EP3770136B1 - Composite solid propellant - Google Patents

Composite solid propellant Download PDF

Info

Publication number
EP3770136B1
EP3770136B1 EP20187229.8A EP20187229A EP3770136B1 EP 3770136 B1 EP3770136 B1 EP 3770136B1 EP 20187229 A EP20187229 A EP 20187229A EP 3770136 B1 EP3770136 B1 EP 3770136B1
Authority
EP
European Patent Office
Prior art keywords
particles
propellant
cuo
copper oxide
composite solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20187229.8A
Other languages
German (de)
French (fr)
Other versions
EP3770136A1 (en
Inventor
Stéphane BESOMBES
David THEIL-BAZINGUETTE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArianeGroup SAS
Original Assignee
ArianeGroup SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArianeGroup SAS filed Critical ArianeGroup SAS
Publication of EP3770136A1 publication Critical patent/EP3770136A1/en
Application granted granted Critical
Publication of EP3770136B1 publication Critical patent/EP3770136B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/007Ballistic modifiers, burning rate catalysts, burning rate depressing agents, e.g. for gas generating
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B29/00Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/02Compositions or products which are defined by structure or arrangement of component of product comprising particles of diverse size or shape

Definitions

  • a composite propellant having a combustion rate exhibiting reduced sensitivity to pressure changes.
  • the invention also relates to the application of this composite propellant as a propellant change of a rocket engine.
  • Composite propellants are known for rocket propulsion and generally use a binder in which energetic charges are dispersed.
  • a ballistic catalyst can be added to these compositions in order to increase the combustion rate and the thrust produced.
  • iron oxide Fe 2 O 3 as a ballistic catalyst is known.
  • US 3,255,059 discloses a composite solid propellant comprising a binder, a perchlorate oxidizing charge having a bimodal size distribution, a reducing charge and a ballistic catalyst.
  • size D50 is understood to mean the dimension given by the statistical particle size distribution to half of the population.
  • the incorporation of a CuO copper oxide ballistic catalyst within the composite solid propellant formulation described above jointly achieves a high burn rate associated with a significant reduction in the pressure exponent, and this over a wide pressure range.
  • the reduction of the pressure exponent n makes it possible to reduce the dependence of the combustion speed on the pressure and thus makes it possible to envisage being able to access a significant reduction in the operating dispersion of a solid propellant engine.
  • the reduction of the pressure exponent makes it possible to reduce the operating fluctuations linked to the pressure fluctuations during the operation of the engine, thus leading to obtaining a more stable operating point of the engine.
  • the reduction in operating dispersions contributes in particular to reducing the mechanical stresses to which the engine structure could be subjected in the event of maximum internal pressurization.
  • the beneficial effect of the copper oxide CuO ballistic catalyst is obtained for a composite solid propellant exhibiting the bimodal size distribution described above for the oxidizing charge.
  • Such a propellant is suitable for integration as a propellant charge for a space vehicle.
  • the effect of lowering the pressure exponent following the incorporation of copper oxide CuO is not significantly obtained if the particle size of the oxidizing charge differs from that described above.
  • the copper oxide particles CuO have a BET specific surface area greater than or equal to 10 m 2 / g.
  • Such a specific surface area advantageously makes it possible to further increase the rate of combustion of the propellant.
  • the mass content of copper oxide particles CuO is between 0.01% and 1%.
  • the invention also relates to a propellant comprising a propellant body defining a combustion chamber in which a charge of the composite propellant as described above is present.
  • the invention also relates to a space vehicle comprising a thruster as described above.
  • the space vehicle can be a rocket launcher.
  • the propellant comprises a binder comprising a crosslinked polymer polyol.
  • the crosslinked polyol polymer is, for example, a crosslinked hydroxytelechelic polybutadiene (PBHT).
  • the polymer polyol is crosslinked by a crosslinking agent.
  • the crosslinking agent can be a diisocyanate.
  • a polyurethane is obtained by crosslinking the polyol with the crosslinking agent diisocyanate.
  • the binder can comprise a polymer polyol chain extender in a manner known per se.
  • the oxidizing and reducing charges can be dispersed in the binder.
  • the binder can constitute a polymer matrix coating the oxidizing and reducing charges.
  • the oxidizing charge comprises particles of inorganic perchlorate.
  • the inorganic perchlorate can be ammonium perchlorate (NH 4 ClO 4 ).
  • the inorganic perchlorate particles exhibit a bimodal size distribution with (i) a first set of inorganic perchlorate particles exhibiting a first size D50 of between 150 ⁇ m and 250 ⁇ m and present in an amount of 50% to 60% by mass in the composite solid propellant, and (ii) a second set of inorganic perchlorate particles having a second size D50 of between 5 ⁇ m and 20 ⁇ m and present in an amount of 7% to 17% by mass in the composite solid propellant.
  • the inorganic perchlorate particles can be present in the composite solid propellant in an overall mass content of between 64% and 70% (corresponding to the sum of the contents of the particles of the first and second sets).
  • the size distribution of the inorganic perchlorate particles can be determined by laser diffraction technique, in a manner known per se.
  • the figure 1 illustrates the bimodal size distribution of the inorganic perchlorate particles which can be used within the scope of the invention.
  • the ordinate indicates the mass content in the propellant of the particles having this size x.
  • the inorganic perchlorate particles define a first set E1 of perchlorate particles inorganic and a second set E2 of inorganic perchlorate particles.
  • the bimodal distribution is asymmetric.
  • the bimodal distribution presents two distinct peaks (maxima) P1 and P2.
  • the height of the peak P1 of the distribution of the first set E1 may be different, for example greater than the height of the peak P2 of the distribution of the second set E2.
  • the distribution of each of the first and second sets E1 and E2 can correspond to a normal distribution.
  • the particles of the first set E1 have a first size D50 TM1 and the particles of the second set E2 have a second size D50 TM2.
  • the first size D50 TM1 is larger than the second size D50 TM2.
  • the second size D50 TM2 can be spaced from the first size D50 TM1 by at least two, or even at least three, standard deviations of the distribution of the first set E1.
  • the reducing filler comprises particles of aluminum and / or an aluminum compound.
  • the aluminum compound can be at least one of an aluminum alloy or alumina (Al 2 O 3 ).
  • the particles of aluminum and / or of the aluminum compound can be present in the composite solid propellant in a mass content of between 17% and 23%.
  • the propellant further comprises a ballistic catalyst comprising particles of copper oxide CuO.
  • a ballistic catalyst comprising particles of copper oxide CuO.
  • the mass content of copper oxide particles CuO in the propellant can be between 0.01% and 1%, for example between 0.1% and 1%, for example between 0.1% and 0.3% or between 0.3% and 1%.
  • the copper oxide particles CuO may have a BET specific surface area of greater than or equal to 10 m 2 / g.
  • Copper oxide CuO may be the sole ballistic catalyst present in the composite solid propellant.
  • the composite propellant may be devoid of at least one of the following ballistic catalysts: a copper salt, an iron oxide, the catalysts based on ferrocene, a chromium oxide, a nickel oxide, a cobalt oxide, a salt metallic lead, a salt of bismuth.
  • the composite propellant can be devoid of at least one of the following compounds: nitrocellulose or nitroglycerin.
  • the propellant can be made from the constituents mentioned above by using mixing and crosslinking techniques known to those skilled in the art which are not repeated here for the sake of brevity.
  • the figure 2 shows a thruster body 1 comprising a structural casing 11 defining a combustion chamber in which is present the charge of composite propellant 10.
  • the thruster body comprises an igniter (not shown) intended to initiate the charging of propellant 10.
  • the body of the propellant thruster can be part of a rocket engine and be a rocket launcher thruster body.
  • the composite solid propellant may have a pressure exponent n in Vieille's law less than or equal to 0.2, preferably less than or equal to 0.1, over all or part of the pressure range 8-15 MPa in the combustion chamber.
  • Example 1 comparison between the use of copper oxide CuO and iron oxide Fe 2 O 3 as a ballistic catalyst in a propellant formulation incorporating a bimodal distribution of oxidizing charge
  • the aluminum powder used was a variety characterized by a regular grain morphology, obtained by atomization under an inert atmosphere (nitrogen) and of size D50 of about 30 ⁇ m.
  • the figures 3 and 4 provide the results of the comparison of the ballistic characteristics obtained with this formulation depending on whether copper oxide CuO or iron Fe 2 O 3 is used as a ballistic catalyst.
  • the formulation using copper oxide CuO incorporated at a rate of 0.25% by weight corresponds to curve “A” in these figures.
  • Different grades of iron oxide Fe 2 O 3 were evaluated, corresponding to products of different particle size and / or specific surface area and / or purity and / or obtained by different manufacturing processes in order to demonstrate in each case l 'advantageous effect produced by the use of copper oxide CuO.
  • These Fe 2 O 3 grades have been sourced from various producers / suppliers in the field and are representative of Fe 2 O 3 grades which can be used as a ballistic catalyst in space vehicle propellants.
  • the propellant samples were made on the same manufacturing means, namely a horizontal type mixer with a capacity of 5 liters.
  • the formulations were identical except in terms of the nature of the ballistic catalyst (CuO or Fe 2 O 3 ).
  • the propellant firing time was identical in each of the tests carried out.
  • the means and the test parameters were identical for the characterization ballistic.
  • the combustion rate was measured by ultrasonic echo analysis, the samples having been preconditioned at + 20 ° C. before testing.
  • the results obtained are provided to the figure 3 which shows the curves of combustion rate (Vc in mm / s) as a function of pressure (in MPa) for formulations catalyzed with CuO in comparison with those catalyzed by Fe 2 O 3 .
  • the figure 4 shows the variation of the pressure exponent (n) as a function of the pressure (in MPa) for formulations catalyzed with CuO in comparison with those catalyzed by Fe 2 O 3 .
  • the figures 3 and 4 illustrate the favorable impact generated by the use of copper oxide CuO on the ballistic characteristics of the propellant.
  • This result should be compared with those obtained when Fe 2 O 3 is used for which the pressure exponent n is greater than or equal to 0.3 over the range 7-15 MPa.
  • the nominal operating pressure range of the engine is between 4 MPa and 9.5 MPa.
  • the maximum pressure taking into account the possible operating fluctuations during the combustion of the propellant charge, is around 10 MPa.
  • the figure 3 shows that the use of CuO makes it possible to reach combustion speed levels quite comparable to those obtained with Fe 2 O 3 over the operational operating range of the engine.
  • the pressure exponent value decreases very sharply as it approaches 10 MPa, which corresponds to the upper limit of the operating range.
  • the risk of pressure fluctuation which can generate a fluctuation of the operating point, and possibly a mechanical overpressure of the engine structure which can adversely affect its integrity is significantly reduced.
  • the ballistic characteristics induced by the use of CuO thus make it possible to consider accessing more stable engine operations in this pressure range (when approaching the upper limit of 10 MPa), or even to consider being able to access optimized engine architectures as indicated previously. .
  • the figure 5 makes it possible to indirectly confirm the advantageous impact induced by the use of CuO.
  • the evolution of the combustion speed as a function of the pressure was determined for two formulations of propellant for space launchers:
  • the first formulation evaluated was identical to that described above but catalyzed with 0.20% by mass of Fe 2 O 3 and implementation on a mixer of different technology (mixer with vertical blades with a capacity of 1 Gallon).
  • the curve marked "F" at figure 5 corresponds to the results obtained for this first formulation.
  • the mass content of AP of average dimension centered on 200 ⁇ m was 54.8% by mass.
  • the second formulation evaluated was identical to the first formulation but without Fe 2 O 3 ballistic catalyst. In this second formulation, the Fe 2 O 3 content was transferred to the AP content of average dimension centered on 200 ⁇ m, which then represented 55% by mass.
  • the curve noted "G” at the figure 5 corresponds to the results obtained for this second formulation.
  • the figure 5 illustrates the fact that the incorporation of Fe 2 O 3 within a composite propellant formulation leads, compared to an uncatalyzed base, to a notable increase in the value of the combustion rate over the operational operating range of the engine for space launcher. However, there is no significant improvement in the value of the pressure exponent over this same functional range compared to a non-catalyzed formulation (ie free of Fe 2 O 3 ).
  • Example 1 demonstrated the advantage linked to the incorporation of copper oxide CuO as a ballistic catalyst.
  • the tests in Example 1 were conducted on a propellant basis having a particular bimodal oxidative charge distribution which is suitable for use in a space vehicle.
  • Example 2 to follow will now focus on evaluating the influence of the particle size of the oxidizing charge on the ballistic characteristics obtained for the propellant.
  • the propellant base used included an oxidizing charge of PA with a significantly lower average particle size and in the form of a trimodal distribution (outside the invention) and no longer bimodal as in example 1.
  • the inventors compared the performance obtained between such a propellant incorporating either copper oxide CuO or iron oxide Fe 2 O 3 instead of copper oxide CuO.
  • the figure 6 illustrates the fact that the incorporation of CuO induces a catalytic effect leading to a combustion rate level equivalent to that of the Fe 2 O 3 ballistic catalyst.
  • the use of CuO in such a formulation of composite propellant with distribution of PA oxidizing charges outside the invention does not induce a significant reduction in the value of the pressure exponent compared to a formulation catalyzed with Fe 2 O 3. , unlike what was observed previously for a propellant formulation having a bimodal distribution of the oxidizing charges (see figure 7 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

Domaine TechniqueTechnical area

L'invention concerne un propergol composite ayant une vitesse de combustion présentant une sensibilité réduite aux variations de pression. L'invention vise également l'application de ce propergol composite en tant que changement propulsif d'un moteur-fusée.Disclosed is a composite propellant having a combustion rate exhibiting reduced sensitivity to pressure changes. The invention also relates to the application of this composite propellant as a propellant change of a rocket engine.

Technique antérieurePrior art

Les propergols composites sont connus pour la propulsion fusée et mettent généralement en œuvre un liant dans lequel sont dispersées des charges énergétiques. On peut adjoindre un catalyseur balistique à ces compositions afin d'augmenter la vitesse de combustion et la poussée produite. Ainsi, l'emploi d'oxyde de fer Fe2O3 en tant que catalyseur balistique est connu. Il demeure toutefois souhaitable de réduire la sensibilité de la vitesse de combustion à la pression dans la chambre de combustion. US 3255059 divulgue un propergol solide composite comprenant un liant, une charge oxydante de perchlorate présentant une distribution de taille bimodale, une charge réductrice et un catalyseur balistique.Composite propellants are known for rocket propulsion and generally use a binder in which energetic charges are dispersed. A ballistic catalyst can be added to these compositions in order to increase the combustion rate and the thrust produced. Thus, the use of iron oxide Fe 2 O 3 as a ballistic catalyst is known. However, it remains desirable to reduce the sensitivity of the combustion rate to the pressure in the combustion chamber. US 3,255,059 discloses a composite solid propellant comprising a binder, a perchlorate oxidizing charge having a bimodal size distribution, a reducing charge and a ballistic catalyst.

Exposé de l'inventionDisclosure of the invention

L'invention concerne un propergol solide composite comprenant un liant comprenant un polymère polyol réticulé dans lequel sont présents :

  • une charge oxydante comprenant des particules de perchlorate inorganique, la charge oxydante présentant une distribution de taille bimodale avec (i) un premier ensemble de particules de perchlorate inorganique présentant une première taille D50 comprise entre 150 µm et 250 µm et présent à raison de 50% à 60% en masse dans le propergol solide composite, et (ii) un deuxième ensemble de particules de perchlorate inorganique présentant une deuxième taille D50 comprise entre 5 µm et 20 µm et présent à raison de 7% à 17% en masse dans le propergol solide composite,
  • une charge réductrice comprenant des particules d'aluminium et/ou d'un composé d'aluminium, et
  • un catalyseur balistique comprenant des particules d'oxyde de cuivre CuO.
The invention relates to a composite solid propellant comprising a binder comprising a crosslinked polymer polyol in which are present:
  • an oxidizing charge comprising particles of inorganic perchlorate, the oxidizing charge having a bimodal size distribution with (i) a first set of particles of inorganic perchlorate having a first size D50 of between 150 µm and 250 µm and present in an amount of 50% at 60% by mass in the composite solid propellant, and (ii) a second set of inorganic perchlorate particles having a second size D50 of between 5 µm and 20 µm and present at a rate of 7% to 17% by mass in the propellant solid composite,
  • a reducing filler comprising particles of aluminum and / or an aluminum compound, and
  • a ballistic catalyst comprising particles of copper oxide CuO.

Sauf mention contraire, on entend par « taille D50 », la dimension donnée par la distribution granulométrique statistique à la moitié de la population.Unless otherwise stated, the term “size D50” is understood to mean the dimension given by the statistical particle size distribution to half of the population.

L'incorporation d'un catalyseur balistique d'oxyde de cuivre CuO au sein de la formulation de propergol solide composite décrite ci-dessus permet d'atteindre conjointement une vitesse de combustion élevée associée à une réduction significative de l'exposant de pression, et ce sur une large plage de pression. L'exposant de pression correspond à l'exposant n dans la loi de Vieille qui est vérifiée par le propergol et qui a pour expression : Vc = a.Pn, où Vc désigne la vitesse de combustion du propergol, P la pression dans la chambre de combustion et a un facteur pré-exponentiel. La réduction de l'exposant de pression n permet de réduire la dépendance de la vitesse de combustion à la pression et permet ainsi d'envisager de pouvoir accéder à une réduction significative de la dispersion de fonctionnement d'un moteur à propergol solide. En effet, la réduction de l'exposant de pression permet de réduire les fluctuations de fonctionnement liées aux fluctuations de pression durant le fonctionnement du moteur conduisant ainsi à l'obtention d'un point de fonctionnement plus stable du moteur. La réduction des dispersions de fonctionnement contribue notamment à réduire les contraintes mécaniques auxquelles la structure du moteur pourrait être soumise en cas de pressurisation interne maximale. Ainsi, il est possible d'envisager de pouvoir recourir à des architectures de moteur optimisées (masse de structure réduite) pour un même un même niveau de fiabilité de fonctionnement du moteur, ou à iso-dimensionnement du moteur, à un accroissement du niveau de fiabilité de fonctionnement du moteur. L'effet bénéfique du catalyseur balistique d'oxyde de cuivre CuO est obtenu pour un propergol solide composite présentant la distribution de taille bimodale décrite ci-dessus pour la charge oxydante. Un tel propergol convient à une intégration en tant que chargement propulsif pour un véhicule spatial. Comme cela sera rappelé dans la partie expérimentale, l'effet d'abaissement de l'exposant de pression suite à l'incorporation d'oxyde de cuivre CuO n'est pas obtenu de manière notable si la granulométrie de la charge oxydante diffère de celle décrite plus haut.The incorporation of a CuO copper oxide ballistic catalyst within the composite solid propellant formulation described above jointly achieves a high burn rate associated with a significant reduction in the pressure exponent, and this over a wide pressure range. The pressure exponent corresponds to the exponent n in Vieille's law which is verified by the propellant and which has the expression: Vc = aP n , where Vc denotes the combustion rate of the propellant, P the pressure in the chamber of combustion and has a pre-exponential factor. The reduction of the pressure exponent n makes it possible to reduce the dependence of the combustion speed on the pressure and thus makes it possible to envisage being able to access a significant reduction in the operating dispersion of a solid propellant engine. Indeed, the reduction of the pressure exponent makes it possible to reduce the operating fluctuations linked to the pressure fluctuations during the operation of the engine, thus leading to obtaining a more stable operating point of the engine. The reduction in operating dispersions contributes in particular to reducing the mechanical stresses to which the engine structure could be subjected in the event of maximum internal pressurization. Thus, it is possible to envisage being able to use optimized engine architectures (reduced structure mass) for the same level of engine operating reliability, or with isosizing of the engine, at an increase in the level of engine operating reliability. The beneficial effect of the copper oxide CuO ballistic catalyst is obtained for a composite solid propellant exhibiting the bimodal size distribution described above for the oxidizing charge. Such a propellant is suitable for integration as a propellant charge for a space vehicle. As will be recalled in the experimental part, the effect of lowering the pressure exponent following the incorporation of copper oxide CuO is not significantly obtained if the particle size of the oxidizing charge differs from that described above.

Dans un exemple de réalisation, les particules d'oxyde de cuivre CuO présentent une surface spécifique BET supérieure ou égale à 10 m2/g.In an exemplary embodiment, the copper oxide particles CuO have a BET specific surface area greater than or equal to 10 m 2 / g.

Une telle surface spécifique permet avantageusement d'augmenter davantage encore la vitesse de combustion du propergol.Such a specific surface area advantageously makes it possible to further increase the rate of combustion of the propellant.

Dans un exemple de réalisation, la teneur massique en particules d'oxyde de cuivre CuO est comprise entre 0,01% et 1%.In an exemplary embodiment, the mass content of copper oxide particles CuO is between 0.01% and 1%.

Dans un exemple de réalisation, le propergol comprend :

  • le polymère polyol réticulé en une teneur massique comprise entre 9% et 12%,
  • les particules de perchlorate inorganique en une teneur massique comprise entre 64% et 70%,
  • les particules d'aluminium et/ou du composé d'aluminium en une teneur massique comprise entre 17% et 23%, et
  • les particules d'oxyde de cuivre CuO en une teneur massique comprise entre 0,01% et 1%.
In an exemplary embodiment, the propellant comprises:
  • the crosslinked polymer polyol in a mass content of between 9% and 12%,
  • particles of inorganic perchlorate in a mass content of between 64% and 70%,
  • particles of aluminum and / or of the aluminum compound in a mass content of between 17% and 23%, and
  • particles of copper oxide CuO in a mass content of between 0.01% and 1%.

L'invention vise également un propulseur comprenant un corps de propulseur définissant une chambre de combustion dans laquelle un chargement du propergol composite tel que décrit plus haut est présent.The invention also relates to a propellant comprising a propellant body defining a combustion chamber in which a charge of the composite propellant as described above is present.

L'invention vise également un véhicule spatial comprenant un propulseur tel que décrit plus haut. Le véhicule spatial peut être un lanceur fusée.The invention also relates to a space vehicle comprising a thruster as described above. The space vehicle can be a rocket launcher.

Brève description des dessinsBrief description of the drawings

  • [Fig. 1] La figure 1 illustre schématiquement la distribution de taille bimodale pour les particules de perchlorate inorganique pouvant être mises en œuvre dans le cadre de l'invention.[ Fig. 1 ] The figure 1 schematically illustrates the bimodal size distribution for the inorganic perchlorate particles that can be used within the scope of the invention.
  • [Fig. 2] La figure 2 représente un corps de propulseur incorporant un propergol solide composite selon l'invention.[ Fig. 2 ] The figure 2 represents a propellant body incorporating a composite solid propellant according to the invention.
  • [Fig. 3] La figure 3 compare l'évolution de la vitesse de combustion en fonction de la pression pour différentes compositions de propergol.[ Fig. 3 ] The figure 3 compares the evolution of the combustion speed as a function of the pressure for different propellant compositions.
  • [Fig. 4] La figure 4 compare l'évolution de l'exposant de pression en fonction de la pression pour différentes compositions de propergol.[ Fig. 4 ] The figure 4 compares the evolution of the pressure exponent as a function of the pressure for different propellant compositions.
  • [Fig. 5] La figure 5 compare l'évolution de la vitesse de combustion en fonction de la pression pour différentes compositions de propergol.[ Fig. 5 ] The figure 5 compares the evolution of the combustion speed as a function of the pressure for different propellant compositions.
  • [Fig. 6] La figure 6 compare l'évolution de la vitesse de combustion en fonction de la pression pour différentes compositions de propergol.[ Fig. 6 ] The figure 6 compares the evolution of the combustion speed as a function of the pressure for different propellant compositions.
  • [Fig. 7] La figure 7 compare l'évolution de d'exposant de pression en fonction de la pression pour différentes compositions de propergol.[ Fig. 7 ] The figure 7 compares the evolution of the pressure exponent as a function of the pressure for different propellant compositions.
Description des modes de réalisationDescription of the embodiments

Le propergol comprend un liant comprenant un polymère polyol réticulé. Le polymère polyol réticulé est par exemple un polybutadiène hydroxytéléchélique (PBHT) réticulé. Le polymère polyol est réticulé par un agent de réticulation. L'agent de réticulation peut être un diisocyanate. Dans ce cas, on obtient un polyuréthane par réticulation du polyol par l'agent de réticulation diisocyanate. Le liant peut comprendre un extenseur de chaîne du polymère polyol de manière connue en soi. Les charges oxydante et réductrice peuvent être dispersées dans le liant. Le liant peut constituer une matrice polymérique enrobant les charges oxydante et réductrice.The propellant comprises a binder comprising a crosslinked polymer polyol. The crosslinked polyol polymer is, for example, a crosslinked hydroxytelechelic polybutadiene (PBHT). The polymer polyol is crosslinked by a crosslinking agent. The crosslinking agent can be a diisocyanate. In this case, a polyurethane is obtained by crosslinking the polyol with the crosslinking agent diisocyanate. The binder can comprise a polymer polyol chain extender in a manner known per se. The oxidizing and reducing charges can be dispersed in the binder. The binder can constitute a polymer matrix coating the oxidizing and reducing charges.

La charge oxydante comprend des particules de perchlorate inorganique. Le perchlorate inorganique peut être le perchlorate d'ammonium (NH4ClO4). Comme indiqué plus haut, les particules de perchlorate inorganique présentent une distribution de taille bimodale avec (i) un premier ensemble de particules de perchlorate inorganique présentant une première taille D50 comprise entre 150 µm et 250 µm et présent à raison de 50% à 60% en masse dans le propergol solide composite, et (ii) un deuxième ensemble de particules de perchlorate inorganique présentant une deuxième taille D50 comprise entre 5 µm et 20 µm et présent à raison de 7% à 17% en masse dans le propergol solide composite. Les particules de perchlorate inorganique peuvent être présentes dans le propergol solide composite en une teneur massique globale comprise entre 64% et 70% (correspondant à la somme des teneurs des particules des premier et deuxième ensembles).The oxidizing charge comprises particles of inorganic perchlorate. The inorganic perchlorate can be ammonium perchlorate (NH 4 ClO 4 ). As indicated above, the inorganic perchlorate particles exhibit a bimodal size distribution with (i) a first set of inorganic perchlorate particles exhibiting a first size D50 of between 150 µm and 250 µm and present in an amount of 50% to 60% by mass in the composite solid propellant, and (ii) a second set of inorganic perchlorate particles having a second size D50 of between 5 μm and 20 μm and present in an amount of 7% to 17% by mass in the composite solid propellant. The inorganic perchlorate particles can be present in the composite solid propellant in an overall mass content of between 64% and 70% (corresponding to the sum of the contents of the particles of the first and second sets).

La distribution de taille des particules de perchlorate inorganique peut être déterminée par technique de diffraction laser, de manière connue en soi.The size distribution of the inorganic perchlorate particles can be determined by laser diffraction technique, in a manner known per se.

La figure 1 illustre la distribution de taille bimodale des particules de perchlorate inorganique qui peuvent être mises en œuvre dans le cadre de l'invention. Sur cette figure, pour une taille x donnée de particules, l'ordonnée indique la teneur massique dans le propergol des particules ayant cette taille x. Les particules de perchlorate inorganique définissent un premier ensemble E1 de particules de perchlorate inorganique et un deuxième ensemble E2 de particules de perchlorate inorganique. La distribution bimodale est asymétrique. La distribution bimodale présente deux pics (maxima) distincts P1 et P2. La hauteur du pic P1 de la distribution du premier ensemble E1 peut être différente, par exemple supérieure, à la hauteur du pic P2 de la distribution du deuxième ensemble E2.The figure 1 illustrates the bimodal size distribution of the inorganic perchlorate particles which can be used within the scope of the invention. In this figure, for a given size x of particles, the ordinate indicates the mass content in the propellant of the particles having this size x. The inorganic perchlorate particles define a first set E1 of perchlorate particles inorganic and a second set E2 of inorganic perchlorate particles. The bimodal distribution is asymmetric. The bimodal distribution presents two distinct peaks (maxima) P1 and P2. The height of the peak P1 of the distribution of the first set E1 may be different, for example greater than the height of the peak P2 of the distribution of the second set E2.

La distribution de chacun des premier et deuxième ensembles E1 et E2 peut correspondre à une distribution normale. Les particules du premier ensemble E1 présentent une première taille D50 TM1 et les particules du deuxième ensemble E2 présentent une deuxième taille D50 TM2. La première taille D50 TM1 est supérieure à la deuxième taille D50 TM2. La deuxième taille D50 TM2 peut être espacée de la première taille D50 TM1 par au moins deux, voire au moins trois, écarts-types de la distribution du premier ensemble E1.The distribution of each of the first and second sets E1 and E2 can correspond to a normal distribution. The particles of the first set E1 have a first size D50 TM1 and the particles of the second set E2 have a second size D50 TM2. The first size D50 TM1 is larger than the second size D50 TM2. The second size D50 TM2 can be spaced from the first size D50 TM1 by at least two, or even at least three, standard deviations of the distribution of the first set E1.

La charge réductrice comprend des particules d'aluminium et/ou d'un composé d'aluminium. Le composé d'aluminium peut être l'un au moins d'un alliage d'aluminium ou de l'alumine (Al2O3). Les particules d'aluminium et/ou du composé d'aluminium peuvent être présentes dans le propergol solide composite en une teneur massique comprise entre 17% et 23%.The reducing filler comprises particles of aluminum and / or an aluminum compound. The aluminum compound can be at least one of an aluminum alloy or alumina (Al 2 O 3 ). The particles of aluminum and / or of the aluminum compound can be present in the composite solid propellant in a mass content of between 17% and 23%.

Le propergol comprend en outre un catalyseur balistique comprenant des particules d'oxyde de cuivre CuO. Comme indiqué plus haut, la teneur massique en particules d'oxyde de cuivre CuO dans le propergol peut être comprise entre 0,01% et 1%, par exemple entre 0,1% et 1%, par exemple entre 0,1% et 0,3% ou entre 0,3% et 1%. Selon un exemple, les particules d'oxyde de cuivre CuO peuvent présenter une surface spécifique BET supérieure ou égale à 10 m2/g.The propellant further comprises a ballistic catalyst comprising particles of copper oxide CuO. As indicated above, the mass content of copper oxide particles CuO in the propellant can be between 0.01% and 1%, for example between 0.1% and 1%, for example between 0.1% and 0.3% or between 0.3% and 1%. According to one example, the copper oxide particles CuO may have a BET specific surface area of greater than or equal to 10 m 2 / g.

L'oxyde de cuivre CuO peut être l'unique catalyseur balistique présent dans le propergol solide composite. Le propergol composite peut être dépourvu de l'un au moins des catalyseurs balistiques suivants : un sel de cuivre, un oxyde de fer, les catalyseurs sur base ferrocénique, un oxyde de chrome, un oxyde de nickel, un oxyde de cobalt, un sel métallique de plomb, un sel de bismuth.Copper oxide CuO may be the sole ballistic catalyst present in the composite solid propellant. The composite propellant may be devoid of at least one of the following ballistic catalysts: a copper salt, an iron oxide, the catalysts based on ferrocene, a chromium oxide, a nickel oxide, a cobalt oxide, a salt metallic lead, a salt of bismuth.

Le propergol composite peut être dépourvu de l'un au moins des composés suivants : nitrocellulose ou nitroglycérine.The composite propellant can be devoid of at least one of the following compounds: nitrocellulose or nitroglycerin.

Le propergol peut être fabriqué à partir des constituants évoqués plus haut en mettant en œuvre des techniques de mélange et de réticulation connues de l'homme du métier qui ne sont pas reprises ici par souci de concision.The propellant can be made from the constituents mentioned above by using mixing and crosslinking techniques known to those skilled in the art which are not repeated here for the sake of brevity.

La figure 2 montre un corps de propulseur 1 comprenant une enveloppe structurale 11 définissant une chambre de combustion dans laquelle est présent le chargement de propergol composite 10. Le corps de propulseur comprend un allumeur (non représenté) destiné à initier le chargement de propergol 10. Le corps de propulseur peut faire partie d'un moteur fusée et être un corps de propulseur de lanceur fusée. Avantageusement, le propergol solide composite peut présenter un exposant de pression n dans la loi de Vieille inférieur ou égal à 0,2, de préférence inférieur ou égal à 0,1, sur tout ou partie de la plage de pression 8-15 MPa dans la chambre de combustion.The figure 2 shows a thruster body 1 comprising a structural casing 11 defining a combustion chamber in which is present the charge of composite propellant 10. The thruster body comprises an igniter (not shown) intended to initiate the charging of propellant 10. The body of the propellant thruster can be part of a rocket engine and be a rocket launcher thruster body. Advantageously, the composite solid propellant may have a pressure exponent n in Vieille's law less than or equal to 0.2, preferably less than or equal to 0.1, over all or part of the pressure range 8-15 MPa in the combustion chamber.

ExemplesExamples Exemple 1 : comparaison entre l'utilisation d'oxyde de cuivre CuO et d'oxyde de fer Fe2O3 en tant que catalyseur balistique dans une formulation de propergol incorporant une distribution bimodale de charge oxydanteExample 1: comparison between the use of copper oxide CuO and iron oxide Fe 2 O 3 as a ballistic catalyst in a propellant formulation incorporating a bimodal distribution of oxidizing charge

La formulation mise en œuvre mise en œuvre dans cet essai présentait une répartition bimodale de charges de perchlorate d'ammonium (PA). Cette formulation de propergol composite est adaptée à former le chargement propulsif d'un lanceur spatial. Le grade d'oxyde de cuivre CuO utilisé était sous la forme d'une poudre solide fine, correspondant au grade « Copper(II) oxide Special Ultra Fine » (n° CAS 1317-38-0) approvisionné auprès du producteur TIB Chemicals. Les caractéristiques de l'oxyde de cuivre CuO qui a été mis en œuvre étaient les suivantes :

  • granulométrie D10/D50/D90 d'environ 0,5µm/5,0µm/20 µm (valeurs mesurées par un granulomètre à diffraction laser),
  • surface spécifique de 11,6 m2/g (BET),
  • densité de 6,28 g/cm3 (pycnomètre à gaz), et
  • pureté 98,3%.
The formulation used in this test exhibited a bimodal load distribution of ammonium perchlorate (AP). This composite propellant formulation is suitable for forming the propellant charge of a space launcher. The grade of copper oxide CuO used was in the form of a fine solid powder, corresponding to the grade "Copper (II) oxide Special Ultra Fine" (CAS No. 1317-38-0) supplied from the producer TIB Chemicals. The characteristics of the copper oxide CuO which was used were as follows:
  • D10 / D50 / D90 particle size of approximately 0.5µm / 5.0µm / 20µm (values measured by a laser diffraction particle size analyzer),
  • specific surface of 11.6 m 2 / g (BET),
  • density of 6.28 g / cm 3 (gas pycnometer), and
  • purity 98.3%.

Les formulations ayant la composition ci-dessous ont été préparées et évaluées :

  • charge oxydante de PA à raison de 66,75% massique,
  • charge réductrice d'aluminium à raison de 20% massique,
  • liant polyol réticulé à raison de 13% massique, et
  • catalyseur balistique (Fe2O3 ou CuO) à raison de 0,25% massique.
The formulations having the composition below were prepared and evaluated:
  • oxidizing charge of PA in an amount of 66.75% by mass,
  • reducing load of aluminum at a rate of 20% by mass,
  • 13% by mass crosslinked polyol binder, and
  • ballistic catalyst (Fe 2 O 3 or CuO) at a rate of 0.25% by mass.

Les 66,75% massique de charges de PA utilisée étaient répartis ainsi :

  • 54,75% massique de classe granulométrique de dimension moyenne centrée sur 200 µm correspondant au premier ensemble de particules de perchlorate inorganique, ces particules avaient été obtenues par cristallisation, et
  • 12% massique de classe granulométrique de dimension fine centrée sur 9 µm correspondant au deuxième ensemble de particules de perchlorate inorganique, ces particules avaient été obtenues par broyage à partir des particules de classe granulométrique de dimension moyenne centrée sur 200 µm.
The 66.75% by mass of loads of PA used were distributed as follows:
  • 54.75% by mass of particle size class of average size centered on 200 μm corresponding to the first set of inorganic perchlorate particles, these particles had been obtained by crystallization, and
  • 12% by mass of particle size class of fine dimension centered on 9 μm corresponding to the second set of inorganic perchlorate particles, these particles had been obtained by grinding from particles of particle size class of average size centered on 200 μm.

La poudre d'aluminium utilisée était une variété caractérisée par une morphologie de grain régulière, obtenue par atomisation sous atmosphère inerte (azote) et de taille D50 d'environ 30 µm.The aluminum powder used was a variety characterized by a regular grain morphology, obtained by atomization under an inert atmosphere (nitrogen) and of size D50 of about 30 μm.

Les figures 3 et 4 fournissent les résultats de la comparaison des caractéristiques balistiques obtenues avec cette formulation selon que de l'oxyde de cuivre CuO ou de fer Fe2O3 est utilisé en tant que catalyseur balistique. La formulation utilisant de l'oxyde de cuivre CuO incorporé à un taux massique de 0,25% correspond à la courbe « A » sur ces figures. Les formulations de référence utilisant comme catalyseur balistique de l'oxyde de fer (Fe2O3), incorporé au même taux massique de 0,25% dans le propergol, correspondent aux courbes « B » à « E ». Différents grades d'oxyde de fer Fe2O3 ont été évalués, correspondant à des produits de granulométrie et/ou de surface spécifique et/ou de pureté différentes et/ou obtenus par des procédés de fabrication différents afin de démontrer dans chaque cas l'effet avantageux produit par l'emploi d'oxyde de cuivre CuO. Ces grades de Fe2O3 ont été approvisionnés auprès de différents producteurs/fournisseurs du domaine et sont représentatifs de grades Fe2O3 qui peuvent être utilisés en tant que catalyseur balistique dans des propergols pour véhicule spatial.The figures 3 and 4 provide the results of the comparison of the ballistic characteristics obtained with this formulation depending on whether copper oxide CuO or iron Fe 2 O 3 is used as a ballistic catalyst. The formulation using copper oxide CuO incorporated at a rate of 0.25% by weight corresponds to curve “A” in these figures. The reference formulations using iron oxide (Fe 2 O 3 ) as ballistic catalyst, incorporated at the same mass rate of 0.25% in the propellant, correspond to curves “B” to “E”. Different grades of iron oxide Fe 2 O 3 were evaluated, corresponding to products of different particle size and / or specific surface area and / or purity and / or obtained by different manufacturing processes in order to demonstrate in each case l 'advantageous effect produced by the use of copper oxide CuO. These Fe 2 O 3 grades have been sourced from various producers / suppliers in the field and are representative of Fe 2 O 3 grades which can be used as a ballistic catalyst in space vehicle propellants.

Les échantillons de propergol ont été réalisés sur le même moyen de fabrication, à savoir un malaxeur de type horizontal de capacité 5 litres. Les formulations étaient identiques sauf sur le plan de la nature du catalyseur balistique (CuO ou Fe2O3). La durée de cuisson du propergol était identique dans chacun des essais réalisés. Le moyen et les paramètres d'essais étaient identiques pour la caractérisation balistique. La mesure de la vitesse de combustion a été effectuée par analyse d'écho ultrasonore, les échantillons ayant été pré-conditionnés à +20°C avant essai.The propellant samples were made on the same manufacturing means, namely a horizontal type mixer with a capacity of 5 liters. The formulations were identical except in terms of the nature of the ballistic catalyst (CuO or Fe 2 O 3 ). The propellant firing time was identical in each of the tests carried out. The means and the test parameters were identical for the characterization ballistic. The combustion rate was measured by ultrasonic echo analysis, the samples having been preconditioned at + 20 ° C. before testing.

Les résultats obtenus sont fournis à la figure 3 qui montre les courbes de vitesse de combustion (Vc en mm/s) en fonction de la pression (en MPa) pour les formulations catalysées avec CuO en comparaison avec celles catalysées par Fe2O3. La figure 4 montre quant à elle la variation de l'exposant de pression (n) en fonction de la pression (en MPa) pour les formulations catalysées avec CuO en comparaison avec celles catalysées par Fe2O3.The results obtained are provided to the figure 3 which shows the curves of combustion rate (Vc in mm / s) as a function of pressure (in MPa) for formulations catalyzed with CuO in comparison with those catalyzed by Fe 2 O 3 . The figure 4 shows the variation of the pressure exponent (n) as a function of the pressure (in MPa) for formulations catalyzed with CuO in comparison with those catalyzed by Fe 2 O 3 .

Les figures 3 et 4 illustrent l'impact favorable engendré par l'emploi de l'oxyde de cuivre CuO sur les caractéristiques balistiques du propergol. On note en particulier un aplatissement notable de l'allure de la courbe de vitesse de combustion sur la plage 9-15 MPa lorsque le CuO est employé qui se traduit par une valeur d'exposant de pression n très significativement abaissée (n inférieur ou égal à 0,2 sur la plage 8-15MPa et avec n proche de ou inférieur à 0,1 sur la plage 10-14MPa). Ce résultat est à comparer avec ceux obtenus lorsque Fe2O3 est utilisé pour lesquels l'exposant de pression n est supérieur ou égal à 0,3 sur la plage 7-15 MPa. On constate aussi que l'on obtient, sur la plage de pression 2-9 MPa, une vitesse de combustion équivalente à celle obtenue avec Fe2O3 lorsque du CuO est employé.The figures 3 and 4 illustrate the favorable impact generated by the use of copper oxide CuO on the ballistic characteristics of the propellant. In particular, there is a notable flattening of the shape of the combustion rate curve over the 9-15 MPa range when CuO is used, which results in a very significantly lower pressure exponent value n (n less than or equal to at 0.2 over the 8-15MPa range and with n close to or less than 0.1 over the 10-14MPa range). This result should be compared with those obtained when Fe 2 O 3 is used for which the pressure exponent n is greater than or equal to 0.3 over the range 7-15 MPa. It is also noted that one obtains, over the pressure range 2-9 MPa, a combustion rate equivalent to that obtained with Fe 2 O 3 when CuO is used.

Dans les architectures de moteurs pour lanceur spatial mettant en œuvre la formulation ayant la base détaillée ci-dessus sans catalyseur CuO, la plage de pression opérationnelle nominale du moteur est comprise entre 4 MPa et 9,5 MPa. La pression maximale, en prenant en compte les possibles fluctuations de fonctionnement lors de la combustion du chargement propergol, se situe autour de 10 MPa. La figure 3 montre que l'emploi du CuO permet d'accéder à des niveaux de vitesse de combustion tout à fait comparables à ceux obtenus avec le Fe2O3 sur la plage opérationnelle de fonctionnement du moteur.In the engine architectures for space launchers implementing the formulation having the basis detailed above without a CuO catalyst, the nominal operating pressure range of the engine is between 4 MPa and 9.5 MPa. The maximum pressure, taking into account the possible operating fluctuations during the combustion of the propellant charge, is around 10 MPa. The figure 3 shows that the use of CuO makes it possible to reach combustion speed levels quite comparable to those obtained with Fe 2 O 3 over the operational operating range of the engine.

Lorsque du CuO est employé, la valeur d'exposant de pression se réduit très fortement à l'approche de 10 MPa, qui correspond à la limite haute de la plage de fonctionnement. Ainsi, le risque de fluctuation de pression pouvant engendrer une fluctuation du point de fonctionnement, et possiblement une surpression mécanique de la structure du moteur pouvant nuire à son intégrité, se trouve significativement réduit. Dans cette configuration, les caractéristiques balistiques induites par l'emploi de CuO permettent ainsi d'envisager d'accéder à fonctionnements plus stables du moteur dans cette plage de pression (à l'approche de la limite haute 10 MPa), voire d'envisager de pouvoir accéder à des architectures de moteur optimisées comme indiqué précédemment.When CuO is used, the pressure exponent value decreases very sharply as it approaches 10 MPa, which corresponds to the upper limit of the operating range. Thus, the risk of pressure fluctuation which can generate a fluctuation of the operating point, and possibly a mechanical overpressure of the engine structure which can adversely affect its integrity, is significantly reduced. In this configuration, the ballistic characteristics induced by the use of CuO thus make it possible to consider accessing more stable engine operations in this pressure range (when approaching the upper limit of 10 MPa), or even to consider being able to access optimized engine architectures as indicated previously. .

La figure 5 permet de confirmer indirectement l'impact avantageux induit par l'emploi du CuO. Dans cet essai, l'évolution de la vitesse de combustion en fonction de la pression a été déterminée pour deux formulations de propergol pour lanceur spatial : La première formulation évaluée était identique à celle décrite ci-dessus mais catalysée avec 0,20% massique de Fe2O3 et mise en œuvre sur un malaxeur de technologie différente (malaxeur à pâles verticales de contenance 1 Gallon). La courbe notée « F » à la figure 5 correspond aux résultats obtenus pour cette première formulation. La teneur massique en PA de dimension moyenne centrée sur 200 µm était de 54,8% massique. La deuxième formulation évaluée était identique à la première formulation mais sans catalyseur balistique Fe2O3. Dans cette deuxième formulation, la teneur en Fe2O3 a été reportée sur la teneur en PA de dimension moyenne centrée sur 200 µm laquelle représentait alors 55% massique. La courbe notée « G » à la figure 5 correspond aux résultats obtenus pour cette deuxième formulation.The figure 5 makes it possible to indirectly confirm the advantageous impact induced by the use of CuO. In this test, the evolution of the combustion speed as a function of the pressure was determined for two formulations of propellant for space launchers: The first formulation evaluated was identical to that described above but catalyzed with 0.20% by mass of Fe 2 O 3 and implementation on a mixer of different technology (mixer with vertical blades with a capacity of 1 Gallon). The curve marked "F" at figure 5 corresponds to the results obtained for this first formulation. The mass content of AP of average dimension centered on 200 μm was 54.8% by mass. The second formulation evaluated was identical to the first formulation but without Fe 2 O 3 ballistic catalyst. In this second formulation, the Fe 2 O 3 content was transferred to the AP content of average dimension centered on 200 μm, which then represented 55% by mass. The curve noted "G" at the figure 5 corresponds to the results obtained for this second formulation.

La figure 5 illustre le fait que l'incorporation de Fe2O3 au sein d'une formulation de propergol composite conduit, par rapport à une base non catalysée, à une augmentation notable de la valeur de vitesse de combustion sur la plage opérationnelle de fonctionnement du moteur pour lanceur spatial. Il n'y a toutefois pas d'amélioration notable de la valeur de l'exposant de pression sur cette même plage fonctionnelle par rapport à une formulation non catalysée (i.e. exempte de Fe2O3). Ce résultat illustre le fait que le fort abaissement de la valeur d'exposant de pression observé préalablement avec le CuO n'est pas intrinsèquement inhérent à la formulation de base non catalysée, et que l'ajout d'un catalyseur balistique conventionnel (dans cet exemple le Fe2O3) ne suffit assurément pas à abaisser cette valeur d'exposant mais se contente d'accroître la valeur de vitesse de combustion, démontrant ainsi au final que l'abaissement de la valeur d'exposant de pression associée à une augmentation de la Vc est bien induit par l'emploi d'oxyde de cuivre CuO.The figure 5 illustrates the fact that the incorporation of Fe 2 O 3 within a composite propellant formulation leads, compared to an uncatalyzed base, to a notable increase in the value of the combustion rate over the operational operating range of the engine for space launcher. However, there is no significant improvement in the value of the pressure exponent over this same functional range compared to a non-catalyzed formulation (ie free of Fe 2 O 3 ). This result illustrates the fact that the strong lowering of the pressure exponent value observed previously with CuO is not intrinsically inherent in the uncatalyzed base formulation, and that the addition of a conventional ballistic catalyst (in this example Fe 2 O 3 ) is certainly not sufficient to lower this exponent value but is content to increase the combustion speed value, thus demonstrating in the end that the lowering of the pressure exponent value associated with a increase in Vc is indeed induced by the use of copper oxide CuO.

L'exemple 1 a démontré l'avantage lié à l'incorporation de l'oxyde de cuivre CuO en tant que catalyseur balistique. Les essais dans l'exemple 1 ont été conduits sur une base de propergol ayant une distribution de charge oxydante bimodale particulière qui convient à un emploi dans un véhicule spatial. L'exemple 2 à suivre va maintenant s'attacher à évaluer l'influence de la granulométrie de la charge oxydante sur les caractéristiques balistiques obtenues pour le propergol.Example 1 demonstrated the advantage linked to the incorporation of copper oxide CuO as a ballistic catalyst. The tests in Example 1 were conducted on a propellant basis having a particular bimodal oxidative charge distribution which is suitable for use in a space vehicle. Example 2 to follow will now focus on evaluating the influence of the particle size of the oxidizing charge on the ballistic characteristics obtained for the propellant.

Exemple 2 : influence de la granulométrie de la charge oxydante sur les caractéristiques balistiques du propergolExample 2: influence of the particle size of the oxidizing charge on the ballistic characteristics of the propellant

Dans cet exemple, la base de propergol mise en œuvre comprenait une charge oxydante de PA avec une dimension granulométrique moyenne notablement plus faible et sous la forme d'une distribution trimodale (hors invention) et non plus bimodale comme dans l'exemple 1. Dans cet essai, les inventeurs ont comparé les performances obtenues entre un tel propergol incorporant soit de l'oxyde de cuivre CuO, soit de l'oxyde de fer Fe2O3 à la place de l'oxyde de cuivre CuO.In this example, the propellant base used included an oxidizing charge of PA with a significantly lower average particle size and in the form of a trimodal distribution (outside the invention) and no longer bimodal as in example 1. In In this test, the inventors compared the performance obtained between such a propellant incorporating either copper oxide CuO or iron oxide Fe 2 O 3 instead of copper oxide CuO.

Les figures 6 et 7 illustrent la comparaison des caractéristiques balistiques obtenues avec l'emploi :

  • d'oxyde de cuivre CuO (courbe notée « H » aux figures 6 et 7), et
  • d'un catalyseur balistique oxyde de fer (Fe2O3) (courbe notée « I » aux figures 6 et 7)
The figures 6 and 7 illustrate the comparison of the ballistic characteristics obtained with use:
  • of copper oxide CuO (curve denoted "H" at figures 6 and 7 ), and
  • an iron oxide ballistic catalyst (Fe 2 O 3 ) (curve denoted "I" at figures 6 and 7 )

Dans ces deux cas, les catalyseurs ont été incorporés à un taux comparable dans le propergol.In both of these cases, the catalysts were incorporated at a comparable rate into the propellant.

La figure 6 illustre le fait que l'incorporation de CuO induit un effet catalytique conduisant à un niveau de vitesse de combustion équivalent à celui du catalyseur balistique Fe2O3. Toutefois, l'emploi de CuO dans une telle formulation de propergol composite à distribution de charges oxydantes PA hors invention n'induit pas d'abaissement notable de la valeur de l'exposant de pression par rapport à une formulation catalysée avec Fe2O3, contrairement à ce qui a été observé précédemment pour une formulation de propergol ayant une répartition bimodale des charges oxydantes (voir figure 7).The figure 6 illustrates the fact that the incorporation of CuO induces a catalytic effect leading to a combustion rate level equivalent to that of the Fe 2 O 3 ballistic catalyst. However, the use of CuO in such a formulation of composite propellant with distribution of PA oxidizing charges outside the invention does not induce a significant reduction in the value of the pressure exponent compared to a formulation catalyzed with Fe 2 O 3. , unlike what was observed previously for a propellant formulation having a bimodal distribution of the oxidizing charges (see figure 7 ).

Ainsi, on constate que lorsque la granulométrie de la charge oxydante est modifiée, l'incorporation d'oxyde de cuivre CuO ne conduit pas à un effet d'abaissement de l'exposant de pression significatif par rapport à l'emploi d'oxyde de fer Fe2O3. L'avantage lié à l'incorporation d'oxyde de cuivre CuO ne se manifeste pas de manière systématique au sein de n'importe quelle formulation de propergol composite mais résulte de la combinaison avec des charges oxydantes de granulométrie spécifique.Thus, it is observed that when the particle size of the oxidizing charge is modified, the incorporation of copper oxide CuO does not lead to a significant lowering effect of the pressure exponent compared to the use of oxide of iron Fe 2 O 3 . The advantage linked to the incorporation of copper oxide CuO does not appear systematically within any formulation of composite propellant but results from the combination with oxidizing charges of specific particle size.

L'expression « comprise entre ... et ... » doit se comprendre comme incluant les bornes.The expression "between ... and ..." should be understood as including the limits.

Claims (6)

  1. A composite solid propellant (10) comprising a binder comprising a crosslinked polyol polymer in which are present:
    - an oxidizing filler comprising particles of inorganic perchlorate, the oxidizing filler having a bimodal size distribution with (i) a first set (E1) of particles of inorganic perchlorate having a first size D50 (TM1) comprised between 150 µm and 250 µm and present in an amount of 50% to 60% by mass in the composite solid propellant, and (ii) a second set (E2) of particles of inorganic perchlorate having a second size D50 (TM2) comprised between 5 µm and 20 µm and present in an amount of 7% to 17% by mass in the composite solid propellant,
    - a reducing filler comprising particles of aluminum and/or of an aluminum compound, and
    - a ballistic catalyst comprising particles of copper oxide CuO.
  2. The composite solid propellant (10) as claimed in claim 1, wherein the particles of copper oxide CuO have a BET specific surface area greater than or equal to 10 m2/g.
  3. The composite solid propellant (10) as claimed in claim 1 or 2, wherein the mass content of particles of copper oxide CuO is comprised between 0.01% and 1%.
  4. The composite solid propellant (10) as claimed in claim 3, wherein the propellant comprises:
    - the crosslinked polyol polymer in a mass content comprised between 9% and 12%,
    - the particles of inorganic perchlorate in a mass content comprised between 64% and 70%,
    - the particles of aluminum and/or of the aluminum compound in a mass content comprised between 17% and 23%, and
    - the particles of copper oxide CuO in a mass content comprised between 0.01% and 1%.
  5. A thruster comprising a thruster body (1) defining a combustion chamber in which a charge (10) of the composite propellant as claimed in any one of claims 1 to 4 is present.
  6. A spacecraft comprising a thruster as claimed in claim 5.
EP20187229.8A 2019-07-25 2020-07-22 Composite solid propellant Active EP3770136B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1908448A FR3099155B1 (en) 2019-07-25 2019-07-25 SOLID COMPOSITE PROPERGOL

Publications (2)

Publication Number Publication Date
EP3770136A1 EP3770136A1 (en) 2021-01-27
EP3770136B1 true EP3770136B1 (en) 2021-10-20

Family

ID=69172859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20187229.8A Active EP3770136B1 (en) 2019-07-25 2020-07-22 Composite solid propellant

Country Status (2)

Country Link
EP (1) EP3770136B1 (en)
FR (1) FR3099155B1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3255059A (en) * 1962-07-09 1966-06-07 North American Aviation Inc Fluoroalkyl acrylate polymeric propellant compositions
US5486248A (en) * 1994-05-31 1996-01-23 Morton International, Inc. Extrudable gas generant for hybrid air bag inflation system
US6217682B1 (en) * 1997-10-27 2001-04-17 Cordant Technologies Inc. Energetic oxetane propellants
FR2818636B1 (en) * 2000-12-22 2003-02-28 Poudres & Explosifs Ste Nale HYDROCARBON BINDER GAS GENERATING PYROTECHNIC COMPOSITIONS AND CONTINUOUS MANUFACTURING METHOD
JP5277428B2 (en) * 2006-05-02 2013-08-28 日本化薬株式会社 Gas actuator composition for gas actuator for operating safety parts and gas generator for gas actuator using the same
US8980023B2 (en) * 2011-07-27 2015-03-17 Autoliv Asp, Inc. Gas generation via elemental carbon-based compositions
US20180170821A1 (en) * 2016-12-15 2018-06-21 Goodrich Corporation Propellant

Also Published As

Publication number Publication date
FR3099155B1 (en) 2021-07-30
EP3770136A1 (en) 2021-01-27
FR3099155A1 (en) 2021-01-29

Similar Documents

Publication Publication Date Title
EP2616413B1 (en) Pyrotechnic gas generator compounds
EP2448885B1 (en) Method for producing solid composite aluminized propellants, and solid composite aluminized propellants
WO2007042735A2 (en) Rapid gas generating pyrotechnical composition and method for obtaining same
US20210292912A1 (en) Solid-Rocket Propellant Coatings
FR2899227A1 (en) Pyrotechnic object, useful in a gas generator for airbags of automotive vehicles of civil and military sectors, comprises an oxidizing filler e.g. copper nitrate and a reducing filler e.g. guanidine nitrate
EP0659712B1 (en) Pyrotechnic compositions for producing clean non-toxic gases containing an elastomeric thermoplastic binder
EP3770136B1 (en) Composite solid propellant
CN102256915A (en) Composite composition for solid propellant containing ferrocene derivative and submicron aluminum drug, solid propellant and drug column
FR2949778A1 (en) PYROTECHNIC COMPOUNDS GENERATORS OF GAS
EP3812356A1 (en) Composite solid propellant
EP3558900B1 (en) Gas-generating pyrotechnic solid objects
EP1584610A2 (en) Explosive composition
EP3515881B1 (en) Composite pyrotechnic product containing an anti-gleam agent of potassium salt type
EP3160922B1 (en) Gas-generating pyrotechnical monolithic blocks
FR2526418A1 (en) PROPULSIVE COMPOSITION CONTAINING NITROCELLULOSE, NITROGLYCERIN, COPPER BENZOATE AND LEAD OR ITS DERIVATIVES, IN PARTICULAR FOR SPRAY
FR2936795A1 (en) DENSITIZED EXPLOSIVE COMPOSITIONS, DENSATED EXPLOSIVE LOADS AND AMMUNITION COMPRISING THE SAME
EP3753916B1 (en) Composite pyrotechnical product
EP1364931B1 (en) Gun propellant powders of high power and reduced erosive action
WO2024062190A1 (en) Composite propellant with reduced combustion rate
EP3969432B1 (en) Propellant powder grain comprising at least partially obturated channels
WO2020144433A1 (en) Method for manufacturing a composite pyrotechnic product
WO2014207405A1 (en) Composite solid propellant of which the aluminium reducing charge contains a low level of magnesium
CA1137318A (en) Pyrotechnical smoke producing composition and application thereof
FR3051189A1 (en) EXPLOSIVE MASTERIZED BLOW EFFECT COMPOSITE
EP0930284A1 (en) Ablative solid material for hybrid gas generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C06D 5/06 20060101ALI20210623BHEP

Ipc: C06B 45/02 20060101ALI20210623BHEP

Ipc: C06B 29/00 20060101ALI20210623BHEP

Ipc: C06B 23/00 20060101AFI20210623BHEP

INTG Intention to grant announced

Effective date: 20210715

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020000786

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1439831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602020000786

Country of ref document: DE

Owner name: ARIANEGROUP SAS, FR

Free format text: FORMER OWNER: ARIANEGROUP SAS, PARIS, FR

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ARIANEGROUP SAS

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20211020

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1439831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020000786

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602020000786

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230721

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240719

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240725

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240730

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240719

Year of fee payment: 5

Ref country code: IT

Payment date: 20240725

Year of fee payment: 5