EP3770322A1 - Procédé pour améliorer la douceur de fibres de pâte à haut rendement - Google Patents
Procédé pour améliorer la douceur de fibres de pâte à haut rendement Download PDFInfo
- Publication number
- EP3770322A1 EP3770322A1 EP19219097.3A EP19219097A EP3770322A1 EP 3770322 A1 EP3770322 A1 EP 3770322A1 EP 19219097 A EP19219097 A EP 19219097A EP 3770322 A1 EP3770322 A1 EP 3770322A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- high yield
- yield pulp
- ozone
- fiber
- cellulase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H11/00—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
- D21H11/10—Mixtures of chemical and mechanical pulp
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C3/00—Pulping cellulose-containing materials
- D21C3/04—Pulping cellulose-containing materials with acids, acid salts or acid anhydrides
- D21C3/045—Pulping cellulose-containing materials with acids, acid salts or acid anhydrides in presence of O2 or O3
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C5/00—Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
- D21C5/005—Treatment of cellulose-containing material with microorganisms or enzymes
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/10—Bleaching ; Apparatus therefor
- D21C9/147—Bleaching ; Apparatus therefor with oxygen or its allotropic modifications
- D21C9/153—Bleaching ; Apparatus therefor with oxygen or its allotropic modifications with ozone
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/005—Microorganisms or enzymes
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/22—Agents rendering paper porous, absorbent or bulky
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/32—Bleaching agents
Definitions
- the present disclosure relates to a method for improving fiber softness of high yield pulp.
- the chemimechanical pulping process emerged in 1970s, which is one kind of high yield pulping.
- the high yield pulp obtained from high yield pulping has characteristics of high yield and low pollution, such that a paper factory can manufacture products with premium quality at a lower cost. It can be said that high yield pulp fills up the blank between conventional mechanical pulp and chemical pulp in respect of performance.
- the high yield pulp has gained wide applications in various kinds of paper and paper boards.
- the Chinese patent No. 2016105224934 discloses a method of manufacturing a paper towel containing high yield pulp, comprising: subjecting the high yield pulp to refiner beating through a crushing-type beating process, wherein the beating consistency is 20%, and the freeness of the pulp is controlled to 250 ⁇ 400ml.
- pretreating the high yield pulp using the crushing-type beating process will reduce the volume of fiber cavities, thereby affecting the water retention value of pulp fibers and water- absorptivity of paper towels; and on the other hand, the crushing pretreatment has less impact on lignin of the fiber, thereby affecting inter-fiber bonding force in the paper towel and reducing the mechanical strength of the paper towel.
- An objective of the present disclosure is to provide a method for improving fiber softness of high yield pulp, which enables removal of part of lignin from the high yield pulp fiber to thereby improve fiber softness.
- the present disclosure provides the following technical solution: a method for improving fiber softness of high yield pulp, including a high yield pulp with a pulp consistency of 1 ⁇ 3%, the method comprising steps of:
- Step 1 treating the high yield pulp with ozone, wherein the concentration of ozone is 10 ⁇ 30%, the treatment temperature is 30 ⁇ 50°C, the treatment duration is 60 ⁇ 210s, and the pH value during treatment is 2.5 ⁇ 4.5;
- Step 2 treating the treated high yield pulp from step 1 with cellulase, wherein the content of cellulase is 0.1 ⁇ 3EGU/g, the treatment duration is 30 ⁇ 60min, the PH value during treatment is 45 ⁇ 60°C.
- the treatment temperature in step 1 is 30°C, 35°C, 40°C, 45°C or 50°C, respectively; the concentration of ozone is 10%; the treatment duration is 120s, the PH value during treatment is 3, and the consistency of the high yield pulp is 2%.
- the consistency of high yield pulp in step 1 is 1.5%, 2%, 2.5%, 3% or 3.5%, respectively;
- the treatment temperature is 30°C, the concentration of ozone is 10%;
- the treatment duration is 120s, the pH value during treatment is 3.
- the temperature when treating the high yield pulp with ozone is controlled and adjusted by water bath.
- the ozone reacts with the high yield pulp in a three-neck flask.
- the cellulase reacts with the high yield pulp in a 1000ml beaker.
- the cellulase in step 2 includes one of or a mixture of at least two of endoglucanase, exoglucanase, and ⁇ -glycosidase.
- the present disclosure offers the following advantages: the high yield pulp in the present disclosure is sequentially treated with ozone and cellulase. Because the ozone has a relatively low dissolvability, it can hardly enter the inside of the fiber; therefore, it first acts on the fiber surface such that ozonation attacks the primary wall lignin, the outer wall of the secondary wall and the intercellular lignin, wherein the lignin side chain is oxidized (by polymer depolymerization), the aromatic ring is broken (ring-opened), forming an organic acid which is dissolved in water. With loss of yield, the primary wall and the intercellular layer selectively remove lignin and expose the surface hydrophilic substances.
- the removal of lignin on the surface increases the softness of the fiber and loosens the fiber structure. Therefore, treating the fiber with ozone can open a "channel" for the entry of cellulase. Then the cellulase can hydrolyze the amorphous region of fiber, allowing water molecules to enter the fiber, and the distance between fiber macromolecule chains increases, which causes the fiber to deform with reduced stiffness, thereby improving the softness. Therefore, by treating with cellulase based on the pretreatment of high-yield pulp with ozone, the present disclosure increases the accessibility of cellulase and fiber.
- the present disclosure offers a dual-beneficial and prospective process for treating high yield pulp; besides, ozone as a green agent can improve the softness of the fiber without or with little pollution to the environment.
- a method for improving fiber softness of high yield pulp including a high yield pulp with a pulp consistency of 1 ⁇ 3%, the method comprising steps of:
- Step 1 treating the high yield pulp with ozone, wherein the concentration of ozone is 10 ⁇ 30%, the treatment temperature is 30 ⁇ 50°C, the treatment duration is 60 ⁇ 210s, and the PH value during treatment is 2.5 ⁇ 4.5;
- Step 2 treating the treated high yield pulp from step 1 with cellulase, wherein the content of cellulase is 0.1 ⁇ 3EGU/g, the treatment duration is 30 ⁇ 60min, the PH value during treatment is 45 ⁇ 60°C.
- the high yield pulp in the present disclosure is sequentially treated with ozone and cellulase. Because the ozone has a relatively low dissolvability, it can hardly enter the inside of the fiber; therefore, it first acts on the fiber surface such that ozonation attacks the primary wall lignin, the outer wall of the secondary wall and the intercellular lignin, wherein the lignin side chain is oxidized (by polymer depolymerization), the aromatic ring is broken (ring-opened), forming an organic acid which is dissolved in water. With loss of yield, the primary wall and the intercellular layer selectively remove lignin and expose the surface hydrophilic substances. The removal of lignin on the surface increases the softness of the fiber and loosens the fiber structure.
- treating the fiber with ozone can open a "channel" for the entry of cellulase. Then the cellulase can hydrolyze the amorphous region of fiber, allowing water molecules to enter the fiber, and the distance between fiber macromolecule chains increases, which causes the fiber to deform with reduced stiffness, thereby improving the softness. Therefore, by treating with cellulase based on the pretreatment of high-yield pulp with ozone, the present disclosure increases the accessibility of cellulase and fiber.
- the present disclosure offers a dual-beneficial and prospective process for treating high yield pulp; besides, ozone as a green agent can improve the softness of the fiber without or with little pollution to the environment.
- the temperature for treating the high-yield pulp with ozone is controlled via a water bath.
- the water bath is simple to operate and has a good heating effect, such that it may guarantee that the adjusted temperature reaches the set temperature range to thereby guarantee the thermostatic effect of the temperature.
- the ozone reacts with the high yield pulp via a three-neck flask, which is convenient for adjusting ozone concentration and pH value during the test; the adjustment of the ozone concentration can be independent from the adjustment of pH value, thereby improving the efficiency of adjustment.
- the cellulase reacts with the high yield pulp via a 1000ml beaker, which facilitates stirring during the cellulase treatment to thereby improve the treatment effect;
- the cellulase in step two includes one of or a mixture of at least two of endoglucanase, exoglucanase, and ⁇ -glycosidase, which may be adjusted according to different high-yield pulps so as to meet different needs, thereby offering a good applicability.
- a method for improving fiber softness of high yield pulp including a high yield pulp with a pulp consistency of 2%, the method comprising steps of:
- the treated high yield pulp was subjected to softness detection, wherein the curve relationship between the detected softness and the treatment temperatures is shown in Fig. 1 .
- a method for improving fiber softness of high yield pulp including a high yield pulp with a pulp consistency of 2%, the method comprising steps of:
- the treated high yield pulp was subjected to softness detection, wherein the curve relationship between the detected softness and the consistencies of the high yield pulp is shown in Fig. 2 .
- the ozone treatment in step 1 may also treat the high yield pulp by changing the ozone consistency, or the ozone treatment duration, or the p H value during treatment.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Paper (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910672286.0A CN110438835A (zh) | 2019-07-24 | 2019-07-24 | 一种改善高得率浆纤维柔软度的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3770322A1 true EP3770322A1 (fr) | 2021-01-27 |
Family
ID=68431374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19219097.3A Pending EP3770322A1 (fr) | 2019-07-24 | 2019-12-20 | Procédé pour améliorer la douceur de fibres de pâte à haut rendement |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3770322A1 (fr) |
CN (1) | CN110438835A (fr) |
WO (1) | WO2021012616A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110438835A (zh) * | 2019-07-24 | 2019-11-12 | 浙江景兴纸业股份有限公司 | 一种改善高得率浆纤维柔软度的方法 |
CN111826984A (zh) * | 2020-07-09 | 2020-10-27 | 天津科技大学 | 一种超声波辅助臭氧处理改善高得率竹浆纤维柔软度的方法 |
CN112709088A (zh) * | 2020-11-18 | 2021-04-27 | 浙江新亚伦纸业有限公司 | 一种高得率浆离型纸生产工艺 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995013415A1 (fr) * | 1993-11-10 | 1995-05-18 | Ecolab Inc. | Decoloration de tissus et de vetements au moyen d'un agent de traitement liquide contenant de l'ozone |
WO1996000811A1 (fr) * | 1994-06-29 | 1996-01-11 | Scott Paper Company | Fabrication de produits en papier doux au toucher a partir de vieux journaux |
US20060102299A1 (en) * | 2004-11-17 | 2006-05-18 | Yassin Elgarhy | Method for enzymatic deinking of waste papers, the waste papers so treated and the treating composition |
WO2013188657A1 (fr) * | 2012-06-13 | 2013-12-19 | University Of Maine System Board Of Trustees | Procédé écoénergétique pour la préparation de fibres de nanocellulose |
WO2014029909A1 (fr) * | 2012-08-20 | 2014-02-27 | Stora Enso Oyj | Procédé et intermédiaire pour la production de cellulose hautement raffinée ou microfibrillée |
WO2016080895A1 (fr) * | 2014-11-21 | 2016-05-26 | Innventia Ab | Procédé de production d'une pâte traitée, pâte traitée, et fibres textiles produites à partir de la pâte traitée |
CN108071038A (zh) * | 2017-12-15 | 2018-05-25 | 天津科技大学 | 一种提高竹浆纤维柔软度的方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3985551B2 (ja) * | 2002-02-28 | 2007-10-03 | 王子製紙株式会社 | 脱インキパルプの製造方法 |
CN100513680C (zh) * | 2007-06-08 | 2009-07-15 | 杨黎明 | 一种生物催解法制纸浆工艺 |
CN107574703B (zh) * | 2017-09-20 | 2020-10-09 | 深圳市南山区阳光教育培训中心 | 一种清洁造纸法 |
CN108914668B (zh) * | 2018-07-16 | 2021-04-02 | 天津科技大学 | 一种提高竹浆纤维柔软度的方法 |
CN110042687A (zh) * | 2019-03-13 | 2019-07-23 | 天津科技大学 | 一种提高竹浆纤维柔软度的方法 |
CN110438835A (zh) * | 2019-07-24 | 2019-11-12 | 浙江景兴纸业股份有限公司 | 一种改善高得率浆纤维柔软度的方法 |
-
2019
- 2019-07-24 CN CN201910672286.0A patent/CN110438835A/zh active Pending
- 2019-12-20 EP EP19219097.3A patent/EP3770322A1/fr active Pending
- 2019-12-28 WO PCT/CN2019/129642 patent/WO2021012616A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995013415A1 (fr) * | 1993-11-10 | 1995-05-18 | Ecolab Inc. | Decoloration de tissus et de vetements au moyen d'un agent de traitement liquide contenant de l'ozone |
WO1996000811A1 (fr) * | 1994-06-29 | 1996-01-11 | Scott Paper Company | Fabrication de produits en papier doux au toucher a partir de vieux journaux |
US20060102299A1 (en) * | 2004-11-17 | 2006-05-18 | Yassin Elgarhy | Method for enzymatic deinking of waste papers, the waste papers so treated and the treating composition |
WO2013188657A1 (fr) * | 2012-06-13 | 2013-12-19 | University Of Maine System Board Of Trustees | Procédé écoénergétique pour la préparation de fibres de nanocellulose |
WO2014029909A1 (fr) * | 2012-08-20 | 2014-02-27 | Stora Enso Oyj | Procédé et intermédiaire pour la production de cellulose hautement raffinée ou microfibrillée |
WO2016080895A1 (fr) * | 2014-11-21 | 2016-05-26 | Innventia Ab | Procédé de production d'une pâte traitée, pâte traitée, et fibres textiles produites à partir de la pâte traitée |
CN108071038A (zh) * | 2017-12-15 | 2018-05-25 | 天津科技大学 | 一种提高竹浆纤维柔软度的方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2021012616A1 (fr) | 2021-01-28 |
CN110438835A (zh) | 2019-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3770322A1 (fr) | Procédé pour améliorer la douceur de fibres de pâte à haut rendement | |
RU2528394C2 (ru) | Способ изготовления микрофибриллированной целлюлозы и изготовленная микрофибриллированная целлюлоза | |
Wong et al. | Enzymatic treatment of mechanical pulp fibers for improving papermaking properties | |
Zhao et al. | Xylanase pretreatment leads to enhanced soda pulping of wheat straw | |
Zhao et al. | Application of enzymes in producing bleached pulp from wheat straw | |
Torres et al. | Effect of a novel enzyme on fibre morphology during ECF bleaching of oxygen delignified Eucalyptus kraft pulps | |
CN1856616A (zh) | 南方松硫酸盐纤维的化学活化和精制 | |
US9139955B2 (en) | Method of processing chemical pulp | |
US20100263812A1 (en) | System and method for repulping of paper products and improvement of water quality with dipolar solvents and recovery | |
Liu et al. | Pulp properties and fiber characteristics of xylanase-treated aspen APMP. | |
EP0430915A1 (fr) | Procédé de fabrication de pâte de bois | |
Liu et al. | Effects of pectinase treatment on pulping properties and the morphology and structure of bagasse fiber | |
CA1112813A (fr) | Separation des matieres fibreuses traitees a l'ozone | |
Maximino et al. | Application of hydrolytic enzymes and refining on recycled fibers | |
Duarte et al. | Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement | |
Ngene et al. | Influence of Hollander beater refining on xylan extraction from hardwood paper pulp by cold caustic extraction and xylanase treatment | |
Siqueira et al. | Effect of chemical additives on the degradation of polyamideamine-epichlorohydrin (PAE) films and PAEbased papers made from bleached kraft pulps | |
Sousa et al. | Hardwood kraft pulp structural features affecting refinability | |
CA2541229A1 (fr) | Methode modifiee de production de pate mecanique | |
Lei et al. | Effect of xylanase pretreatment of wood chips on fiber separation in the CTMP refining process | |
Vicentim et al. | High-yield kraft pulping of Eucalyptus grandis Hill ex Maiden biotreated by Ceriporiopsis subvermispora under two different culture conditions | |
Rashmi et al. | Enzymatic refining of pulps: an overview | |
Lin et al. | Properties of enzyme pretreated Wikstroemia sikokiana and Broussonetia papyrifera bast fiber pulps | |
Peng et al. | Effect of enzyme-assisted refining on the properties of bleached softwood pulp | |
Akgül et al. | Effect of xylanase pretreatment on the kraft pulping of poplar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210727 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |