen weisen die abbrennbaren Kammern ein Volumen zwischen ein und zwei Liter auf, wobei der Gasfülldruck zwischen 10 und 30, beispielsweise zwischen 15 und 25 bar betragen kann. Der Durchmesser der durch den Kolben verschlossenen, ringförmigen Öffnung beträgt zwischen 40 und 15 mm, insbesondere zwischen 60 und 100 mm, insbesondere 80 mm.It can be seen here that there is a
Die Zündung kann in ähnlicher Weise wie beim Stand der Technik
Die
Die
Der rückwärtige Bereich des Kolbens 70 hat eine ausreichende Höhe ab dem Übergangsbereich 75 bis zu seiner oberen flachen Endfläche, die den unteren Gasfederkammerraum 41 begrenzt, so dass auch bei einem Zurückstossen des Kolbens in diesen vorderen Gasfederkammerraum 41 der Kolben 70 immer noch an den Innenwänden der Gasfeder 40 im wesentlichen dichtend durch die folgenden Dichtelemente anliegt. Dabei bestehen gemäss dem Ausführungsbeispiel der
Die
Ein solcher Ringspalt 123 kann auch einseitig geführt sein, also nur auf der Seite der Zündkerze 59 und er kann auch bei anderen Ausführungsbeispielen mit zwei oder mehr anderen Abbrennkammern Verwendung finden.Such an
Die
Die
Die Gasfeder 40 ist analog zu den anderen Ausführungsbeispielen gebildet. Es bestehen gegenüber diesen anderen Ausführungsbeispielen zwei wesentliche strukturelle Unterschiede, die hier zusammen eingesetzt worden sind. Es ist in anderen, in den Figuren nicht dargestellten Ausführungsbeispielen, jedoch auch möglich, nur eine der beiden in folgenden beschriebenen Unterschiede mit den anderen Ausführungsbeispielen zu verbinden.The
Der erste Unterschied zu den anderen Ausführungsbeispielen liegt darin, dass es eine ringförmige Abbrennkammer 125 gibt, die den Kolben 70 vollständig umgibt. Somit bestehen ringförmige Elemente eines druckfesten Behälters 25. Hier sind es drei Ringe, die auf Grund der glatten bündigen Aussenflächen in
Der zweite Unterschied zwischen den anderen Ausführungsformen und dem Ausführungsbeispiel der
Somit beaufschlagt kurz nach der Zündung der Innendruck der ringförmigen Abbrennkammer 125 die Unterseite des hinteren Endes 71 des Kolbens 70 mit seiner über den Kern überstehende Fläche 191 im Hilfsdruckraum 95. Somit wird durch den auf diese Fläche 191 ausgeübten Druck, welcher dem Druck auf die Projektion der Druckfläche 91 aus dem anderen Ausführungsbeispiel entspricht, der Kolben 70 in seinem Strang 96 durch den sich vergrössernden Hilfsdruckraum 95 nach hinten in den vorderen Gasfederkammerraum 41 verschoben, wobei auch hier zwischen dem hinteren Ende des Kolbens 71 und der Innenwand der Gasfeder 40 eine Bronzedichtung 81 und ein O-Ring 82 vorgesehen sind.Thus, shortly after ignition, the internal pressure of the
Bei dem Zurückweichen des Kolbens 70 öffnet sich die Verbindung zwischen der ringförmigen Abbrennkammer 125 und dem hier nicht dargestellten Ablasstrichter 61, welcher durch den Abstand unterhalb des Stranges 96 und dem Ventilsitz 65 gekennzeichnet ist. Auch in diesem Fall wirkt der Druck des Abbrennens oder der Detonation der in dem ringförmigen Abbrennkammerraum 125 bestehenden Medien auf den zurückweichenden Kolben 70.When the
Die
Es handelt sich dabei um einen Kolben 70 gemäss dem Ausführungsbeispiel der
Der Kolben 70 selber kann hohl ausgestaltet sein, um Gewicht zu sparen, wobei er innen in Längsrichtung 90 nach vorne offen sein kann, oder er kann ebenso aus einem Vollmaterial sein, insbesondere Stahl, oder er kann hohl sein und über einen von vorne eingesetzten, insbesondere eingeschraubten Stopfen verfügen. Dieser kann auch die Dichtungsfläche zum Ventilsitz 65 bilden.The
Die
Die
Alle oben im Zusammenhang mit den
Die
Am Ventilsitz 300 ist eine Linie 301 eingezeichnet, die einen Abstand von der Seitenwand des Kolbendurchmessers 172 andeutet. Dies ist ein Abstand der zu einer Krümmung R2 gehört, die von der Seitenwand 172 zur inneren Kolbensitzwand 302 gehört, die besser in den Detailansichten der
Die Spitze des Öffnungswinkels 304 ist an dem Schnittpunkt der Linie 301, die das Krümmungsende des Kolbens 70 anzeigt, mit der gegenüberliegenden äusseren gehäuseseitigen Wand 303 befindlich und schliesst dort in einem Kreisring den äusseren Ablasstrichterraum 306 von der (hier dargestellt) ersten Brennkammer 121, aber natürlich auch gegenüber der zweiten Brennkammer 122 ab.The peak of the
Diese Ausgestaltung des Ventilsitzes 300 ist im zeitlichen Ablauf bei der explosionsartigen Öffnung des Kolbenweges in den
Die optionale Vorkammerfläche 311 ist die Flanschverbreiterung im Hilfskammerdruckraum 95. Die statische Hilfsfläche 312 ist die gekrümmte Fläche, die sich durch den Abstand 301 und den ihm entsprechenden Radius R2 am vorderen Kolbenende in
Die
Diese Kraft baut sich auf, bis sich der Kolben 70 vom Sitz zum Zeitpunkt 520 abhebt. Dann kommt die dynamische Fläche 313 ins Spiel und führt zu einem Boost, der durch die Linie 413 gekennzeichnet ist, wobei die Wirkung durch die zwischen Linie 412 und 413 gelegene Fläche 513 als Kraftzuwachs gekennzeichnet ist. Etwas später und mit leichter Verzögerung setzt die Gegenwirkung der Gasfeder 40 ein, deren Kraftwirkung als Linie 415 durchgezogen ist.This force builds up until the
Der als Boost bezeichnete Kraftzuwachs endet zu einem Zeitpunkt mit einer Umkehrung der Boostkurve 413 zu einem etwas späteren Zeitpunkt 521, bei dem sich der auseinanderlaufende Spalt nach
Mit der Linie 414 und der dazugehörigen Kraftwirkung in der Fläche 415 kommt noch im Abschwungbereich die Entleerung der Kolbenräume hinzu, wobei sich dann in der Summe die Kennlinie 419 als Summenlinie ausbildet und im Gegentakt zur Gasfederlinie ausschwingt. Zusammenfassend wirkt sich die Geometrie des Ventilsitzes positiv auf das Öffnungsverhalten des Kolbens aus. Während des Öffnens verschiebt sich der engste Querschnitt radial von aussen nach innen, so dass sich als Vorteile kleine projizierte Flächen im geschlossenen Zustand ergeben, was vermeidet, dass eine ungewollte Öffnung geschieht. Im dargestellten Ausführungsbeispiel sorgt die Vorkammer 95 für die die initiale Öffnung zum gewünschten Zeitpunkt. Es ist aber möglich, diese Hilfskammer durch Anordnung der Flächen 191 im Hauptkammerraum 121 (also ohne getrennte Zündung, ähnlich zum Ausführungsbeispiel in
Dadurch, dass sich der engste Querschnitt radial von aussen nach innen verschiebt, führt die Vergrösserung der aktiven Fläche direkt nach der initialen Öffnung zu einem Boosteffekt der Kolbenbewegung, welche in den
Claims (15)
- A device for generating high-amplitude pressure waves, in particular for boiler cleaning, comprising a pressure-resistant container (21, 22, 25, 30, 40) with a combustion chamber (121, 122; 125) inserted therein and at least one ignition device (50, 59) extending into the combustion chamber (121, 122), with at least one feed line (151, 152) for supplying a flowable combustible material into the combustion chamber (121, 122, 125), wherein the pressure-resistant container (21, 22, 25, 30, 40) has a discharge opening (61, 62, 63) for the directed discharge of gas pressure caused by the ignition of the combustible material in the combustion chamber (121, 122) and a closure means (70) which closes the discharge opening (61, 62, 63) and is designed to release the discharge opening (61, 62, 63) for the directed discharge and which is displaceable into the starting position by a spring device (40, 140, 240), the closure means (70) being a piston which can be displaced in its longitudinal direction and has a rear section aligned in the direction of the spring device (40, 140, 240) and a front section (72) oriented in the direction of the discharge opening (61), wherein the front section (72) is arranged in the region of the combustion chamber (121, 122, 125), when the piston (70) is in a position closing the discharge opening (61), wherein, with respect to the longitudinal direction (90) of the piston (70), the seat of the piston (70) has a piston surface (302) which is inclined obliquely with respect to the discharge opening (61), opposite which is arranged a housing surface (303) likewise inclined obliquely with respect to the discharge opening (61), characterized in that the housing surface (303) opens with respect to the piston surface (302) at an angle (304) oriented towards the discharge opening (61), starting from a closure line (65) oriented perpendicularly with respect to the piston direction (90).
- The device according to claim 1, wherein the angle (304) is between 0.5 and 5 degrees, preferably between 1 and 3 degrees, in particular 2 degrees.
- The device according to claim 1 or 2, wherein the closure line (65) oriented perpendicularly to the piston direction (90) is arranged within the piston wall of the lower section (72), so that a rounded static pressure opening area (312) exists between the closure line (65) and the piston wall.
- The device according to any one of claims 1 to 3, wherein a flange surface (191) perpendicular to the piston axis (90), which is connected to or belongs to the combustion chamber (121, 122, 125), has an area size which is between 50 and 200 percent of an area size given by the area size of the piston surface (302).
- The device according to any one of claims 1 to 4, characterized in that a transition region (75, 175) is provided between the rear portion (71) and the front portion (72), in that the front portion (72) is arranged in the region of the combustion chamber (121, 122) when the piston (70) is in a position closing the discharge opening (61, 62, 63), in that, with respect to the longitudinal direction (90) of the piston (70), the front section (72) is designed to be tapered with respect to the rear section (71), so that the transition region (75, 175) forms an active surface (91) which is aligned transversely with respect to the longitudinal direction (90) of the piston (70) and on which, when the combustible material is ignited, a pressure which drives the piston (70) back is exerted, so that the front section (72) of the piston (70) clears the discharge opening (61, 62, 63).
- The device according to claim 5, wherein the transition region (75) is a region tapering steadily in the longitudinal direction of the piston (70) of the gas spring (40, 140, 240) from a larger piston diameter (171) to a smaller piston diameter (172) located in the region of the burn-off chambers (121, 122, 125).
- The device according to claim 5, wherein the transition region (175) is formed by a flange-like (191) taper of the piston (70).
- The device according to claim 7, wherein a hollow central guide strand (96) is provided in the pressure-resistant container (30) or an annular guide extension is provided on the pressure-resistant container (30) leading into the combustion chambers (121, 122, 125), which in its interior guides the piston (70) in the front region (72), and in that at least one connecting gap (126) is provided between the combustion chambers (121, 122, 125) and an auxiliary pressure space (95) in the region of the flange-like taper (191) of the piston (70).
- The device according to any one of the preceding claims, wherein the combustion chamber (125) is arranged annularly or cylindrically around the piston (70) about its longitudinal axis (90).
- The device according to claim 9, wherein the annular walls (25) of the combustion chamber (125) are stacked annular segments connected in a sealing manner, which are advantageously closed off by a cover plate and a bottom plate at the top and bottom, respectively.
- The device according to any one of the preceding claims 5 to 8, wherein at least two combustion chambers (121, 122) are arranged in one plane at an angular distance from each other radially to a central axis, wherein either the longitudinal axis of the gas spring (40, 140, 240) coincides with the central axis or the longitudinal axis of the gas spring (40, 140, 240) lies in said plane of the at least two combustion chambers (121, 122).
- The device according to claim 11, wherein the discharge opening (61, 62, 63) has a tube with a longitudinal tube direction, wherein either the longitudinal tube direction of the discharge opening (61, 62, 63) coincides with the central axis or the longitudinal axis of the gas spring (40, 140, 240) lies in said plane of the at least two combustion chambers (121, 122).
- The device according to any one of the preceding claims, wherein the gas spring (40, 140, 240) has a front gas spring chamber space (41) located opposite the piston (70) and a rear gas spring chamber space (42) separated therefrom by a partition (43), wherein between the front gas spring chamber space (41) and the rear gas spring chamber space (42) there is a first connection as a return flow connection (45) and a second connection with a non-return valve (44), wherein optionally either the first and the second connection are provided in the partition (43), or the second connection has at least two partial connections (243) which, on the one hand, open laterally one above the other in the longitudinal direction of the piston movement in the wall of the gas spring (240) in the front gas spring chamber space (41) and, on the other hand, end in the rear gas spring chamber space (42), so that the openings (246) are covered one after the other when the piston (70) enters the front gas spring chamber space (41), the said partial connections (243) each having a non-return valve (44).
- The device of claim 13, wherein said second connection comprises a controllable check valve (44, 144), optionally comprising a control valve (144) connected in series and a check valve (44), said controllable check valve (44, 144) being connected to a control unit by means of which the ignition (50) is triggerable, said control unit being configured to open said controllable check valve (44, 144) at a first predetermined time interval after ignition of said flowable combustible material, wherein optionally said first connection comprises a controllable check valve (45, 145), optionally comprising a control valve (145) connected in series and a backflow guide (45), said controllable check valve (45, 145) being connected to said control unit by means of which said ignition (50) is triggerable, said control unit being arranged to open said controllable check valve (45, 145) at a second predetermined time interval after opening of said controllable check valve (44, 144).
- The device according to claim 14, wherein two gas spring gas connections are provided for the front and for the rear gas spring chamber (41, 42), wherein the control unit comprises a gas filling control unit by means of which the gas filling pressure in the front and in the rear gas spring chamber (41, 42) can be set to a predetermined value in each case before an ignition, wherein the gas filling pressure in the front gas spring chamber (41) can be set higher than in the rear gas spring chamber (42), in particular the gas filling pressure in the front gas spring chamber (41) can be set at least 2 times, preferably at least 3 times or 5 times, higher than in the rear gas spring chamber (42).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18165013 | 2018-03-29 | ||
PCT/EP2019/057752 WO2019185736A1 (en) | 2018-03-29 | 2019-03-27 | Device and method for producing pressure waves of high amplitude |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3776529A1 EP3776529A1 (en) | 2021-02-17 |
EP3776529C0 EP3776529C0 (en) | 2023-06-07 |
EP3776529B1 true EP3776529B1 (en) | 2023-06-07 |
Family
ID=61873316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19712237.7A Active EP3776529B1 (en) | 2018-03-29 | 2019-03-27 | Device for the production of high-amplitude pressure waves |
Country Status (9)
Country | Link |
---|---|
US (1) | US20210199284A1 (en) |
EP (1) | EP3776529B1 (en) |
JP (1) | JP7401516B2 (en) |
KR (1) | KR102697273B1 (en) |
CN (1) | CN112074897A (en) |
AU (1) | AU2019241452B2 (en) |
CA (1) | CA3094256A1 (en) |
TW (1) | TWI803607B (en) |
WO (1) | WO2019185736A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7458180B2 (en) * | 2019-12-23 | 2024-03-29 | 川崎重工業株式会社 | Shock wave soot blower system and its operating method |
JP7432359B2 (en) * | 2019-12-26 | 2024-02-16 | 川崎重工業株式会社 | Shock wave soot blower and its operating method |
EP4426942A1 (en) * | 2021-11-02 | 2024-09-11 | Explo Engineering AG | Protection device for a boiler access point |
EP4449043A1 (en) | 2021-12-17 | 2024-10-23 | Explo Engineering AG | Fastening apparatus for a cleaning device based on introducing high-amplitude pressure waves |
JP7153824B1 (en) | 2022-07-22 | 2022-10-14 | 三菱重工パワーインダストリー株式会社 | pressure wave generator |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2003488A1 (en) * | 1968-03-08 | 1969-11-07 | Messer Griesheim Gmbh | |
FR2278408A1 (en) * | 1974-05-31 | 1976-02-13 | Aquitaine Petrole | MECHANICAL WAVES EMISSION DEVICE |
DE3828112A1 (en) * | 1988-08-18 | 1990-02-22 | Hekatron Gmbh | Device for the testing of the functioning of a thermostatic detector in a region at risk of explosion |
US5864517A (en) | 1997-03-21 | 1999-01-26 | Adroit Systems, Inc. | Pulsed combustion acoustic wave generator |
FI118756B (en) * | 2004-04-02 | 2008-03-14 | Nirafon Oy | Process for generating gas pressure pulses in a particulate precipitation purifier and particulate precipitation purifier |
US7146916B2 (en) * | 2004-05-14 | 2006-12-12 | Eco/Technologies, Llc | Starved air inclined hearth combustor |
EP1815206B1 (en) * | 2004-10-13 | 2016-04-06 | PTC Therapeutics, Inc. | Compounds for nonsense suppression, and methods for their use |
ES2686094T3 (en) | 2005-09-05 | 2018-10-16 | Explo Engineering Ag | Method and device for producing pressure waves |
CN102057422B (en) * | 2008-04-14 | 2013-09-25 | 阿夫纳·斯佩科特 | Automatic adjustable voltage to stabilize pressure for shockwave medical therapy device |
CH699486A2 (en) * | 2008-09-04 | 2010-03-15 | Explo Engineering Gmbh | Device and method for generating explosions. |
FR2938623B1 (en) | 2008-11-18 | 2013-02-22 | Soc Detudes Et De Recherches De Lecole Nationale Superieure Darts Et Metiers Seram | DEFLAGRATOR CANON COMPRISING A MOBILE PISTON |
GB0921660D0 (en) * | 2009-12-10 | 2010-01-27 | Zettner Michael | Method for increasing the efficiency of a heat exchanger |
CH703104A2 (en) * | 2010-05-04 | 2011-11-15 | Explo Engineering Gmbh | Seal and method for producing a durchzündsperre for druckwelle generators. |
US8805591B2 (en) * | 2011-01-18 | 2014-08-12 | Flow Control Industries, Inc. | Pressure compensated flow rate controller with BTU meter |
US9568378B2 (en) * | 2013-12-18 | 2017-02-14 | Siemens Energy, Inc. | Multi functional sensor system for gas turbine combustion monitoring and control |
CN103726820A (en) * | 2014-01-20 | 2014-04-16 | 甘孜州康盛地热有限公司 | Geothermal pulse pressure wave fracturing system and method |
CN105092096B (en) * | 2015-05-05 | 2018-03-27 | 山东省计量科学研究院 | The method and apparatus of temperature correction is carried out using benzoic acid condensation point temperature level ground |
RU173934U1 (en) * | 2016-08-16 | 2017-09-19 | Федеральное государственное казённое военное учреждение высшего профессионального образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации | A device for checking thermometers at a point of 1000C in boiling water vapor |
CN106644173B (en) * | 2017-01-23 | 2023-07-21 | 中国科学院理化技术研究所 | International temperature comparison device using refrigerator as cold source |
-
2019
- 2019-03-27 EP EP19712237.7A patent/EP3776529B1/en active Active
- 2019-03-27 JP JP2021501089A patent/JP7401516B2/en active Active
- 2019-03-27 WO PCT/EP2019/057752 patent/WO2019185736A1/en active Application Filing
- 2019-03-27 AU AU2019241452A patent/AU2019241452B2/en active Active
- 2019-03-27 KR KR1020207031133A patent/KR102697273B1/en active IP Right Grant
- 2019-03-27 US US17/042,684 patent/US20210199284A1/en active Pending
- 2019-03-27 CN CN201980022861.0A patent/CN112074897A/en active Pending
- 2019-03-27 CA CA3094256A patent/CA3094256A1/en active Pending
- 2019-03-28 TW TW108110946A patent/TWI803607B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI803607B (en) | 2023-06-01 |
RU2020131058A (en) | 2022-04-29 |
EP3776529C0 (en) | 2023-06-07 |
JP2021519409A (en) | 2021-08-10 |
WO2019185736A1 (en) | 2019-10-03 |
KR102697273B1 (en) | 2024-08-20 |
AU2019241452B2 (en) | 2024-05-30 |
CN112074897A (en) | 2020-12-11 |
JP7401516B2 (en) | 2023-12-19 |
KR20210020870A (en) | 2021-02-24 |
BR112020019905A2 (en) | 2021-01-05 |
CA3094256A1 (en) | 2019-10-03 |
EP3776529A1 (en) | 2021-02-17 |
US20210199284A1 (en) | 2021-07-01 |
TW201941839A (en) | 2019-11-01 |
RU2020131058A3 (en) | 2022-04-29 |
AU2019241452A1 (en) | 2020-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3776529B1 (en) | Device for the production of high-amplitude pressure waves | |
EP2319036B1 (en) | Apparatus and method for producing explosions | |
EP1922568B1 (en) | Method and device for generating compression waves | |
DE3037773C2 (en) | ||
DE69931499T2 (en) | VALVE ACTUATES OVER GAS PRESSURE TANK | |
DE1576030C3 (en) | Internal combustion engine with an evaporation chamber designed as a spark plug antechamber | |
CH714963A1 (en) | Pressure wave generator and method for operating a pressure wave generator, and pneumatic actuator. | |
DE69406896T2 (en) | Device for the simultaneous ejection of two liquids, in particular pyrotechnic liquids | |
DE20120660U1 (en) | Hybrid gas generator | |
DE3504447A1 (en) | PLANT FOR THE TREATMENT OF WORKPIECES WITH AN EXPLOSIVE GAS MIXTURE, IN PARTICULAR THERMAL DEBURRING PLANT | |
DE3808655C2 (en) | Cannon with post-acceleration tube and projectile | |
DE2458321B2 (en) | Control valve | |
WO1998001338A1 (en) | Pulsing reaction drive for water craft | |
DE1698383B2 (en) | Device for generating a seismic wave | |
DE2617047A1 (en) | PISTON ENGINE WITH COMBUSTION OF FINE PARTICULAR, SOLID FUEL | |
DE310759C (en) | ||
DE2141545C3 (en) | Seismic gas explosion device | |
DE130459C (en) | ||
DE1023927B (en) | Recoil drive device with additional combustion | |
DE1953924B2 (en) | SEISMIC GAS EXPLOSION DEVICE | |
DE41246C (en) | Innovation in gas and petroleum engines | |
DE295723C (en) | ||
DE1498011C (en) | Seismic device for generating sound pulses under water | |
AT37738B (en) | Device for letting the combustible mixture into explosion engines. | |
DE59673C (en) | Method and device for starting gas machines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200915 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40045738 Country of ref document: HK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220926 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1577388 Country of ref document: AT Kind code of ref document: T Effective date: 20230615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019008011 Country of ref document: DE |
|
U01 | Request for unitary effect filed |
Effective date: 20230705 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20230717 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230907 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019008011 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 6 Effective date: 20240313 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240321 Year of fee payment: 6 |
|
26N | No opposition filed |
Effective date: 20240308 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240401 Year of fee payment: 6 |