EP3769024B1 - Echangeur de chaleur avec dispositif melangeur liquide/gaz ameliore - Google Patents

Echangeur de chaleur avec dispositif melangeur liquide/gaz ameliore Download PDF

Info

Publication number
EP3769024B1
EP3769024B1 EP19718903.8A EP19718903A EP3769024B1 EP 3769024 B1 EP3769024 B1 EP 3769024B1 EP 19718903 A EP19718903 A EP 19718903A EP 3769024 B1 EP3769024 B1 EP 3769024B1
Authority
EP
European Patent Office
Prior art keywords
channel
phase
longitudinal direction
orifices
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19718903.8A
Other languages
German (de)
English (en)
Other versions
EP3769024A1 (fr
Inventor
Marine ANDRICH
Natacha Haik-Beraud
Philippe Grigoletto
Jean-Marc Peyron
Ahlem DELEGUE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3769024A1 publication Critical patent/EP3769024A1/fr
Application granted granted Critical
Publication of EP3769024B1 publication Critical patent/EP3769024B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow

Definitions

  • the present invention relates to a heat exchanger comprising series of passages for each of the fluids to be placed in a heat exchange relationship, the exchanger comprising at least one mixing device for distributing at least one two-phase liquid/gas mixture into one of the series of passes.
  • the present invention can be applied to a heat exchanger which vaporizes at least one flow of liquid-gas mixture, in particular a flow of mixture with several constituents, for example a mixture of hydrocarbons, by heat exchange with at least one other fluid, for example natural gas.
  • the technology commonly used for an exchanger is that of aluminum exchangers with brazed plates and fins, which make it possible to obtain very compact devices offering a large exchange surface.
  • These exchangers comprise plates between which heat exchange waves are inserted, formed of a succession of fins or wave legs, thus constituting a stack of vaporization passages and condensation passages, some intended to vaporize liquid refrigerant and the others to condense a calorigenic gas. Heat exchanges between fluids can take place with or without phase change.
  • the sizing of the exchanger is calculated assuming a uniform distribution of the phases, and therefore a single temperature at the end of vaporization of the liquid phase, equal to the dew point temperature of the mixture.
  • the end of vaporization temperature will depend on the proportion of liquid phase and gas phase in the passages.
  • the temperature profile of the first fluid will therefore vary according to the passages, or even vary within the same passage. Because of this non-uniform distribution, it can then happen that the fluid or fluids in exchange relationship with the two-phase mixture have a temperature at the outlet of the exchanger higher than that expected, which consequently degrades the performance of the the heat exchanger.
  • the document FR-A-2563620 describes such an exchanger in which a grooved bar is inserted in the series of passages intended to channel the two-phase mixture.
  • This mixing device comprises separate channels for a liquid phase and a gas phase and an outlet for distributing the liquid-gas mixture to the heat exchange zone.
  • a heat exchanger according to the preamble of claim 1 is known to US 2016/290733 A1 .
  • the mixing device In order to proceed with the mixing of the two phases, the mixing device generally comprises a first channel for the flow of a phase. This channel is provided with a series of orifices arranged along the channel, each orifice being in fluid communication with the second channel for the flow of the other phase.
  • the inlet of the first channel is supplied with fluid, the flow velocity of the fluid will tend to decrease as the fluid flows along the channel. This is because the fluid flow decreases when the ports are energized.
  • the orifices are generally machined perpendicular to the direction of flow of the fluid and are therefore less well supplied when the speed of the fluid is greater.
  • the orifices arranged on the channel inlet side therefore tend to be underfed, while the orifices located at the bottom of the channel are overfed. This results in an uneven introduction of the phase considered in the channel for the other phase, and hence an uneven distribution of the liquid-gas mixture in the width of the passage of the exchanger.
  • Another known solution consists in arranging orifices of cylindrical shape having different diameters along the channel.
  • this solution may prove to be insufficient for certain processes.
  • the object of the present invention is to solve all or part of the problems mentioned above, in particular by proposing a heat exchanger in which the distribution of the liquid and gaseous phases of a mixture is as uniform as possible, and this without complicating excessively the structure of the exchanger, nor increase its size.
  • the present invention can be applied to a heat exchanger which vaporizes at least one flow of liquid-gas mixture, in particular a flow of mixture with several constituents, for example a mixture of hydrocarbons, by heat exchange with at least one another fluid, for example natural gas.
  • natural gas relates to any composition containing hydrocarbons including at least methane.
  • the Figure 1 illustrates a heat exchanger 1 comprising a stack of plates 2 (not visible) which extend along two dimensions, parallel to a plane defined by a longitudinal direction z and a lateral direction y.
  • the plates 2 are arranged parallel one above the other with spacing and thus form a plurality of passages for fluids in indirect heat exchange relation via said plates.
  • each passage has a parallelepiped and flat shape.
  • the gap between two successive plates is small compared to the length, measured along the lateral direction y, and the width, measured along the longitudinal direction z, of each passage.
  • the exchanger 1 can comprise a number of plates greater than 20, or even greater than 100, defining between them a first series of passages 10 to channel at least a first fluid F1, and a second series of passages 20 (not visible on the Figure 1 ) to channel at least a second fluid F2, the flow of said fluids taking place generally in the direction y.
  • the passages 10 of the first series can be arranged, in whole or in part, alternately or adjacent to all or part of the passages 20 of the second series.
  • the exchanger 1 comprises distribution and evacuation means 40, 52, 45, 54, 55 configured to distribute the various fluids selectively in the passages 10, 20, as well as to evacuate said fluids from said passages 10, 20.
  • the sealing of the passages 10, 20 along the edges of the plates 2 is generally ensured by lateral and longitudinal sealing strips 4 fixed to the plates 2.
  • the lateral sealing strips 4 do not completely block the passages 10, 20 but advantageously leave fluid inlet and outlet openings located at diagonally opposite corners of the passages.
  • the openings of the passages 10 of the first series are arranged in coincidence one above the other, while the openings of the passages 20 of the second series are arranged in the opposite corners.
  • the openings placed one above the other are united respectively in semi-tubular manifolds 40, 45, 50, 55, through which the distribution and the evacuation of the fluids take place.
  • the semi-tubular collectors 50, 45 are used to introduce fluids into the exchanger 1 and the semi-tubular collectors 40, 55 are used to evacuate these fluids from the exchanger 1.
  • the supply manifold for one of the fluids and the discharge manifold for the other fluid are located at the same end of the exchanger, the fluids F1, F2 thus circulating in counter-current in exchanger 1.
  • the first and second fluids can also circulate in co-current, the means for supplying one of the fluids and the means for discharging the other fluid then being located at opposite ends of the exchanger 1.
  • the direction y is oriented vertically when the exchanger 1 is in operation.
  • the first fluid F1 generally flows vertically and in the upward direction.
  • Other directions and directions of flow of the fluids F1, F2 can of course be envisaged, without departing from the scope of the present invention.
  • first fluids F1 and one or more second fluids F2 of different natures can flow within the passages 10, 20 of the first and second series of the same exchanger.
  • the first fluid F1 is a refrigerant and the second fluid F2 is a circulating fluid.
  • the distribution and evacuation means of the exchanger advantageously comprise distribution waves 51, 54, arranged between two successive plates 2 in the form of corrugated sheets, which extend from the inlet and outlet openings.
  • the distribution waves 51, 54 ensure the uniform distribution and recovery of fluids over the entire width of the passages 10, 20.
  • the passages 10, 20 advantageously comprise heat exchange structures arranged between the plates 2.
  • the function of these structures is to increase the heat exchange surface of the exchanger and to increase the exchange coefficients between fluids by making the flows more turbulent.
  • the heat exchange structures are in contact with the fluids circulating in the passages and transfer heat flows by conduction to the adjacent plates 2, to which they can be fixed by brazing, which increases the mechanical resistance of the exchanger.
  • the heat exchange structures also have a function of spacers between the plates 2, in particular during the assembly by brazing of the exchanger and to avoid any deformation of the plates during the implementation of pressurized fluids. They also ensure the guiding of fluid flows in the passages of the exchanger.
  • these structures comprise heat exchange waves 11 which advantageously extend along the width and length of the passages 10, 20, parallel to the plates 2, in the extension of the distribution waves along the length of the passages 10, 20
  • the passages 10, 20 of the exchanger thus have a main part of their length constituting the actual heat exchange part, which is lined with a heat exchange structure, said main part being bordered by distribution parts filled with distribution waves 51, 54.
  • the Figure 1 illustrates a passage 10 of the first series 1 configured to distribute a first fluid F1 in the form of a two-phase mixture, also called two-phase mixture.
  • the first fluid F1 is separated in a separator device 6 into a first phase 61 and a second phase 62 introduced separately into the exchanger 1 via a first manifold 30 and a second manifold 50 which are distinct.
  • the first and second phases 61, 62 are then mixed with each other by means of a mixing device 3 arranged in the passage 10.
  • several passages 10, or even all of the passages 10 of the first series comprise a mixing device 3.
  • the first phase 61 is liquid and the second phase 62 is gaseous.
  • the Figure 2 is a schematic sectional view, in a plane perpendicular to that of the Figure 1 , of a mixer device 3 advantageously consisting of a bar, or rod, housed in a passage 10.
  • the mixing device 3 preferably extends in the section of the passage 10 over almost all, or even all, of the height of the passage 10, so that the mixing device is in contact with each plate 2 forming the passage 10.
  • the mixing device 3 is advantageously fixed to the plates 2 by brazing.
  • the mixer device 3 is advantageously of generally parallelepipedal shape.
  • the mixing device 3 is a monolithic part, i. e. formed in a block or in one piece.
  • the mixing device 3 may have, parallel to the lateral direction y, a first dimension comprised between 20 and 200 mm and, parallel to the longitudinal direction z, a second dimension comprised between 100 and 1400mm.
  • the first channel 31 extends over the entire second dimension and/or the second channel extends over the entire first dimension.
  • the mixing device 3 comprises at least a first channel 31 for the flow of the first phase 61 parallel to the longitudinal direction z and at least a second channel 32 for the flow of the second phase 62.
  • Said first channel 31 extends parallel to the longitudinal direction z.
  • the first channel 31 and/or the second channel have rectilinear shapes.
  • the second channel 32 extends parallel to the lateral direction y which is orthogonal to the longitudinal direction z and parallel to the plates 2.
  • Several orifices 34 i , 34 i+1 ,... are distributed over the mixing device 3 so as to fluidically connect at least a first channel 31 with at least one at least a second channel 32 adapted for the flow of the second phase 62.
  • the mixing device 3 is configured so that when the first phase 61 flows in the first channel 31 and the second phase 62 flows in the second channel 32, a two-phase liquid/gas mixture F1 is distributed at the outlet of the mixing device 3.
  • the mixer device 3 comprises at least a first inlet 311 in fluid communication with the first manifold 30 and a second inlet 321, separate from the first inlet 311, in fluid communication with the second manifold 50.
  • the first manifold 30 is connected fluidically to a first-phase source 61 and the second manifold 50 is fluidically connected to another second-phase source 62.
  • Said at least one first inlet 311 and said at least one second inlet 321 are placed in fluid communication via the orifices 34i, 34i+1,...
  • the mixing device 3 comprises a mixing volume located in the second channel 32, downstream from the orifice 34i following the flow direction of the first phase 61 in the orifice 34i.
  • the liquid/gas two-phase mixture is distributed through a second outlet 322 of the second channel 32.
  • the first and second channels 31, 32 are advantageously in the form of longitudinal recesses formed in the mixer device 3.
  • the orifices 34 are advantageously bores 34 made in the material of the device 3 and extending between the first channel 31 and the second channel 32, preferably in the vertical direction x.
  • the orifices 34 are of cylindrical symmetry.
  • said at least one first channel 31 comprises a bottom wall 3c and said at least one second channel comprises a top wall 3d which extends opposite the bottom wall 3c, the orifices 34 being drilled in the wall bottom of the first channel 31 and opening into the top wall of the second channel 32.
  • the Figure 3 is a three-dimensional view of the mixing device 3 of the Figure 2 , the Figure 2 schematizing the device 3 in a section plane orthogonal to the longitudinal direction z and passing through the orifice 34 i .
  • the orifices 34 i , 34 i+1 ,... occupy successive positions z i , z i+1 ,... in the longitudinal direction z.
  • Each orifice 34 i is separated from the next orifice 34 i+1 by a distance denoted d i , which is measured parallel to the longitudinal direction z.
  • the orifices occupy successive positions z i , z i +1 ,...located at equal distance from each other.
  • the first phase 61 flows in the first channel 31 at different speeds along the longitudinal direction z and the flow rate of first phase 61 flowing in each orifice varies according to the flow speed of the first phase 61 at position z i of the orifice considered.
  • a mixer device 3 in which the distances between two successive positions z i , z i +1 ,... are variable. In other words, the distances between the successive positions z i , z i+1 ,... are not all identical. At least one pair of successive orifices has a distance between two successive positions different from that of another pair of successive orifices.
  • flow rate per unit length we typically mean a flow rate distributed by an orifice, divided by the distance between this orifice and the next. For example, greater distances can be left between orifices which tend to be supercharged with first phase fluid flow 61, which will have the effect of locally reducing the flow per unit of width distributed by the orifices.
  • the distances between the successive positions z i , z i+1 ,... vary monotonically or almost monotonically along the longitudinal direction z.
  • the direction of variation of the successive positions z i , z i+1 ,... is constant or globally constant along the longitudinal direction z.
  • the mixer device 3 has, in the longitudinal direction z, an increase in the distances between two successive positions z i , z i +1 ,....
  • a first inlet 311 the first phase flowing in the longitudinal direction z, as illustrated in the example of Figure 3 .
  • the orifices located on the side of the inlet 311 tend to be underfed compared to the orifices located further downstream, following the direction of flow of the first phase 61.
  • the mixer device 3 has, along the longitudinal direction z, a reduction in the distances between two successive positions z i , z i +1 ,...
  • a first additional inlet 312 arranged so that first phase 61 flows parallel but in a direction opposite to the longitudinal direction z.
  • the Figure 4 illustrates another embodiment of the invention which is particularly advantageous when the mixer device 3 has two inputs for supplying the first phase 61. More precisely, the mixer device 3 is supplied in the first phase 61 by a first input 311 and a first additional input 312.
  • the mixer device 3 is divided, along the longitudinal direction z, into at least a first portion 301 and a second portion 302, the first portion 301 having, along the longitudinal direction z, an increase in the distances between two successive positions z i , z i+1 ,... and the second portion 302 presenting, according to the longitudinal direction z, a reduction in the distances between two successive positions z i , z i+1 ,...
  • This embodiment allows even better homogenization of the first phase flow 61 distributed downstream of the orifices 34 along the longitudinal direction z.
  • the first inlet and the first additional inlet 311, 312 are arranged at two opposite ends of the mixing device 3.
  • a first flow of first phase 61 is distributed by the first inlet 311 and flows in the flow direction z and a second first phase flow 61 is delivered through the first additional inlet 312 and flows parallel but in a direction opposite to the longitudinal direction z.
  • the first portion 301 is located on the side of the first inlet 311 and the second portion 302 is located on the side of the first additional inlet 312.
  • the first and second portions 301, 302 are arranged symmetrically with respect to the center of the mixer device 3. Said portions could however be arranged in different numbers and have different amplitudes of variations in the distances between successive orifices on both sides. other from the center of the mixing device 3.
  • a mixing device 3 can be configured by adjusting the position of the orifices 34 according to the steps described below. Note that all or part of these steps can be implemented by digital simulation, in particular by digital simulation of fluids (acronym CFD for Computational Fluid Dynamics in English) or by correlation of pressure drops along the first channel 31 and the orifices 34 or by actual measurements,...
  • An initial state of the mixer device 3 is defined in which the orifices 34 i , 34 i+1 ,... are arranged at successive positions z i , z i+1 ,... separated by predetermined distances d i , d i+1 ,....
  • the predetermined distances d i , d i+1 ,... are identical
  • the first channel 31 is supplied so that the first phase 61 flows in the longitudinal direction z.
  • the average distance between orifices corresponds to the identical distance separating all the orifices 34 i , 34 i+1 ,...
  • the correction factor F i is a function of the ratio Q i /Q m between the mass flow Q i flowing through the orifice 34 i and the mass flow Q m averaged over all the orifices.
  • this function is a polynomial function of the ratio Q i /Q m , more preferably an affine function of the ratio Q i /Q m expressed:
  • F I HAS ⁇ Q I Q m + B
  • Q i the mass flow rate flowing through the orifice 34 i
  • Q m the mass flow rate averaged over all the orifices
  • the adjustment method described can be applied regardless of the power supply configuration in the first phase 61 of the first channel 31 since it is in the determination of the flow rates Q i , Q i+1 ,...that The power configuration of the first channel 31 intervenes.
  • the step of repositioning the orifices 34 i , 34 i+1 ,... can be repeated at least once, preferably between 1 and 5 times, preferably even 2 times at most.
  • the adjustment process then comprises a step of defining the distances d i , d i+1 ,... previously modified as predetermined distances.
  • the new mass flow rates Q i , Q i+1 ,... of the first phase 61 flowing through each orifice 34 i , 34 i+1 ,... repositioned are determined.
  • the average distance d m between the orifices and the average flow rate Q m flowing through the orifices are calculated and new modified distances d i , d i+1 , etc. are determined according to the expressions given previously.
  • the adjustment method can be carried out globally on all the first channels 31 by considering the distances d i , d i+1 ,... between two successive orifices, whether these orifices are arranged in the same first channel 31 or in different first channels 31.
  • the method can be carried out by considering each first channel 31 individually.
  • the method may comprise, prior to step a), at least one step of selecting a subset of orifices 34 i , 34 i+1 ,... arranged in the same first channel 31, steps a) to e) being executed for said subset.
  • At least one other subset of orifices 34 i , 34 i+1 ,... arranged in another first channel 31 can then be selected and steps a) to e) executed for this other subset.
  • the phenomenon of flow inhomogeneity of the first phase 61 along the longitudinal direction z is greatly reduced with a device according to the invention.
  • the inhomogeneities of the flow rates distributed by the orifices are reduced so as to observe relative variations in flow rate between the various orifices of less than 10%.
  • the evolution of the distances between two successive positions zi, zi+1, etc. can be assessed in view of an evolution of the real values, measured or simulated, or of a so-called evolution "adjusted” or “smoothed” constructed from a mathematical adjustment of the real evolution of the distances between two successive positions zi, zi+1,....
  • the terms “increase” or “decrease” cover monotonic variations, as illustrated in the Figure 5 , or quasi-monotonic, that is to say variations which locally present, considering the real, measured or simulated values, a direction of variation different from the overall direction of variation.
  • the Picture 7 schematizes the result of a simulation leading globally to an increase in the distances between two successive positions zi, zi+1,..., but presenting for certain points a reduction in the distance between one orifice and the next.
  • a mathematical adjustment of this evolution represented by the dotted curve (----), results in a monotonous increase of said distances.
  • an orifice 34 i can be located in the same first channel 31 as the successive orifice 34 i+1 , in particular in the case of a mixer device 3 with a single first channel 31, or in a another first channel 31.
  • a successive orifice 34 i+1 of a first channel 31 is preferably located in a first channel 31 other than the orifice 34 i .
  • the orifices 34 i , 34 i+1 ... are arranged at positions z i , z i +1 ,..., without necessarily being arranged at the same position in the lateral direction y.
  • the device 3 can comprise several first channels 31 succeeding one another within the device 3 and/or several second channels 32, the first and/or the second channels 31, 32 preferably being parallel to each other.
  • the first channels 31 and the second channels 32 extend parallel to the plates 2.
  • the first channels 31 follow one another in the lateral direction y and the second channels 32 follow one another in the longitudinal direction z.
  • the channels 31 and 32 can be of different or identical shapes and numbers.
  • the distances between the first successive channels 31 and the distances between the second successive channels 32 can also vary.
  • the distances between the channels 32, measured along the longitudinal direction z, are adjusted according to the position of the orifices 34.
  • the Figures 3 to 4 represent examples of a mixer device 3 in the form of a bar, orifices 34 of cylindrical shape being drilled in the bottom of several first channels 31.
  • the mixer device 3 generally forms a parallelepiped delimited in particular by a first surface 3a intended to be arranged facing a plate 2 of the exchanger and a second surface 3b arranged facing another plate 2
  • the first and second surfaces 3a, 3b preferably extend generally parallel to the plates 2.
  • the mixing device 3 is preferably arranged in the passage 10 so that the first and second surfaces 3a, 3b are in contact with the plates 2.
  • Channels 31, 32 are advantageously in the form of recesses made within mixing device 3. They may or may not open out at surfaces 3a and/or 3b.
  • the orifices 34 are advantageously bores 34 made in the material of the device 3 and extending between the first channel 31 and the second channel 32, preferably in the vertical direction x.
  • the orifices 34 are of cylindrical symmetry.
  • the orifices 34 i , 34 i+1 ,... do not necessarily have the same shape or the same dimensions.
  • the number of different shapes, the sizing and the distribution of the orifices, in the same first channel 31 or between several first channels 31, may vary depending on the distribution of liquid-gas mixture desired, so as to adapt the flow rate even more finely. of fluid in the orifices 34.
  • the shape, the dimensions of the first and/or second channels 31, 32 can also vary along the y and/or z directions and from one channel 31, 32 to another
  • the exchanger according to the invention is mainly described in the case where the passages 10, 20 extend along the lateral direction y, the first longitudinal channel 31 extending along the flow direction z and the lateral channel 32 extending along the lateral direction y orthogonal to the z direction.
  • the reverse is also possible, for example a first longitudinal channel 31 extending along the lateral direction y and a lateral channel 32 extending along the flow direction z.
  • the y and z directions may also not be orthogonal to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • La présente invention concerne un échangeur de chaleur comprenant des séries de passages pour chacun des fluides à mettre en relation d'échange thermique, l'échangeur comprenant au moins un dispositif mélangeur pour distribuer au moins un mélange à deux phases liquide/gaz dans une des séries de passages.
  • En particulier, la présente invention peut s'appliquer à un échangeur de chaleur qui vaporise au moins un débit de mélange liquide-gaz, en particulier un débit de mélange à plusieurs constituants, par exemple un mélange d'hydrocarbures, par échange de chaleur avec au moins un autre fluide, par exemple du gaz naturel.
  • La technologie couramment utilisée pour un échangeur est celle des échangeurs en aluminium à plaques et à ailettes brasés, qui permettent d'obtenir des dispositifs très compacts offrant une grande surface d'échange.
  • Ces échangeurs comprennent des plaques entre lesquelles sont insérées des ondes d'échange thermique, formées d'une succession d'ailettes ou jambes d'onde, constituant ainsi un empilage de passages de vaporisation et de passages de condensation, les uns destinés à vaporiser du liquide frigorigène et les autres à condenser un gaz calorigène. Les échanges de chaleur entre les fluides peuvent avoir lieu avec ou sans changement de phase.
  • Afin d'assurer le bon fonctionnement d'un échangeur mettant en œuvre un mélange liquide-gaz, la proportion de phase liquide et de phase gazeuse doit être la même dans tous les passages et doit être uniforme au sein d'un même passage.
  • Le dimensionnement de l'échangeur est calculé en supposant une répartition uniforme des phases, et donc une seule température de fin de vaporisation de la phase liquide, égale à la température de rosée du mélange.
  • Pour un mélange à plusieurs constituants, la température de fin de vaporisation va dépendre de la proportion de phase liquide et de phase gazeuse dans les passages.
  • Dans le cas d'une répartition inégale des deux phases, le profil de température du premier fluide va donc varier selon les passages, voire varier au sein d'un même passage. Du fait de cette répartition non uniforme, il peut alors arriver que le ou les fluides en relation d'échange avec le mélange à deux phases aient une température en sortie de l'échangeur supérieure à celle prévue, ce qui dégrade en conséquence les performances de l'échangeur de chaleur.
  • Une solution pour répartir le plus uniformément possible les phases liquide et gazeuse du mélange consiste à les introduire séparément dans l'échangeur, puis à les mélanger entre elles seulement à l'intérieur de l'échangeur.
  • Le document FR-A-2563620 décrit un tel échangeur dans lequel une barre rainurée est insérée dans la série de passages destinée à canaliser le mélange à deux phases. Ce dispositif mélangeur comporte des canaux séparés pour une phase liquide et une phase gazeuse et une sortie pour distribuer le mélange liquide-gaz vers la zone d'échange thermique. Un échangeur de chaleur selon le préambule de la revendication 1 est connu du US 2016/290733 A1 .
  • Un problème qui se pose avec ce type de dispositifs mélangeurs concerne la répartition du mélange liquide-gaz dans la largeur du passage incorporant le dispositif mélangeur. Afin de procéder au mélange des deux phases, le dispositif mélangeur comprend généralement un premier canal pour l'écoulement d'une phase. Ce canal est muni d'une série d'orifices disposés le long du canal, chaque orifice étant en communication fluidique avec le deuxième canal pour l'écoulement de l'autre phase. Lorsque l'entrée du premier canal est alimentée en fluide, la vitesse d'écoulement du fluide va avoir tendance à diminuer au fur et à mesure que le fluide s'écoule le long du canal. Ceci est dû au fait que le débit de fluide diminue lorsque les orifices sont alimentés.
  • Or, les orifices sont généralement usinés perpendiculairement à la direction d'écoulement du fluide et sont donc moins bien alimentés lorsque la vitesse du fluide est plus grande. Les orifices agencés du côté de l'entrée du canal ont donc tendance à être sous-alimentés, alors que les orifices situés au fond du canal sont suralimentés. Il s'ensuit une introduction inégale de la phase considérée dans le canal pour l'autre phase, et de là une répartition inégale du mélange liquide-gaz dans la largeur du passage de l'échangeur.
  • Afin de minimiser ce phénomène, une solution serait d'alimenter le canal considéré par deux entrées opposées du canal. Toutefois, il s'ensuit une complexification de l'échangeur et le problème de la distribution inhomogène demeure au moins dans la partie centrale du canal.
  • Augmenter le nombre de canaux n'est pas non plus une solution idéale du point de vue de la tenue mécanique et du brasage du dispositif.
  • Une autre solution connue consiste à disposer des orifices de forme cylindrique ayant différents diamètres le long du canal. Cependant, cette solution peut s'avérer insuffisante pour certains procédés.
  • La présente invention a pour but de résoudre en tout ou partie les problèmes mentionnés ci-avant, notamment en proposant un échangeur de chaleur dans lequel la répartition des phases liquide et gazeuse d'un mélange est la plus uniforme possible, et ce sans complexifier de façon excessive la structure de l'échangeur, ni en augmenter l'encombrement.
  • La solution selon l'invention est alors un échangeur de chaleur comprenant plusieurs plaques agencées parallèlement entre elles et à une direction longitudinale de façon à définir plusieurs passages pour canaliser au moins un fluide à mettre en relation d'échange thermique avec au moins un autre fluide, un dispositif mélangeur étant agencé dans au moins un passage et comprenant :
    • au moins un premier canal pour l'écoulement d'une première phase du fluide parallèlement à la direction longitudinale,
    • au moins un deuxième canal pour l'écoulement d'une deuxième phase du fluide, et
    • plusieurs orifices reliant fluidiquement le premier canal au deuxième canal, lesdits orifices occupant des positions successives suivant la direction longitudinale,
    caractérisé en ce que les distances entre les positions successives, mesurés parallèlement à la direction longitudinale, sont variables.
  • Selon le cas, l'échangeur de l'invention peut comprendre l'une ou plusieurs des caractéristiques techniques suivantes :
    • les distances entre les positions successives varient de façon monotone ou quasi-monotone suivant la direction longitudinale.
    • le dispositif mélangeur présente, suivant la direction longitudinale, une augmentation des distances entre deux positions successives.
    • le dispositif mélangeur présente, suivant la direction longitudinale, une diminution des distances entre deux positions successives.
    • le dispositif mélangeur est divisé, suivant la direction longitudinale, en au moins une première portion et une deuxième portion, la première portion présentant, suivant la direction longitudinale, une augmentation des distances entre deux positions successives et la deuxième portion présentant, suivant la direction longitudinale, une diminution des distances entre deux positions successives.
    • le dispositif mélangeur est configuré pour une introduction séparée de la première phase et de la deuxième phase dans le au moins un premier canal et dans le au moins un deuxième canal respectivement, le premier canal comprenant une première entrée adaptée pour alimenter ledit premier canal en la première phase du premier fluide et une deuxième entrée, séparée de la première entrée, adaptée pour alimenter ledit au moins un deuxième canal en la deuxième phase du premier fluide.
    • le premier canal et/ou le deuxième canal sont de forme rectiligne.
    • le dispositif mélangeur comprend une première entrée et une première entrée supplémentaire adaptées pour alimenter ledit au moins un premier canal en la première phase du fluide, la première portion étant située du côté de la première entrée et la deuxième portion étant située du côté de la première entrée supplémentaire.
    • le dispositif mélangeur comprend plusieurs premiers canaux et plusieurs deuxième canaux, chaque premier canal comprenant au moins un orifice reliant fluidiquement ledit premier canal à un deuxième canal donné.
    • le dispositif mélangeur comprend plusieurs premiers canaux se succédant suivant une direction latérale orthogonale à la direction longitudinale.
    • le deuxième canal s'étend suivant une direction latérale orthogonale à la direction longitudinale.
  • En outre, l'invention concerne un procédé de distribution d'un mélange à deux phases liquide/gaz dans un échangeur selon l'invention, ledit procédé comprenant les étapes suivantes :
    1. i) agencer un dispositif mélangeur dans au moins un passage de l'échangeur,
    2. ii) alimenter ledit premier canal du dispositif mélangeur en la première phase du premier fluide,
    3. iii) alimenter ledit deuxième canal du dispositif mélangeur en la deuxième phase (62) du premier fluide (F1) distincte de la première phase (61),
    4. iv) mettre en communication fluidique le premier canal avec le deuxième canal via les orifices de sorte qu'un mélange entre la première phase et la deuxième phase s'opère au sein du dispositif mélangeur, et
    distribuer un mélange de la première phase et de la deuxième phase en sortie du dispositif mélangeur.
  • Selon un autre aspect, l'invention concerne un procédé d'ajustement en position des orifices d'un dispositif mélangeur agencé dans un échangeur selon l'invention, ledit procédé comprenant les étapes suivantes :
    1. a) positionnement des orifices de manière à ce que leurs positions successives soit séparées par des distances prédéterminées,
    2. b) alimentation du premier canal en la première phase du fluide de sorte que la première phase du fluide s'écoule suivant la direction longitudinale,
    3. c) détermination des débits massiques de la première phase s'écoulant à travers chaque orifice,
    4. d) pour chaque orifice, repositionnement de l'orifice suivant de sorte qu'il soit séparé de l'orifice d'une distance modifiée égale à la moyenne des distances prédéterminées multipliée par un facteur de correction, ledit facteur de correction étant déterminé en fonction du débit massique s'écoulant dans l'orifice.
      • le facteur de correction est une fonction du rapport entre le débit massique s'écoulant à travers l'orifice et le débit massique moyenné sur tous les orifices.
      • ladite fonction est une fonction polynomiale du rapport entre le débit massique s'écoulant à travers l'orifice et le débit massique moyenné sur tous les orifices, de préférence une fonction affine dudit rapport.
      • le procédé comprend en outre une étape e) de définition des distances modifiées à l'étape d) en tant que distances prédéterminées, les étapes c) à d) étant réitérées au moins une fois, de préférence entre 1 et 5 fois, de préférence encore 2 fois au plus.
      • le dispositif mélangeur comprend plusieurs premiers canaux, le procédé comprenant, préalablement à l'étape a), au moins une étape de sélection d'un sous-ensemble d'orifices agencés dans un même premier canal, les étapes a) à e) étant appliquées audit sous-ensemble.
  • La présente invention peut s'appliquer à un échangeur de chaleur qui vaporise au moins un débit de mélange liquide-gaz, en particulier un débit de mélange à plusieurs constituants, par exemple un mélange d'hydrocarbures, par échange de chaleur avec au moins un autre fluide, par exemple du gaz naturel.
  • L'expression "gaz naturel" se rapporte à toute composition contenant des hydrocarbures dont au moins du méthane. Cela comprend une composition « brute » (préalablement à tout traitement ou lavage), ainsi que toute composition ayant été partiellement, substantiellement ou entièrement traitée pour la réduction et/ou élimination d'un ou plusieurs composés, y compris, mais sans s'y limiter, le soufre, le dioxyde de carbone, l'eau, le mercure et certains hydrocarbures lourds et aromatiques.
  • La présente invention va maintenant être mieux comprise grâce à la description suivante, donnée uniquement à titre d'exemple non limitatif et faite en référence aux schémas ci-annexés, parmi lesquels :
    • la Figure 1 est une vue schématique, dans un plan de coupe parallèle aux plaques d'un échangeur de chaleur, d'une partie d'un passage d'un échangeur alimenté en mélange à deux phases liquide-gaz conformément à un mode de réalisation de l'invention;
    • la Figure 2 est une vue schématique en coupe, suivant un plan perpendiculaire à celui de la Figure 1, du dispositif mélangeur de la Figure 1;
    • les Figures 3 et 4 sont des vues schématiques tridimensionnelles illustrant un dispositif mélangeur selon différents modes de réalisation de l'invention ;
    • les Figures 5, 6 et 7 présentent des résultats de simulations réalisées avec un dispositif mélangeur selon l'invention et avec un dispositif mélangeur hors invention.
  • La Figure 1 illustre un échangeur de chaleur 1 comprenant un empilement de plaques 2 (non visibles) qui s'étendent suivant deux dimensions, parallélement à un plan défini par une direction longitudinale z et une direction latérale y. Les plaques 2 sont disposées parallèlement l'une au-dessus de l'autre avec espacement et forment ainsi une pluralité de passages pour des fluides en relation d'échange de chaleur indirect via lesdites plaques.
  • De préférence, chaque passage a une forme parallélépipédique et plate. L'écart entre deux plaques successives est petit devant la longueur, mesurée suivant la direction latérale y, et la largeur, mesurée suivant la direction longutudinale z, de chaque passage.
  • L'échangeur 1 peut comprendre un nombre de plaques supérieur à 20, voire supérieur à 100, définissant entre elles une première série de passages 10 pour canaliser au moins un premier fluide F1, et une deuxième série de passages 20 (non visible sur la Figure 1) pour canaliser au moins un deuxième fluide F2, l'écoulement desdits fluides ayant lieu globalement suivant la direction y. Les passages 10 de la première série peuvent être agencés, en tout ou partie, en alternance ou de façon adjacente avec tout ou partie des passages 20 de la deuxième série.
  • De façon connue en soi, l'échangeur 1 comprend des moyens de distribution et d'évacuation 40, 52, 45, 54, 55 configurés pour distribuer les différents fluides sélectivement dans les passages 10, 20, ainsi que pour évacuer lesdits fluides desdits passages 10, 20.
  • L'étanchéité des passages 10, 20 le long des bords des plaques 2 est généralement assurée par des bandes d'étanchéité latérales et longitudinales 4 fixées sur les plaques 2. Les bandes d'étanchéité latérales 4 n'obturent pas complétement les passages 10, 20 mais laissent avantageusement des ouvertures d'entrée et de sortie de fluide situées dans les coins diagonalement opposés des passages.
  • Les ouvertures des passages 10 de la première série sont disposées en coïncidence l'une au-dessus de l'autre, tandis que les ouvertures des passages 20 de la deuxième série sont disposées dans les coins opposés. Les ouvertures placées l'une au-dessus de l'autre sont réunies respectivement dans des collecteurs de forme semi-tubulaire 40, 45, 50, 55, par lesquels s'effectuent la distribution et l'évacuation des fluides.
  • Dans la représentation de la Figure 1, les collecteurs semi-tubulaires 50, 45 servent à l'introduction des fluides dans l'échangeur 1 et les collecteurs semi-tubulaires 40, 55 servent à l'évacuation de ces fluides hors de l'échangeur 1.
  • Dans cette variante de réalisation, le collecteur d'alimentation d'un des fluides et le collecteur d'évacuation de l'autre fluide sont situés à une même extrémité de l'échangeur, les fluides F1, F2 circulant ainsi à contre-courant dans l'échangeur 1.
  • Selon une autre variante de réalisation, les premier et deuxième fluides peuvent également circuler à co-courant, les moyens d'alimentation d'un des fluides et les moyens d'évacuation de l'autre fluide étant alors situés à des extrémités opposées de l'échangeur 1.
  • De préférence, la direction y est orientée verticalement lorsque l'échangeur 1 est en fonctionnement. Le premier fluide F1 s'écoule globalement verticalement et dans le sens ascendant. D'autres directions et sens d'écoulement des fluides F1, F2 sont bien entendu envisageables, sans sortir du cadre de la présente invention.
  • A noter que dans le cadre de l'invention, un ou plusieurs premiers fluides F1 et un ou plusieurs deuxièmes fluides F2 de natures différentes peuvent s'écouler au sein des passages 10, 20 des première et deuxième séries d'un même échangeur.
  • De préférence, le premier fluide F1 est un fluide frigorigène et le deuxième fluide F2 est un fluide calorigène.
  • Les moyens de distribution et d'évacuation de l'échangeur comprennent avantageusement des ondes de distribution 51, 54, agencées entre deux plaques 2 successives sous forme de tôles ondulées, qui s'étendent à partir des ouvertures d'entrée et de sortie. Les ondes de distribution 51, 54 assurent la répartition uniforme et la récupération des fluides sur toute la largeur des passages 10, 20.
  • En outre, les passages 10, 20 comprennent avantageusement des structures d'échange thermique disposées entre les plaques 2. Ces structures ont pour fonction d'augmenter la surface d'échange thermique de l'échangeur et d'augmenter les coefficients d'échange entre les fluides en rendant les écoulements plus turbulents. En effet, les structures d'échange thermique sont en contact avec les fluides circulant dans les passages et transferrent des flux thermiques par conduction jusqu'aux plaques 2 adajcentes, auxquelles elles peuvent être fixées par brasage, ce qui augmente la résistance mécanique de l'échangeur.
  • Les structures d'échange thermique ont aussi une fonction d'entretoises entre les plaques 2, notamment lors de l'assemblage par brasage de l'échangeur et pour éviter toute déformation des plaques lors de la mise en oeuvre des fluides sous pression. Elles assurent également le guidage des écoulements de fluide dans les passages de l'échangeur.
  • De préférence, ces structures comprennent des ondes d'échange thermique 11 qui s'étendent avantageusement suivant la largeur et la longueur des passages 10, 20, parallélement aux plaques 2, dans le prolongement des ondes de distribution selon la longueur des passages 10, 20. Les passages 10, 20 de l'échangeur présentent ainsi une partie principale de leur longueur constituant la partie d'échange thermique proprement dite, qui est garnie d'une structure d'échange thermique, ladite partie principale étant bordée par des parties de distribution garnies des ondes de distribution 51, 54.
  • La Figure 1 illustre un passage 10 de la première série 1 configuré pour distribuer un premier fluide F1 se présentant sous la forme d'un mélange à deux phases, encore appelé mélange diphasique. Le premier fluide F1 est séparé dans un dispositif séparateur 6 en une première phase 61 et une deuxième phase 62 introduites séparément dans l'échangeur 1 par l'intermédiaire d'un premier collecteur 30 et d'un deuxième collecteur 50 distincts. Les première et deuxième phases 61, 62 sont ensuite mélangées l'une avec l'autre au moyen d'un dispositif mélangeur 3 agencé dans le passage 10. Avantageusement, plusieurs passages 10, voire la totalité des passages 10 de la première série comporte un dispositif mélangeur 3. Dans le cas illustré sur la Figure 1, la première phase 61 est liquide et la deuxième phase 62 est gazeuse.
  • La Figure 2 est une vue schématique en coupe, dans un plan perpendiculaire à celui de la Figure 1, d'un dispositif mélangeur 3 se composant avantageusement d'une barre, ou baguette, logée dans un passage 10.
  • Le dispositif mélangeur 3 s'étend de préférence dans la section du passage 10 sur la quasi-totalité, voire la totalité, de la hauteur du passage 10, de sorte que le dispositif mélangeur est en contact avec chaque plaque 2 formant le passage 10.
  • Le dispositif mélangeur 3 est avantageusement fixé aux plaques 2 par brasage.
  • Le dispositif mélangeur 3 est avantageusement de forme générale parallélépipédique.
  • De préférence, le dispositif mélangeur 3 est une pièce monolithique, i. e. formée d'un bloc ou d'un seul tenant.Le dispositif mélangeur 3 peut présenter, parallèlement à la direction latérale y, une première dimension comprise entre 20 et 200 mm et, parallèlement à la direction longitudinale z, une deuxième dimension comprise entre 100 et 1400 mm.
  • De préférence, le premier canal 31 s'étend sur toute la deuxième dimension et/ou le deuxième canal s'étend sur toute la première dimension.
  • Le dispositif mélangeur 3 comprend au moins un premier canal 31 pour l'écoulement de la première phase 61 parallèlement à la direction longitudinale z et au moins un deuxième canal 32 pour l'écoulement de la deuxième phase 62. Ledit premier canal 31 s'étend parallèlement à la direction longitudinale z. De préférence, le premier canal 31 et/ou le deuxième canal ont des formes rectilignes. De préférence, le deuxième canal 32 s'étend parallèlement à la direction latérale y qui est orthogonale à la direction longitudinale z et parallèle aux plaques 2.
  • Plusieurs orifices 34i, 34i+1,... sont répartis sur le dispositif mélangeur 3 de manière à relier fluidiquement au moins un premier canal 31 avec au moins un deuxième canal 32 adapté pour l'écoulement de la deuxième phase 62. Le dispositif mélangeur 3 est configuré de sorte que lorsque la première phase 61 s'écoule dans le premier canal 31 et la deuxième phase 62 s'écoule dans le deuxième canal 32, un mélange à deux phases liquide/gaz F1 soit distribué en sortie du dispositif mélangeur 3.
  • De préférence, le dispositif mélangeur 3 comprend au moins une première entrée 311 en communication fluidique avec le premier collecteur 30 et une deuxième entrée 321, séparée de la première entrée 311, en communication fluidique avec le deuxième collecteur 50. Le premier collecteur 30 est relié fluidiquement à une source de première phase 61 et le deuxième collecteur 50 est relié fluidiquement à une autre source de deuxième phase 62.Ladite au moins une première entrée 311 et ladite au moins une deuxième entrée 321 sont mises en communication fluidique via les orifices 34i, 34i+1,...
  • De préférence, le dispositif mélangeur 3 comprend un volume mélangeur situé dans le deuxième canal 32, en aval de l'orifice 34i en suivant le sens d'écoulement de la première phase 61 dans l'orifice 34i. Le mélange à deux phases liquide/gaz est distribué par une deuxième sortie 322 du deuxième canal 32.
  • Les premier et deuxième canaux 31, 32 se présentent avantageusement sous la forme d'évidements longitudinaux ménagés dans le dispositif mélangeur 3.
  • Les orifices 34 sont avantageusement des perçages 34 pratiqués dans la matière du dispositif 3 et s'étendant entre le premier canal 31 et le deuxième canal 32, de préférence selon la direction verticale x. De préférence, les orifices 34 sont à symétrie cylindrique.
  • De préférence, ledit au moins un premier canal 31 comprend une paroi de fond 3c et ledit au moins un deuxième canal comprend une paroi de sommet 3d qui s'étend en regard de la paroi de fond 3c, les orifices 34 étant percés dans la paroi de fond du premier canal 31 et débouchant dans la paroi de sommet du deuxième canal 32.
  • La Figure 3 est une vue en trois dimensions du dispositif mélangeur 3 de la Figure 2, la Figure 2 schématisant le dispositif 3 dans un plan de coupe orthogonal à la direction longitudinale z et passant par l'orifice 34i.
  • Comme on le voit sur la Figure 3, les orifices 34i, 34i+1,... occupent des positions successives zi, zi+1,... suivant la direction longitudinale z. Chaque orifice 34i, est séparé de l'orifice suivant 34i+1 d'une distance notée di, qui est mesurée parallèlement à la direction longitudinale z.
  • Dans les dispositifs selon l'art antérieur, les orifices occupent des positions successives zi, zi+1,...situées à égale distance les unes des autres. Or, la première phase 61 s'écoule dans le premier canal 31 à des vitesses différentes le long de la direction longitudinale z et le débit de première phase 61 s'écoulant dans chaque orifice varie selon la vitesse d'écoulement de la première phase 61 à la position zi de l'orifice considéré.
  • Afin de résoudre ce problème, il est proposé un dispositif mélangeur 3 dans lequel les distances entre deux positions successives zi, zi+1,... sont variables. En d'autres termes, les distances entre les positions successives zi, zi+1,...ne sont pas toutes identiques. Au moins une paire d'orifices successifs présente une distance entre deux positions successives différente de celle d'une autre paire d'orifices successifs.
  • En faisant varier les distances entre orifices suivant la direction longitudinale z, il est possible de compenser les inhomogénéités des débits par unité de longueur suivant la direction longitudinale z ou, dit autrement, par unité de largeur de passage d'échangeur, distribués par les orifices 34 en adaptant la répartition des orifices 34 sur la largeur du dispositif mélangeur 3. Par « débit par unité de longueur », on entend typiquement un débit distribué par un orifice, divisé par la distance entre cet orifice et le suivant. Par exemple, on pourra laisser des distances plus importantes entre des orifices qui ont tendance à être suralimentés en débit de fluide de première phase 61, ce qui aura pour effet de réduire localement le débit par unité de largeur distribué par les orifices. En fait, on ne cherche pas à homogénéiser le débit de fluide qui traverse chacun des orifices 34i, 34i+1,..., en ajustant la configuration des orifices 34 ou du premier canal 31, mais plutôt à adapter la répartition des points de distribution de fluide par les orifices 34 de sorte à homogénéiser le débit de première phase 61 par unité de longueur suivant la direction longitudinale z.
  • On obtient ainsi une distribution plus homogène du mélange liquide-gaz dans la largeur du passage 10. Cette solution présente les avantages d'être simple de mise en œuvre, de ne pas modifier l'encombrement de l'échangeur et de ne pas complexifier sa structure.
  • Selon un mode de réalisation, les distances entre les positions successives zi, zi+1,... varient de façon monotone ou quasi-monotone suivant la direction longitudinale z. En d'autres termes, le sens de variation des positions successives zi, zi+1,... est constant ou globalement constant le long de la direction longitudinale z.
  • Selon un mode de réalisation, le dispositif mélangeur 3 présente, suivant la direction longitudinale z, une augmentation des distances entre deux positions successives zi, zi+1,.... Une telle configuration est mise en œuvre lorsque le dispositif mélangeur 3 est alimenté en première phase 31 par une première entrée 311, la première phase s'écoulant suivant la direction longitudinale z, comme illustré dans l'exemple de la Figure 3. Les orifices situés du côté de l'entrée 311 ayant tendance à être sous-alimentés par rapport aux orifices situés plus en aval, en suivant le sens d'écoulement de la première phase 61.
  • Selon une variante de réalisation (non illustrée), le dispositif mélangeur 3 présente, suivant la direction longitudinale z, une diminution des distances entre deux positions successives zi, zi+1,... Une telle configuration est mise en œuvre lorsque le dispositif mélangeur 3 est alimenté en première phase 61 par une première entrée supplémentaire 312 agencée de sorte la première phase 61 s'écoule parallèlement mais dans un sens opposé à la direction longitudinale z.
  • La Figure 4 illustre un autre mode de réalisation de l'invention particulièrement avantageux lorsque le dispositif mélangeur 3 dispose de deux entrées pour l'alimentation en la première phase 61. Plus précisément, le dispositif mélangeur 3 est alimenté en première phase 61 par une première entrée 311 et une première entrée supplémentaire 312. Le dispositif mélangeur 3 est divisé, suivant la direction longitudinale z, en au moins une première portion 301 et une deuxième portion 302, la première portion 301 présentant, suivant la direction longitudinale z, une augmentation des distances entre deux positions successives zi, zi+1,... et la deuxième portion 302 présentant, suivant la direction longitudinale z, une diminution des distances entre deux positions successives zi, zi+1,...
  • Ce mode de réalisation permet une homogénéisation encore meilleure du débit de première phase 61 distribué en aval des orifices 34 le long de la direction longitudinale z.
  • De préférence, la première entrée et la première entrée supplémentaire 311, 312 sont agencées à deux extrémités opposées du dispositif mélangeur 3. Un premier débit de première phase 61 est distribué par la première entrée 311 et s'écoule suivant la direction d'écoulement z et un deuxième débit de première phase 61 est distribué par la première entrée supplémentaire 312 et s'écoule parallèlement mais dans un sens opposé à la direction longitudinale z.
  • Avantageusement, la première portion 301 est située du côté de la première entrée 311 et la deuxième portion 302 est située du côté de la première entrée supplémentaire 312.
  • De préférence, les premières et deuxièmes portions 301, 302 sont disposées de façon symétrique par rapport au centre du dispositif mélangeur 3. Lesdites portions pourraient toutefois être disposées en nombre différent et présenter des amplitudes de variations des distances entre orifices successifs différentes de part et d'autre du centre du dispositif mélangeur 3.
  • Avantageusement, un dispositif mélangeur 3 selon l'invention peut être configuré en ajustant la position des orifices 34 selon les étapes décrites ci-après. Notons que tout ou partie de ces étapes peuvent être mises en œuvre par simulation numérique, en particulier par simulation numérique des fluides (acronyme CFD pour Computational Fluid Dynamics en anglais) ou par corrélation de pertes de charge le long du premier canal 31 et des orifices 34 ou par mesures réelles,...
  • On définit un état initial du dispositif mélangeur 3 dans lequel les orifices 34i, 34i+1,... sont disposés à des positions successives zi, zi+1,... séparées par des distances prédéterminées di, di+1,.... De préférence, à l'état initial, les distances prédéterminées di, di+1,... sont identiques
  • Le premier canal 31 est alimenté de sorte que la première phase 61 s'écoule suivant la direction longitudinale z. On détermine les débits massiques Qi, Qi+1,... de la première phase 61 s'écoulant à travers chaque orifice 34i, 34i+1,... du dispositif mélangeur 3 et on repositionne les orifices de sorte que, pour chaque orifice 34i, l'orifice 34i+1 suivant se situe de l'orifice précédent 34i à une distance modifiée di qui s'exprime : d i = F i × d m
    Figure imgb0001
    où dm est la moyenne des distances prédéterminées di, di+1,... et Fi est un facteur de correction déterminé pour chaque orifice comme une fonction du débit Qi s'écoulant à travers l'orifice 34i.
  • A noter que de préférence, à l'état initial, la distance moyenne entre orifices correspond à la distance identique séparant tous les orifices 34i, 34i+1,...
  • Avantageusement, le facteur de correction Fi est une fonction du rapport Qi/Qm entre le débit massique Qi s'écoulant à travers l'orifice 34i et le débit massique Qm moyenné sur tous les orifices.
  • De préférence, cette fonction est une fonction polynomiale du rapport Qi/Qm, de préférence encore une fonction affine du rapport Qi/Qm s'exprimant : F i = A × Q i Q m + B
    Figure imgb0002
    où Qi est le débit massique s'écoulant à travers l'orifice 34i, Qm est le débit massique moyenné sur tous les orifices, A et B sont des constantes prédéterminées en fonction des caractéristiques du dispositif mélangeur 3. Selon un mode de réalisation particulier, A=1 et/ou B=0.
  • Etant précisé que le procédé d'ajustement décrit peut s'appliquer quelle que soit la configuration d'alimentation en première phase 61 du premier canal 31 puisque c'est dans la détermination des débits Qi, Qi+1,...qu'intervient la configuration d'alimentation du premier canal 31.
  • Selon le procédé d'échange considéré et sa sensibilité à la répartition inégale des phases du premier fluide F1, une seule étape de repositionnement des orifices 34i, 34i+1,... peut suffire pour homogénéiser la distribution de la première phase sur la largeur du dispositif mélangeur 3.
  • Optionnellement, l'étape de repositionnement des orifices 34i, 34i+1,... peut être réitérée au moins une fois, de préférence entre 1 et 5 fois, de préférence encore 2 fois au plus. Le procédé d'ajustement comprend alors une étape de définition des distances di, di+1,... modifiées précédemment en tant que distances prédéterminées. On détermine les nouveaux débits massiques Qi, Qi+1,... de la première phase 61 s'écoulant à travers chaque orifice 34i, 34i+1,...repositionné. On calcule la distance moyenne dm entre les orifices et le débit moyen Qm s'écoulant à travers les orifices et on détermine de nouvelles distances modifiées di, di+1,... selon les expressions données précédemment.
  • Dans le cas d'un disposifif mélangeur 3 à plusieurs premiers canaux 31, le procédé d'ajustement peut être conduit de façon globale sur l'ensemble des premiers canaux 31 en considérant les distances di, di+1,... entre deux orifices successifs, que ces orifices soient agencés dans un même premier canal 31 ou dans des premiers canaux 31 différents.
  • De façon alternative, le procédé peut être conduit en considérant chaque premier canal 31 individuellement. Pour ce faire, optionnellement, le procédé peut comprendre, préalablement à l'étape a), au moins une étape de sélection d'un sous-ensemble d'orifices 34i, 34i+1,... agencés dans un même premier canal 31, les étapes a) à e) étant exécutées pour ledit sous-ensemble. Au moins un autre sous-ensemble d'orifices 34i, 34i+1,... agencés dans un autre premier canal 31 peut ensuite être sélectionné et les étapes a) à e) exécutées pour cet autre sous-ensemble.
  • Afin de démontrer l'efficacité de l'invention, des simulations CFD ont été réalisées avec un dispositif mélangeur 3 tel qu'illustré sur la Figure 4. Une série de trois premiers canaux 31 était alimentée par deux entrées opposées 301, 302 en une première phase 61 à l'état liquide. Les orifices 34 étaient de forme cylindrique et s'étendaient suivant la direction verticale x. Afin de simplifier les simulations, seule la première phase 61 était prise en considération, la deuxième phase 62 gazeuse étant considérée comme ayant une influence négligeable sur la distribution de la première phase liquide 61 par chaque orifice 34.
  • Les résultats de ces simulations sont présentés sur les Figures 5 et 6, avec un comparatif entre un dispositif mélangeur 3 ayant des orifices équidistants (hors invention) et un dispositif mélangeur 3 comprenant une première portion 301 présentant, suivant la direction longitudinale z, une augmentation des distances entre deux positions successives zi, zi+1,... et la deuxième portion 302 présentant, suivant la direction longitudinale z, une diminution des distances entre deux positions successives zi, zi+1,.... (invention). La Figure 5 présente l'évolution des distances entre orifices suivant la direction longitudinale z. A l'état initial, les orifices sont équidistants (hors invention). Comme on le voit sur la Figure 6, le phénomène d'inhomogénéité de débit de la première phase 61 suivant la direction longitudinale z est fortement réduit avec un dispositif selon l'invention. Typiquement, on réduit les inhomogénéités des débits distribués par les orifices de manière à observer des variations relatives de débit entre les différents orifices inférieures à 10%.
  • Dans le cadre de l'invention, l'évolution des distances entre deux positions successives zi, zi+1,... peut s'apprécier au vu d'une évolution des valeurs réelles, mesurées ou simulées, ou d'une évolution dite « ajustée » ou « lissée » construite à partir d'un ajustement mathématique de l'évolution réelle des distances entre deux positions successives zi, zi+1,....
  • Ainsi, les termes « augmentation » ou « diminution » couvrent des variations monotones, telles qu'illustrées sur la Figure 5, ou quasi-monotones, c'est-à-dire des variations qui présentent localement, en considérant les valeurs réelles, mesurées ou simulées, un sens de variation différent du sens de variation global. Par exemple, la Figure 7 schématise le résultat d'une simulation conduisant globalement à une augmentation des distances entre deux positions successives zi, zi+1,..., mais présentant pour certains points une diminution de la distance entre un orifice et le suivant. Un ajustement mathématique de cette évolution, représenté par la courbe en pointillés (----), résulte en une augmentation monotone desdites distances. A noter que selon le cas, un orifice 34i peut se situer dans le même premier canal 31 que l'orifice 34i+1 successif, en particulier dans le cas d'un dispositif mélangeur 3 à premier canal 31 unique, ou dans un autre premier canal 31. Dans le cas d'un dispositif mélangeur 3 à plusieurs premiers canaux 31, un orifice successif 34i+1 d'un premier canal 31 se situe de préférence dans un autre premier canal 31 que l'orifice 34i. Les orifices 34i, 34i+1... sont agencés à des positions zi, zi+1,..., sans nécessairement être agencés à une même position suivant la direction latérale y.
  • Le dispositif 3 peut comprendre plusieurs premiers canaux 31 se succédant au sein du dispositif 3 et/ou plusieurs deuxièmes canaux 32, les premiers et/ou les deuxièmes canaux 31, 32 étant de préférence parallèles entre eux.
  • De préférence, les premiers canaux 31 et les deuxièmes canaux 32 s'étendent parallèlement aux plaques 2. Selon le mode de réalisation illustré par la Figure 3, les premiers canaux 31 se succèdent suivant la direction latérale y et les deuxièmes canaux 32 se succèdent suivant la direction longitudinale z.
  • Etant précisé que les canaux 31 et 32 peuvent être de forme et en nombres distincts ou identiques. Les distances entre les premiers canaux 31 successifs et les distances entre les deuxièmes canaux 32 successifs peuvent aussi varier. De préférence, les distances entre les canaux 32, mesurées suivant la direction la direction longitudinale z, sont ajustées en fonction de la position des orifices 34.
  • Les Figures 3 à 4 représentent des exemples de dispositif mélangeur 3 sous forme de barre, des orifices 34 de forme cylindrique étant percés dans le fond de plusieurs premiers canaux 31.
  • Dans ce mode de réalisation, le dispositif mélangeur 3 forme globalement un parallélépipède délimité notamment par une première surface 3a destinée à être agencée en regard d'une plaque 2 de l'échangeur et une deuxième surface 3b agencée en regard d'une autre plaque 2. Les premières et deuxième surfaces 3a, 3b s'étendent de préférence globalement parallèlement aux plaques 2. Le dispositif mélangeur 3 est de préférence agencé dans le passage 10 de sorte que les premières et deuxième surfaces 3a, 3b se trouvent en contact avec les plaques 2.
  • Les canaux 31, 32 se présentent avantageusement sous la forme d'évidements ménagés au sein du dispositif mélangeur 3. Ils peuvent être débouchants ou non au niveau des surfaces 3a et/ou 3b.
  • Les orifices 34 sont avantageusement des perçages 34 pratiqués dans la matière du dispositif 3 et s'étendant entre le premier canal 31 et le deuxième canal 32, de préférence selon la direction verticale x. De préférence, les orifices 34 sont à symétrie cylindrique.
  • A noter que les orifices 34i, 34i+1,... n'ont pas nécessairement la même forme ou les mêmes dimensions. Le nombre de formes différentes, le dimensionnement et la répartition des orifices, dans un même premier canal 31 ou entre plusieurs premiers canaux 31, pourra varier en fonction de la distribution de mélange liquide-gaz souhaitée, de façon à adapter encore plus finement le débit de fluide dans les orifices 34. En particulier, dans le cas d'un premier canal à une entrée 311, on pourra agencer des orifices de plus grandes sections en amont du premier canal 31, là où la vitesse de la première phase 61 est la plus grande, et des orifices de section d'entrée plus faibles en aval du premier canal 31. La forme, les dimensions des premier et/ou deuxième canaux 31, 32 peut également varier le long des directions y et/ou z et d'un canal 31, 32 à un autre
  • Bien entendu, l'invention n'est pas limitée aux exemples particuliers décrits et illustrés dans la présente demande. D'autres variantes ou modes de réalisation à la portée de l'homme du métier peuvent aussi être envisagés sans sortir du cadre de l'invention.
  • Par exemple, l'échangeur selon l'invention est principalement décrit dans le cas où les passages 10, 20 s'étendent suivant la direction latérale y, le premier canal longitudinal 31 s'étendant suivant la direction d'écoulement z et le canal latéral 32 s'étendant suivant la direction latérale y orthogonale à la direction z. L'inverse est aussi envisageable, par exemple un premier canal longitudinal 31 s'étendant suivant la direction latérale y et un canal latéral 32 s'étendant suivant la direction d'écoulement z. Les directions y et z peuvent aussi ne pas être orthogonales entre elles.

Claims (16)

  1. Echangeur de chaleur (1) comprenant plusieurs plaques (2) agencées parallèlement entre elles et à une direction longitudinale (z) de façon à définir plusieurs passages (10) pour canaliser au moins un premier fluide (F1) à mettre en relation d'échange thermique avec au moins un deuxième fluide (F2), un dispositif mélangeur (3) étant agencé dans au moins un passage (10) et comprenant :
    - au moins un premier canal (31) pour l'écoulement d'une première phase (61) du premier fluide (F1) parallèlement à la direction longitudinale (z),
    - au moins un deuxième canal (32) pour l'écoulement d'une deuxième phase (62) du premier fluide (F1), et
    - plusieurs orifices (34i, 34i+1,...) reliant fluidiquement le premier canal (31) au deuxième canal (32), lesdits orifices (34i, 34i+1,...) occupant des positions successives (zi, zi+1,...) suivant la direction longitudinale (z),
    caractérisé en ce que les distances entre les positions successives (zi, zi+1,...), mesurés parallèlement à la direction longitudinale (z), sont variables.
  2. Echangeur selon la revendication 1, caractérisé en ce que les distances entre les positions successives (zi, zi+1,...) varient de façon monotone ou quasi-monotone suivant la direction longitudinale (z).
  3. Echangeur selon l'une des revendications 1 ou 2, caractérisé en ce qu'il présente, suivant la direction longitudinale (z), une augmentation des distances entre deux positions successives (zi, zi+1,...).
  4. Echangeur selon l'une des revendications 1 ou 2, caractérisé en ce qu'il présente, suivant la direction longitudinale (z), une diminution des distances entre deux positions successives (zi, zi+1,...).
  5. Echangeur selon la revendication 1, caractérisé en ce qu'il est divisé, suivant la direction longitudinale (z), en au moins une première portion (301) et une deuxième portion (302), la première portion (301) présentant, suivant la direction longitudinale (z), une augmentation des distances entre deux positions successives (zi, zi+1,...) et la deuxième portion (302) présentant, suivant la direction longitudinale (z), une diminution des distances entre deux positions successives (zi, zi+1,...).
  6. Echangeur selon l'une des revendications précédentes, caractérisé en ce que le dispositif mélangeur (3) est configuré pour une introduction séparée de la première phase (61) et de la deuxième phase (62) dans le au moins un premier canal (31) et dans le au moins un deuxième canal (32) respectivement, le premier canal (31) comprenant une première entrée (311) adaptée pour alimenter ledit premier canal (31) en la première phase (61) du premier fluide (F1) et une deuxième entrée (321), séparée de la première entrée (311), adaptée pour alimenter ledit au moins un deuxième canal (32) en la deuxième phase (62) du premier fluide (F1).
  7. Echangeur selon l'une des revendications précédentes, caractérisé en ce que le premier canal (31) et le deuxième canal (32) sont de forme rectiligne.
  8. Echangeur selon l'une des revendications précédentes, caractérisé en ce que le dispositif mélangeur (3) comprend plusieurs premiers canaux (31) et plusieurs deuxième canaux (32), chaque premier canal (31) comprenant au moins un orifice (34i, 34i+1,...) reliant fluidiquement ledit premier canal (31) à un deuxième canal (32) donné.
  9. Echangeur selon l'une des revendications précédentes, caractérisé en ce que le dispositif mélangeur (3) comprend plusieurs premiers canaux (31) se succédant suivant une direction latérale (y) orthogonale à la direction longitudinale (z).
  10. Echangeur selon l'une des revendications précédentes, caractérisé en ce que le deuxième canal (32) s'étend suivant une direction latérale (y) orthogonale à la direction longitudinale (z).
  11. Procédé de distribution d'un mélange à deux phases liquide/gaz dans un échangeur selon l'une des revendications 1 à 10, ledit procédé comprenant les étapes suivantes :
    i) agencer un dispositif mélangeur (3) dans au moins un passage (10) de l'échangeur,
    ii) alimenter ledit premier canal (31) du dispositif mélangeur (3) en la première phase (61) du premier fluide (F1),
    iii) alimenter ledit deuxième canal (32) du dispositif mélangeur (3) en la deuxième phase (62) du premier fluide (F1) distincte de la première phase (61),
    iv) mettre en communication fluidique le premier canal (31) avec le deuxième canal (32) via les orifices (34i, 34i+1,...) de sorte qu'un mélange entre la première phase (61) et la deuxième phase (62) s'opère au sein du dispositif mélangeur (3), et
    distribuer un mélange de la première phase (61) et de la deuxième phase (62) en sortie du dispositif mélangeur (3).
  12. Procédé d'ajustement en position des orifices (34) d'un dispositif mélangeur (3) intégré dans un échangeur selon l'une des revendications 1 à 8, ledit procédé comprenant les étapes suivantes :
    a) positionnement des orifices (34i, 34i+1,...) de manière à ce que leurs positions successives (zi, zi+1,...) soit séparées par des distances prédéterminées (di, di+1,...),
    b) alimentation du premier canal (31) en la première phase (61) du fluide (F1) de sorte que la première phase (61) du premier fluide (F1) s'écoule suivant la direction longitudinale (z),
    c) détermination des débits massiques (Qi, Qi+1,...) de la première phase (61) s'écoulant à travers chaque orifice (34i, 34i+1,...),
    d) pour chaque orifice (34i), repositionnement de l'orifice suivant (34i+1) de sorte qu'il soit séparé de l'orifice (34i) d'une distance modifiée (di) égale à la moyenne (dm) des distances prédéterminées (di, di+1,...) multipliée par un facteur de correction (Fi), ledit facteur de correction étant déterminé en fonction du débit massique (Qi) s'écoulant dans l'orifice (34i).
  13. Procédé selon la revendication 12, caractérisé en ce que le facteur de correction (Fi) est une fonction du rapport (Qi/Qm) entre le débit massique (Qi) s'écoulant à travers l'orifice (34i) et le débit massique (Qm) moyenné sur tous les orifices.
  14. Procédé selon la revendication 13, caractérisé en ce que ladite fonction est une fonction polynomiale du rapport (Qi/Qm), de préférence une fonction affine du rapport (Qi/Qm).
  15. Procédé selon l'une des revendications 10 à 14, caractérisé en ce qu'il comprend en outre une étape e) de définition des distances (di, di+1,...) modifiées à l'étape d) en tant que distances prédéterminées, les étapes c) à d) étant réitérées au moins une fois, de préférence entre 1 et 5 fois, de préférence encore 2 fois au plus.
  16. Procédé selon l'une des revendications 10 à 15, caractérisé en ce que le dispositif mélangeur (3) comprend plusieurs premiers canaux (31), le procédé comprenant, préalablement à l'étape a), au moins une étape de sélection d'un sous-ensemble d'orifices (34i, 34i+1,...) agencés dans un même premier canal (31), les étapes a) à e) étant appliquées audit sous-ensemble.
EP19718903.8A 2018-03-22 2019-03-21 Echangeur de chaleur avec dispositif melangeur liquide/gaz ameliore Active EP3769024B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1852469A FR3079291B1 (fr) 2018-03-22 2018-03-22 Echangeur de chaleur avec dispositif melangeur liquide-gaz ameliore
PCT/FR2019/050642 WO2019180384A1 (fr) 2018-03-22 2019-03-21 Echangeur de chaleur avec dispositif melangeur liquide/gaz ameliore

Publications (2)

Publication Number Publication Date
EP3769024A1 EP3769024A1 (fr) 2021-01-27
EP3769024B1 true EP3769024B1 (fr) 2022-10-12

Family

ID=63014661

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19718903.8A Active EP3769024B1 (fr) 2018-03-22 2019-03-21 Echangeur de chaleur avec dispositif melangeur liquide/gaz ameliore

Country Status (5)

Country Link
US (1) US20200408466A1 (fr)
EP (1) EP3769024B1 (fr)
JP (1) JP7309739B2 (fr)
FR (1) FR3079291B1 (fr)
WO (1) WO2019180384A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115615233B (zh) * 2022-11-08 2023-04-07 中国核动力研究设计院 流体承载组件及热量交换装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450903A (en) * 1982-09-20 1984-05-29 The Trane Company Plate type heat exchanger with transverse hollow slotted bar
DE3415807A1 (de) * 1984-04-27 1985-10-31 Linde Ag, 6200 Wiesbaden Waermetauscher
JPH04371798A (ja) * 1991-06-21 1992-12-24 Hitachi Ltd 熱交換器
JP2538486Y2 (ja) * 1993-04-21 1997-06-18 住友精密工業株式会社 プレートフィン型気液二相流熱交換器
JPH10157447A (ja) * 1996-11-27 1998-06-16 Calsonic Corp 熱交換器
FR2963091B1 (fr) * 2010-07-20 2012-08-17 Univ Savoie Module de circulation de fluides
CN101922883B (zh) 2010-09-13 2012-09-26 三花控股集团有限公司 制冷剂导管和具有该制冷剂导管的换热器
CN102079038B (zh) 2010-12-08 2013-02-13 三花控股集团有限公司 一种换热器及其制冷剂导流管,以及制冷剂导流管的加工方法
JP6190349B2 (ja) * 2013-12-05 2017-08-30 株式会社神戸製鋼所 熱交換器
CN103983138A (zh) 2014-05-16 2014-08-13 杭州杭氧股份有限公司 一种铝制板翅式换热器大气量两相流均布装置
CN104180703A (zh) * 2014-08-20 2014-12-03 中国海洋石油总公司 气液两相均布装置
CN105486106A (zh) * 2015-12-29 2016-04-13 无锡佳龙换热器股份有限公司 一种天然气气液均布换热装置
FR3053452B1 (fr) * 2016-07-01 2018-07-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur comprenant un dispositif de distribution d'un melange liquide/gaz

Also Published As

Publication number Publication date
EP3769024A1 (fr) 2021-01-27
FR3079291A1 (fr) 2019-09-27
FR3079291B1 (fr) 2020-07-10
JP7309739B2 (ja) 2023-07-18
US20200408466A1 (en) 2020-12-31
JP2021517232A (ja) 2021-07-15
WO2019180384A1 (fr) 2019-09-26

Similar Documents

Publication Publication Date Title
WO2018172644A1 (fr) Echangeur de chaleur avec dispositif melangeur liquide/gaz a portion de canal regulatrice
EP3479044B1 (fr) Echangeur de chaleur comprenant un dispositif de distribution d'un melange liquide/gaz
EP0722355A1 (fr) Distributeur-melangeur-extracteur de fluide monophasique pour lits de solides granulaires
EP3769024B1 (fr) Echangeur de chaleur avec dispositif melangeur liquide/gaz ameliore
EP2875304B1 (fr) Absorbeur a echangeur a plaques avec element de repartition poreux
FR2563620A1 (fr) Echangeur de chaleur du type a plaques
EP3662222A1 (fr) Echangeur de chaleur comprenant un element de distribution a canaux multiples
EP3601927B1 (fr) Echangeur de chaleur avec dispositif melangeur liquide/gaz a orifices de forme amelioree
EP3289302B1 (fr) Echangeur de chaleur a plaques empilees
EP3254045B1 (fr) Echangeur de chaleur comprenant un dispositif de distribution de liquide frigorigene
EP3555544B1 (fr) Échangeur de chaleur avec dispositif mélangeur liquide/gaz à géométrie de canal améliorée
EP2217345B1 (fr) Dispositif de chromatographie de partage centrifuge et procede mis en oeuvre par ce dispositif
EP3830511A1 (fr) Echangeur de chaleur a configuration de passages amelioree, procedes d'echange de chaleur associes
FR2891090A1 (fr) Plaque bipolaire pour pile a combustible
EP4062118B1 (fr) Echangeur de chaleur avec agencement de dispositifs mélangeurs améliorant la distribution d'un mélange diphasique
EP3700648B1 (fr) Nouveau système de distribution par panneaux méridiens pour un procédé de séparation en lit mobile simulé utilisant n-colonnes en série
FR2740054A1 (fr) Chambre de melange munie d'orifices d'injection et/ou de soutirage pour optimiser la fonction de melange
FR3099562A1 (fr) Echangeur de chaleur entre au moins un fluide primaire et un fluide secondaire et procede de fabrication d'un tel echangeur
FR3095351A1 (fr) Dispositif de distribution par panneaux méridiens avec séparation des réseaux de collecte
WO2021019153A1 (fr) Procédé de liquéfaction de gaz naturel avec circulation améliorée d'un courant réfrigérant mixte
FR2992407A1 (fr) Distributeur diphasique
FR3113120A3 (fr) Procédé de fabrication d’un échangeur de chaleur avec collecteur de fluide usiné, échangeur associé
FR2608746A1 (fr) Echangeur de chaleur a circuits d'echange en spirale; plaque nervuree pour un tel echangeur
FR2740051A1 (fr) Distributeur-melangeur-extracteur de fluide monophasique pour lits de solides granulaires
BE542659A (fr)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220624

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019020533

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1524405

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221012

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1524405

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230112

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230212

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019020533

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

26N No opposition filed

Effective date: 20230713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230321

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230321

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230321

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240328

Year of fee payment: 6