EP3769323B1 - Inductive component and high-frequency filter device - Google Patents

Inductive component and high-frequency filter device Download PDF

Info

Publication number
EP3769323B1
EP3769323B1 EP19708835.4A EP19708835A EP3769323B1 EP 3769323 B1 EP3769323 B1 EP 3769323B1 EP 19708835 A EP19708835 A EP 19708835A EP 3769323 B1 EP3769323 B1 EP 3769323B1
Authority
EP
European Patent Office
Prior art keywords
planar
inductive component
upper side
ferromagnetic core
underside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19708835.4A
Other languages
German (de)
French (fr)
Other versions
EP3769323A1 (en
Inventor
Johann W. Kolar
Dominik Bortis
Jannik Robin SCHAEFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3769323A1 publication Critical patent/EP3769323A1/en
Application granted granted Critical
Publication of EP3769323B1 publication Critical patent/EP3769323B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer

Definitions

  • the present invention relates to an inductive component. Furthermore, the present invention relates to a high-frequency filter device with such an inductive component.
  • inductances that are designed for high currents and high frequencies are often implemented as discrete components and then soldered onto a printed circuit board.
  • the pamphlet WO 2004/030001 A1 discloses a high-frequency choke for printed circuit boards with an inductor and an ohmic resistor connected in parallel.
  • the inductance can be realized from a conductor track that is routed in a meandering manner.
  • the present invention discloses an inductive component with the
  • An inductive component with a planar conductor track structure and a ferromagnetic core The planar interconnect structure has an upper side and an underside opposite the upper side.
  • the ferromagnetic core is arranged around the planar conductor track structure.
  • the ferromagnetic core has at least one gap in the area of the top and/or bottom of the planar interconnect structure, so that a virtual line running perpendicular to the top or bottom of the planar interconnect structure also runs through such a gap
  • the magnetic core comprises a material with ferromagnetic powder particles in said area of the upper side and/or the lower side of the planar conductor track structure.
  • the planar conductor track structure preferably has a longitudinal extent which is aligned in the direction of a desired current flow through the planar conductor track structure.
  • the planar conductor track structure preferably has a transverse extension which is oriented perpendicularly to the direction of the desired current flow through the planar conductor track structure.
  • a diagonal of the cross section of the ferromagnetic core is oriented perpendicular to the direction of desired current flow.
  • the ferromagnetic core which is preferably tubular or ring-shaped, is arranged at least partially along the longitudinal extent of the planar interconnect structure around the planar interconnect structure.
  • the term tubular or ring-shaped preferably also includes round or oval cross-sections in addition to rectangular or polygonal cross-sections.
  • the present invention is based on the knowledge that in the case of high-frequency electrical currents through an electrical conductor, due to the skin effect, the current flow increasingly only takes place in the outer region of the electrical conductor.
  • the present invention is based on the finding that magnetic cores with an air gap can also cause partial current displacement within an electrical conductor due to the inhomogeneous distribution of a magnetic field caused by the air gap.
  • the present invention is therefore based on the idea of taking this knowledge into account and creating an arrangement for an inductive component which also has a high current-carrying capacity for high-frequency electrical currents.
  • an arrangement is created from a planar electrical conductor and a ferromagnetic core surrounding the electrical conductor, with the current displacement effects due to a gap in the ferromagnetic core counteracting the current displacement effects due to the skin effect.
  • This makes it possible to distribute the electrical current flow over a large area of the cross section of the electrical conductor, particularly in the case of planar conductor track structures. In this way, the current-carrying capacity of the planar electrical conductor can be increased.
  • any type of conductor track structure that has a cross-sectional area perpendicular to the intended direction of current flow, in which the extent in one direction is significantly greater than the extent in another direction perpendicular thereto, can be understood as a planar conductor track structure.
  • the difference between the two dimensions can be at least one order of magnitude or more.
  • Printed conductor structures on a printed circuit board substrate can be understood as planar conductor structures.
  • an electrically conductive material such as copper or the like, can be applied to the printed circuit board substrate, which material runs in accordance with a desired conductor track structure.
  • any other planar conductor track structures are also to be understood as planar conductor track structures.
  • planar Conductor structures are not applied to a full-surface carrier substrate.
  • the planar conductor track structures can be carried only partially, for example at support points.
  • the planar interconnect structure can consist, for example, of a planar electrically conductive element running in a linear manner.
  • the planar conductor track structure can also be formed by a coil-like conductor track structure with any number of two or more turns.
  • the individual windings can, for example, run next to one another or one above the other. A combination of these is also possible.
  • the upper side and underside of the planar conductor track structure are to be understood here in particular as those sides of the conductor track structure which have the greater, in particular the greatest, extent perpendicular to the desired electric current flow.
  • the upper side of the conductor track structure is arranged opposite the lower side of the conductor track structure.
  • the upper side and the lower side of the conductor track structure can each be connected to one another by means of two side surfaces in the case of a, for example, rectangular cross section of the conductor track structure.
  • the planar wiring structure is surrounded with the ferromagnetic core along a predetermined portion.
  • the ferromagnetic core can at least approximately completely enclose the planar conductor track structure.
  • the ferromagnetic core has one or more gaps in its circulation. According to the invention, this gap or these gaps are arranged in the region of the upper side and/or the lower side of the planar interconnect structure.
  • the expression "in the region" of the upper side or the lower side is to be understood as meaning that a virtual line, which can run perpendicular to the upper side or the lower side, also runs through such a gap.
  • a gap in the area of the upper side or the lower side of the planar interconnect structure clearly differs from gaps that are arranged laterally on a planar interconnect structure.
  • a ferromagnetic core of an inductive component according to the present invention preferably no such lateral gaps in the area of the side faces of the planar interconnect structure.
  • the ferromagnetic core can be formed from any ferromagnetic material. Such ferromagnetic materials are known and are therefore not explained in more detail here.
  • the gap in the ferromagnetic core can be an air gap or a gap that is at least partially filled with a dielectric material.
  • the ferromagnetic core can have gaps both in the area of the upper side and in the area of the underside of the planar interconnect structure.
  • the arrangement of one or more gaps in the area of the upper side of the planar interconnect structure and in the area of the underside of the interconnect structure can be identical or at least approximately identical.
  • fundamentally different designs with one or more gaps in the area of the upper side or the lower side of the planar conductor track structure are also possible.
  • the ferromagnetic core includes multiple gaps.
  • several gaps can be provided both in the area of the upper side and in the area of the underside.
  • the individual gaps can each have the same gap width, for example.
  • the gap width of individual gaps can also be varied depending on other requirements.
  • the planar conductor track structure can comprise a plurality of conductor tracks running in parallel.
  • Each of these individual interconnects running parallel can also have a planar structure, with the cross section of such an interconnect structure in one spatial direction being significantly larger than the cross section in a direction perpendicular thereto spatial direction.
  • the planar conductor track structure comprises a plurality of conductor tracks arranged one above the other.
  • the expression "on top of one another" is to be understood here as meaning that the bottom side of a conductor track and the top side of an adjacent conductor track are opposite one another at a distance.
  • the individual conductor tracks can be spaced apart from one another, for example by means of an electrically insulating substrate. In this way, a coil arrangement with multiple turns can be implemented.
  • the planar interconnect structure may include multiple coplanar interconnects. In such a coplanar arrangement, a plurality of conductor tracks, in particular a plurality of parallel conductor tracks, are arranged in a common plane.
  • the individual conductor tracks can be arranged on a common carrier substrate. It goes without saying that the arrangement of a plurality of interconnects arranged in a coplanar manner and the arrangement of a plurality of interconnects arranged one above the other, as already described above, can also be combined with one another.
  • At least one gap is arranged in the region of the upper side and/or the underside of each conductor track, in particular in the case of a coplanar arrangement of a plurality of conductor tracks. In this way, a current distribution that is as homogeneous as possible within the respective conductor track can be achieved for each conductor track of the conductor track structure.
  • At least one gap in the ferromagnetic core can be at least partially filled with a dielectric filling material.
  • all of the gaps in the ferromagnetic core can also be filled with the same filling material. But different filling materials for the individual columns are also possible.
  • the magnetic flux can be influenced and the current distribution within the planar interconnect structure can thereby be controlled.
  • the magnetic core are mechanically stabilized.
  • the ferromagnetic core comprises rounded edges in the transition to the gap.
  • the magnetic core comprises a material with ferromagnetic powder particles in the area of the upper side and/or the lower side of the planar conductor track structure.
  • the magnetic flux can also be influenced by the partial use of such ferromagnetic powder particles.
  • magnetic cores with such ferromagnetic particles are also known as powder cores or cores with a so-called distributed air gap.
  • the inductive component includes a carrier substrate.
  • the bottom side and/or the top side of the planar interconnect structure can be connected to a dielectric carrier substrate.
  • the dielectric carrier substrate can be a circuit board substrate for printed circuits.
  • a planar conductor track structure can be implemented in a particularly simple manner.
  • multilayer structures with a number of carrier substrates and/or a number of planar conductor track structures are also possible.
  • figure 6 shows a cross section through an arrangement for an inductive component.
  • an electrically conductive Conductor structure 110 applied on a carrier substrate 130 .
  • this can be a printed conductor track on a printed circuit board substrate.
  • the height h of the conductor track structure 110 is significantly less than the width b of the conductor track structure 110.
  • the conductor track structure 110 is surrounded by two half-shells 120, which are intended to form a magnetic core. Because of the continuous carrier substrate 130 , the core formed by the two half-shells 120 is interrupted at positions 121 .
  • the magnetic core therefore has a gap at positions 121, which increases the magnetic field strength in this area.
  • the electrical conductor 110 is traversed by a high-frequency electrical current, the current flow is also shifted to the edge regions of the electrical conductor 110. This significantly reduces the maximum current-carrying capacity.
  • FIG 1 shows a schematic representation of a cross section through an inductive component 1 according to one embodiment.
  • the inductive component 1 comprises a planar conductor track structure 10 and a ferromagnetic core 20.
  • the cross section of the planar conductor track structure 10 has a height h that is significantly less than the width b of the planar conductor track structure.
  • the width b points in the direction of the transverse extent of the planar interconnect structure 10. In particular, the width b can be greater than the height h by more than an order of magnitude, ie by a factor of 10.
  • the planar conductor structure 10 is surrounded by a ferromagnetic core 20 along a predetermined section in the direction of the longitudinal extension of the conductor structure 10 .
  • the ferromagnetic core 20 can be formed from any ferromagnetic material.
  • the planar interconnect structure 10 has in particular an upper side 11 and an underside 12 opposite the upper side 11 .
  • the top 11 and those Underside 12 are formed by those sides which have the larger dimensions, in this case consequently the width b, which is significantly larger than the height h.
  • the conductor track structure 10 can, for example, be formed from any electrically conductive material, eg copper.
  • the planar trace structure 10 may be implemented as a printed circuit trace structure. In addition, however, any other planar interconnect structures are possible.
  • the gap or gaps 21 are arranged in a region A of the upper side 11 and/or the lower side 12 .
  • a virtual imaginary line V which is perpendicular to the upper side 11 or the lower side 12, runs through the corresponding gap 21.
  • such a virtual line is shown as a dashed line V.
  • the inductive component 1 expressly has no gap in the area B of the side surfaces, ie in the area of the surfaces which connect the upper side 11 and the lower side 12 to one another.
  • the gaps 21 in area A of the upper side 11 and the lower side 12 of the planar interconnect structure 10 result in inhomogeneities in the course of the magnetic field, which can influence the flow of current through the planar interconnect structure 10 .
  • the current flow is at least partially pushed away from the edge in the direction of the center of the planar interconnect structure 10 .
  • this counteracts any skin effect that may occur, as a result of which the electric current flow would be pushed to the outside.
  • an electrical current flow can be achieved in the planar conductor track structure 10 , which also occurs in the inner area of the planar conductor track structure 10 .
  • the electric current can flow away from the edge area into the inner area of the planar conductor track structure 10 be moved. In this way, the current-carrying capacity of the planar interconnect structure 10 can be increased.
  • the gap 21 of the ferromagnetic core 20 can be filled with a dielectric filling material 22 .
  • a dielectric filling material 22 By choosing a suitable dielectric filling material 22, the course of the magnetic field lines and thus the current distribution within the planar interconnect structure 10 can also be influenced. If there are several gaps 21 in the ferromagnetic core 20, the individual gaps 21 can either be filled with the same filling material 22, or different dielectric filling materials 22 can optionally also be used for the individual gaps 21.
  • edges of the ferromagnetic core 20 can be rounded off in the area of the transition to the gaps 21 .
  • figure 2 shows a schematic representation of a cross section through an inductive component 1 according to a further embodiment.
  • the embodiment shown differs from the embodiment described above in particular in that instead of a single gap 21 in area A of the upper side 11 or the lower side 12 of the planar interconnect structure 10 there are now several gaps 21 .
  • the number of four columns shown here is just an arbitrary example.
  • any other number of columns 21 on the top and/or bottom of the planar interconnect structure 10 is also possible.
  • gaps 21, as shown here can be attached both in the area of the upper side 11 and in the area of the underside 12. In principle, however, it is also possible to provide the gaps 21 only in the area of the upper side 11 or, alternatively, only in the area of the underside 12 .
  • FIG. 1 shows a schematic illustration of a cross section through an inductive component 1 according to yet another specific embodiment.
  • the embodiment shown here differs from the embodiment described above in particular in that the planar Conductor track structure 10 is arranged on an electrically insulating carrier substrate 30 .
  • one side of the planar interconnect structure 10, here in particular the underside 12 of the planar interconnect structure 10 is connected to one side of the carrier substrate 30.
  • planar conductor tracks can be arranged on two opposite sides of the carrier substrate 30 in each case.
  • a layer structure with a plurality of carrier substrates 30 and possibly a plurality of planar conductor tracks is also possible. If appropriate, a plurality of conductor tracks can also be arranged next to one another as a planar conductor track structure 10 on the carrier substrate 30 .
  • FIG. 1 shows a schematic representation of part of an inductive component 1 according to a further embodiment.
  • the planar interconnect structure 10 can include a plurality of individual interconnects 10-i. These individual conductor tracks 10-i can be arranged one above the other, for example. In this context, one above the other means, for example, that the bottom side of a conductor track 10-1 points to a top side of an adjacent conductor track 10-1.
  • the individual conductor tracks 10-i of the conductor track structure 10 can also have different dimensions. For example, the upper two conductor tracks 10-1 and 10-2 have a smaller width than the conductor tracks 10-3 and 10-4 arranged underneath.
  • the width d1, d2 of the column 21 can vary.
  • the width d1, d2 of the column 21 can be adapted depending on the respective conductor track structure 10.
  • a larger gap width d1 can be selected for a higher number of conductor tracks 10-i or conductor tracks 10-i, for which a higher current density is to be expected, while for a smaller number of Conductor tracks 10-i or a lower current density to be expected, a smaller gap width d2 can be set.
  • the number of columns 21 can also be varied over the width according to the configuration of the conductor track structure 10 . In this way, depending on the properties of the planar interconnect structure 10, the density of the gaps 21 in the ferromagnetic core 20 can be varied.
  • FIG. 5a and 5b show a perspective view of an inductive component 1 according to an embodiment.
  • the planar interconnect structure 10 is shown in partial image 5a.
  • the planar conductor track structure 10 has a plurality of turns.
  • Partial image 5b also shows how the planar interconnect structure 10 can be surrounded by a ferromagnetic core 20.
  • This ferromagnetic core 20 can, for example, have one or more gaps 21 corresponding to the course of the planar conductor track structure 10 . In this way, the course of the current flow within the planar interconnect structure 10 can be influenced in a targeted manner.
  • the gap 21 of the ferromagnetic core 20 is therefore also ring-shaped in accordance with the ring-shaped profile of the conductor track structure 10 in this exemplary embodiment.
  • the inductive component 1 described above is used according to the invention as an inductive filter element for a high-frequency filter device. If necessary, the previously described inductive component 1 can be combined with other components, such as an ohmic resistor and/or a capacitive component.
  • the present invention relates to an inductive component with a planar interconnect structure.
  • the planar trace structure is encapsulated along a predetermined portion with a ferromagnetic core.
  • At least one gap is specifically provided in the ferromagnetic core for the targeted control of the current flow within the planar conductor track structure and in particular the current density in the cross section of the planar conductor track structure.
  • the gaps in the ferromagnetic core are arranged in areas above and/or below the planar interconnect structure.

Description

Die vorliegende Erfindung betrifft ein induktives Bauelement. Ferner betrifft die vorliegende Erfindung eine Hochfrequenz-Filtervorrichtung mit einem solchen induktiven Bauelement.The present invention relates to an inductive component. Furthermore, the present invention relates to a high-frequency filter device with such an inductive component.

Stand der TechnikState of the art

In elektronischen Schaltungen werden Induktivitäten, die für hohe Ströme und hohe Frequenzen ausgelegt sind, oft als diskrete Bauelemente realisiert und anschließend auf einer Leiterplatte festgelötet. Im Zuge einer Optimierung ist es wünschenswert, auch für induktive Bauelemente die Wicklungen in Form von Kupferbahnen direkt auf einer Leiterplatte zu integrieren.In electronic circuits, inductances that are designed for high currents and high frequencies are often implemented as discrete components and then soldered onto a printed circuit board. In the course of optimization, it is desirable to also integrate the windings in the form of copper tracks directly on a printed circuit board for inductive components.

Die Druckschrift WO 2004/030001 A1 offenbart eine Hochfrequenz-Drossel für Leiterplatten mit einer Induktivität und einem parallel geschalteten ohmschen Widerstand. Hierbei kann die Induktivität aus einer mäanderartig geführten Leiterbahn realisiert werden.The pamphlet WO 2004/030001 A1 discloses a high-frequency choke for printed circuit boards with an inductor and an ohmic resistor connected in parallel. In this case, the inductance can be realized from a conductor track that is routed in a meandering manner.

Bei Anwendungen mit hohen Frequenzen fließt aufgrund des sogenannten Skin-Effekts der elektrische Strom mit steigender Frequenz nur in einem Randbereich des elektrischen Leiters. Daher steht gerade bei gedruckten elektrischen Schaltungen für höherfrequente Anwendungen nur der Randbereich der Leiterbahnen für einen elektrischen Stromfluss zur Verfügung.In applications with high frequencies, due to the so-called skin effect, the electric current only flows in an edge area of the electrical conductor with increasing frequency. Therefore, especially in the case of printed electrical circuits for higher-frequency applications, only the edge area of the conductor tracks is available for an electrical current to flow.

Offenbarung der ErfindungDisclosure of Invention

Die vorliegende Erfindung offenbart ein induktives Bauelement mit denThe present invention discloses an inductive component with the

Merkmalen des Patentanspruchs 1, sowie eine Hochfrequenz-Filtervorrichtung mit den Merkmalen des Patentanspruchs 9.Features of patent claim 1, and a high-frequency filter device with the features of patent claim 9.

Demgemäß ist vorgesehen:
Ein induktives Bauelement mit einer planaren Leiterbahnstruktur und einem ferromagnetischen Kern. Die planare Leiterbahnstruktur weist eine Oberseite sowie eine der Oberseite gegenüberliegende Unterseite auf. Der ferromagnetische Kern ist um die planare Leiterbahnenstruktur herum angeordnet. Erfindungsgemäß umfasst der ferromagnetische Kern im Bereich der Oberseite und/oder der Unterseite der planaren Leiterbahnenstruktur mindestens einen Spalt, so dass eine virtuelle Linie, welche senkrecht zu der Oberseite bzw. der Unterseite der planaren Leiterbahnenstruktur verläuft, auch durch einen solchen Spalt verläuft, wobei der magnetische Kern in dem besagten Bereich der Oberseite und/oder der Unterseite der planaren Leiterbahnenstruktur ein Material mit ferromagnetischen Pulverteilchen umfasst.
Accordingly, it is provided:
An inductive component with a planar conductor track structure and a ferromagnetic core. The planar interconnect structure has an upper side and an underside opposite the upper side. The ferromagnetic core is arranged around the planar conductor track structure. According to the invention, the ferromagnetic core has at least one gap in the area of the top and/or bottom of the planar interconnect structure, so that a virtual line running perpendicular to the top or bottom of the planar interconnect structure also runs through such a gap, the magnetic core comprises a material with ferromagnetic powder particles in said area of the upper side and/or the lower side of the planar conductor track structure.

Bevorzugt weist die planare Leiterbahnstruktur eine Längsausdehnung auf, welche in Richtung eines gewünschten Stromflusses durch die planare Leiterbahnstruktur ausgerichtet ist. Bevorzugt weist die planare Leiterbahnstruktur eine Querausdehnung auf, welche senkrecht zu der Richtung des gewünschten Stromflusses durch die planare Leiterbahnstruktur ausgerichtet ist. Eine Diagonale des Querschnitts des ferromagnetischen Kerns ist senkrecht zu der Richtung des gewünschten Stromflusses ausgerichtet. Somit ist der ferromagnetische Kern, welcher bevorzugt röhrenförmig oder ringförmig ausgestaltet ist, zumindest teilweise entlang der Längsausdehnung der planaren Leiterbahnstruktur um die planare Leiterbahnstruktur herum angeordnet. Der Begriff röhrenförmig oder ringförmig schließt in dieser Beschreibung bevorzugt neben rechteckigen oder vieleckigen Querschnitten auch runde oder ovale Querschnitte mit ein.The planar conductor track structure preferably has a longitudinal extent which is aligned in the direction of a desired current flow through the planar conductor track structure. The planar conductor track structure preferably has a transverse extension which is oriented perpendicularly to the direction of the desired current flow through the planar conductor track structure. A diagonal of the cross section of the ferromagnetic core is oriented perpendicular to the direction of desired current flow. Thus, the ferromagnetic core, which is preferably tubular or ring-shaped, is arranged at least partially along the longitudinal extent of the planar interconnect structure around the planar interconnect structure. In this description, the term tubular or ring-shaped preferably also includes round or oval cross-sections in addition to rectangular or polygonal cross-sections.

Weiterhin ist vorgesehen:

  • Eine Hochfrequenz-Filtervorrichtung mit einem erfindungsgemäßen induktiven Bauelement.
  • Vorteile der Erfindung
Furthermore, it is provided:
  • A high-frequency filter device with an inductive component according to the invention.
  • Advantages of the Invention

Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass bei hochfrequenten elektrischen Strömen durch einen elektrischen Leiter aufgrund des Skin-Effekts der Stromfluss vermehrt nur im Außenbereich des elektrischen Leiters stattfindet. Darüber hinaus liegt der vorliegenden Erfindung die Erkenntnis zugrunde, dass durch magnetische Kerne mit einem Luftspalt, aufgrund der durch den Luftspalt bedingten inhomogenen Verteilung eines magnetischen Feldes, ebenfalls eine partielle Stromverdrängung innerhalb eines elektrischen Leiters hervorgerufen werden kann.The present invention is based on the knowledge that in the case of high-frequency electrical currents through an electrical conductor, due to the skin effect, the current flow increasingly only takes place in the outer region of the electrical conductor. In addition, the present invention is based on the finding that magnetic cores with an air gap can also cause partial current displacement within an electrical conductor due to the inhomogeneous distribution of a magnetic field caused by the air gap.

Der vorliegenden Erfindung liegt daher die Idee zugrunde, dieser Erkenntnis Rechnung zu tragen und eine Anordnung für ein induktives Bauelement zu schaffen, welches auch für hochfrequente elektrische Ströme eine hohe Stromtragfähigkeit aufweist. Hierzu wird eine Anordnung aus einem planaren elektrischen Leiter und einem den elektrischen Leiter umgebenden ferromagnetischen Kern geschaffen, wobei die Stromverdrängungseffekte aufgrund eines Spaltes in dem ferromagnetischen Kern den Stromverdrängungseffekten aufgrund des Skin-Effekts entgegenwirken. Hierdurch ist es möglich, gerade bei planaren Leiterbahnstrukturen den elektrischen Stromfluss über einen großen Bereich des Querschnitts des elektrischen Leiters zu verteilen. Auf diese Weise kann die Stromtragfähigkeit des planaren elektrischen Leiters erhöht werden.The present invention is therefore based on the idea of taking this knowledge into account and creating an arrangement for an inductive component which also has a high current-carrying capacity for high-frequency electrical currents. To this end, an arrangement is created from a planar electrical conductor and a ferromagnetic core surrounding the electrical conductor, with the current displacement effects due to a gap in the ferromagnetic core counteracting the current displacement effects due to the skin effect. This makes it possible to distribute the electrical current flow over a large area of the cross section of the electrical conductor, particularly in the case of planar conductor track structures. In this way, the current-carrying capacity of the planar electrical conductor can be increased.

Als planare Leiterbahnstruktur kann dabei zunächst jede Art von Leiterbahnstruktur verstanden werden, die eine Querschnittsfläche senkrecht zur beabsichtigten Stromflussrichtung aufweist, bei der die Ausdehnung in eine Richtung signifikant größer ist als die Ausdehnung in eine senkrecht dazu verlaufende weitere Richtung. Insbesondere kann der Unterschied der beiden Ausdehnungen dabei mindestens eine Größenordnung oder mehr betragen. Als planare Leiterbahnstrukturen können beispielsweise gedruckte Leiterbahnstrukturen auf einem Leiterplattensubstrat verstanden werden. Beispielsweise kann auf dem Leiterplattensubstrat ein elektrisch leitfähiges Material, wie zum Beispiel Kupfer oder ähnliches, aufgebracht werden, das gemäß einer gewünschten Leiterbahnstruktur verläuft. Darüber hinaus sind als planare Leiterbahnstrukturen jedoch auch beliebige andere planare Leiterbahnstrukturen zu verstehen. Insbesondere müssen die planaren Leiterbahnstrukturen dabei nicht auf einem vollflächigen Trägersubstrat aufgebracht werden. Grundsätzlich ist es auch möglich, dass die planaren Leiterbahnstrukturen nur partiell, beispielsweise an Stützstellen getragen werden. In einem einfachen Fall kann die planare Leiterbahnstruktur beispielsweise aus einem linear verlaufenden planaren elektrisch leitfähigen Element bestehen. Darüber hinaus kann die planare Leiterbahnstruktur jedoch auch durch eine spulenartige Leiterbahnstruktur mit einer beliebigen Anzahl von zwei oder mehr Windungen gebildet werden. Die einzelnen Windungen können hierbei, wie nachfolgend noch näher beschrieben wird, beispielsweise nebeneinander oder übereinander verlaufen. Auch eine Kombination hiervon ist möglich.Any type of conductor track structure that has a cross-sectional area perpendicular to the intended direction of current flow, in which the extent in one direction is significantly greater than the extent in another direction perpendicular thereto, can be understood as a planar conductor track structure. In particular, the difference between the two dimensions can be at least one order of magnitude or more. Printed conductor structures on a printed circuit board substrate, for example, can be understood as planar conductor structures. For example, an electrically conductive material, such as copper or the like, can be applied to the printed circuit board substrate, which material runs in accordance with a desired conductor track structure. In addition, however, any other planar conductor track structures are also to be understood as planar conductor track structures. In particular, the planar Conductor structures are not applied to a full-surface carrier substrate. In principle, it is also possible for the planar conductor track structures to be carried only partially, for example at support points. In a simple case, the planar interconnect structure can consist, for example, of a planar electrically conductive element running in a linear manner. In addition, however, the planar conductor track structure can also be formed by a coil-like conductor track structure with any number of two or more turns. As will be described in more detail below, the individual windings can, for example, run next to one another or one above the other. A combination of these is also possible.

Als Oberseite und Unterseite der planaren Leiterbahnstruktur sind hierbei insbesondere diejenigen Seiten der Leiterbahnstruktur zu verstehen, welche senkrecht zu dem gewünschten elektrischen Stromfluss die größere, insbesondere die größte Ausdehnung aufweisen. Die Oberseite der Leiterbahnstruktur ist gegenüber der Unterseite der Leiterbahnstruktur angeordnet. Die Oberseite und die Unterseite der Leiterbahnstruktur können bei einem beispielsweise rechteckförmigen Querschnitt der Leiterbahnstruktur jeweils mittels zwei Seitenflächen miteinander verbunden sein.The upper side and underside of the planar conductor track structure are to be understood here in particular as those sides of the conductor track structure which have the greater, in particular the greatest, extent perpendicular to the desired electric current flow. The upper side of the conductor track structure is arranged opposite the lower side of the conductor track structure. The upper side and the lower side of the conductor track structure can each be connected to one another by means of two side surfaces in the case of a, for example, rectangular cross section of the conductor track structure.

Die planare Leiterbahnstruktur ist entlang eines vorgegebenen Abschnitts mit dem ferromagnetischen Kern umgeben. Der ferromagnetische Kern kann zumindest annähernd vollumfänglich die planare Leiterbahnstruktur umschließen. Dabei weist der ferromagnetische Kern jedoch in seinem Umlauf einen oder mehrere Spalte auf. Dieser Spalt bzw. diese Spalte sind erfindungsgemäß im Bereich der Oberseite und/oder der Unterseite der planaren Leiterbahnstruktur angeordnet. Unter dem Ausdruck "im Bereich" der Oberseite bzw. der Unterseite ist zu verstehen, dass eine virtuelle Linie, welche senkrecht zu der Oberseite bzw. der Unterseite verlaufen kann, auch durch einen solchen Spalt verläuft. Somit unterscheidet sich ein solcher Spalt im Bereich der Oberseite bzw. der Unterseite der planaren Leiterbahnstruktur eindeutig von Spalten, die seitlich an einer planaren Leiterbahnstruktur angeordnet sind. Ein ferromagnetischer Kern eines induktiven Bauelements gemäß der vorliegenden Erfindung umfasst vorzugsweise keine solchen seitlichen Spalte im Bereich der Seitenflächen der planaren Leiterbahnstruktur.The planar wiring structure is surrounded with the ferromagnetic core along a predetermined portion. The ferromagnetic core can at least approximately completely enclose the planar conductor track structure. In this case, however, the ferromagnetic core has one or more gaps in its circulation. According to the invention, this gap or these gaps are arranged in the region of the upper side and/or the lower side of the planar interconnect structure. The expression "in the region" of the upper side or the lower side is to be understood as meaning that a virtual line, which can run perpendicular to the upper side or the lower side, also runs through such a gap. Thus, such a gap in the area of the upper side or the lower side of the planar interconnect structure clearly differs from gaps that are arranged laterally on a planar interconnect structure. A ferromagnetic core of an inductive component according to the present invention preferably no such lateral gaps in the area of the side faces of the planar interconnect structure.

Der ferromagnetische Kern kann aus einem beliebigen ferromagnetischen Material gebildet werden. Derartige ferromagnetische Materialien sind bekannt und werden daher hier nicht näher erläutert.The ferromagnetic core can be formed from any ferromagnetic material. Such ferromagnetic materials are known and are therefore not explained in more detail here.

Wie im Nachfolgenden noch näher ausgeführt wird, kann es sich bei dem Spalt in dem ferromagnetischen Kern um einen Luftspalt oder einen zumindest teilweise mit einem dielektrischen Material ausgefüllten Spalt handeln.As will be explained in more detail below, the gap in the ferromagnetic core can be an air gap or a gap that is at least partially filled with a dielectric material.

Der ferromagnetische Kern kann hierbei sowohl im Bereich der Oberseite als auch im Bereich der Unterseite der planaren Leiterbahnstruktur Spalte aufweisen. Insbesondere kann die Anordnung von einem oder mehreren Spalte im Bereich der Oberseite der planaren Leiterbahnstruktur und im Bereich der Unterseite der Leiterbahnstruktur gleich oder zumindest annähernd gleich ausgeführt sein. Darüber hinaus sind jedoch auch grundsätzlich unterschiedliche Ausführungen mit einem oder mit mehreren Spalte im Bereich der Oberseite bzw. der Unterseite der planaren Leiterbahnstruktur möglich.In this case, the ferromagnetic core can have gaps both in the area of the upper side and in the area of the underside of the planar interconnect structure. In particular, the arrangement of one or more gaps in the area of the upper side of the planar interconnect structure and in the area of the underside of the interconnect structure can be identical or at least approximately identical. In addition, however, fundamentally different designs with one or more gaps in the area of the upper side or the lower side of the planar conductor track structure are also possible.

Gemäß einer Ausführungsform umfasst der ferromagnetische Kern mehrere Spalte. Insbesondere können sowohl im Bereich der Oberseite als auch im Bereich der Unterseite jeweils mehrere Spalte vorgesehen sein. Die einzelnen Spalte können beispielsweise jeweils eine gleiche Spaltbreite aufweisen. Darüber hinaus kann die Spaltbreite einzelner Spalte auch in Abhängigkeit von weiteren Anforderungen variiert werden. Durch das Anordnen mehrerer Spalte kann insbesondere ein magnetischer Fluss eingestellt werden, der die homogene Verteilung des Stromflusses innerhalb der planaren Leiterbahnstruktur weiter verbessert.According to one embodiment, the ferromagnetic core includes multiple gaps. In particular, several gaps can be provided both in the area of the upper side and in the area of the underside. The individual gaps can each have the same gap width, for example. In addition, the gap width of individual gaps can also be varied depending on other requirements. By arranging a plurality of gaps, a magnetic flux can be set in particular, which further improves the homogeneous distribution of the current flow within the planar interconnect structure.

Gemäß einer Ausführungsform kann die planare Leiterbahnenstruktur mehrere parallel verlaufende Leiterbahnen umfassen. Jede dieser einzelnen parallel verlaufenden Leiterbahnen kann ebenfalls eine planare Struktur aufweisen, wobei der Querschnitt einer solchen Leiterbahnstruktur in eine Raumrichtung signifikant größer ist als der Querschnitt in eine senkrecht dazu verlaufende Raumrichtung. Durch die Verwendung mehrerer Leiterbahnen kann dabei insbesondere eine gesteigerte Induktivität des induktiven Bauteils erzielt werden.According to one embodiment, the planar conductor track structure can comprise a plurality of conductor tracks running in parallel. Each of these individual interconnects running parallel can also have a planar structure, with the cross section of such an interconnect structure in one spatial direction being significantly larger than the cross section in a direction perpendicular thereto spatial direction. By using a plurality of conductor tracks, in particular an increased inductance of the inductive component can be achieved.

Gemäß einer Ausführungsform umfasst die planare Leiterbahnenstruktur mehrere übereinander angeordnete Leiterbahnen. Dabei ist unter dem Ausdruck "übereinander" zu verstehen, dass sich jeweils die Unterseite einer Leiterbahn und die Oberseite einer benachbarten Leiterbahn beabstandet gegenüberliegen. Die einzelnen Leiterbahnen können beispielsweise mittels eines elektrisch isolierenden Substrates voneinander beabstandet werden. Auf diese Weise kann eine Spulenanordnung mit mehreren Windungen realisiert werden. Gemäß einer Ausführungsform kann die planare Leiterbahnenstruktur mehrere komplanare Leiterbahnen umfassen. Bei einer solchen komplanaren Anordnung sind mehrere, insbesondere mehrere parallel verlaufenden Leiterbahnen in einer gemeinsamen Ebene angeordnet. Beispielsweise können die einzelnen Leiterbahnen auf einem gemeinsamen Trägersubstrat angeordnet sein. Es versteht sich, dass die Anordnung mehrerer komplanar angeordneter Leiterbahnen und die Anordnung mehrerer übereinander angeordneter Leiterbahnen wie zuvor bereits beschrieben, auch miteinander kombiniert werden können.According to one embodiment, the planar conductor track structure comprises a plurality of conductor tracks arranged one above the other. The expression "on top of one another" is to be understood here as meaning that the bottom side of a conductor track and the top side of an adjacent conductor track are opposite one another at a distance. The individual conductor tracks can be spaced apart from one another, for example by means of an electrically insulating substrate. In this way, a coil arrangement with multiple turns can be implemented. According to one embodiment, the planar interconnect structure may include multiple coplanar interconnects. In such a coplanar arrangement, a plurality of conductor tracks, in particular a plurality of parallel conductor tracks, are arranged in a common plane. For example, the individual conductor tracks can be arranged on a common carrier substrate. It goes without saying that the arrangement of a plurality of interconnects arranged in a coplanar manner and the arrangement of a plurality of interconnects arranged one above the other, as already described above, can also be combined with one another.

Gemäß einer Ausführungsform ist insbesondere bei einer komplanaren Anordnung mehrerer Leiterbahnen im Bereich der Oberseite und/oder der Unterseite jeder Leiterbahn mindestens ein Spalt angeordnet. Auf diese Weise kann für jede Leiterbahn der Leiterbahnstruktur eine möglichst homogene Stromverteilung innerhalb der jeweiligen Leiterbahn erreicht werden.According to one embodiment, at least one gap is arranged in the region of the upper side and/or the underside of each conductor track, in particular in the case of a coplanar arrangement of a plurality of conductor tracks. In this way, a current distribution that is as homogeneous as possible within the respective conductor track can be achieved for each conductor track of the conductor track structure.

Gemäß einer Ausführungsform kann mindestens ein Spalt des ferromagnetischen Kerns zumindest teilweise mit einem dielektrischen Füllmaterial ausgefüllt sein. Insbesondere können auch sämtliche Spalte des ferromagnetischen Kerns mit dem gleichen Füllmaterial ausgefüllt sein. Aber auch unterschiedliche Füllmaterialien für die einzelnen Spalte sind möglich. Durch die Verwendung eines geeigneten Füllmaterials kann der magnetische Fluss beeinflusst werden und hierdurch die Stromverteilung innerhalb der planaren Leiterbahnstruktur gesteuert werden. Darüber hinaus kann durch die Verwendung eines Füllmaterials auch die Anordnung, insbesondere der magnetische Kern mechanisch stabilisiert werden.According to one embodiment, at least one gap in the ferromagnetic core can be at least partially filled with a dielectric filling material. In particular, all of the gaps in the ferromagnetic core can also be filled with the same filling material. But different filling materials for the individual columns are also possible. By using a suitable filling material, the magnetic flux can be influenced and the current distribution within the planar interconnect structure can thereby be controlled. In addition, through the Using a filling material and the arrangement, in particular the magnetic core are mechanically stabilized.

Gemäß einer Ausführungsform umfasst der ferromagnetische Kern im Übergang zu dem Spalt abgerundete Kanten. Durch das Abrunden der Kanten in dem ferromagnetischen Kern, insbesondere durch die Verwendung abgerundeter Kanten im Bereich der Spalte kann ebenfalls eine Beeinflussung des magnetischen Feldes und somit eine Beeinflussung der Stromverteilung innerhalb der planaren Leiterbahnstruktur erreicht werden.According to one embodiment, the ferromagnetic core comprises rounded edges in the transition to the gap. By rounding off the edges in the ferromagnetic core, in particular by using rounded edges in the area of the gaps, it is also possible to influence the magnetic field and thus influence the current distribution within the planar interconnect structure.

Erfindungsgemäß umfasst der magnetische Kern im Bereich der Oberseite und/oder der Unterseite der planaren Leiterbahnenstruktur ein Material mit ferromagnetischen Pulverteilchen. Durch die partielle Verwendung derartiger ferromagnetischer Pulverteilchen kann ebenfalls der magnetische Fluss beeinflusst werden. Insbesondere sind magnetische Kerne mit solchen ferromagnetischen Teilchen auch als Pulverkerne oder Kerne mit einem sogenannten verteilten Luftspalt bekannt.According to the invention, the magnetic core comprises a material with ferromagnetic powder particles in the area of the upper side and/or the lower side of the planar conductor track structure. The magnetic flux can also be influenced by the partial use of such ferromagnetic powder particles. In particular, magnetic cores with such ferromagnetic particles are also known as powder cores or cores with a so-called distributed air gap.

Gemäß einer Ausführungsform umfasst das induktive Bauelement ein Trägersubstrat. Insbesondere kann die planare Leiterbahnstruktur mit der Unterseite und/oder der Oberseite mit einem dielektrischen Trägersubstrat verbunden werden. Beispielsweise kann es sich bei dem dielektrischen Trägersubstrat um ein Leiterplattensubstrat für gedruckte Schaltungen handeln. Hierdurch kann beispielsweise besonders einfach eine planare Leiterbahnstruktur realisiert werden. Insbesondere sind auch mehrschichtige Aufbauten mit mehreren Trägersubstraten und/oder mehreren planaren Leiterbahnstrukturen möglich.According to one embodiment, the inductive component includes a carrier substrate. In particular, the bottom side and/or the top side of the planar interconnect structure can be connected to a dielectric carrier substrate. For example, the dielectric carrier substrate can be a circuit board substrate for printed circuits. In this way, for example, a planar conductor track structure can be implemented in a particularly simple manner. In particular, multilayer structures with a number of carrier substrates and/or a number of planar conductor track structures are also possible.

Die obigen Ausgestaltungen und Weiterbildungen lassen sich, soweit sinnvoll, beliebig miteinander kombinieren. Weitere Ausgestaltungen, Weiterbildungen und Implementierungen der Erfindung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich den Ausführungsbeispielen beschriebenen Merkmalen der Erfindung. Insbesondere wird der Fachmann dabei auch Einzelaspekte als Verbesserungen oder Ergänzungen zu den jeweiligen Grundformen der Erfindung hinzufügen, insofern diese unter den Schutzbereich der Ansprüche fallen.The above configurations and developments can be combined with one another as desired, insofar as this makes sense. Further refinements, developments and implementations of the invention also include combinations of features of the invention described above or below with regard to the exemplary embodiments that are not explicitly mentioned. In particular, the person skilled in the art will also add individual aspects as improvements or additions to the respective basic forms of the invention, insofar as these fall within the scope of the claims.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die vorliegende Erfindung wird nachfolgend anhand der in den schematischen Figuren der Zeichnungen angeführten Ausführungsformen näher erläutert. Dabei zeigen:

Figur 1:
eine schematische Darstellung eines Querschnitts durch ein induktives Bauelement gemäß einer Ausführungsform;
Figur 2:
eine schematische Darstellung eines Querschnitts durch ein induktives Bauelement gemäß einer weiteren Ausführungsform;
Figur 3:
eine schematische Darstellung eines Querschnitts durch ein induktives Bauelement gemäß noch einer Ausführungsform;
Figur 4:
eine schematische Darstellung eines Querschnitts durch einen Teilbereich eines induktiven Bauelements gemäß einer Ausführungsform;
Figur 5a,5b:
eine perspektivische Darstellung eines induktiven Bauelements gemäß einer weiteren Ausführungsform; und
Figur 6:
eine schematische Darstellung eines Querschnitts durch ein konventionelles Bauelement.
The present invention is explained in more detail below with reference to the embodiments shown in the schematic figures of the drawings. show:
Figure 1:
a schematic representation of a cross section through an inductive component according to an embodiment;
Figure 2:
a schematic representation of a cross section through an inductive component according to a further embodiment;
Figure 3:
a schematic representation of a cross section through an inductive component according to another embodiment;
Figure 4:
a schematic representation of a cross section through a portion of an inductive component according to one embodiment;
Figure 5a, 5b:
a perspective view of an inductive component according to a further embodiment; and
Figure 6:
a schematic representation of a cross section through a conventional component.

Beschreibung der AusführungsformenDescription of the embodiments

In der nachfolgenden Beschreibung werden gleiche oder gleichartige Elemente durch gleiche Bezugszeichen bezeichnet. Darüber hinaus können die nachfolgend beschriebenen Ausführungsformen, soweit sinnvoll, beliebig miteinander kombiniert werden.In the following description, the same or similar elements are denoted by the same reference symbols. In addition, the embodiments described below can be combined with one another as desired, insofar as this makes sense.

Figur 6 zeigt einen Querschnitt durch eine Anordnung für ein induktives Bauelement. Auf einem Trägersubstrat 130 ist eine elektrisch leitfähige Leiterbahnstruktur 110 aufgebracht. Beispielsweise kann es sich dabei um eine gedruckte Leiterbahn auf einem Leiterplattensubstrat handeln. Die Höhe h der Leiterbahnstruktur 110 ist dabei signifikant geringer als die Breite b der Leiterbahnstruktur 110. Die Leiterbahnstruktur 110 ist von zwei Halbschalen 120 umgeben, welche einen magnetischen Kern bilden sollen. Aufgrund des durchgängigen Trägersubstrats 130 ist der durch die beiden Halbschalen 120 gebildete Kern an den Positionen 121 unterbrochen. Daher weist der magnetische Kern an den Positionen 121 jeweils einen Spalt auf, der die magnetische Feldstärke in diesem Bereich erhöht. figure 6 shows a cross section through an arrangement for an inductive component. On a carrier substrate 130 is an electrically conductive Conductor structure 110 applied. For example, this can be a printed conductor track on a printed circuit board substrate. The height h of the conductor track structure 110 is significantly less than the width b of the conductor track structure 110. The conductor track structure 110 is surrounded by two half-shells 120, which are intended to form a magnetic core. Because of the continuous carrier substrate 130 , the core formed by the two half-shells 120 is interrupted at positions 121 . The magnetic core therefore has a gap at positions 121, which increases the magnetic field strength in this area.

Bei einer gemäß Figur 6 dargestellten Anordnung führt der Verlauf der magnetischen Feldlinien aufgrund der Position der Spalte 121 im magnetischen Kern zu einer Stromverdrängung in der Leiterbahn 110 hin zu den Rändern der Leiterbahnstruktur 110.At a according figure 6 In the arrangement shown, the course of the magnetic field lines leads to a current displacement in the conductor track 110 towards the edges of the conductor track structure 110 due to the position of the gaps 121 in the magnetic core.

Wird darüber hinaus der elektrische Leiter 110 von einem hochfrequenten elektrischen Strom durchflossen, so verschiebt sich der Stromfluss ebenfalls in die Randbereiche des elektrischen Leiters 110. Hierdurch wird die maximale Stromtragfähigkeit signifikant herabgesetzt.If, in addition, the electrical conductor 110 is traversed by a high-frequency electrical current, the current flow is also shifted to the edge regions of the electrical conductor 110. This significantly reduces the maximum current-carrying capacity.

Figur 1 zeigt eine schematische Darstellung eines Querschnitts durch ein induktives Bauelement 1 gemäß einer Ausführungsform. Das induktive Bauelement 1 umfasst eine planare Leiterbahnstruktur 10 und einen ferromagnetischen Kern 20. Der Querschnitt der planaren Leiterbahnstruktur 10 weist dabei eine Höhe h auf, die signifikant geringer ist als die Breite b der planaren Leiterbahnstruktur. Die Breite b zeigt in die Richtung der Querausdehnung der planaren Leiterbahnstruktur 10. Insbesondere kann die Breite b um mehr als eine Größenordnung, das heißt den Faktor 10 größer als die Höhe h sein. Entlang eines vorbestimmten Abschnittes in Richtung der Längsausdehnung der Leiterbahnstruktur 10 ist die planare Leiterbahnstruktur 10 von einem ferromagnetischen Kern 20 umgeben. Der ferromagnetische Kern 20 kann aus einem beliebigen ferromagnetischen Material gebildet werden. figure 1 shows a schematic representation of a cross section through an inductive component 1 according to one embodiment. The inductive component 1 comprises a planar conductor track structure 10 and a ferromagnetic core 20. The cross section of the planar conductor track structure 10 has a height h that is significantly less than the width b of the planar conductor track structure. The width b points in the direction of the transverse extent of the planar interconnect structure 10. In particular, the width b can be greater than the height h by more than an order of magnitude, ie by a factor of 10. The planar conductor structure 10 is surrounded by a ferromagnetic core 20 along a predetermined section in the direction of the longitudinal extension of the conductor structure 10 . The ferromagnetic core 20 can be formed from any ferromagnetic material.

Die planare Leiterbahnstruktur 10 weist insbesondere eine Oberseite 11 und eine der Oberseite 11 gegenüberliegende Unterseite 12 auf. Die Oberseite 11 und die Unterseite 12 werden durch diejenigen Seiten gebildet, welche die größeren Abmessungen aufweisen, in diesem Falle folglich die Breite b, welche signifikant größer ist als die Höhe h. Die Leiterbahnstruktur 10 kann beispielsweise aus einem beliebigen elektrisch leitfähigen Material, z.B. Kupfer, gebildet werden. Zum Beispiel kann die planare Leiterbahnstruktur 10 als eine Leiterbahnstruktur einer gedruckten Schaltung realisiert werden. Darüber hinaus sind jedoch beliebige andere planare Leiterbahnstrukturen möglich.The planar interconnect structure 10 has in particular an upper side 11 and an underside 12 opposite the upper side 11 . The top 11 and those Underside 12 are formed by those sides which have the larger dimensions, in this case consequently the width b, which is significantly larger than the height h. The conductor track structure 10 can, for example, be formed from any electrically conductive material, eg copper. For example, the planar trace structure 10 may be implemented as a printed circuit trace structure. In addition, however, any other planar interconnect structures are possible.

Der ferromagnetische Kern 20, welcher die planare Leiterbahnstruktur 10 in einem vorgegebenen Abschnitt umschließt, weist mindestens einen Spalt 21 auf. Der oder die Spalte 21 sind dabei in einem Bereich A der Oberseite 11 und/oder der Unterseite 12 angeordnet. Hierunter ist zu verstehen, dass eine virtuelle gedachte Linie V, welche senkrecht zu der Oberseite 11 oder der Unterseite 12 steht, durch den entsprechenden Spalt 21 hindurch verläuft. Beispielsweise ist in Figur 1 eine solche virtuelle Linie als gestrichelte Linie V dargestellt.The ferromagnetic core 20, which encloses the planar interconnect structure 10 in a predetermined section, has at least one gap 21. The gap or gaps 21 are arranged in a region A of the upper side 11 and/or the lower side 12 . This means that a virtual imaginary line V, which is perpendicular to the upper side 11 or the lower side 12, runs through the corresponding gap 21. For example, in figure 1 such a virtual line is shown as a dashed line V.

Im Gegensatz zu Figur 6 weist das induktive Bauelement 1 dabei ausdrücklich keinen Spalt im Bereich B der Seitenflächen auf, also im Bereich der Flächen, welche die Oberseite 11 und die Unterseite 12 miteinander verbinden.As opposed to figure 6 the inductive component 1 expressly has no gap in the area B of the side surfaces, ie in the area of the surfaces which connect the upper side 11 and the lower side 12 to one another.

Durch die Spalte 21 im Bereich A der Oberseite 11 bzw. der Unterseite 12 der planaren Leiterbahnstruktur 10 entstehen Inhomogenitäten im Verlauf des magnetischen Feldes, welche den Stromfluss durch die planare Leiterbahnstruktur 10 beeinflussen können. Insbesondere wird durch diese Inhomogenitäten im magnetischen Feld der Stromfluss zumindest teilweise vom Rand weg Richtung Mitte der planaren Leiterbahnstruktur 10 gedrängt. Dies wirkt insbesondere bei hochfrequenten Signalen einem eventuell auftretenden Skin-Effekt entgegen, wodurch der elektrische Stromfluss zur Außenseite hin gedrängt würde. Somit kann durch gezieltes Positionieren und Einstellen der Spalte 21 in dem ferromagnetischen Kern 20 ein elektrischer Stromfluss in der planaren Leiterbahnstruktur 10 erreicht werden, der auch im Innenbereich der planaren Leiterbahnstruktur 10 erfolgt. Insbesondere kann der elektrische Stromfluss vom Randbereich weg in den Innenbereich der planaren Leiterbahnstruktur 10 verschoben werden. Auf diese Weise kann die Stromtragfähigkeit der planaren Leiterbahnstruktur 10 erhöht werden.The gaps 21 in area A of the upper side 11 and the lower side 12 of the planar interconnect structure 10 result in inhomogeneities in the course of the magnetic field, which can influence the flow of current through the planar interconnect structure 10 . In particular, due to these inhomogeneities in the magnetic field, the current flow is at least partially pushed away from the edge in the direction of the center of the planar interconnect structure 10 . In the case of high-frequency signals in particular, this counteracts any skin effect that may occur, as a result of which the electric current flow would be pushed to the outside. Thus, by specifically positioning and adjusting the gaps 21 in the ferromagnetic core 20 , an electrical current flow can be achieved in the planar conductor track structure 10 , which also occurs in the inner area of the planar conductor track structure 10 . In particular, the electric current can flow away from the edge area into the inner area of the planar conductor track structure 10 be moved. In this way, the current-carrying capacity of the planar interconnect structure 10 can be increased.

Gegebenenfalls kann der Spalt 21 des ferromagnetischen Kerns 20 mit einem dielektrischen Füllmaterial 22 ausgefüllt werden. Durch die Wahl eines geeigneten dielektrischen Füllmaterials 22 kann ebenfalls Einfluss auf den Verlauf der magnetischen Feldlinien und somit auf die Stromverteilung innerhalb der planaren Leiterbahnstruktur 10 genommen werden. Sind mehrere Spalte 21 in dem ferromagnetischen Kern 20 vorhanden, so können die einzelnen Spalte 21 entweder mit dem gleichen Füllmaterial 22 ausgefüllt werden, oder es können gegebenenfalls auch unterschiedliche dielektrische Füllmaterialien 22 für die einzelnen Spalte 21 verwendet werden.If necessary, the gap 21 of the ferromagnetic core 20 can be filled with a dielectric filling material 22 . By choosing a suitable dielectric filling material 22, the course of the magnetic field lines and thus the current distribution within the planar interconnect structure 10 can also be influenced. If there are several gaps 21 in the ferromagnetic core 20, the individual gaps 21 can either be filled with the same filling material 22, or different dielectric filling materials 22 can optionally also be used for the individual gaps 21.

Weiterhin können die Kanten des ferromagnetischen Kerns 20 im Bereich des Übergangs zu den Spalten 21 abgerundet sein.Furthermore, the edges of the ferromagnetic core 20 can be rounded off in the area of the transition to the gaps 21 .

Figur 2 zeigt eine schematische Darstellung eines Querschnitts durch ein induktives Bauelement 1 gemäß einer weiteren Ausführungsform. Die in Figur 2 dargestellte Ausführungsform unterscheidet sich von der zuvor beschriebenen Ausführungsform insbesondere dadurch, dass anstelle eines einzigen Spaltes 21 im Bereich A der Oberseite 11 bzw. der Unterseite 12 der planaren Leiterbahnstruktur 10 nun mehrere Spalte 21 vorgesehen sind. Die hier dargestellte Anzahl von vier Spalten ist jedoch nur ein beliebiges Beispiel. Darüber hinaus ist auch eine beliebige andere Anzahl von Spalten 21 an der Oberseite und/oder der Unterseite der planaren Leiterbahnstruktur 10 möglich. Darüber hinaus sei auch angemerkt, dass Spalte 21, wie hier dargestellt, sowohl im Bereich der Oberseite 11 als auch im Bereich der Unterseite 12 angebracht werden können. Grundsätzlich ist es jedoch auch möglich, die Spalte 21 nur im Bereich der Oberseite 11 oder alternativ auch nur im Bereich der Unterseite 12 vorzusehen. figure 2 shows a schematic representation of a cross section through an inductive component 1 according to a further embodiment. In the figure 2 The embodiment shown differs from the embodiment described above in particular in that instead of a single gap 21 in area A of the upper side 11 or the lower side 12 of the planar interconnect structure 10 there are now several gaps 21 . However, the number of four columns shown here is just an arbitrary example. In addition, any other number of columns 21 on the top and/or bottom of the planar interconnect structure 10 is also possible. In addition, it should also be noted that gaps 21, as shown here, can be attached both in the area of the upper side 11 and in the area of the underside 12. In principle, however, it is also possible to provide the gaps 21 only in the area of the upper side 11 or, alternatively, only in the area of the underside 12 .

Figur 3 zeigt eine schematische Darstellung eines Querschnitts durch ein induktives Bauelement 1 gemäß noch einer weiteren Ausführungsform. Das hier dargestellte Ausführungsbeispiel unterscheidet sich von dem zuvor beschriebenen Ausführungsbeispiel insbesondere dadurch, dass die planare Leiterbahnstruktur 10 auf einem elektrisch isolierenden Trägersubstrat 30 angeordnet ist. Insbesondere ist eine Seite der planaren Leiterbahnstruktur 10, hier insbesondere die Unterseite 12 der planaren Leiterbahnstruktur 10 mit einer Seite des Trägersubstrats 30 verbunden. figure 3 FIG. 1 shows a schematic illustration of a cross section through an inductive component 1 according to yet another specific embodiment. The embodiment shown here differs from the embodiment described above in particular in that the planar Conductor track structure 10 is arranged on an electrically insulating carrier substrate 30 . In particular, one side of the planar interconnect structure 10, here in particular the underside 12 of the planar interconnect structure 10, is connected to one side of the carrier substrate 30.

Neben der hier dargestellten Ausführungsform einer planaren Leiterbahnstruktur 10 sind darüber hinaus auch Anordnungen mit mehreren Leiterbahnen möglich. Beispielsweise können an zwei gegenüberliegenden Seiten des Trägersubstrats 30 jeweils planare Leiterbahnen angeordnet sein. Darüber hinaus ist beispielsweise auch ein Schichtaufbau mit mehreren Trägersubstraten 30 und gegebenenfalls mehreren planaren Leiterbahnen möglich. Auch können gegebenenfalls mehrere Leiterbahnen als planare Leiterbahnstruktur 10 nebeneinander auf dem Trägersubstrat 30 angeordnet sein.In addition to the embodiment of a planar interconnect structure 10 illustrated here, arrangements with a plurality of interconnects are also possible. For example, planar conductor tracks can be arranged on two opposite sides of the carrier substrate 30 in each case. In addition, for example, a layer structure with a plurality of carrier substrates 30 and possibly a plurality of planar conductor tracks is also possible. If appropriate, a plurality of conductor tracks can also be arranged next to one another as a planar conductor track structure 10 on the carrier substrate 30 .

Figur 4 zeigt eine schematische Darstellung eines Teils eines induktiven Bauelements 1 gemäß einer weiteren Ausführungsform. Wie in dem hier dargestellten Ausführungsbeispiel zu erkennen ist, kann die planare Leiterbahnstruktur 10 mehrere einzelne Leiterbahnen 10-i umfassen. Diese einzelnen Leiterbahnen 10-i können beispielsweise übereinander angeordnet sein. Übereinander bedeutet in diesem Zusammenhang beispielsweise dass jeweils die Unterseite einer Leiterbahn 10-1 zu einer Oberseite einer benachbarten Leiterbahn 10-1 weist. Darüber hinaus können die einzelnen Leiterbahnen 10-i der Leiterbahnstruktur 10 auch unterschiedliche Abmessungen aufweisen. Beispielsweise weisen die oberen beiden Leiterbahnen 10-1 und 10-2 eine geringere Breite auf, als die darunter angeordneten Leiterbahnen 10-3 und 10-4. Ferner ist es auch möglich, mehrere Leiterbahnen 10-i in einer gemeinsamen Ebene nebeneinander anzuordnen. Auf diese Weise kann beispielsweise eine komplanare Leiterbahnanordnung 10 realisiert werden. figure 4 FIG. 1 shows a schematic representation of part of an inductive component 1 according to a further embodiment. As can be seen in the exemplary embodiment shown here, the planar interconnect structure 10 can include a plurality of individual interconnects 10-i. These individual conductor tracks 10-i can be arranged one above the other, for example. In this context, one above the other means, for example, that the bottom side of a conductor track 10-1 points to a top side of an adjacent conductor track 10-1. In addition, the individual conductor tracks 10-i of the conductor track structure 10 can also have different dimensions. For example, the upper two conductor tracks 10-1 and 10-2 have a smaller width than the conductor tracks 10-3 and 10-4 arranged underneath. Furthermore, it is also possible to arrange a plurality of conductor tracks 10-i next to one another in a common plane. In this way, for example, a coplanar interconnect arrangement 10 can be implemented.

Wie darüber hinaus in dem Beispiel gemäß Figur 4 zu erkennen ist, kann die Breite d1, d2 der Spalte 21 variieren. Beispielsweise kann die Breite d1, d2 der Spalte 21 in Abhängigkeit der jeweiligen Leiterbahnstruktur 10 angepasst sein. So kann beispielsweise für eine höhere Anzahl von Leiterbahnen 10-i oder Leiterbahnen 10-i, für welche eine höhere Stromdichte zu erwarten ist, eine größere Spaltbreite d1 gewählt werden, während für eine geringere Anzahl von Leiterbahnen 10-i bzw. eine geringere zu erwartende Stromdichte eine geringere Spaltbreite d2 eingestellt werden kann. Darüber hinaus kann beispielsweise auch die Anzahl der Spalte 21 entsprechend der Konfiguration der Leiterbahnstruktur 10 über die Breite variiert werden. Auf diese Weise kann in Abhängigkeit der Eigenschaften der planaren Leiterbahnstruktur 10 die Dichte der Spalte 21 in dem ferromagnetischen Kern 20 variiert werden.As moreover in the example according to figure 4 can be seen, the width d1, d2 of the column 21 can vary. For example, the width d1, d2 of the column 21 can be adapted depending on the respective conductor track structure 10. For example, a larger gap width d1 can be selected for a higher number of conductor tracks 10-i or conductor tracks 10-i, for which a higher current density is to be expected, while for a smaller number of Conductor tracks 10-i or a lower current density to be expected, a smaller gap width d2 can be set. In addition, for example, the number of columns 21 can also be varied over the width according to the configuration of the conductor track structure 10 . In this way, depending on the properties of the planar interconnect structure 10, the density of the gaps 21 in the ferromagnetic core 20 can be varied.

Figur 5a und 5b zeigen eine perspektivische Darstellung eines induktiven Bauelements 1 gemäß einer Ausführungsform. In dem Teilbild 5a ist dabei die planare Leiterbahnstruktur 10 dargestellt. Die planare Leiterbahnstruktur 10 weist hierbei mehrere Windungen auf. In dem Teilbild 5b ist darüber hinaus dargestellt, wie die planare Leiterbahnstruktur 10 von einem ferromagnetischen Kern 20 umschlossen werden kann. Dieser ferromagnetische Kern 20 kann beispielsweise entsprechend dem Verlauf der planaren Leiterbahnstruktur 10 einen oder mehrere Spalte 21 aufweisen. Auf diese Weise kann der Verlauf des Stromflusses innerhalb der planaren Leiterbahnstruktur 10 gezielt beeinflusst werden. Entsprechend des ringförmigen Verlaufs der Leiterbahnenstruktur 10 in diesem Ausführungsbeispiel ist daher auch der Spalt 21 des ferromagnetischen Kerns 20 ebenfalls ringförmig ausgeführt. Figure 5a and 5b show a perspective view of an inductive component 1 according to an embodiment. The planar interconnect structure 10 is shown in partial image 5a. In this case, the planar conductor track structure 10 has a plurality of turns. Partial image 5b also shows how the planar interconnect structure 10 can be surrounded by a ferromagnetic core 20. FIG. This ferromagnetic core 20 can, for example, have one or more gaps 21 corresponding to the course of the planar conductor track structure 10 . In this way, the course of the current flow within the planar interconnect structure 10 can be influenced in a targeted manner. The gap 21 of the ferromagnetic core 20 is therefore also ring-shaped in accordance with the ring-shaped profile of the conductor track structure 10 in this exemplary embodiment.

Das zuvor beschriebene induktive Bauelement 1 wird erfindungsgemäß als induktives Filterelement für eine Hochfrequenz-Filtervorrichtung verwendet. Gegebenenfalls kann das zuvor beschriebene induktive Bauelement 1 hierzu mit weiteren Bauelementen, wie beispielsweise einem ohmschen Widerstand und/oder einem kapazitiven Bauelement kombiniert werden.The inductive component 1 described above is used according to the invention as an inductive filter element for a high-frequency filter device. If necessary, the previously described inductive component 1 can be combined with other components, such as an ohmic resistor and/or a capacitive component.

Zusammenfassend betrifft die vorliegende Erfindung ein induktives Bauelement mit einer planaren Leiterbahnstruktur. Die planare Leiterbahnstruktur ist entlang eines vorgegebenen Abschnittes mit einem ferromagnetischen Kern umschlossen. Zur gezielten Steuerung des Stromflusses innerhalb der planaren Leiterbahnstruktur und insbesondere der Stromdichte im Querschnitt der planaren Leiterbahnstruktur ist dabei gezielt mindestens ein Spalt im ferromagnetischen Kern vorgesehen. Die Spalte im ferromagnetischen Kern werden dabei, wie im Anspruch 1 definiert, in Bereichen oberhalb und/oder unterhalb der planaren Leiterbahnstruktur angeordnet.In summary, the present invention relates to an inductive component with a planar interconnect structure. The planar trace structure is encapsulated along a predetermined portion with a ferromagnetic core. At least one gap is specifically provided in the ferromagnetic core for the targeted control of the current flow within the planar conductor track structure and in particular the current density in the cross section of the planar conductor track structure. As defined in claim 1, the gaps in the ferromagnetic core are arranged in areas above and/or below the planar interconnect structure.

Claims (9)

  1. Inductive component (1), having:
    a planar printed conductor structure (10) which comprises an upper side (11) and an underside (12), wherein the upper side (11) is arranged opposite the underside (12), and
    a ferromagnetic core (20), which encloses the planar printed conductor structure (10) along a predefined section,
    wherein the ferromagnetic core (20) incorporates at least one gap (21) in a region (A) of the upper side (11) and/or underside (12) of the planar printed conductor structure (10), so that a virtual line, which is oriented perpendicularly to the upper side (11) or underside (12), also runs through such a gap (21),
    wherein the ferromagnetic core (20) in this region (A) of the upper side (11) and/or underside (12) of the planar printed conductor structure (10) comprises a material with ferromagnetic powder particles.
  2. Inductive component (1) according to Claim 1, wherein the ferromagnetic core (20) comprises a plurality of gaps (21), which are arranged in the region (A) of the upper side (11) and/or underside (12) of the planar printed conductor structure (10).
  3. Inductive component (1) according to Claim 1 or 2, wherein the planar printed conductor structure (10) comprises a plurality of parallel-oriented printed conductors (10-i).
  4. Inductive component (1) according to one of Claims 1 to 3, wherein the planar printed conductor structure (10) comprises a plurality of printed conductors (10-i) arranged one on top of another.
  5. Inductive component (1) according to one of Claims 1 to 4, wherein the planar printed conductor structure (10) comprises a plurality of coplanar printed conductors (10-i), wherein a plurality of printed conductors (10-i) are arranged in a common plane, and wherein at least one gap (21) is arranged in the region (A) of the upper side (11) and/or underside (12) of each printed conductor (10-i).
  6. Inductive component (1) according to one of Claims 1 to 5, wherein the at least one gap (21) in the ferromagnetic core (20) is at least partially filled with a dielectric filler material (22).
  7. Inductive component (1) according to one of Claims 1 to 6, wherein the ferromagnetic core (20) comprises rounded edges at the transition to the gap (21).
  8. Inductive component (1) according to one of Claims 1 to 7, having an electrically insulating carrier substrate (30),
    wherein the underside (11) or upper side (12) of the planar printed conductor structure (10) is arranged on the at least one carrier substrate (30).
  9. High-frequency filter device having an inductive component (1) according to one of Claims 1 to 8.
EP19708835.4A 2018-03-22 2019-03-01 Inductive component and high-frequency filter device Active EP3769323B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018204366.3A DE102018204366A1 (en) 2018-03-22 2018-03-22 Inductive component and high-frequency filter device
PCT/EP2019/055145 WO2019179749A1 (en) 2018-03-22 2019-03-01 Inductive component and high-frequency filter device

Publications (2)

Publication Number Publication Date
EP3769323A1 EP3769323A1 (en) 2021-01-27
EP3769323B1 true EP3769323B1 (en) 2023-08-30

Family

ID=65657467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19708835.4A Active EP3769323B1 (en) 2018-03-22 2019-03-01 Inductive component and high-frequency filter device

Country Status (5)

Country Link
US (1) US11817243B2 (en)
EP (1) EP3769323B1 (en)
CN (1) CN111886661B (en)
DE (1) DE102018204366A1 (en)
WO (1) WO2019179749A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2750769B1 (en) * 1996-07-05 1998-11-13 Thomson Csf THIN FILM MAGNETIC FIELD SENSOR
DE19854234C1 (en) 1998-11-24 2000-06-21 Bosch Gmbh Robert Inductive component with a planar line structure and method for producing the same
AU2003271534A1 (en) 2002-09-19 2004-04-19 Ilfa Industrieelektronik Und Leiterplattenfertigu Ng Aller Art Gmbh Hf-reactor
DE102006022785A1 (en) * 2006-05-16 2007-11-22 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Inductive component and method for producing an inductive component
US7612553B2 (en) * 2007-07-26 2009-11-03 Honeywell International Inc. Current sensor having sandwiched magnetic permeability layer
US8149080B2 (en) * 2007-09-25 2012-04-03 Infineon Technologies Ag Integrated circuit including inductive device and ferromagnetic material
US9947450B1 (en) * 2012-07-19 2018-04-17 The Boeing Company Magnetic core signal modulation
US20140159499A1 (en) * 2012-12-06 2014-06-12 Analogic Corporation Shielded power coupling device
JP2016207966A (en) * 2015-04-28 2016-12-08 北川工業株式会社 Magnetic substance core
US20190156989A1 (en) * 2016-05-16 2019-05-23 Bolymedia Holding Co . Ltd. Electromagnetic induction device and manufacturing method therefor
US20190219458A1 (en) * 2016-08-30 2019-07-18 Torque And More Gmbh Force Measurement Device

Also Published As

Publication number Publication date
DE102018204366A1 (en) 2019-09-26
US20200411222A1 (en) 2020-12-31
CN111886661B (en) 2022-10-21
WO2019179749A1 (en) 2019-09-26
CN111886661A (en) 2020-11-03
US11817243B2 (en) 2023-11-14
EP3769323A1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
DE102013206900B4 (en) Semiconductor component with a coreless transformer and method for operating such a semiconductor component
DE10139707A1 (en) circuit board
EP1249025B1 (en) Coil and coil system to be integrated in a microelectronic circuit, and a microelectronic circuit
DE10340391A1 (en) Low energy loss inductor
EP3815221A1 (en) Actively cooled coil
DE10392479T5 (en) Spiral induction coil and transformer
EP3769323B1 (en) Inductive component and high-frequency filter device
DE4306416A1 (en) Coil structure for a printed circuit board arrangement
EP1929522B1 (en) Integrated circuit comprising at least one integrated transmission line
DE10221442B4 (en) Inductive element of an integrated circuit
DE602004003717T2 (en) SUBSTRATE WITH HIGH IMPEDANCE
EP2284848B1 (en) Transmitter
WO2002013271A2 (en) Integrated electronic circuit with at least one inductor and method for producing the same
DE102012204206A1 (en) Throttle element for integrated structure of electronic circuit in motor vehicle control device, has wires provided around core, where part of wires is designed as bonding wires and/or printed circuit board that is printed on core
WO2003096419A2 (en) Integrated strip conductor arrangement
EP3729645B1 (en) Lc-filter arrangement and electrical or electronical device comprising such an lc-filter arrangement
EP1231638B1 (en) Power supply wiring of an integrated circuit
DE102008051531A1 (en) Electromagnetic disturbance's propagation suppressing device for use in electrical system, has electrically conductive ring structure and electrically conductive surface electrically connected with each other
DE202015105768U1 (en) Inductive component for high current applications
EP1348132B1 (en) Electrical resistance for the measurement of preferably high frequency alternating currents
DE19741302A1 (en) Planar inductor geometry for integrated circuit or printed circuit
DE102020208904A1 (en) PLANAR MAGNETIC DEVICES WITH IMPROVED THERMAL PERFORMANCE
DE202023104031U1 (en) Coupled inductance with controllable leakage inductance
EP1595432B1 (en) Device and method for damping cavity resonance in a multi-layer carrier module
EP3001436B1 (en) Winding foil and winding for an inductive electrical device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230519

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009138

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830