EP3772132B1 - Arrangement for high-frequency potential compensation - Google Patents

Arrangement for high-frequency potential compensation Download PDF

Info

Publication number
EP3772132B1
EP3772132B1 EP20187163.9A EP20187163A EP3772132B1 EP 3772132 B1 EP3772132 B1 EP 3772132B1 EP 20187163 A EP20187163 A EP 20187163A EP 3772132 B1 EP3772132 B1 EP 3772132B1
Authority
EP
European Patent Office
Prior art keywords
antenna
rail vehicle
absorption
resonant circuit
series resonant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20187163.9A
Other languages
German (de)
French (fr)
Other versions
EP3772132A1 (en
Inventor
Guido Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Mobility GmbH
Original Assignee
Siemens Mobility GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Mobility GmbH filed Critical Siemens Mobility GmbH
Publication of EP3772132A1 publication Critical patent/EP3772132A1/en
Application granted granted Critical
Publication of EP3772132B1 publication Critical patent/EP3772132B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal
    • B61L3/02Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control
    • B61L3/08Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically
    • B61L3/12Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves
    • B61L3/125Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves using short-range radio transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal
    • B61L3/02Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control
    • B61L3/08Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically
    • B61L3/12Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves
    • B61L3/126Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3225Cooperation with the rails or the road
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or vehicle train, e.g. braking curve calculation
    • B61L2027/202Trackside control of safe travel of vehicle or vehicle train, e.g. braking curve calculation using European Train Control System [ETCS]

Definitions

  • the document US 5,351,018 A discloses a television receiver having a coaxial cable connected to a radio frequency signal source. Interference signals are discharged to ground potential via at least one suction or series resonant circuit connected to the outer shielding conductor of the coaxial cable.
  • EP 0 778 683 A2 discloses telecommunications equipment with human-machine interface.
  • the invention is based on the object of specifying an arrangement for a rail vehicle which helps to minimize or at least reduce the negative effects of interference currents on data transmission.
  • An essential advantage of the potential equalization provided according to the invention is that this data transmission taking place via the antenna protects against the influence of interfering external currents.
  • the absorption or series resonant circuit is preferably low-impedance for the carrier frequency used by the antenna or at least also for the carrier frequency used by the antenna.
  • the absorption circuit or series resonant circuit preferably has low impedance in a range between 3.9505 MHz and 4.5165 MHz in order to achieve a sufficient bandwidth of the absorption circuit characteristic for ETCS-compatible FSK signal transmission. It is particularly advantageous if a further suction or series resonant circuit is arranged between a wheel set arranged in the bogie and the car body.
  • a further absorption circuit or series resonant circuit is arranged between the outer conductor of the antenna cable and the antenna shielding plate and/or the electronic assembly or its housing.
  • the absorption or series resonant circuit preferably has at least one series circuit made up of an inductance of an electrical conductor and a capacitance.
  • the absorption or series resonant circuit preferably also has a resistor which is connected in series with the inductance and the capacitance.
  • the at least one vehicle antenna is preferably a vehicle antenna of the European train control system ETCS.
  • the rail vehicle is preferably designed as an electric multiple unit or as a locomotive.
  • the absorption or series resonant circuit is preferably low-impedance for the carrier frequency used by the antenna or at least also for the carrier frequency used by the antenna.
  • the absorption or series resonant circuit is preferably low-impedance in a range between 3.9505 MHz and 4.5165 MHz in order to achieve a sufficient bandwidth of the absorption circuit characteristic for ETCS-compatible FSK signal transmission.
  • the European train control system ETCS uses, among other things, antennas for the exchange of information between rail vehicles and the route or infrastructure, which are mounted under the floor on the vehicle.
  • the vehicle antenna sends electromagnetic energy into the track bed at high frequency (27 MHz), thereby energizing an antenna installed in the track bed (also referred to as a balise or Eurobalise), which is thereby activated.
  • the energized balise modulates its information onto a high-frequency carrier (4.2 MHz) (FSK modulation) and sends information to the vehicle antenna.
  • Information can be transmitted up to a rail vehicle speed of 500 km/h with a data transmission rate of 565 kbit/s.
  • this shielding plate In order to prevent this shielding plate from acting as a receiving antenna for interference fields that are present in the vicinity of the antenna, it must be connected to the car body with low impedance (low-impedance equipotential bonding). In the ideal case, this takes place via a direct, extensive, electrically conductive contact between this plate and the car body, for example by means of bare metal screwing surfaces.
  • the outer conductor of the usually coaxial connecting line between the antenna and the connected electronic system is usually electrically connected on both sides to the car body or, if the antenna is installed in the bogie, to the bogie frame.
  • a low-impedance equipotential bonding is also required to avoid interference.
  • Electromagnetic transient currents such as those generated by sparking, for example, caused by main switch switching operations, jumpers, driving through separation points, etc., can therefore cause disadvantageous faults in the ETCS system due to equipotential bonding that is not sufficiently low-impedance for high frequencies.
  • the antenna is installed in the bogie, a large-area, electrically conductive connection between the antenna and the car body is not possible, since the necessary flexible equipotential bonding between the bogie and the car body is usually implemented using electrically conductive round cables or flat strips.
  • FIG 1 shows - is usually not mounted directly on the bogie frame 21 of a bogie 20, but on antenna supports or add-on parts, the impedances add up from the antenna 10 via add-on parts to the bogie frame 21 up to the car body 30.
  • FIG 1 shows a related example for a potential equalization from the antenna 10 to the car body 30 of the rail vehicle 40.
  • Components A and B are mechanical Constructions, such as consoles or antenna mounts made of electrically conductive material. In order to establish potential equalization, either bare metallic contact surfaces are required, or potential equalization conductors which electrically connect the individual components to one another are used.
  • the potential equalization takes place via a chain of potential equalization conductors with the total inductance L1+L2+L3+L4, plus a relatively small inductance of the mechanical components themselves. Even if all contact surfaces are electrically conductive, the impedance of the inductance L1 still affects the high-frequency equipotential bonding between antenna 10 and car body 30.
  • a second problem (cf. FIG 2 ) relates to the grounding of the outer conductor 51 of the coaxial antenna cable 50, which is usually used as a transmission cable between the vehicle antenna 10 and the electronics of the train protection system.
  • the outward current Ih flows in the inner conductor 52 and the return current Ir in the coaxial, tubular outer conductor 51 .
  • This outer conductor 51 is now electrically conductively connected on the side of the vehicle antenna 10 to the rear antenna shielding plate 11 of the vehicle antenna 10, and thus in turn to the bogie frame 21.
  • the outer conductor 51 is usually connected to the car body 30.
  • the outer conductor 51 thus forms an electrical connection between the bogie 20 and the car body 30. Electrically speaking, this connection is a parallel connection to the equipotential bonding conductor between the bogie 20 and the car body 30, see FIG FIG 2 .
  • main switch switching operations represent high-frequency interference generators due to the spark formation and the resulting spark break.
  • the resulting high-frequency Interference current Iemv can flow back to the main switch via car body 30 - bogie 20 - rail 70 - mains impedance.
  • An example path of the interference current through the vehicle is in FIG 2 shown.
  • FIG 2 shows the exemplary superimposition of the transient interference current Iemv (thick arrows) to the useful current of the signaling system (thin arrows) in the connecting line 50 between antenna 10 and electronics cabinet 60.
  • the bogie 20 is electrically isolated from the rail 70 and has no ground contact.
  • the parasitic capacitances between the bogie frame 21 and the wheel set 80 or wheel set rocker are sufficient to allow high-frequency interference currents to flow from the bogie frame 21 to the rail 70 .
  • impedance Z1 designates the equivalent impedance between the wheelset 80 and the bogie frame 21;
  • Z2 designates the equivalent impedance of line 31 (cf. 3 ) between the bogie frame 21 and the car body 30.
  • the situation is also more critical because the impedance Z2 of the potential equalization conductor between the bogie 20 and the car body 30 can no longer be neglected in the MHz frequency range, as already explained above.
  • the coaxial cable or antenna cable 50 is routed at the jump-off point to the car body 30 to the bogie 20, for example via an adapter plug (in FIG 2 not shown) and the coaxial outer conductor 51 is connected there with relatively low impedance to the car body 30, the impedance of the then relatively short coaxial outer conductor 51 between antenna 10 and adapter plug is reduced again with the result that an even higher proportion of the high-frequency interference current via the coaxial Outer conductor 51 flows.
  • Vehicle antennas 10 are preferably mounted directly on the car body 30 .
  • a very good, low-inductance and thus low-impedance connection between shielding plate 11 and car body 30 can be established via a screw connection between the shielding plate 11 attached to the rear of the antenna 10 and the car body 30, especially if the mechanical contact surfaces of the screwing are bare metal.
  • grounding can be achieved using grounding lines that are as short as possible, as is shown in the example in 3 is shown.
  • this type of grounding is less advantageous than surface grounding due to the resulting parasitic inductances of the grounding lines at high frequencies.
  • FIG 3 shows an exemplary arrangement of a vehicle antenna 10 on the car body 30. If the antenna support 12 is metallically bare via its screwing surfaces and the associated mounting surfaces on the car body 30 and on the antenna 10, a very good, low-inductive grounding of the antenna 10 is given. If this is not the case, the antenna 10 is appropriate shown to be grounded via ground lines with associated parasitic inductances L1 and L2.
  • the present invention assumes that the antenna 10 is arranged on a bogie 20 of the rail vehicle 40, as exemplified in FIG 5 is shown. This can be necessary for various reasons, in particular due to a lack of available space in the underfloor area outside the bogies 20 of the rail vehicle 40 .
  • a resonant circuit for high-frequency equipotential bonding, a resonant circuit, in particular in the form of a series resonant circuit, is used instead of a normal electrical conductor.
  • Such an absorption circuit can be implemented, for example, by connecting a capacitor and, if necessary, a damping resistor in series with an electrical conductor, for example a wire, a round cable or a flat strip, and tuning the absorption circuit to the receiving frequency of the vehicle antenna 10 .
  • 5 shows an example of a first trap circuit formed by an equivalent inductance Ls1 of the line connected to the grounding point (here the wheelset 80) and a discrete capacitance Cs1 connected in series with the equivalent inductance Ls1; in addition, a discrete resistor that is in 5 is not shown, be looped in series with the equivalent inductance Ls1 and the discrete capacitance Cs1.
  • Fig. 12 further shows, by way of example, a second trap circuit formed by an equivalent inductance Ls2 of the line connected to the antenna faceplate 11 and a discrete capacitance Cs2 connected in series with the equivalent inductance Ls2; in addition, a discrete resistor placed in 5 is not shown, be looped in series with the equivalent inductance Ls2 and the discrete capacitance Cs2.
  • FIG 4 shows, by way of example, schematic representations of an exclusive equipotential bonding conductor 90 (left) between connection points 91 and 92, high-frequency equipotential bonding by means of a capacitor Cs connected in series with the equipotential bonding conductor 90 (centre), with the capacitance Cs of the capacitor together with the parasitic inductance Ls of the conductor being an LC absorption circuit 100 or series resonant circuit acts.
  • an additional resistor Rs can be additionally provided, which is connected in series with the capacitor Cs.
  • the inductance Ls of the line 90 acts with the capacitance Cs of the capacitor as an LC absorption circuit 100.
  • This absorption circuit 100 also referred to as a series resonant circuit, acts like a short circuit in the range of the resonant frequency, ie it has a very low impedance here.
  • a resistor Rs can be switched on as an attenuator in addition to the capacitor Cs in order to achieve a sufficient bandwidth of the absorption circuit characteristic and the two maxima in the spectrum of the FSK signal (3.9505 MHz and 4.5165 MHz at 565 kbit/s data transmission rate of the ETCS -FSK antenna signal) completely.
  • the additional resistance Rs has the disadvantage that it disadvantageously increases the minimum impedance of the trap circuit 100. In which case the ohmic resistance of line 90 and capacitance Cs at the absorption circuit resonant frequency is already sufficient as a resistance value.
  • This arrangement advantageously means that any components for high frequencies, in particular in the range of the ETCS reception frequency of 4.2 MHz, can be connected to one another with low impedance.
  • absorption circuits are again given as an example below using the 5 explained. Based on the embodiment of FIG 2 the following measures have been implemented.
  • a path from the car body 30 directly to the rail 70 that is as low-impedance as possible is to be offered to the transient high-frequency currents Iemv.
  • a wheel set contact or grounding contact is provided on the wheel set 80 of the bogie 20, on which the vehicle antenna 10 is arranged, if this is not already present.
  • a supply line with the equivalent inductance Ls1 and a capacitance Cs1 in series with it are connected to this wheelset contact.
  • the resulting series resonant circuit is tuned to the reception center frequency of 4.2 MHz of the ETCS system.
  • the high-frequency interference current Iemv flows from the car body 30 directly to the rail 70 in the area of the reception center frequency.
  • the series oscillating circuit consisting of Ls1 and Cs1 is not able to conduct low-frequency equalizing currents or operating currents, for example reverse current for 16.7 Hz or 50 Hz of the single-phase alternating current of the traction power system.
  • low-frequency equipotential bonding and the operating current feedback thus remain unaffected by the present invention.
  • Existing grounding contacts can, however, also be used if necessary. For example, grounding contacts usually offer the possibility of connecting two lines.
  • the antenna shielding plate 11 should find potential equalization with the car body 30 that is as low-impedance as possible. This is achieved in that a line with the equivalent inductance Z2 and a series-connected capacitance Cs2 connects the antenna screen plate 11 above the antenna 10 directly to the car body 30. A low-impedance connection between the antenna 10 and the car body 30 is also achieved here by tuning to the reception center frequency of 4.2 MHz of the ETCS system.
  • the coaxial outer conductor 51 of the antenna cable 50 should have a low-impedance equipotential bonding to the car body 30 on both sides. This is achieved in that the outer conductor 51 is connected to the antenna shielding plate 11 on one side, ie on the antenna side. If the outer conductor 51 is already electrically conductively connected to the antenna shielding plate 11 in the antenna 10, the above measure with regard to the antenna shielding plate 11 is already sufficient. If, however, the outer conductor 51 is insulated from the antenna shielding plate 11, the coaxial outer conductor 51 is connected, for example at the entrance to the antenna 10, directly to the car body 30 via a further, third absorption circuit (not specifically in 5 shown).
  • the coaxial outer conductor 51 is connected on the other side via the electronics cabinet 60 with a high-frequency, low-impedance connection to the car body 30, this is sufficient.
  • an absorption circuit can also be provided here.
  • the present invention is suitable for all systems in which there is a need for equipotential bonding that works in the high-frequency range.
  • These include, in particular, the French train protection system KVB (Contröle detician par balises) and the Swedish train protection system ATC, which is also based on passive balises.
  • the configurations described above by way of example relate to the equipotential bonding for high frequencies and primarily serve to ensure adequate electromagnetic compatibility (EMC), in particular the interference immunity of the ETCS systems used in rail vehicles.
  • EMC electromagnetic compatibility
  • This high-frequency equipotential bonding using a series resonant circuit has a different objective than the usual equipotential bonding for electrical safety. Accordingly, an additional equipotential bonding for electrical safety should be considered if necessary.

Description

Aus dem Dokument WO 2011/039002 A1 ist ein Schienenfahrzeug mit zumindest einer zum Gleis gerichteten Fahrzeugantenne eines Zugsicherungssystems bekannt.From the document WO 2011/039002 A1 a rail vehicle with at least one vehicle antenna of a train protection system directed towards the track is known.

Das Dokument US 5,351,018 A offenbart einen Fernsehempfänger mit einem Koaxialkabel, das an eine Funkfrequenzsignalquelle angeschlossen ist. Störsignale werden über zumindest einen mit dem äußeren Schirmungsleiter des Koaxialkabels verbundenen Saug- oder Serienschwingkreis zum Erdpotenzial abgeführt.The document US 5,351,018 A discloses a television receiver having a coaxial cable connected to a radio frequency signal source. Interference signals are discharged to ground potential via at least one suction or series resonant circuit connected to the outer shielding conductor of the coaxial cable.

Die Offenlegungsschrift EP 0 778 683 A2 offenbart Telekommunikationsequipment mit Mensch-Maschine-Schnittstelle.The disclosure document EP 0 778 683 A2 discloses telecommunications equipment with human-machine interface.

Der Erfindung liegt die Aufgabe zugrunde eine Anordnung für ein Schienenfahrzeug anzugeben, die hilft, negative Einflüsse von Störströmen auf eine Datenübertragung zu minimieren oder zumindest zu reduzieren.The invention is based on the object of specifying an arrangement for a rail vehicle which helps to minimize or at least reduce the negative effects of interference currents on data transmission.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein Schienenfahrzeug mit einer Anordnung gemäß Patentanspruch 1. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Anordnung sind in Unteransprüchen angegeben.This object is achieved according to the invention by a rail vehicle with an arrangement according to patent claim 1. Advantageous refinements of the arrangement according to the invention are specified in the dependent claims.

Ein wesentlicher Vorteil des erfindungsgemäß vorgesehenen Potenzialausgleichs besteht darin, dass dieser über die Antenne stattfindende Datenübertragung vor dem Einfluss störender Fremdströme schützt.An essential advantage of the potential equalization provided according to the invention is that this data transmission taking place via the antenna protects against the influence of interfering external currents.

Der Saug- bzw. Serienschwingkreis ist vorzugsweise für die von der Antenne genutzte Trägerfrequenz oder zumindest auch für die von der Antenne genutzte Trägerfrequenz niederohmig. Vorzugsweise ist der Saug- bzw. Serienschwingkreis in einem Bereich zwischen 3,9505 MHz und 4,5165 MHz niederohmig, um eine ausreichende Bandbreite der Saugkreischarakteristik für eine ETCS-kompatible FSK-Signalübertragung zu erzielen. Besonders vorteilhaft ist es, wenn ein weiterer Saug- bzw. Serienschwingkreis zwischen einem in dem Drehgestell angeordneten Radsatz und dem Wagenkasten angeordnet ist.The absorption or series resonant circuit is preferably low-impedance for the carrier frequency used by the antenna or at least also for the carrier frequency used by the antenna. The absorption circuit or series resonant circuit preferably has low impedance in a range between 3.9505 MHz and 4.5165 MHz in order to achieve a sufficient bandwidth of the absorption circuit characteristic for ETCS-compatible FSK signal transmission. It is particularly advantageous if a further suction or series resonant circuit is arranged between a wheel set arranged in the bogie and the car body.

Zusätzlich kann in vorteilhafter Weise vorgesehen sein, dass ein weiterer Saug- bzw. Serienschwingkreis zwischen dem Außenleiter des Antennenkabels und der Antennen-Schirmplatte und/oder der elektronischen Baugruppe oder deren Gehäuse angeordnet ist.In addition, it can advantageously be provided that a further absorption circuit or series resonant circuit is arranged between the outer conductor of the antenna cable and the antenna shielding plate and/or the electronic assembly or its housing.

Der Saug- bzw. Serienschwingkreis weist vorzugsweise zumindest eine Serienschaltung aus einer Induktivität eines elektrischen Leiters und einer Kapazität auf.The absorption or series resonant circuit preferably has at least one series circuit made up of an inductance of an electrical conductor and a capacitance.

Der Saug- bzw. Serienschwingkreis weist vorzugsweise ferner einen Widerstand, welcher in Serie mit der Induktivität und der Kapazität geschaltet ist, auf.The absorption or series resonant circuit preferably also has a resistor which is connected in series with the inductance and the capacitance.

Die zumindest eine Fahrzeugantenne ist vorzugsweise eine Fahrzeugantenne des europäischen Zugsicherungssystems ETCS. Das Schienenfahrzeug ist vorzugsweise als ein elektrischer Triebzug oder als eine Lokomotive ausgestaltet.The at least one vehicle antenna is preferably a vehicle antenna of the European train control system ETCS. The rail vehicle is preferably designed as an electric multiple unit or as a locomotive.

Der Saug- bzw. Serienschwingkreis ist vorzugsweise für die von der Antenne genutzte Trägerfrequenz oder zumindest auch für die von der Antenne genutzte Trägerfrequenz niederohmig. Vorzugsweise ist der Saug- bzw. Serienschwingkreis niederohmig in einem Bereich zwischen 3,9505 MHz und 4,5165 MHz, um eine ausreichende Bandbreite der Saugkreischarakteristik für eine ETCS-kompatible FSK-Signalübertragung zu erzielen.The absorption or series resonant circuit is preferably low-impedance for the carrier frequency used by the antenna or at least also for the carrier frequency used by the antenna. The absorption or series resonant circuit is preferably low-impedance in a range between 3.9505 MHz and 4.5165 MHz in order to achieve a sufficient bandwidth of the absorption circuit characteristic for ETCS-compatible FSK signal transmission.

Die Erfindung wird nachfolgend anhand von Zeichnungen und Ausführungsbeispielen näher erläutert.The invention is explained in more detail below with reference to drawings and exemplary embodiments.

Das Europäische Zugsicherungssystem ETCS (European Train Control System) nutzt für den Informationsaustausch zwischen Schienenfahrzeugen und der Strecke bzw. Infrastruktur u.a. Antennen, welche unterflur am Fahrzeug montiert sind. Hierbei sendet die Fahrzeugantenne mit hoher Frequenz (27 MHz) elektromagnetische Energie ins Gleisbett, energetisiert damit eine im Gleisbett installierte Antenne (auch als Balise bzw. Eurobalise bezeichnet), welche dadurch aktiviert wird. Die energetisierte Balise moduliert ihre Information auf einen hochfrequenten Träger (4,2 MHz) auf (FSK-Modulation) und sendet Informationen an die Fahrzeugantenne. Informationen können hierdurch bis zu einer Geschwindigkeit des Schienenfahrzeugs von 500 km/h mit einer Datenübertragungsrate von 565 kbit/s übertragen werden.The European train control system ETCS (European Train Control System) uses, among other things, antennas for the exchange of information between rail vehicles and the route or infrastructure, which are mounted under the floor on the vehicle. The vehicle antenna sends electromagnetic energy into the track bed at high frequency (27 MHz), thereby energizing an antenna installed in the track bed (also referred to as a balise or Eurobalise), which is thereby activated. The energized balise modulates its information onto a high-frequency carrier (4.2 MHz) (FSK modulation) and sends information to the vehicle antenna. Information can be transmitted up to a rail vehicle speed of 500 km/h with a data transmission rate of 565 kbit/s.

Die Fahrzeugantenne selbst hat auf der dem Fahrzeug-Unterboden zugewandten Seite aus Schirmungsgründen vorzugsweise eine Metallplatte, welche vom Fahrzeug (=von oben) erzeugte Störungen von der Antenne abhalten soll. Um zu vermeiden, dass diese Schirmplatte als Empfangsantenne für Störfelder wirkt, die in der Umgebung der Antenne vorhanden sind, ist sie niederimpedant mit dem Wagenkasten zu verbinden (niederimpedanter Potenzialausgleich). Im Idealfall erfolgt dies über eine direkte flächenhafte elektrisch leitende Kontaktierung dieser Platte zum Wagenkasten hin, beispielsweise mittels metallisch blanker Anschraubflächen.For shielding reasons, the vehicle antenna itself preferably has a metal plate on the side facing the underbody of the vehicle, which is intended to prevent interference from the antenna generated by the vehicle (=from above). In order to prevent this shielding plate from acting as a receiving antenna for interference fields that are present in the vicinity of the antenna, it must be connected to the car body with low impedance (low-impedance equipotential bonding). In the ideal case, this takes place via a direct, extensive, electrically conductive contact between this plate and the car body, for example by means of bare metal screwing surfaces.

Des Weiteren wird der Außenleiter der in der Regel koaxialen Verbindungsleitung zwischen Antenne und angeschlossenem Elektroniksystem üblicherweise beidseits mit dem Wagenkasten bzw. bei Einbau der Antenne im Drehgestell mit dem Drehgestellrahmen elektrisch verbunden. Zur Vermeidung von Störungen ist hierfür ebenfalls ein niederimpedanter Potenzialausgleich erforderlich.Furthermore, the outer conductor of the usually coaxial connecting line between the antenna and the connected electronic system is usually electrically connected on both sides to the car body or, if the antenna is installed in the bogie, to the bogie frame. A low-impedance equipotential bonding is also required to avoid interference.

Ein solcher niederimpedanter Potenzialausgleich wird jedoch aus verschiedenen Gründen oftmals für hohe Frequenzen, insbesondere im Bereich der Trägerfrequenzen des ETCS, nicht erzielt. Elektromagnetische transiente Ströme, wie sie z.B. durch Funkenbildung generiert werden, erzeugt beispielsweise durch Hauptschalter-Schaltvorgänge, Bügelspringer, Durchfahren von Trennstellen usw., können daher aufgrund eines für hohe Frequenzen nicht ausreichend niederimpedanten Potenzialausgleichs nachteilige Störungen im ETCS System hervorrufen.However, such a low-impedance equipotential bonding is often not achieved for high frequencies, particularly in the range of the carrier frequencies of the ETCS, for various reasons. Electromagnetic transient currents, such as those generated by sparking, for example, caused by main switch switching operations, jumpers, driving through separation points, etc., can therefore cause disadvantageous faults in the ETCS system due to equipotential bonding that is not sufficiently low-impedance for high frequencies.

Dabei wurden zwei Problematiken identifiziert, wobei eine erste Problematik den niederimpedanten Potenzialausgleich der Antennen-Schirmplatte betrifft.Two problems were identified, with a first problem relating to the low-impedance equipotential bonding of the antenna shielding plate.

Bei einem Einbau der Antenne im Drehgestell ist keine großflächige, elektrisch leitfähige Verbindung zwischen Antenne und Wagenkasten möglich, da der notwendigerweise bewegliche Potenzialausgleich zwischen Drehgestell und Wagenkasten üblicherweise mittels elektrisch leitender Rundseile oder Flachbändern realisiert wird.If the antenna is installed in the bogie, a large-area, electrically conductive connection between the antenna and the car body is not possible, since the necessary flexible equipotential bonding between the bogie and the car body is usually implemented using electrically conductive round cables or flat strips.

Diese Potenzialausgleichsleiter besitzen jedoch den Nachteil, dass sie wegen des mit der Frequenz zunehmenden komplexen, vorwiegend induktiven Widerstandes eine nicht vernachlässigbare Impedanz im MHz-Frequenzbereich haben. Der induktive Widerstand eines 0,5 m langen Potenzialausgleichsleiters hat bei der ETCS-Empfangsfrequenz von 4,2 MHz (bei einem angenommenen Induktivitätsbelag von ca. 1 µH/m des Potenzialausgleichsleiters) beispielsweise einen Wert von ca. 13 Ohm.However, these equipotential bonding conductors have the disadvantage that they have a non-negligible impedance in the MHz frequency range because of the complex, predominantly inductive resistance that increases with the frequency. The inductive resistance of a 0.5 m long potential equalization conductor has a value of approximately 13 ohms at the ETCS reception frequency of 4.2 MHz (assuming an assumed inductance per unit length of approximately 1 µH/m of the potential equalization conductor).

Da die Antenne 10 - wie beispielhaft FIG 1 zeigt - zudem üblicherweise nicht unmittelbar am Drehgestellrahmen 21 eines Drehgestells 20, sondern an Antennenträgern oder Anbauteilen montiert wird, addieren sich die Impedanzen von der Antenne 10 über Anbauteile zum Drehgestellrahmen 21 bis hin zum Wagenkasten 30. FIG 1 zeigt ein diesbezügliches Beispiel für einen Potenzialausgleich von der Antenne 10 zum Wagenkasten 30 des Schienenfahrzeugs 40. Bauteile A und B sind dabei mechanische Konstruktionen, beispielsweise Konsolen oder Antennenträger aus elektrisch leitfähigem Material. Um einen Potenzialausgleich herzustellen, sind entweder metallisch blanke Berührflächen erforderlich, oder Potenzialausgleichsleiter welche die einzelnen Bauteile elektrisch untereinander verbinden, zu verwenden. Im letzteren Fall erfolgt der Potenzialausgleich über eine Kette von Potenzialausgleichsleitern mit der Gesamtinduktivität L1+L2+L3+L4, zuzüglich einer relativ kleinen Induktivität der mechanischen Bauteile selbst. Selbst wenn sämtliche Berührflächen elektrisch leitend ausgeführt sind, beeinträchtigt immer noch die Impedanz der Induktivität L1 den hochfrequenten Potenzialausgleich zwischen Antenne 10 und Wagenkasten 30.Since the antenna 10 - as an example FIG 1 shows - is usually not mounted directly on the bogie frame 21 of a bogie 20, but on antenna supports or add-on parts, the impedances add up from the antenna 10 via add-on parts to the bogie frame 21 up to the car body 30. FIG 1 shows a related example for a potential equalization from the antenna 10 to the car body 30 of the rail vehicle 40. Components A and B are mechanical Constructions, such as consoles or antenna mounts made of electrically conductive material. In order to establish potential equalization, either bare metallic contact surfaces are required, or potential equalization conductors which electrically connect the individual components to one another are used. In the latter case, the potential equalization takes place via a chain of potential equalization conductors with the total inductance L1+L2+L3+L4, plus a relatively small inductance of the mechanical components themselves. Even if all contact surfaces are electrically conductive, the impedance of the inductance L1 still affects the high-frequency equipotential bonding between antenna 10 and car body 30.

Eine zweite Problematik (vgl. FIG 2) betrifft die Erdung des Außenleiters 51 des koaxialen Antennenkabels 50, welches üblicherweise als Übertragungskabel zwischen Fahrzeugantenne 10 und Elektronik des Zugsicherungssystems eingesetzt wird. Bei einem Koaxialkabel fließt im Innenleiter 52 der Hinstrom Ih und im koaxialen, rohrförmigen Außenleiter 51 der Rückstrom Ir.A second problem (cf. FIG 2 ) relates to the grounding of the outer conductor 51 of the coaxial antenna cable 50, which is usually used as a transmission cable between the vehicle antenna 10 and the electronics of the train protection system. In a coaxial cable, the outward current Ih flows in the inner conductor 52 and the return current Ir in the coaxial, tubular outer conductor 51 .

Dieser Außenleiter 51 ist nun auf der Seite der Fahrzeugantenne 10 üblicherweise mit der rückwärtigen Antennen-Schirmplatte 11 der Fahrzeugantenne 10 elektrisch leitend verbunden, und damit wiederum mit dem Drehgestellrahmen 21. Auf der Seite des Elektronikschranks 60 bzw. Elektronikcontainers, welcher in der Regel im oder am Wagenkasten 30 angeordnet ist, ist der Außenleiter 51 üblicherweise mit dem Wagenkasten 30 verbunden. Der Außenleiter 51 bildet somit eine elektrische Verbindung zwischen Drehgestell 20 und Wagenkasten 30. Diese Verbindung ist elektrisch gesehen eine Parallelschaltung zum Potenzialausgleichsleiter zwischen Drehgestell 20 und Wagenkasten 30, siehe FIG 2.This outer conductor 51 is now electrically conductively connected on the side of the vehicle antenna 10 to the rear antenna shielding plate 11 of the vehicle antenna 10, and thus in turn to the bogie frame 21. On the side of the electronics cabinet 60 or electronics container, which is usually in or is arranged on the car body 30, the outer conductor 51 is usually connected to the car body 30. The outer conductor 51 thus forms an electrical connection between the bogie 20 and the car body 30. Electrically speaking, this connection is a parallel connection to the equipotential bonding conductor between the bogie 20 and the car body 30, see FIG FIG 2 .

Insbesondere Hauptschalter-Schalthandlungen stellen durch die Funkenbildung und den resultierenden Funkenabriss hochfrequenten Störgeneratoren dar. Der entstehende hochfrequente Störstrom Iemv kann hierbei über Wagenkasten 30 - Drehgestell 20 - Schiene 70 - Netzimpedanz zurück zum Hauptschalter fließen. Ein beispielhafter Weg des Störstromes durch das Fahrzeug ist in FIG 2 dargestellt. FIG 2 zeigt die beispielhafte Überlagerung des transienten Störstroms Iemv (dicke Pfeile) zum Nutzstrom des Signalisationssystems (dünne Pfeile) in der Verbindungsleitung 50 zwischen Antenne 10 und Elektronikschrank 60. Aufgrund der zusätzlichen Verbindung zwischen Wagenkasten 30 und Drehgestell 20 durch den koaxialen Außenleiter 51 fließt nicht der gesamte Teil des hochfrequenten Störstroms Iemv über die Schutzverbindung zwischen Wagenkasten 30 und Drehgestell 20 bzw. Drehgestellrahmen 21, sondern ein Teil fließt über den koaxialen Außenleiter 51. Dieser hochfrequente transiente Störstrom Iemv überlagert sich direkt mit dem darauf fließenden Antennenstrom und koppelt also galvanisch auf das Nutzsignal ein. Durch diese galvanische Einkopplung kann das Zugsicherungssystem schon durch geringe Transienten gestört werden.In particular, main switch switching operations represent high-frequency interference generators due to the spark formation and the resulting spark break. The resulting high-frequency Interference current Iemv can flow back to the main switch via car body 30 - bogie 20 - rail 70 - mains impedance. An example path of the interference current through the vehicle is in FIG 2 shown. FIG 2 shows the exemplary superimposition of the transient interference current Iemv (thick arrows) to the useful current of the signaling system (thin arrows) in the connecting line 50 between antenna 10 and electronics cabinet 60. Due to the additional connection between car body 30 and bogie 20 through the coaxial outer conductor 51, not the entire flows Part of the high-frequency interference current Iemv via the protective connection between car body 30 and bogie 20 or bogie frame 21, but part flows via the coaxial outer conductor 51. This high-frequency transient interference current Iemv is directly superimposed on the antenna current flowing on it and is therefore galvanically coupled to the useful signal . Due to this galvanic coupling, the train protection system can be disturbed by even small transients.

Selbst wenn das Antennenkabel 50 nur einseitig geerdet ist und beispielsweise auf der Antennenseite nicht mit dem Drehgestell 20 elektrisch leitend verbunden ist, so reichen doch oft schon parasitäre Kapazitäten zwischen der Antenne 10 bzw. dem Anschlussstecker und der Antennen-Schirmplatte 11 aus, damit bei 4,2 MHz ein relevanter Strom hierüber fließen kann.Even if the antenna cable 50 is only grounded on one side and is not electrically conductively connected to the bogie 20 on the antenna side, for example, parasitic capacitances between the antenna 10 or the connector plug and the antenna shielding plate 11 are often sufficient for 4 .2 MHz a relevant current can flow over it.

Ebenso verhält es sich, falls das Drehgestell 20 gegenüber der Schiene 70 elektrisch isoliert ist und über keinen Erdungskontakt verfügt. Auch hier genügen bereits die parasitären Kapazitäten zwischen Drehgestellrahmen 21 und Radsatz 80 bzw. Radsatz-Schwinge, um hochfrequente Störströme vom Drehgestellrahmen 21 zur Schiene 70 fließen zu lassen. Dies ist in der FIG 2 beispielhaft als Impedanz Z1 angegeben. Z1 bezeichnet in den Figuren die Ersatzimpedanz zwischen dem_Radsatz 80 und dem Drehgestellrahmen 21; Z2 bezeichnet in den Figuren die Ersatzimpedanz der Leitung 31 (vgl. FIG 3) zwischen dem Drehgestellrahmen 21 und dem Wagenkasten 30.The same applies if the bogie 20 is electrically isolated from the rail 70 and has no ground contact. Here, too, the parasitic capacitances between the bogie frame 21 and the wheel set 80 or wheel set rocker are sufficient to allow high-frequency interference currents to flow from the bogie frame 21 to the rail 70 . This is in the FIG 2 specified as impedance Z1 by way of example. In the figures, Z1 designates the equivalent impedance between the wheelset 80 and the bogie frame 21; In the figures, Z2 designates the equivalent impedance of line 31 (cf. 3 ) between the bogie frame 21 and the car body 30.

Die Situation wird ferner dadurch kritischer, dass die Impedanz Z2 der Potenzial-Ausgleichsleiter zwischen Drehgestell 20 und Wagenkasten 30 im MHz-Frequenzbereich nicht mehr vernachlässigt werden kann, wie vorstehend bereits erläutert.The situation is also more critical because the impedance Z2 of the potential equalization conductor between the bogie 20 and the car body 30 can no longer be neglected in the MHz frequency range, as already explained above.

Sofern das Koaxialkabel bzw. Antennenkabel 50 an der Absprungstelle zum Wagenkasten 30 zum Drehgestell 20 beispielsweise über einen Zwischenstecker geführt ist (in FIG 2 nicht dargestellt) und der koaxiale Außenleiter 51 dort relativ niederimpedant mit dem Wagenkasten 30 verbunden ist, wird die Impedanz des dann relativ kurzen koaxialen Außenleiters 51 zwischen Antenne 10 und Zwischenstecker nochmals reduziert mit der Folge, dass ein noch höherer Anteil des hochfrequenten Störstroms über den koaxialen Außenleiter 51 fließt.If the coaxial cable or antenna cable 50 is routed at the jump-off point to the car body 30 to the bogie 20, for example via an adapter plug (in FIG 2 not shown) and the coaxial outer conductor 51 is connected there with relatively low impedance to the car body 30, the impedance of the then relatively short coaxial outer conductor 51 between antenna 10 and adapter plug is reduced again with the result that an even higher proportion of the high-frequency interference current via the coaxial Outer conductor 51 flows.

Vorzugsweise werden Fahrzeugantennen 10 direkt an dem Wagenkasten 30 montiert. Über eine Verschraubung zwischen der auf der Rückseite der Antenne 10 angebrachten Schirmplatte 11 und dem Wagenkasten 30 kann eine sehr gute, niederinduktive und damit niederimpedante Verbindung zwischen Schirmplatte 11 und Wagenkasten 30 hergestellt werden, insbesondere wenn die mechanischen Kontaktflächen der Verschraubung metallisch blank sind.Vehicle antennas 10 are preferably mounted directly on the car body 30 . A very good, low-inductance and thus low-impedance connection between shielding plate 11 and car body 30 can be established via a screw connection between the shielding plate 11 attached to the rear of the antenna 10 and the car body 30, especially if the mechanical contact surfaces of the screwing are bare metal.

Ist dies nicht der Fall, kann über möglichst kurze Erdungsleitungen eine Erdung verwirklicht werden, wie es beispielhaft in FIG 3 dargestellt ist. Diese Erdungsart ist jedoch aufgrund der entstehenden parasitären Induktivitäten der Erdungsleitungen bei hoher Frequenz weniger vorteilhaft als eine flächenhafte Erdung.If this is not the case, grounding can be achieved using grounding lines that are as short as possible, as is shown in the example in 3 is shown. However, this type of grounding is less advantageous than surface grounding due to the resulting parasitic inductances of the grounding lines at high frequencies.

FIG 3 zeigt eine beispielhafte Anordnung einer Fahrzeugantenne 10 am Wagenkasten 30. Sofern der Antennenträger 12 über seine Anschraubflächen sowie die zugehörigen Montageflächen am Wagenkasten 30 und an der Antenne 10 metallisch blank ist, ist eine sehr gute, niederinduktive Erdung der Antenne 10 gegeben. Ist dies nicht der Fall, ist die Antenne 10 entsprechend der Darstellung über Erdungsleitungen mit den zugehörigen parasitären Induktivitäten L1 und L2 zu erden. 3 shows an exemplary arrangement of a vehicle antenna 10 on the car body 30. If the antenna support 12 is metallically bare via its screwing surfaces and the associated mounting surfaces on the car body 30 and on the antenna 10, a very good, low-inductive grounding of the antenna 10 is given. If this is not the case, the antenna 10 is appropriate shown to be grounded via ground lines with associated parasitic inductances L1 and L2.

Durch die Montage am Wagenkasten 30 treten die beiden vorstehend diskutierten Problematiken in deutlich geringerem Umfang auf als bei der Montage der Fahrzeugantenne 10 im Drehgestell 20. In der Regel lässt sich durch eine elektrisch leitfähige Verbindung an den Montageflächen ein ausreichend niederimpedanter Potenzialausgleich erzielen, damit das System eine ausreichende Störfestigkeit (EMV) hat.When mounted on the car body 30, the two problems discussed above occur to a significantly lesser extent than when the vehicle antenna 10 is mounted in the bogie 20. As a rule, a sufficiently low-impedance potential equalization can be achieved by means of an electrically conductive connection on the mounting surfaces, so that the system has sufficient interference immunity (EMC).

Die vorliegende Erfindung geht davon aus, dass die Antenne 10 an einem Drehgestell 20 des Schienenfahrzeugs 40 angeordnet ist, wie beispielhaft in FIG 5 gezeigt ist. Dies kann aufgrund unterschiedlicher Gründe, insbesondere mangels verfügbaren Raums im Unterflurbereich außerhalb der Drehgestelle 20 des Schienenfahrzeugs 40, erforderlich sein.The present invention assumes that the antenna 10 is arranged on a bogie 20 of the rail vehicle 40, as exemplified in FIG 5 is shown. This can be necessary for various reasons, in particular due to a lack of available space in the underfloor area outside the bogies 20 of the rail vehicle 40 .

Für einen hochfrequenten Potenzialausgleich wird anstelle eines normalen elektrischen Leiters ein Saugkreis, insbesondere in Form eines Serienschwingkreises, eingesetzt. Ein solcher Saugkreis kann beispielsweise dadurch verwirklicht werden, dass in Serie zu einem elektrischen Leiter, beispielsweise ein Draht, ein Rundseil oder ein Flachband, ein Kondensator sowie, sofern erforderlich, ein Dämpfungswiderstand geschaltet ist, und der Saugkreis auf die Empfangsfrequenz der Fahrzeugantenne 10 abgestimmt ist.For high-frequency equipotential bonding, a resonant circuit, in particular in the form of a series resonant circuit, is used instead of a normal electrical conductor. Such an absorption circuit can be implemented, for example, by connecting a capacitor and, if necessary, a damping resistor in series with an electrical conductor, for example a wire, a round cable or a flat strip, and tuning the absorption circuit to the receiving frequency of the vehicle antenna 10 .

FIG 5 zeigt beispielhaft einen ersten Saugkreis, der durch eine Ersatzinduktivität Ls1 der Leitung, die an den Erdungspunkt (hier den Radsatz 80) angeschlossen ist, und eine diskrete Kapazität Cs1, die in Serie mit der Ersatzinduktivität Ls1 geschaltet ist, gebildet ist; zusätzlich kann ein diskreter Widerstand, der in FIG 5 nicht eingezeichnet ist, in Serie zu der Ersatzinduktivität Ls1 und der diskreten Kapazität Cs1 eingeschleift sein. 5 shows an example of a first trap circuit formed by an equivalent inductance Ls1 of the line connected to the grounding point (here the wheelset 80) and a discrete capacitance Cs1 connected in series with the equivalent inductance Ls1; in addition, a discrete resistor that is in 5 is not shown, be looped in series with the equivalent inductance Ls1 and the discrete capacitance Cs1.

FIG 5 zeigt darüber hinaus beispielhaft einen zweiten Saugkreis, der durch eine Ersatzinduktivität Ls2 der Leitung, die an die Antennen-Schirmplatte 11 angeschlossen ist, und eine diskrete Kapazität Cs2, die in Serie mit der Ersatzinduktivität Ls2 geschaltet ist, gebildet ist; zusätzlich kann ein diskreter Widderstand, der in FIG 5 nicht eingezeichnet ist, in Serie zu der Ersatzinduktivität Ls2 und der diskreten Kapazität Cs2 eingeschleift sein. 5 Fig. 12 further shows, by way of example, a second trap circuit formed by an equivalent inductance Ls2 of the line connected to the antenna faceplate 11 and a discrete capacitance Cs2 connected in series with the equivalent inductance Ls2; in addition, a discrete resistor placed in 5 is not shown, be looped in series with the equivalent inductance Ls2 and the discrete capacitance Cs2.

FIG 4 zeigt hierzu beispielhaft Prinzipdarstellungen eines ausschließlichen Potenzialausgleichsleiters 90 (links) zwischen Anschlusspunkten 91 und 92, eines hochfrequenten Potenzialausgleichs mittels eines in Serie mit dem Potenzialausgleichsleiter 90 geschalteten Kondensators Cs (mitte), wobei die Kapazität Cs des Kondensators zusammen mit der parasitären Induktivität Ls des Leiters als ein LC-Saugkreis 100 bzw. Serienschwingkreis wirkt. Entsprechend der dritten bzw. rechten Darstellung kann ergänzend ein zusätzlicher Widerstand Rs vorgesehen sein, der in Serie mit dem Kondensator Cs geschaltet ist. FIG 4 shows, by way of example, schematic representations of an exclusive equipotential bonding conductor 90 (left) between connection points 91 and 92, high-frequency equipotential bonding by means of a capacitor Cs connected in series with the equipotential bonding conductor 90 (centre), with the capacitance Cs of the capacitor together with the parasitic inductance Ls of the conductor being an LC absorption circuit 100 or series resonant circuit acts. According to the third or right representation, an additional resistor Rs can be additionally provided, which is connected in series with the capacitor Cs.

Die Induktivität Ls der Leitung 90 wirkt mit der Kapazität Cs des Kondensators als LC-Saugkreis 100. Dieser auch als Serienschwingkreis bezeichnete Saugkreis 100 wirkt im Bereich der Resonanzfrequenz wie ein Kurzschluss, d.h. er wirkt hier sehr niederimpedant. Der Kapazitätswert wird so gewählt, dass der resultierende Serienschwingkreis bestehend aus Leitungsinduktivität Ls und Kapazität Cs eine Resonanzfrequenz hat, die beispielsweise mit der Mittenfrequenz des ETCS - Empfangssignals f = 4,2 MHz übereinstimmt. Gegebenenfalls kann zusätzlich zum Kondensator Cs ein Widerstand Rs als Dämpfungsglied eingeschaltet werden, um eine ausreichende Bandbreite der Saugkreischarakteristik zu erzielen und die beiden Maxima im Spektrum des FSK-Signals (3,9505 MHz sowie 4,5165 MHz bei 565 kBit/s Datenübertragungsrate des ETCS-FSK-Antennensignals) vollständig abzudecken. Der zusätzliche Widerstand Rs besitzt jedoch den Nachteil, dass er die minimale Impedanz des Saugkreises 100 nachteilig erhöht. Gegebenenfalls genügt als Widerstandswert bereits der ohmsche Widerstand von Leitung 90 und Kapazität Cs bei der Saugkreis-Resonanzfrequenz.The inductance Ls of the line 90 acts with the capacitance Cs of the capacitor as an LC absorption circuit 100. This absorption circuit 100, also referred to as a series resonant circuit, acts like a short circuit in the range of the resonant frequency, ie it has a very low impedance here. The capacitance value is selected in such a way that the resulting series resonant circuit consisting of line inductance Ls and capacitance Cs has a resonant frequency which, for example, corresponds to the center frequency of the ETCS reception signal f=4.2 MHz. If necessary, a resistor Rs can be switched on as an attenuator in addition to the capacitor Cs in order to achieve a sufficient bandwidth of the absorption circuit characteristic and the two maxima in the spectrum of the FSK signal (3.9505 MHz and 4.5165 MHz at 565 kbit/s data transmission rate of the ETCS -FSK antenna signal) completely. However, the additional resistance Rs has the disadvantage that it disadvantageously increases the minimum impedance of the trap circuit 100. In which case the ohmic resistance of line 90 and capacitance Cs at the absorption circuit resonant frequency is already sufficient as a resistance value.

Durch diese Anordnung wird vorteilhaft erreicht, dass beliebige Bauteile für hohe Frequenzen, insbesondere im Bereich der ETCS Empfangsfrequenz von 4,2 MHz, niederimpedant untereinander verbunden werden können.This arrangement advantageously means that any components for high frequencies, in particular in the range of the ETCS reception frequency of 4.2 MHz, can be connected to one another with low impedance.

Der Einsatz von Saugkreisen wird nachfolgend nochmals beispielhaft anhand der FIG 5 erläutert. Ausgehend von dem Ausführungsbeispiel der FIG 2 sind hierbei folgende Maßnahmen umgesetzt worden.The use of absorption circuits is again given as an example below using the 5 explained. Based on the embodiment of FIG 2 the following measures have been implemented.

Den transienten hochfrequenten Strömen Iemv ist ein möglichst niederimpedanter Pfad vom Wagenkasten 30 direkt zur Schiene 70 anzubieten. Hierzu ist am Radsatz 80 des Drehgestells 20, an dem die Fahrzeugantenne 10 angeordnet ist, sofern noch nicht vorhanden ein Radsatzkontakt bzw. Erdungskontakt vorgesehen. An diesen Radsatzkontakt ist eine Zuleitung mit der Ersatz-Induktivität Ls1 sowie in Serie dazu eine Kapazität Cs1 geschaltet. Der so entstehende Serienschwingkreis wird auf die Empfangs-Mittenfrequenz 4,2 MHz des ETCS-Systems abgestimmt. Hierdurch fließt der hochfrequente Störstrom Iemv im Bereich der Empfangs-Mittenfrequenz vom Wagenkasten 30 direkt zur Schiene 70 ab.A path from the car body 30 directly to the rail 70 that is as low-impedance as possible is to be offered to the transient high-frequency currents Iemv. For this purpose, a wheel set contact or grounding contact is provided on the wheel set 80 of the bogie 20, on which the vehicle antenna 10 is arranged, if this is not already present. A supply line with the equivalent inductance Ls1 and a capacitance Cs1 in series with it are connected to this wheelset contact. The resulting series resonant circuit is tuned to the reception center frequency of 4.2 MHz of the ETCS system. As a result, the high-frequency interference current Iemv flows from the car body 30 directly to the rail 70 in the area of the reception center frequency.

Zu beachten ist dabei, dass der Serienschwingreis bestehend aus Ls1 und Cs1 nicht in der Lage ist, niederfrequente Ausgleichsströme bzw. Betriebsströme, beispielsweise Rückstrom für 16,7 Hz oder 50 Hz des Einphasenwechselstroms des Bahnstromnetzes, zu führen. Der niederfrequente Potenzialausgleich bzw. die Betriebsstromrückführung bleiben somit von der vorliegenden Erfindung unberührt. Bereits vorhandene Erdungskontakte lassen sich jedoch gegebenenfalls mitnutzen. So bieten beispielsweise Erdungskontakte üblicherweise die Möglichkeit, zwei Leitungen anzuschließen.It should be noted that the series oscillating circuit consisting of Ls1 and Cs1 is not able to conduct low-frequency equalizing currents or operating currents, for example reverse current for 16.7 Hz or 50 Hz of the single-phase alternating current of the traction power system. The low-frequency equipotential bonding and the operating current feedback thus remain unaffected by the present invention. Existing grounding contacts can, however, also be used if necessary. For example, grounding contacts usually offer the possibility of connecting two lines.

Ferner soll die Antennen-Schirmplatte 11 einen möglichst niederimpedanten Potenzialausgleich zum Wagenkasten 30 finden. Dies wird erreicht, indem eine Leitung mit der Ersatz-Induktivität Z2 und einer in Serie geschalteten Kapazität Cs2 die Antennenschirmplatte 11 oberhalb der Antenne 10 direkt mit dem Wagenkasten 30 verbindet. Durch Abstimmung auf die Empfangs-Mittenfrequenz 4,2 MHz des ETCS-Systems wird auch hier eine niederimpedante Verbindung zwischen der Antenne 10 und dem Wagenkasten 30 erzielt.Furthermore, the antenna shielding plate 11 should find potential equalization with the car body 30 that is as low-impedance as possible. This is achieved in that a line with the equivalent inductance Z2 and a series-connected capacitance Cs2 connects the antenna screen plate 11 above the antenna 10 directly to the car body 30. A low-impedance connection between the antenna 10 and the car body 30 is also achieved here by tuning to the reception center frequency of 4.2 MHz of the ETCS system.

Schließlich soll der koaxiale Außenleiter 51 des Antennenkabels 50 einen beidseitig niederimpedanten Potenzialausgleich zum Wagenkasten 30 aufweisen. Dies wird erzielt, indem der Außenleiter 51 auf der einen Seite, d.h. antennenseitig mit der Antennenschirmplatte 11 verbunden wird. Sofern der Außenleiter 51 bereits in der Antenne 10 mit der Antennenschirmplatte 11 elektrisch leitend verbunden ist, ist die vorstehende Maßnahme bezüglich der Antennenschirmplatte 11 bereits ausreichend. Sofern jedoch der Außenleiter 51 isoliert von der Antennenschirmplatte 11 ist, wird der koaxiale Außenleiter 51 beispielsweise am Eintritt in die Antenne 10 direkt über einen weiteren, dritten Saugkreis mit dem Wagenkasten 30 verbunden (nicht speziell in FIG 5 dargestellt).Finally, the coaxial outer conductor 51 of the antenna cable 50 should have a low-impedance equipotential bonding to the car body 30 on both sides. This is achieved in that the outer conductor 51 is connected to the antenna shielding plate 11 on one side, ie on the antenna side. If the outer conductor 51 is already electrically conductively connected to the antenna shielding plate 11 in the antenna 10, the above measure with regard to the antenna shielding plate 11 is already sufficient. If, however, the outer conductor 51 is insulated from the antenna shielding plate 11, the coaxial outer conductor 51 is connected, for example at the entrance to the antenna 10, directly to the car body 30 via a further, third absorption circuit (not specifically in 5 shown).

Sofern der koaxiale Außenleiter 51 auf der anderen Seite über den Elektronikschrank 60 hochfrequent niederimpedant mit dem Wagenkasten 30 verbunden ist, ist dies ausreichend. Für den Fall jedoch, dass auf der Seite des Elektronikschranks 60 ebenfalls die Verbindung im Hochfrequenzbereich nicht ausreichend niederimpedant ist, kann auch hier ein Saugkreis vorgesehen sein.If the coaxial outer conductor 51 is connected on the other side via the electronics cabinet 60 with a high-frequency, low-impedance connection to the car body 30, this is sufficient. However, in the event that the connection in the high-frequency range on the side of the electronics cabinet 60 is also not sufficiently low-impedance, an absorption circuit can also be provided here.

Der oben beschriebene Einsatz von Saugkreisen mit dem Ziel eines Potenzialausgleichs für hochfrequente transiente Störströme im Arbeitsfrequenzbereich von Zugsicherungssystemen stellt eine Alternative bzw. Ergänzung zu dem bekannten flächenhaften hochfrequenten Potenzialausgleich dar, um den Nachteil von Leitungsinduktivitäten mit ihrer jeweiligen nicht zu vernachlässigenden Impedanz zu umgehen.The use of absorption circuits described above with the aim of equipotential bonding for high-frequency transient interference currents in the operating frequency range of train protection systems represents an alternative or supplement to the known extensive high-frequency equipotential bonding in order to To avoid the disadvantage of line inductances with their respective non-negligible impedance.

Unabhängig von den vorstehenden Ausführungen anhand des Europäischen Zugsicherungssystems ETCS ist die vorliegende Erfindung für alle Systeme geeignet, bei denen der Bedarf an einem im Hochfrequenzbereich funktionierenden Potenzialausgleich besteht. Hierzu gehören insbesondere das französische Zugsicherungssystem KVB (Contröle de vitesse par balises) sowie das schwedische Zugsicherungssystem ATC, welches ebenfalls auf passiven Balisen basiert.Irrespective of the above statements based on the European train protection system ETCS, the present invention is suitable for all systems in which there is a need for equipotential bonding that works in the high-frequency range. These include, in particular, the French train protection system KVB (Contröle de vitesse par balises) and the Swedish train protection system ATC, which is also based on passive balises.

Die oben beispielhaft beschriebenen Ausgestaltungen betreffen zusammengefasst den Potenzialausgleich für hohe Frequenzen und dienen in erster Linie der Sicherstellung einer ausreichenden elektromagnetischen Verträglichkeit (EMV), insbesondere der Störfestigkeit der in Schienenfahrzeugen eingesetzten ETCS-Systeme. Dieser hochfrequente Potenzialausgleich mittels eines Serienresonanzschwingkreises besitzt dabei eine zum üblichen Potenzialausgleich für die elektrische Sicherheit unterschiedliche Zielsetzung. Entsprechend ist gegebenenfalls ein ergänzender Potenzialausgleich für die elektrische Sicherheit zu erwägen.The configurations described above by way of example relate to the equipotential bonding for high frequencies and primarily serve to ensure adequate electromagnetic compatibility (EMC), in particular the interference immunity of the ETCS systems used in rail vehicles. This high-frequency equipotential bonding using a series resonant circuit has a different objective than the usual equipotential bonding for electrical safety. Accordingly, an additional equipotential bonding for electrical safety should be considered if necessary.

Obwohl die Erfindung im Detail durch bevorzugte Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen, der sich aus den angefügten Ansprüchen ergibt.Although the invention has been illustrated and described in detail by means of preferred embodiments, the invention is not limited by the disclosed examples and other variations can be derived therefrom by those skilled in the art without departing from the scope of the invention, which results from the appended claims.

Claims (9)

  1. Rail vehicle (40), having a railcar body (30), a bogie (20), an antenna (10), arranged in or on the bogie (20), with a shield plate (11), an antenna cable (50) with an external conductor (51), and an electronic assembly (60) with a housing, wherein the electronic assembly (60) is connected by way of signalling by means of the antenna cable (50) to the antenna (10),
    and wherein for high-frequency potential compensation an absorption circuit or series resonant circuit is connected electrically between the shield plate (11) of the antenna (10) and the railcar body (30), said circuit being adjusted with respect to a carrier frequency used for a signal transmission by means of the antenna (10).
  2. Rail vehicle according to claim 1, wherein the absorption or series resonant circuit is low resistance for the carrier frequency used by the antenna (10).
  3. Rail vehicle according to claim 1 or 2, wherein the antenna (10) is a vehicle antenna (10) of the European Train Control System ETCS.
  4. Rail vehicle according to one of the preceding claims, which is embodied as an electrical drive train or as a locomotive.
  5. Rail vehicle according to one of the preceding claims, wherein a further absorption or series resonant circuit is arranged between a wheel set (80) arranged in the bogie (20) and the railcar body (30).
  6. Rail vehicle according to one of the preceding claims, wherein a further absorption or series resonant circuit is arranged between the external conductor (51) of the antenna cable (50) and the antenna shield plate (11) of the antenna (10) .
  7. Rail vehicle according to one of the preceding claims, wherein a further absorption or series resonant circuit is arranged between the external conductor (51) of the antenna cable (50) and the electronic assembly (60) or its housing.
  8. Rail vehicle according to one of the preceding claims, wherein the absorption or series resonant circuit has at least one series circuit comprising an inductance of an electrical conductor and a capacitance.
  9. Rail vehicle according to claim 8, wherein the absorption or series resonant circuit further has a resistance, which is connected in series with the inductance and the capacitance.
EP20187163.9A 2019-07-31 2020-07-22 Arrangement for high-frequency potential compensation Active EP3772132B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019211454.7A DE102019211454A1 (en) 2019-07-31 2019-07-31 Arrangement for high-frequency equipotential bonding

Publications (2)

Publication Number Publication Date
EP3772132A1 EP3772132A1 (en) 2021-02-03
EP3772132B1 true EP3772132B1 (en) 2023-04-12

Family

ID=71741677

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20187163.9A Active EP3772132B1 (en) 2019-07-31 2020-07-22 Arrangement for high-frequency potential compensation

Country Status (4)

Country Link
EP (1) EP3772132B1 (en)
CN (1) CN214325086U (en)
DE (1) DE102019211454A1 (en)
ES (1) ES2949846T3 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351018A (en) * 1992-11-25 1994-09-27 Thomson Consumer Electronics, Inc. Antenna isolation assembly for hot chassis receiver
JP3631343B2 (en) * 1995-12-04 2005-03-23 富士通株式会社 Communication / information terminal equipment
DE102009048666B4 (en) * 2009-09-29 2015-08-20 Siemens Aktiengesellschaft track vehicle

Also Published As

Publication number Publication date
CN214325086U (en) 2021-10-01
ES2949846T3 (en) 2023-10-03
DE102019211454A1 (en) 2021-02-04
EP3772132A1 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
DE102009048666B4 (en) track vehicle
WO2004036784A1 (en) Asymmetric information transmission system using an electric near field
EP0820646B1 (en) Antenna system, in particular an antenna system for traffic communications systems
EP1065747B1 (en) Accessory with integrated antenna assembly
DE69926826T2 (en) Slice antenna arrangement for vehicle
DE2712351A1 (en) FREQUENCY SWITCH FOR HIGH VOLTAGE LINES
EP1154924B1 (en) Method for transmitting a control signal to a vehicle and receiving device for receiving said control signal
EP3772132B1 (en) Arrangement for high-frequency potential compensation
DE102007051251A1 (en) Suppression device for the commutation of a DC motor
CN109278798A (en) A kind of track circuit guard system
DE3715594C2 (en) Arrangement for connecting output and input stages of a transceiver
EP0827282B1 (en) Connection configuration for reducing noise radiation in an integrated circuit
EP0743698B1 (en) Transmitting device for traffic communication systems
DE2748099A1 (en) Interference pulse suppression circuit for car radio - has interference signal channel with gating pulse shaper eliminating harmonics within wanted signal range
DE4401819A1 (en) Cable arrangement for active antenna combined with screen heater
EP0014969B1 (en) Input circuit for receiver-side line terminal apparatus of a telecommunication system
DE102012214775A1 (en) Method for the radio communication of two coupled rail vehicles
EP2955786B1 (en) Antenna assembly in a vehicle
DE69922112T2 (en) Slice antenna assembly for an automobile
EP3144201B1 (en) System and method for selectively switching on and off a balise in a rail track
EP0495178A2 (en) Installation for serial data transmission in a vehicle
DE19941476A1 (en) Antenna device for vehicles, is mounted on electrically insulated plate which is used as signal coupler of two circuits of antenna switch connected to base of antenna
DE3024309C2 (en) Audio frequency track circuit
DE1909423A1 (en) Circuit arrangement for track circuits fed with alternating current in points and crossing areas of railway systems
DE19724757B4 (en) Device for feeding train return streams from a railroad track

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210803

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 27/20 20220101ALN20221011BHEP

Ipc: B61L 3/12 20060101ALI20221011BHEP

Ipc: H01Q 1/52 20060101ALI20221011BHEP

Ipc: H01Q 1/50 20060101ALI20221011BHEP

Ipc: H01Q 1/48 20060101ALI20221011BHEP

Ipc: H01Q 1/32 20060101AFI20221011BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221109

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 27/20 20220101ALN20221116BHEP

Ipc: B61L 3/12 20060101ALI20221116BHEP

Ipc: H01Q 1/52 20060101ALI20221116BHEP

Ipc: H01Q 1/50 20060101ALI20221116BHEP

Ipc: H01Q 1/48 20060101ALI20221116BHEP

Ipc: H01Q 1/32 20060101AFI20221116BHEP

INTG Intention to grant announced

Effective date: 20221129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020002963

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1560311

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2949846

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230713

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 4

Ref country code: DE

Payment date: 20230918

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020002963

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231023

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231024

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

26N No opposition filed

Effective date: 20240115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230722